
A Concurrent Trace-based Just-In-Time Compiler
for Single-threaded JavaScript

Jungwoo Ha

Department of Computer

Sciences

The University of Texas at Austin

habals@cs.utexas.edu

Mohammad R. Haghighat

Software Solution Group

Intel Corporation

mhaghigh@intel.com

Shengnan Cong

Software Solution Group

Intel Corporation

shengnan.cong@intel.com

Kathryn S. McKinley

Department of Computer Sciences

The University of Texas at Austin

mckinley@cs.utexas.edu

Abstract
JavaScript is emerging as the ubiquitous language

of choice for web browser applications. These ap-

plications increasingly execute on embedded mobile

devices, and thus demand responsiveness (i.e., short

pause times for system activities, such as compilation

and garbage collection). To deliver responsiveness, web

browsers, such as Firefox, have adopted trace-based

Just-In-Time (JIT) compilation. A trace-based JIT re-

stricts the scope of compilation to a short hot path of

instructions, limiting compilation time and space. Al-

though the JavaScript limits applications to a single-

thread, multicore embedded and general-purpose ar-

chitectures are now widely available. This limitation

presents an opportunity to reduce compiler pause times

further by exploiting cores that the application is guar-

anteed not to use. While method-based concurrent JITs

have proven useful for multi-threaded languages such

as Java, trace-based JIT compilation for JavaScript of-

fers new opportunities for concurrency.

This paper presents the design and implementa-

tion of a concurrent trace-based JIT that uses novel

lock-free synchronization to trace, compile, install, and

stitch traces on a separate core such that the interpreter

essentially never needs to pause. Our evaluation shows

that this design reduces the total, average, and maxi-

mum pause time by 89%, 97%, and 93%, respectively

compared to the base single-threaded JIT system. Our

design also improves throughput by 6% on average and

up to 34%, because it delivers optimized application

code faster. This design provides a better end-user ex-

perience by exploiting multicore hardware to improve

responsiveness and throughput.

Categories and Subject Descriptors D.3.4 [Program-
ming Languages]: Processors—Incremental compilers,

code generation.

General Terms Design, Experimentation, Performance,

Measurement

Keywords Just-In-Time Compilation, Multicore, Con-

currency

1. Introduction
JavaScript is emerging as the scripting language of

choice for client-side web browsers [10]. Client-side

JavaScript applications initially performed simple HTML

web page manipulations to aid server-side web applica-

tions, but they have since evolved to use asynchronous

and XML features to perform sophisticated, interactive

dynamic content manipulation on the client-side. This

style of JavaScript programming is called AJAX (for

Asynchronous JavaScript and XML). Companies, such

as Google and Yahoo, are using it to implement inter-

active desktop applications such as mail, messaging,

and collaborative spreadsheets, word processors, and

calendars. Because Internet usage on mobile platforms

47

is growing rapidly, the performance of JavaScript is

critical for both desktops and embedded mobile de-

vices. To speed up the processing of JavaScript appli-

cations, many web browsers are adopting Just-In-Time

(JIT) compilation, including Firefox TraceMonkey [5],

Google V8 [11], and WebKit SFE [19].

Generating efficient machine code for dynamic lan-

guages, such as JavaScript, is more difficult than for

statically typed languages. For dynamic languages, the

compiler must generate code that correctly executes

all possible runtime types. Gal et al. recently intro-

duced a trace-based JIT compilation for dynamic lan-

guages to address this problem and to provide respon-

siveness (i.e., low compiler pause times and memory

requirements) [7]. Responsiveness is critical, because

JavaScript runs on client-side web browsers. Pause

times induced by the JIT must be short enough not to

disturb the end-user experience. Therefore, Gal et al.’s

system interprets until it detects a hot path in a loop.

The interpreter then traces, recording instructions and

variable types along a hot path. The JIT then special-

izes the trace by type and translates it into native code

in linear time. The JIT sacrifices code quality for linear

compile times, rather than applying heavy weight op-

timizations. This trace-based JIT provides fast, light-

weight compilation with a small memory footprint,

which make it suitable for resource-constrained de-

vices.

On the hardware side, multicore processors are pre-

vailing in embedded and general purpose systems. The

JavaScript language however lacks a thread model, and

thus all JavaScript applications are single-threaded.

This limitation provides the opportunity to perform the

JIT and other VM services concurrently on another

core, transparently to the application, since the appli-

cation is guaranteed not to be using it.Unfortunately,

state-of-the-art trace-based JIT compilers are sequen-

tial [7, 5, 18], and have not exploited concurrency to

improve responsiveness.

In this paper, we present the design and implemen-

tation of a concurrent trace-based JIT compiler for

JavaScript that combines responsiveness and through-

put for JavaScript applications. We address the syn-

chronization problem specific to the trace-based JIT

compiler, and present novel lock-free synchronization

mechanisms for wait-free communication between the

interpreter and the compiler. Hence, the compiler runs

concurrently with the interpreter reducing pause times

to nearly zero.

Our mechanism piggybacks a single word, called

the compiled state variable (CSV), on each trace, us-

ing it as a synchronization variable. Comparing with

CSV synchronizes all of the compilation actions, in-

cluding checking for the native code, preventing dupli-

cate traces, and allowing the interpretation to proceed,

without using any lock.

We introduce lock-free dynamic trace stitching in

which the compiler patches new native code to the ex-

isting code. Dynamic trace stitching prevents the com-

piler from waiting for trace stitching while the inter-

preter is executing the native code, and reduces the po-

tential overhead of returning from native code to the

interpreter.

We implement our design in the open source Tamar-

inTracing VM, and evaluate our implementation us-

ing the SunSpider JavaScript benchmark suite [20] on

three different hardware platforms. The experiments

show that our concurrent trace-based JIT implemen-

tation reduces the total pause time by 89%, the max-

imum pause time by 93%, and the average pause time

by 97% on Linux. Moreover, the design improves the

throughput by an average of 6%, with improvements up

to 34%. Our concurrent trace-based JIT virtually elim-

inates compiler pause times and increases application

throughput. Because tracing overlaps with compilation,

the interpreter prepares the trace earlier for subsequent

compilation, thus the JIT delivers the native code more

quickly. This approach also opens up the possibility of

increasing the code quality with compiler optimizations

without sacrificing the application pause time.

2. Related Work
Gal et al. proposed splitting trace tree compilation steps

into multiple pipeline stages to exploit parallelism [6].

This is the only work we can find seeking parallelism

in the trace-based compilation. There are a total of 19

compilation pipeline stages, and each pipeline stage

runs on a separate thread. Because of data dependency

between each stage and the synchronization overhead,

the authors failed to achieve any speedup in compila-

tion time. We show having a parallel compiler thread

operating on an independent trace provides more bene-

fit than pipelining compilation stages. With proper syn-

chronization mechanisms, our work successfully ex-

ploited parallelism in the trace-based JIT by allowing

48

tracing to happen concurrently with the compilation,

even when only one compiler thread was used.

Kulkarni et al. explored maximizing throughput of

background compilation by adjusting the CPU utiliza-

tion level of the compiler thread [15]. This technique

is useful when the number of application threads ex-

ceeds the number of physical processors and the com-

piler thread cannot fully utilize a processor resource.

They conducted their evaluation on method-based com-

pilation, though the same technique can be applied to

trace-based compilation. However, because JavaScript

is single-threaded, it is less likely that all the cores are

fully utilized in today’s multicore hardware. Hence, the

effect of adjusting CPU usage levels will not be as sig-

nificant as it is in multi-threaded Java programs.

A number of previous efforts have sought to re-

duce compilation pause time in method-based JIT.

SELF-93 VM introduced adaptive compilation strate-

gies for minimizing application pause time [13]. When

a method is invoked for the first time, the VM compiles

it without optimizations using a light weight compiler.

If method invocations exceed a threshold, the VM re-

compiles the method with more aggressive optimiza-

tions. While the SELF-93 VM provided reasonable re-

sponsiveness, it must pause the application thread for

compilation when initially invoked.

Krintz et al. implemented profile-driven background

compilation in the Jalapeño Virtual Machine (now

called Jikes RVM) [14, 2]. In multiprocessor systems,

a background compiler thread overlaps with applica-

tion execution, which reduces compilation pause times.

Jikes RVM also applied lazy compilation, where the

JIT only compiles the method on demand within a

class instead of compiling every method in a class at

class loading time. When the method is invoked for the

first time before the optimized code is ready, the VM

pauses the application and run the baseline compiler.

These novel techniques have made adaptive compi-

lation in method-based compilation practical in Java

Virtual Machines, such as Sun HotSpot [16], IBM

J9 [17], and Jikes RVM [1]. However, issues specific

for trace-based JIT has not been successfully evaluated

by any previous work.

3. Background
3.1 Dynamic Typing in JavaScript
JavaScript is a dynamically typed language. The type

of every variable is inferred from its content dynam-

trunk trace

branch trace

guard

side exit

trunk trace

branch trace

trunk
trace

guard side
exit

byte code native code

after trunk trace
compilation

after branch trace
compilation

Figure 1. Byte code and native code transition in the

trace-based JIT. Initially, the interpreter interprets on

the byte code. First detected hot path (thick path)

is traced forming a trunk trace. Following hot paths

guarded and installed in a side-exit. The compiler at-

tach the branch trace, which begins from the hot side-

exit to the loop header, to the trunk trace.

ically. Furthermore, the type of JavaScript variables

can change over time as the script executes. For ex-

ample, a variable may hold an integer object at one

time and later hold a string object. A consequence

of dynamic typing is that operations need to be dis-

patched dynamically. While the degree of type stability

in JavaScript is the subject of current studies, our ex-

periences and empirical results indicate that JavaScript

variables are type stable in most cases. This observation

suggests that type-based specialization techniques pio-

neered in Smalltalk [4] and later used in Self [12] and

Sun HotSpot [16] have the potential for tremendously

improving JavaScript performance.

3.2 Trace-based JIT Compilation
Hotpath VM is the first trace-based JIT compilation in-

troduced for Java applications in a resource-constrained

environment [8]. The authors later explored trace-based

JIT for dynamic languages, such as JavaScript [7].

The trace-based JIT compiles only frequently exe-

cuted path in a loop. Figure 1 shows an example of

how the interpreter identifies a hot path, and expands

it. Initially, the interpreter executes the byte code in-

structions, and identifies the hot loop with backward

branch profiling which operates as follows. When the

execution reaches the backward branch, the interpreter

assumes it a loop backedge and increments the counter

associated with the branch target address. When the

counter reaches a threshold, the interpreter enables

tracing, and records each byte code instruction to a

49

trace buffer upon execution. When the control reaches

back to the address where the tracing started, the inter-

preter stops tracing and the compiler compiles the trace

to native code. As the interpreter is not doing an exact

path profiling, the traced path may or may not be the

real hot path. The first trace in a loop is called a trunk
trace.

Instructions are guarded if they potentially diverge

from the recorded path. If a guard is triggered, the

native code side-exit back to the interpreter, and begin

interpreting from the branch that caused the side-exit.

The interpreter counts each side-exit to identify the

frequent side-exit. When a side-exit is taken beyond a

threshold, it means the loop contains another hot path,

and the interpreter enables tracing from the side-exit

point until it reaches the address of the trunk trace.

This trace is called a branch trace. A branch trace is

compiled and the code is stitched to the trunk trace at

the side-exit instruction. As the interpreter finds more

hot paths, the number of branch traces grows forming

a trace tree.

Since the compilation granularity is a trace, which

is smaller than a method, the total memory footprint of

the JIT is smaller than that of method-based JITs. And

because no control flow analysis is required, start-up

compilation time is less than that of the method-based

compilers. However, as optimization opportunities are

limited, the final code quality may not be as good as

code generated by method-based compilation. There-

fore, trace compilation is suitable for embedded envi-

ronments where resources are limited, or the initial JIT

cost is far more important than the steady state perfor-

mance.

4. Design and Implementation
4.1 Parallelism to Exploit
To design a proper synchronization mechanism to max-

imize the concurrency, we must understand what paral-

lelisms can be exploited. Figure 2 explains an execu-

tion flow example of sequential and concurrent JIT. As

the compilation phase is offloaded to a separate thread,

the interpreter is responsive and making progress while

compilation happens, as is common for generic concur-

rent JIT compilers. For trace-based JIT, tracing must

precede the compilation phase. If tracing can happen

concurrently with compilation, subsequent compilation

may start earlier, and deliver the native code faster. Fur-

thermore, more hot paths can be compiled during the

�� �� �� �� ���� �� �� �� �� ��

�� ��

��

�� ���� ����

��

����

��

��

��

I: Interpretation, T: Interpretation w/ tracing,
C: Compilation, N: Native code execution

Compiler thread

Interpreter thread

Interpreter thread

Concurrent JIT
Sequential JIT

Figure 2. Example of sequential vs concurrent JIT

execution flow.

cold loop or
traced hot loop w/o
native code

�����

���	�
�

�������	��

���������

����
�
�����

���������
������

����
�
�����

������
������

has native code

untraced hot loop

back edge

back edge

������
���

�������	��

hot side-exit
normal or cold side-exit

application starts

Figure 3. The interpreter state transition at a loop

header.

execution. We can expect to achieve throughput im-

provements as well as a reduction in the pause time.

The concurrent JIT also opens the possibility to do

more aggressive optimizations without hurting pause

time. The following sections explain how we designed

the synchronization to achieve the parallelism shown in

Figure 2.

4.2 Compiled State Variable
In the trace-based JIT compiler, the interpreter changes

state at loop entry points. As shown in Figure 3, when

the control flow reaches a loop entry point, the inter-

preter must identify four different states. First, if com-

piled native code exists for the loop, the interpreter calls

it. The native code executes until the end of the loop

or a side-exit is taken. Second, if the loop has never

been traced and the loop is a hot loop, the interpreter

executes byte code with tracing enabled. Identifying

hot loop path is explained in Section 3 in detail. Third,

if tracing is currently enabled at the loop header, the

interpreter disables it and requests compilation. While

compiling the trace, the interpreter continues to execute

the program. Fourth, if the loop is cold, the interpreter

50

increments the associated counter and keeps on inter-

preting the byte codes.

Checking all these cases at a loop header requires

a synchronization with the compiler thread. Otherwise,

race conditions may cause overhead or incorrect execu-

tion. For example, the interpreter may make duplicate

compilation requests, or trace the same loop multiple

times. The simplest synchronization method is using a

coarse-grained lock around the checking routine. How-

ever, the lock can easily be contended after the com-

pilation request is made, especially with a short loop

body, because the control reaches the loop header fre-

quently. We could use a fine-grained lock for accessing

each loop data structure. However, this is also infeasi-

ble because the native code for the loop can change as

the trace tree grows, and holding a lock while executing

the native code would stall the compiler too often.

To overcome these challenges, we design a lock-free

synchronization technique using a compiled state vari-
able (CSV). A word size CSV piggybacks on each loop

data structure, and it is aligned not to cross the cache

line. Thus, stores to it are atomic. The value of the CSV

is defined as shown in Table 4.2. By following simple

but efficient ways of incrementing the CSV value, the

state check at the loop header can be done without any

explicit synchronization. The initial value of CSV is

zero, and only the interpreter increments 0 to 1 when

it requests a compilation. As it is a local change, the

interpreter sees the value 1 on the subsequent opera-

tions before the compiler sees the value 1. The compiler

changes the value 1 to 2 after it registers the native code

to the loop data structure. Thus, when the interpreter

reads the value 2, it is guaranteed that the native code

is ready to call. Therefore, the pause time for waiting

is almost zero for both the interpreter and the compiler,

maximizing the concurrency.

When the compiler makes a JIT request, the trace

buffer is pushed to a queue before the CSV is in-

cremented to 1. We use a simple synchronized FIFO

queue for the JIT request, because it is normally not

contended. However, a generic, concurrent, lock-free

queue for one producer and consumer [9] could always

replace this queue, but we think it would not affect

performance.

4.3 Dynamic Trace Stitching
The trace-based JIT specializes types and paths, and

injects guard instructions to verify the assumptions for

the type and path of the trace. Guards trigger side-

exit code if the assumption is not met, and returns the

control back to the interpreter.

If two or more hot paths exist in a loop, the first hot

path will be compiled normally, but the subsequent hot

paths will frequently trigger guards. As explained in

Section 3, the interpreter traces from the branch that

caused the side-exit (branch trace), and compiles it. As

more hot paths are revealed, trunk and branch traces

form a trace tree. Recompiling the whole trace tree is

good for the code quality, but the compilation time will

grow quadratic if the whole trace tree is recompiled

every time a new trace is attached to the tree. Also,

this strategy would keep the trace buffer in memory

for future recompilation, which is infeasible in mem-

ory constrained environments. Instead of recompiling

the whole tree, we use trace stitching technique. Trace

stitching is a technique that compiles the new branch

trace only, and patches the side-exit to jump to the

branch trace native code.

Branch patching modifies code that is produced by

more than one trace. Hence, it is probable that inter-

preter is executing the native code at the same time

that the compiler wants to patch it. Naive use of a

lock around the native code will incur a significant

pause time on both the interpreter and the compiler.

Waiting becomes a problem if time spent in the na-

tive code grows large, reducing the overall concurrency.

The compiler may also make a duplicate copy of the

code instead of patching, or delay the patching until

the native code exits to the interpreter. Either method

has inefficiencies, and we propose lock-free dynamic
trace stitching for the branch patching. The key factor

of dynamic trace stitching is that a side-exit jump is a

safe point where all variables are synchronized to the

memory. We use each side-exit jump instruction as a

placeholder for the patching. When the compiler gen-

erates the native code for the branch trace, both jump-

ing to the previous side-exit target or jumping to the

branch trace code does not change the program seman-

tic. Therefore, if the patching is atomic, the compiler

can patch the jump instruction directly without wait-

ing for the interpreter. If the branch target operand is

properly aligned, patching is done by a single store in-

struction. There is no harmful data race even without

any lock. With these benign data races, the interpreter

and the compiler run concurrently without pausing.

51

Description Action CSV

has native code Call native code 2

compilation already requested normal interpretation 1

Hot loop Enable tracing 0

Cold loop normal interpretation 0

Trace enabled Disable tracing and request compilation 0 to 1

Table 1. Value of Compiled State Variable(CSV) at a loop header.

5. Preliminary Results
5.1 Experiments Setup
We evaluate our implementation on Intel Core 2 Quad

processor 2.4GHz running Linux 2.6 kernel. We run

SunSpider benchmark suite [20], which is widely used

to test and compare the JavaScript engine on web

browsers. By default, we ran 50 runs and averaged the

results. For easy comparison, all graphs are presented

so that the lower bar represents the better result.

5.2 SunSpider Benchmarks Characterization
The SunSpider benchmark suite is a set of JavaScript

programs intended to test performance [20]. It is widely

used to test and compare the JavaScript engine on web

browsers, such as Firefox SpiderMonkey, Adobe Ac-

tionScript, and Google V8. Table 2 characterizes the

benchmarks running on original TamarinTracing VM.

5.3 Pause time reduction
We evaluate application pause time using total, aver-

age, and maximum pause time. Total pause time for

running a benchmark is a good indicator of the applica-

tion’s responsiveness, and the average reflects the end-

user experience. Many small pauses are better than one

big pause in terms of responsiveness [3]. We also com-

pare maximum pause time, which is the most notice-

able pause to the end-user, therefore we want it to be as

low as possible.

Figure 4 demonstrates that our concurrent JIT imple-

mentation reduces both maximum and total pause time

significantly. The y-axis is the pause time normalized

to the pause time in the sequential JIT. A value of 1.0

means that the pause time is the same, and 0.1 means

the pause time is reduced by 90%. Tics at the top of

each bar shows 95% confidence interval.

Geometric mean shows that we reduced the total

pause time by 89% and 93% for the maximum pause

time, showing a huge improvement in responsiveness.

Furthermore, the average pause has reduced by 97%

of the sequential JIT, which shows the implementation

successfully avoided long pauses.

The concurrent JIT was more successful on longer

compilation time per trace. crypto-md5 has the high-

est per trace compilation time, compiling six traces for

25% of the execution time. It also achieves the best re-

duction in pause time, with 99% for all three metrics.

5.4 Throughput improvements
Figure 5 shows the speedup for each configuration. The

first bar represents the sequential JIT, and the second

bar shows the interpreter thread activity in the concur-

rent JIT. This thread activity includes the interpreter,

native code, and pause time caused by compilation re-

quests. The third bar shows the compile time of the

compiler thread. The y-axis is the speedup normalized

to the execution time of the sequential JIT. Hence, bar

2 less than 100% is the speedup. The concurrent JIT

achieves 6% speedup on average, and achieves up to

34% on s3d-cube. The speedup in s3d-cube is due

to increasing the number of compiled traces.

6. Conclusion
In this paper, we showed that even though JavaScript

language itself is currently single-threaded, both its

throughput and responsiveness can benefit from mul-

tiple cores with our concurrent JIT compiler. This im-

provement is achieved by running the JIT compiler

concurrently with the interpreter. Our results show that

most of the compile-time pauses can be eliminated, re-

sulting in a total, average, and maximum reduction in

pause time by 89%, 97%, and 93%, respectively. More-

over, the throughput is also increased by an average of

6%, with a maximum of 34%. This paper demonstrates

a way to exploit multicore hardware to improve appli-

cation performance and responsiveness by offloading

system tasks.

References
[1] ALPERN, B., ATTANASIO, D., BARTON, J. J., BURKE,

52

Benchmarks
Bytecode Compiled Compilation Native Interpreter Runtime

(bytes) Traces (%) (%) (%) (ms)

access-binary-trees 697 37 5.4 89.1 5.5 74

access-fannkuch 823 49 2.4 94.2 3.3 117

access-nbody 2,202 27 3.5 91.6 4.9 144

access-nsieve 543 14 1.4 96.8 1.7 56

bitops-3bit-bits-in-byte 414 6 4.0 89.7 6.3 12

bitops-bits-in-byte 385 15 1.5 96.5 2.1 40

bitops-bitwise-and 264 3 0.2 99.4 0.4 179

bitops-nsieve-bits 586 11 1.4 96.6 2.0 50

controlflow-recursive 504 35 8.3 84.5 7.3 28

crypto-aes 7,004 158 11.4 63.2 25.4 150

crypto-md5 5,470 6 24.6 17.4 58.0 120

crypto-sha1 3,236 26 9.2 52.8 38.0 31

math-cordic 832 9 1.8 95.0 3.1 32

math-partial-sums 758 11 1.3 93.2 5.5 41

math-spectral-norm 841 35 7.8 78.3 13.9 36

s3d-cube 4,918 188 8.4 41.6 50.0 155

s3d-morph 573 14 1.5 95.9 2.6 81

s3d-raytrace 7,289 147 9.3 68.1 22.6 170

string-fasta 1,426 22 1.9 95.6 2.5 141

string-validate-input 1,511 28 1.4 96.0 2.6 261

Table 2. Workload characterization of SunSpider benchmarks with sequential Tamarin JIT.

Linux 2.6

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−md5

crypto−sha1

math−cordic

math−partial−sums

math−spectral−norm

s3d−cube

s3d−morph

s3d−raytrace

string−fasta

string−validate−input

GeoMean

N
or

m
al

iz
ed

 P
au

se
 T

im
e

0

0.1

0.2

0.3

0.4

0.5
total pause time average pause time maximum pause time

Figure 4. Pause time ratios of concurrent vs. sequential JITs.

M. G., P.CHENG, CHOI, J.-D., COCCHI, A., FINK,

S. J., GROVE, D., HIND, M., HUMMEL, S. F.,

LIEBER, D., LITVINOV, V., MERGEN, M., NGO,

T., RUSSELL, J. R., SARKAR, V., SERRANO, M. J.,

SHEPHERD, J., SMITH, S., SREEDHAR, V. C., SRINI-

VASAN, H., AND WHALEY, J. The Jalapeño virtual

machine. IBM System Journal 39, 1 (Feb. 2000).

[2] ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND

SWEENEY, P. F. Adaptive optimization in the Jalapeño

JVM. In Proceedings of ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications (Minneapolis, Minnesota, US, 2000),

ACM, pp. 47–65.

[3] CHENG, P., HARPER, R., AND LEE, P. Generational

stack collection and profile-driven pretenuring. In

Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation
(Montreal, Canada, 1998), ACM, pp. 162–173.

[4] DEUTSCH, L. P., AND SCHIFFMAN, A. M. Efficient

implementation of the smalltalk-80 system. In ACM
SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (Salt Lake City, UT, 1984), ACM,

pp. 297–302.

[5] FOUNDATION, M. Tracemonkey, 2008. https:
//wiki.mozilla.org/JavaScript:TraceMonkey.

[6] GAL, A., BEBENITA, M., CHANG, M., AND FRANZ,

M. Making the Compilation “Pipeline” Explicit:

Dynamic Compilation Using Trace Tree Serialization.

53

Bar 1: Sequential JIT, Bar 2: Concurrent JIT (interpreter thread), Bar 3: Concurrent JIT (compiler thread)

SunSpider Benchmarks

access−binary−trees

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitwise−and

bitops−nsieve−bits

controlflow−recursive

crypto−aes

crypto−md5

crypto−sha1

math−cordic

math−partial−sums

math−spectral−norm

s3d−cube

s3d−morph

s3d−raytrace

string−fasta

string−validate−input

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

0
10
20
30
40
50
60
70
80
90

100

Interpretation
Native Code Execution
Compilation

Figure 5. Execution time improvements. Average time is break down in compilation, native code, and interpreta-

tion.

Tech. Rep. 07-12, University of California, Irvine, 2007.

[7] GAL, A., EICH, B., SHAVER, M., ANDERSON, D.,

KAPLAN, B., HOARE, G., MANDELIN, D., ZBARSKY,

B., ORENDORFF, J., JESSE RUDERMAN, SMITH, E.,

REITMAIER, R., HAGHIGHAT, M. R., BEBENITA, M.,

CHANG, M., AND FRANZ, M. Trace-based just-in-

time type specialization for dynamic languages. In

Proceedings of the ACM SIGPLAN 2009 Conference
on Programming Language Design and Implementation
(Dublin, Ireland, 2009), ACM.

[8] GAL, A., PROBST, C. W., AND FRANZ, M. Hot-

pathVM: an effective JIT compiler for resource-

constrained devices. In International Conference
on Virtual Execution Environments (Ottawa, Canada,

2006), ACM, pp. 144–153.

[9] GIACOMONI, J., MOSELEY, T., AND VACHHARAJANI,

M. FastForward for efficient pipeline parallelism:

a cache-optimized concurrent lock-free queue. In

Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Salt

Lake City, UT, USA, 2008), ACM, pp. 43–52.

[10] GOODMAN, D. JavaScript Bible, 3rd, ed. IDG Books

Worldwide, Inc., Foster City, CA, 1998.

[11] GOOGLE INC. V8, 2008. http://code.google.
com/p/v8.

[12] HÖLZLE, U., AND UNGAR, D. Optimizing dynamically-

dispatched calls with run-time type feedback. In Pro-
ceesings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation
(Orlando, FL, USA, 1994), ACM, pp. 326–336.

[13] HÖLZLE, U., AND UNGAR, D. Reconciling respon-

siveness with performance in pure object-oriented lan-

guages. ACM Transactions on Programming Languages
and Systems 18, 4 (1996), 355–400.

[14] KRINTZ, C., GROVE, D., LIEBER, D., SARKAR, V.,

AND CALDER, B. Reducing the overhead of dynamic

compilation. Software: Practice and Experience 31
(2001), 200–1.

[15] KULKARNI, P., ARNOLD, M., AND HIND, M.

Dynamic compilation: the benefits of early investing.

In International Conference on Virtual Execution
Environments (San Diego, CA, 2007), ACM, pp. 94–

104.

[16] PALECZNY, M., VICK, C., AND CLICK, C. The

Java HotSpot server compiler. In Java Virtual Machine
Research and Technology Symposium (Monterey, CA,

USA, April 2001), Sun Microsystems, USENIX.

[17] SUNDARESAN, V., MAIER, D., RAMARAO, P., AND

STOODLEY, M. Experiences with Multi-threading

and Dynamic Class Loading in a Java Just-In-Time

Compiler. In International Symposium on Code
Generation and Optimization (Washington, DC, USA,

2006), IEEE Computer Society, pp. 87–97.

[18] TAMARIN. Tamarin Project, 2008. http://www.
mozilla.org/projects/tamarin/.

[19] WEBKIT. SquirrelFish Extreme, 2008. http:
//webkit.org/blog/.

[20] WEBKIT. SunSpider JavaScript Benchmark, 2008.

http://webkit.org/perf/sunspider-0.9/sunspider.
html.

54

	cover
	Binder2

