
Tile Size Selection Using Cache Organization and Data Layout
Stephanie Coleman Kathryn S. McKinley

scoleman@dsd.camb.inmet.com mckinley@cs.umass.edu
Intermetrics, Inc., 733 Concord Ave. Computer Science, LGRC, University of Massachusetts

Cambridge, MA 02138 Amherst, MA 01003

Abstract

When dense matrix computations are too large to fit in
cache, previous research proposes tiling to reduce or elim-
inate capacity misses. This paper presents a new algorithm
for choosing problem-size dependent tile sizes based on the
cache size and cache line size for a direct-mapped cache.
The algorithm eliminates both capacity and self-interference
misses and reduces cross-interference misses. We measured
simulated miss rates and execution times for our algorithm
and two others on a variety of problem sizes and cache or-
ganizations. At higher set associativity, our algorithm does
not always achieve the best performance. However on direct-
mapped caches, our algorithm improves simulated miss rates
and measured execution times when compared with previous
work.

1 Introduction

Due to the wide gap between processor and memory speed in
current architectures, achieving good performance requires
high cache efficiency. Compiler optimizations to improve
data locality for uniprocessors is increasingly becoming a
critical part of achieving good performance [CMT94]. One
of the most well-known compiler optimizations istiling (also
known asblocking). It combines strip-mining, loop permu-
tation, and skewing to enable reused data to stay in the cache
for each of its uses,i.e., accesses to reused data are moved
closer together in the iteration space to eliminate capacity
misses.

Much previous work focuses on how to do the loop nest
restructuring step in tiling [CK92, CL95, IT88, GJG88,
WL91, Wol89]. This work however ignores the effects of
real caches such as low associativity and cache line size on
the cache performance of tiled nests. Because of these fac-
tors, performance for a given problem size can vary wildly
with tile size [LRW91]. In addition, performance can vary
wildly when the same tile sizes are used on very similar
problem sizes [LRW91, NJL94]. These results occur be-
cause low associativity causes interference misses in addi-
tion to capacity misses.

Original in SIGPLAN’95: Conference on Program-
ming Language Design and Implementation, La
Jolla, CA, June 1995. This version contains correc-
tions to the algorithm.

In this paper, we focus on how to choose the tile sizes
given a tiled nest. As in previous research, our algorithm
targets loop nests in which the reuse of a single array dom-
inates. Given a problem size, the Tile Size Selection (TSS)
algorithm selects a tile size that eliminates self-interference
and capacity misses for the tiled array in a direct-mapped
cache. It uses the data layout for a problem size, cache size,
and cache line size to generate potential tile sizes. If the nest
accesses other arrays or other parts of the same array, TSS
selects a tile size that minimizes expected cross interferences
between these accesses and for which the working set of the
tile and other accesses fits in a fully associative LRU cache.

We present simulated miss rates and execution times for
a variety of tiled nests that illustrate the effectiveness of the
TSS algorithm. We compare these results to previous algo-
rithms by Lamet al. [LRW91] and Esseghir [Ess93]. On
average, TSS achieves better miss rates and performance
on direct-mapped caches than previous algorithms because
it selects rectangular tile sizes that use the majority of the
cache. In some cases, it achieves significantly better perfor-
mance. If the problem size is unknown at compile time, the
additional overhead of computing problem-dependent tile
sizes at runtime is negligible. We show that because TSS ef-
fectively uses the majority of the cache and its runtime over-
head is negligible, copying is unnecessary and significantly
degrades performance.

Section 2 compares our strategy to previous research. In
Section 3, we briefly review the relevant terminology and
features of caches, reuse, and tiling. Section 4 describes the
tile size selection algorithm, TSS. It generates a selection of
tile sizes without self-interference misses in a direct-mapped
cache using the array size, the cache size, and the cache line
size. It selects among these tile sizes to generate the largest
tile size that fits in cache and that minimizes expected cross-
interference misses from other accesses. Section 5 presents
simulation and execution time results that demonstrate the
efficacy of our approach and compares it to the work of Es-
seghir and Lamet al. [Ess93, LRW91].

2 Related Work

Several researchers describe methods for how to tile nests
[BJWE92, CK92, CL95, IT88, GJG88, Wol89]. None of
this work however addresses interference, cache replace-
ment policies, cache line size, or spatial locality which are
important factors that determine performance for current
machines.

More recent work has addressed some of these factors

for selecting tile sizes [Ess93, LRW91]. Esseghir selects
tile sizes for a variety of tiled nests [Ess93]. His algorithm
chooses the maximum number of complete columns that fit
in the cache. This algorithm leaves one large gap of un-
used cache. All of his experiments were performed on the
RS6000 (64K, 128 byte line, 4-way set associative). For this
cache organization, Esseghir’s strategy slightly out performs
the TSS algorithm by a factor of 1.03. However, when com-
pared to TSS or Lamet al. [LRW91] on an 8K cache with 1,
2, or 4-way set associative caches using matrices that are rel-
atively large with respect to cache size (e.g.,300�300), Es-
seghir’s algorithm results in significantly higher miss rates.
For example, TSS out performs it on the DEC Alpha (8K, 32
byte line, direct mapped) for matrix multiply by an average
factor of 2 (Section 5).

Lamet al. present cache performance data for tiled matrix
multiply and describe a model for evaluating cache interfer-
ence [LRW91]. The model evaluates reuse for one variable,
and quantifies self-interference misses for matrix multiply
as a function of tile size. They show choosing a tile size that
uses a fixed fraction of the cache performs poorly compared
to tile sizes that are tailored for a problem and cache size.
They present an algorithm which chooses the largest size for
a square tile that avoids self interference based on array size.
Square tiles use a smaller portion of the cache and result
in higher miss rates and execution times when compared to
the data-dependent rectangular tiles chosen by our algorithm
(Section 5). TSS consistently improves execution times over
Lam et al. by an average factor of 1.12 on the DEC Alpha
and a smaller factor of 1.02 on the RS6000.

Esseghir, Lamet al., and Temamet al. [TGJ93] all rec-
ommend copying as a method to avoid self-interference and
cross-interference misses. Copying also requires knowledge
of array sizes which may not be available until runtime. It
makes performance much more predictable for varying tile
sizes. However, computing the tile sizes at runtime with any
of TSS, Esseghir, or Lamet al. has no noticeable impact on
performance. TSS achieves significantly better performance
than copying because it uses the majority of the cache, elimi-
nates self interference, and minimizes cross interference (see
Section 5).

3 Background

3.1 Cache Memory

Tiling can be applied to registers, the TLB, or any other
level of the memory hierarchy. In this paper, we concen-
trate on tiling for the first level of cache memory. The
cache is described by its size, line size, and set associativ-
ity [Smi82]. Unless otherwise indicated, we assume a direct-
mapped cache. We divide cache misses into three categories.

Compulsory misses occur when a cache line is referenced
for the first time. Without prefetching, these misses are
unavoidable.

Capacity misses occur when a program’s working set size
is larger than the cache size and are defined with respect

to a fully associative LRU cache. If a cache line con-
taining data that will be reused is replaced before it is
reused, a capacity miss occurs when the displaced data
is next referenced. The miss is classified as a capac-
ity miss only if it would occur in a fully LRU cache.
Otherwise, it is classified as an interference miss.

Interference misses occur when a cache line that contains
data that will be reused is replaced by another cache
line. An interference miss is distinguished from a ca-
pacity miss because not all the data in the cache at
the point of the miss on the displaced data will be
reused. Intuitively, interference misses occur when
there is enough room for all the data that will be reused,
but because of the cache replacement policy data maps
to the same location. Interference misses on arrays can
be divided into two categories.� Self-interference misses result when an element of the
same array causes the interference miss.� Cross-interference misses result when an element of a
different array causes the interference miss.

3.2 Reuse

The two sources of data reuse aretemporalreuse, multiple
accesses to the same memory location, andspatialreuse, ac-
cesses to nearby memory locations that share a cache line.
Without loss of generality, we will assume Fortran’s column-
major storage. Tiling only benefits loop nests with temporal
reuse. We will also take advantage of spatial locality in tiled
nests.

3.3 Tiling

Tiling reduces the volume of data accessed between reuses
of an element, allowing a reusable element to remain in the
cache until the next time it is accessed. Consider the code for
matrix multiply in Figure 1(a) and its corresponding reuse
patterns illustrated in Figure 2(a). The reference Y(J,K) is
loop-invariant with respect to the I loop. Each iteration of
the I loop also accesses one row each of X and Z. Therefore,
2*N + N2 elements are accessed per iteration of the I loop.

(a) Matrix Multiply
DO I = 1, N

DO K = 1, N
R = X(K,I)
DO J= 1, N

Z(J,I) = Z(J,I) + R * Y(J,K)+ + +
(b) Tiled Matrix Multiply

DO KK = 1, N, TK
DO JJ = 1, N, TJ

DO I = 1, N
DO K = KK, MIN(KK+TK-1,N)

R = X(K,I)
DO J = JJ, MIN(JJ+TJ-1,N)

Z(J,I) = Z(J,I) + R * Y(J,K)

Figure 1:

X Y Z

k

i

j

kk

jj

i

k

j

TK

TK

TJ TJ

(a)

(b) X Y Z

k

i

j

k

j

i

kk

i kk

jj jj

i

N

N

1

1

N

N 1 N

N

N

N N

N

N

1

N

1 1

Figure 2: Iteration space traversal in (a) untiled and (b) tiled matrix multiply

Between each reuse of an element of Y there are N distinct
elements of Z accessed on the J loop, N elements of the X
array on the K loop, and N2 - 1 elements of the Y array. If
the cache is not large enough to hold this many elements,
then the reusable Y data will be knocked out of the cache,
and the program will have to repeat a costly memory access.

Previous research has focused on how to transform a nest
into a tiled version to eliminate these capacity misses [CK92,
CL95, IT88, GJG88, Wol89]. We assume as input a tiled nest
produced by one of these methods and turn our attention the
selection of tile sizes for the nest.

For example, tiled matrix multiply appears in Figure 1(b)
and its corresponding reuse pattern in Figure 2(b). In the
tiled nest, one iteration of the I loop now accesses only TK
+ TJ + TK*TJ elements. Between reuse of an element of
Y, the J and K loops access TK distinct elements of X, TJ
elements of Z, and TK * TJ elements of Y. We call the por-
tion of an array which is referenced by a loop thefootprint
of that array reference [Wol89]. We call the number of times
the same element is referenced by a loop thereuse factor.
We call the innermost loop that has not been strip mined and
interchanged thetarget loop, the I loop in matrix multiply;
the target nest accesses a tile of data. Inspection of the ar-
ray accesses, loop nesting, and loop bounds of the tiled nest
determines the footprint and reuse factor [Wol89]. Table 1
illustrates these quantities for the version of tiled matrix mul-
tiply in Figure 1(b).

The largest tile with the most reuse on the I loop is the
access to Y. We therefore target this reference to fit and stay
in cache. We want to choose TK and TJ such that the TK�TJ
submatrix of Y will still be in the cache after each iteration
of the I loop and there is enough room in the cache for the
working set size of the I loop, TK�TJ + TK + TJ.

Reuse Factor Footprint
Array I K J I K J
X(K,I) 0 0 TJ TK 1 1
Y(J,K) N 0 0 TK*TJ TJ 1
Z(J,I) 0 TK 0 TJ TJ 1

Table 1: Reuse Factor and Footprint for Tiled Matrix Multi-
ply

4 Tile Size Selection

Given a target array reference, we now show how to select a
tile size for the reference.

4.1 Detecting and Eliminating Self Interference

In this section, we describe how to detect and eliminate self-
interference misses when choosing a tile size. We compute
a selection of tile sizes that exhibit no self interference and
no capacity misses. Factors such as cross interference and
working set size determine which size we select. We use the
cache size, the line size, and the array column dimension.
We only select tile sizes in which the column dimension is a
multiple of the cache line size.

Consider the layout of a 200�200 array Y in a direct-
mapped cache that can hold 1024 elements of Y as illus-
trated in Figure 3. Without loss of generality, we assume
the first element of array Y falls in the first position of the
cache. Setsare defined as groups of consecutive columns
whose staring positions differ byN . The first set therefore
consists of columns 1 through 6. LetCSbe the cache size in
elements,CLSthe cache line size in elements, andN the col-
umn dimension (the consecutively stored dimension). The

176

1 200 400 600 800

376
...

152

1000

976

1024

...

8

1st set

2nd set

3rd set

208
9th set

Figure 3: Column Layout for a 200�200 Array in a 1024 Element Cache

number of complete columns that fit in the cache is simply

ColsPerSet= bCS=Nc: (1)

For Figure 3,ColsPerSet= 5 for a tile of 200�5 (Esseghir
selects this tile size [Ess93]). A 200�5 tile uses 97% percent
of a 1024 element cache, but leaves a single contiguous gap.
If N evenly dividesCS, we also select this tile size. Other-
wise, we look for a smaller column dimension with a larger
row size that does not incur interference, combining to use a
higher percentage of the cache.

We use the Euclidean algorithm [Kob87] to generate po-
tential column dimensions. The Euclidean algorithm finds
theg.c.d.(a; b) a > b, in O(log3(a)) time. It computesa = q1b+ r1b = q2r1 + r2r1 = q3r2 + r3: : :rk�1 = qk+1rk + rk+1
until a remainder divides a previous remainder. Remainders
are always decreasing. For our purposes,a = CS the cache
size, andb = N the column dimension. Each remainder is
a potential column size. Given our example witha = 1024
andb = 200, Euclid generates the following.1024 = 5 � 200 + 24200 = 8 � 24 + 8
Since 8 divides 24, 8 =g.c.d.(1024; 200) and it terminates.

We begin with an initial column size ofb = N . We
must reduce the column size to at leastr1 before additional
columns will not incur interference. Look at the6thcolumn’s
starting position in Figure 3. Even if we reduce the column
size from 200 to 25, no additional columns will fit because
when the6th column is of length 25 or greater it interferes
with the first column. When the column size equalsr1, 24
in this example, it becomes possible to fit more columns.
(Whenr1 > N � r1, only one more column fits with a col-
umn size ofr1 as opposed toN . Otherwise, the row size (the
number of columns) increases by at leastbCS=Nc.)

The starting positions of the first and second set differ by
SetDiff = N � r1. The difference between subsequent sets

will eventually becomeGap= Nmod SetDiff. The row size
is determined by the point at which the difference changes
from r1 to Gap. The algorithm for computing the row size
for a column size which is a Euclidean remainder appears
in Figure 4. The algorithm divides the cache into two sec-
tions: (1) ther1 gap at the end of the first set and (2) the
rest of the cache. It divides naturally because of the pattern
in section 2. If an additional column starts a new set in sec-
tion 2 and does not interfere with previous sets then at least
an additionalColsPerSetwill not interfere. A space of size
Gap occurs at the end of the cache (in section 1, between the
last column and the end of the cache) and eventually occurs
between starting positions in section 2.

For each of section 1 and 2, we thus compute (a) the num-
ber of columns ofcolSizethat fit between the starting ad-
dresses differing bySetDiff, and (b) the number of columns
that fit in the spaces of sizeGap. Since we only use Eu-
clidean column sizes,ColsPerGap= b Gap= colSizec.

For section 2 of the cache,ColsPerN is the number of
colSizecolumns that fit between two complete columns of
size N , dictated bySetDiff. ColsPerSetDiffis the num-
ber of columns ofcolSizethat fit between columns that
have starting positions with differences ofSetDiff. Since
columns are Euclidean numbers, it is the minimum distance
allowed between starting positions of columns in different
sets.ColsPerGapis the number that fit in theGap. This pat-
tern repeatsColsPerSettimes. The number of columns that
fit in section 2 of the cache is thus

(ColsPerSetDiff� ColsPerN+ ColsPerGap) � ColsPerSet.
WhenSetDiff< r1 patterns of columns fit in section 1, the
pattern columns totalColsPerSetDiff� b r1 = SetDiffc. The
total is thus any pattern columns plusColsPerGap.

Returning to the example in Figure 3,ColsPerSet= 5,r1 = 24, SetDiff= 176, andColsPerN= 1. Given a column
size of 24,ColsPerSetDiff= 7 andColsPerGap= 1. Thus
rowSize= 7*1*5 + 1*5 + 0 + 1 = 41, for a tile size of 24�41.

4.2 Cache Line Size

To take advantage spatial locality, we choose column sizes
that are multiples of the cache line size in terms of elements,
CLS. We assume the start of an array is aligned on a cache
line boundary. After we find the row size, we simply adjust

Input: CS: Cache Size,N: Column Dimension,
colSize= rk: Euclidean remainder

Output: rowSize: max rows without interference
Invariants: ColsPerSet= q1 = bCS=Ncr1 = CS mod N

SetDiff=N � r1
ColsPerN= bN=SetDiffc
Gap=Nmod SetDiff

procedure ComputeRows (colSize)
if (colSize=N) return ColsPerSet
else if (colSize= r1 & colSize> SetDiff)

return ColsPerSet + 1
else

ColsPerSetDiff= b SetDiff= colSizec
ColsPerGap= b Gap= colSizec
rowSize= ColsPerSetDiff� ColsPerN� ColsPerSet

+ ColsPerGap� ColsPerSet
+ ColsPerSetDiff� b r1 = SetDiffc + ColsPerGap

return rowSize
endif

Figure 4: Row Sizes for Euclidean Column Sizes

procedure TSS(CS;CLS;N;M)
Input: CS: cache size,CLS: cache line size,N : column length,M : row length
Output: tile size =bestCol�bestRow

bestCol= oldCol =N
bestRow= rowSize= CS=N
colSize= CS - bestCol� bestRow
while (colSize> CLS & oldColmod colSize6= 0 & rowSize<M)

rowSize= computeRows (colSize)
tmp= colSizeadjusted to a multiple ofCLS
if (WSet (tmp, rowSize) > WSet (bestCol, bestRow)

& WSet (tmp, rowSize) < CS
& CIR (tmp, rowSize) < CIR (bestCol, bestRow)

bestCol = tmp
bestRow = rowSize

endif
tmp= colSize
colSize= oldColmod colSize
oldCol = tmp

endwhile
if necessary, adjustbestColto meet the working set size constraint
end TSS

Figure 5: Tile Size Selection Algorithm

colSizeas follows.

colSize=8><>: colSize if colSizemod CLS= 0; or
if colSize = column lengthj

colSize
CLS

k
CLS otherwise

If colSizeis equal to the length of the column, we do not
adjust it to a multiple of the line size.

4.3 Minimizing Cross Interference

In this section, we compute worst case cross-interference
misses for tiled nests. We use footprints to determine the
amount of data accessed in the tile and choose a tile size that
has a working set size that fits in the cache and minimizes
the number of expected cross-interference misses.

Consider again matrix multiply from Figure 1. On an
iteration of the I loop (from Table 1), we access TK�TJ

elements of Y, TJ elements of Z, and TK elements of X.
If we completely fill up the cache with array Y, then ev-
ery reference to Z causes a cross-interference miss on the
next reference to the victimized element of Y. Another cross-
interference miss will occur on the next reference to the same
element of Z. There are potentially 2 * TJ cross interfer-
ences between Z and Y. Despite the fact that the element
of X that is reused in the J loop is register-allocated, it still
uses a cache line on its first access. This access causes a
cross-interference miss on the next reference to any victim-
ized element of Y. We ignore the cross-interference misses
of Z caused by X because they happen very infrequently
and are hard to predict. In the worst case, the number of
cross-interference misses,CIM, that will occur as a result of
a TK�TJ tile size in matrix multiply isCIM = 2 � TJ + TK: (2)

The cross-interference rate,CIR, is thusCIR = CIM=(TJ � TK); (3)

the number of cross-interference misses per element of Y
in a single iteration of the I loop. To compute this rate in
general, we use the footprints for the target nest for array ac-
cesses other than the target. Each footprint is then multiplied
by 2 if they do not reduce to one on the next inner loop in
the nest.

We also minimize expected cross interference by selecting
tile sizes such that the working set will fit in the cache,e.g.,
for matrix multiply theworking set size constraintisTJ � TK + TJ + 1 � CLS < CS: (4)

(Since X is register allocated, we reduce its footprint to
CLS.) The left-hand side of equation 4 is exactly the amount
of cache need for an fully-associative LRU cache. In gen-
eral, the working set is simply the sum of the footprints for
the target loop which accesses the tile.

We use the cross-interference rate and working set size
constraint to differentiate between tile sizes generated by the
algorithm described in Section 4.1. As the algorithm iter-
ates, we select a new tile size without self interference if its
working set size is larger than a previous tile size and still fits
in cache and the new size has a lowerCIR than the previous
size. (Section 5 demonstrates that these tile sizes result in
lower miss rates for direct-mapped caches.)

If the tile we select does not meet these constraints, we
decreasecolSizeby CLSuntil it does. Both this phase and
the self interference phase result in numerous gaps through
out the cache, rather than one large gap. Because cross-
interfering arrays typically map all over the cache, multiple
gaps minimize the expected interference,e.g., the columns
of Z are more likely to map to one of many gaps rather than
one larger gap.

4.4 Tile Size Selection Algorithm

The pseudo code for the TSS algorithm which completely
avoids self interference, capacity misses, and minimizes ex-
pected cross interference appears in Figure 5. We begin by

selecting the column dimension which is the maximumcol-
Sizeand determine the maximumrowSizewithout self inter-
ference. In the pathological case, the column length evenly
divides the cache and the algorithm terminates (this case of-
ten occurs with power of 2 array sizes). If the tile sizes are
larger than the array or the bounds of the iteration space,
there is no need to tile. In addition, if any of the dimen-
sions of the tiles are larger than the bounds of the itera-
tion space, the tiles are adjusted accordingly. For simplicity,
these checks are omitted from Figure 5.

Thewhile loop iterates finding potential tile sizes without
self interference using Euclidean numbers as candidates for
column dimensions. After determining the row size that will
not interfere for the given column size, the column size is
adjusted to a multiple of theCLS. If any newly compute
tile size has a larger working set size that is also less thanCS and for which theCIR is less than the previous best tile
size, we set this tile to be the best. If the initial tile size does
not meet the working set size constraint and no subsequent
tile size does either, we use the initial tile size, but reduce its
column size byCLS until it meets the constraint.

4.5 Set Associativity

Set associativity does not affect the tile size picked by the
algorithm for a particular cache size. As expected, increas-
ing the set associativity usually decreases the miss rate on a
particular tile size because more cross interferences, if they
exist, are eliminated. Our results in Section 5 confirm this
expected benefit from set associativity and illustrate that in-
creasing set associativity causes the differences in miss rates
between distinct tile sizes to become less extreme.

4.6 Translation Lookaside Buffer

A translation lookaside buffer (TLB) is a fast memory used
for storing virtual to physical address mappings for the most
recently reference page entries. All addresses referenced in
the CPU must be translated from virtual to physical before
the search for an element is performed. If the mapping for
the element is not in the TLB, a TLB miss occurs, causing
the rest of the system to stall until the mapping completes.
A TLB miss can take anywhere from 30 to more than 100
cycles, depending on the machine and the type of TLB miss.

To avoid a TLB misses, tile sizes should enable the TLB to
hold all the entries required for the tile. In general, the height
(column in Fortran) of the tile should be much larger than
the width of the tile. Since a TLB miss can cause a cache
stall, ensuring that no TLB misses occur is more impor-
tant than the cross and self-interference constraints. The tile
size therefore needs to be constrained such that the number
of non-consecutive elements accesses (i.e., rows) is smaller
than the number of page table entries in the TLB.

5 Results

For our experiments, we used the following tiled ker-
nels on double precision (16 byte) two dimensional arrays.

mm Matrix Multiply, tiled in 2 dimensions
sor Successive Over Relaxation, tiled in 1 & 2 dimensions
lud LU Decomposition, tiled in 1 & 2 dimensions
liv23 Livermore loop 23, tiled in 1 dimension

The point and tiled versions of SOR, LUD, and Livermore
loop 23 appear in Appendix A. We used square arrays ex-
cept for Livermore loop 23. The original Livermore loop 23
is 101�7. We increase both its bounds by a factor of 3 to
preserve its shape and make it worthwhile to tile. Matrix
multiply and Livermore loop 23 incur self and cross inter-
ference. SOR and LUD operate on a single array and thus
by definition incur only self interference. Some of self inter-
ference for LUD results from non-contiguous accesses and
we minimize it the same way we do cross interference for
matrix multiply.

We selected problem sizes of 256�256 to illustrate the
pathological case, and 300�300 and 301�301 to illustrate
the effect a small change in the problem size has on selected
tile sizes and performance. We used these relatively small
sizes in order to obtain timely simulation results. For exe-
cution results, we added a problem size of 550�550. We
expect, and others have demonstrated, more dramatic im-
provements for larger array sizes.

5.1 Simulation Results for Tiled Kernel

We ran simulations on these programs using the Shade cache
simulator. We used a variety of cache parameters: a cache
size of 8K and 64K; set-associativity of 1, 2, and 4; and a
cache line size of 32, 64, and 128 [Col94]. Of these, we
present cache parameters corresponding to the DEC Alpha
Model 3000/400 (8K, 32 byte line, direct-mapped) and the
RS/6000 Model 540 (64K, 128 byte line, 4-way) with vari-
ations in line size and associativity. We also executed the
kernels on these machines.

In Table 2, we show simulated miss rates in an 8K cache
for double precision arrays (16 byte) for the untiled algo-
rithm and the version tiled with TSS. We present results for
set associativities of 1, 2, and 4 and cache line sizes of 32
bytes and 128 bytes. TSS achieves significant improvement
in the miss rates for most of these kernels. On average, it im-
proves miss rates by a factor of 14. It improves SOR2D by a
factor of 66.21 on a 8K, 4-way, 32 byte line cache. The im-
provement for 32 byte lines is higher, a factor of 21.8, than
that for 128 byte lines, 6.8, because the longer line sizes ben-
efit these kernels, all of which have good spatial locality. If
the dramatic improvements of SOR2D are ignored, our al-
gorithm improves miss rates by an average of 2.5 (3.3 on 32
byte lines and 1.7 on 128 byte lines).

Two more trends for tiled kernels are evident in this table.
The first trend is to be expected: even though TSS selects
tile sizes for direct-mapped caches, these tile sizes always
improve their performance when associativity is higher. The
second trend is that for the untiled kernels and direct-mapped
cache, the 128 byte lines have higher miss rates than 32 byte
lines for all but MM and LIV23. The interference from the
larger line size plays an important role. For 4-way caches,

Untiled TSS
Line Improvement

Kernel Sets (bytes) Size Miss Rate Tile Size Miss Rate in Miss Rate

mm 1 32 300�300 2.208 16�29 0.613 3.60
mm 2 32 300�300 2.147 16�29 0.257 8.35
mm 4 32 300�300 2.164 16�29 0.197 10.98
mm 1 128 300�300 1.176 16�29 1.139 1.03
mm 2 128 300�300 0.458 16�29 0.274 1.67
mm 4 128 300�300 0.426 16�29 0.322 1.32

sor1D 1 32 300�300 1.214 300�86 1.204 1.01
sor1D 2 32 300�300 0.901 300�86 0.882 1.02
sor1D 4 32 300�300 0.927 300�86 0.880 1.05
sor1D 1 128 300�300 1.980 300�86 1.506 1.32
sor1D 2 128 300�300 0.992 300�86 0.262 3.79
sor1D 4 128 300�300 0.255 300�86 0.255 1.00

sor2D 1 32 300�300 1.214 86�3 0.076 15.97
sor2D 2 32 300�300 0.901 86�3 0.004 225.25
sor2D 4 32 300�300 0.927 86�3 0.004 231.75
sor2D 1 128 300�300 1.980 80�3 0.248 1.56
sor2D 2 128 300�300 0.992 80�3 0.176 5.63
sor2D 4 128 300�300 0.248 80�3 0.003 82.67

lud1D 1 32 300�300 1.482 300�2 0.746 1.99
lud1D 2 32 300�300 1.002 300�2 0.439 2.28
lud1D 4 32 300�300 0.990 300�2 0.398 2.49
lud1D 1 128 300�300 1.947 300�2 1.010 1.93
lud1D 2 128 300�300 0.366 300�2 0.166 2.21
lud1D 4 128 300�300 0.302 300�2 0.117 2.58

lud2D 1 32 300�300 1.537 16�29 0.471 3.26
lud2D 2 32 300�300 1.505 16�29 0.302 4.98
lud2D 4 32 300�300 1.498 16�29 0.271 5.52
lud2D 1 128 300�300 0.604 16�29 0.463 1.30
lud2D 2 128 300�300 0.405 16�29 0.203 2.00
lud2D 4 128 300�300 0.401 16�29 0.183 2.19

liv23 1 32 303�21 6.061 64�21 5.850 1.04
liv23 2 32 303�21 5.713 64�21 5.258 1.09
liv23 4 32 303�21 4.761 64�21 4.708 1.01
liv23 1 128 303�21 4.161 64�21 4.087 1.02
liv23 2 128 303�21 3.316 64�21 3.117 1.06
liv23 4 128 303�21 2.764 64�21 2.576 1.07

Average Improvement 14.0
Average Improvement for 32 byte lines 21.8
Average Improvement for 128 byte lines 6.8

Table 2: Miss rates in 8K cache for double precision element (16 byte) arrays

all of the untiled kernels have lower miss rates for 128 byte
lines because the increased set associativity has overcome
the interference.

5.2 Comparing Algorithms

In both simulations and execution results, we compare our
tile sizes to those chosen by Lamet al. [LRW91] and Es-
seghir’s algorithms [Ess93]. We use the algorithms pre-
sented in their papers to compute tile sizes for the different
cache organizations and data sets. LRW generates the largest
square tiles without self interference. Esseghir chooses the
column length,N for the column tile size andbCS=Ncc for
the row size. For 1 dimensional tiling, simply choosing the
correct number of complete columns of sizeN suffices and
as a result comparisons are uninteresting. We therefore con-
sider matrix multiply, SOR2D, and LUD2D since they are
tiled in 2 dimensions and the algorithms usually produce dif-
ferent tile sizes. We compare the results for 8K and 64K
caches separately since they have slightly different behav-
iors.

5.2.1 8K Caches

Table 3 presents simulated miss rates for an 8K, 32 byte line
cache with associativities of 1, 2, and 4 for TSS, LRW, Es-
seghir, and the untiled kernels. For each kernel, we present
the selected tile size (the actual parameters to the tiled algo-
rithm), the working set size (WSet), and the simulated miss
rates. The working set size is presented to demonstrate the
cache efficiency of the selected tile sizes. Notice the reduced
tile sizes for SOR2D. The reduction accounts for the work-
ing set size of SOR2D which is two greater than the tile size.

LRW has lower miss rates than TSS only on LUD2D. TSS
has lower miss rates on MM and lower or similar rates on
SOR2D. On average, TSS improves miss rates by a factor of
1.83 over LRW, excluding arrays of size 256�256. (We ex-
clude this case since padding is probably a better solution to
pathological interference). TSS has consistently lower sim-
ulated miss rates than Esseghir, on average a factor of 6.66
(excluding arrays of size 256�256, including them 5.34).
For example, on SOR2D 301�301 4-way, TSS improves
miss rates by a factor of 50 over Esseghir. These results hold
for larger line sizes as well [Col94].

TSS’s lower simulated miss rates translate into better per-
formance. Table 4 presents execution time results on the
DEC Alpha (first level cache: 8K, direct-mapped, 32 byte
line; second level cache: 512K, banked). We measured the
execution times for TSS with and without computing the tile
sizes at runtime. It made no measurable impact on perfor-
mance.

The simulated miss rates and execution times for SOR2D
do not always agree (TSS and LRW should be closer), nor
do the miss rates and execution times for LUD2D when TSS
is compared to Esseghir (TSS should be significantly better).
We believe these inconsistencies result due to a combination
of two factors: the difference in working set sizes and the
Alpha’s large second level cache (512K). TSS always has at
least as good cache efficiency in terms of working set size

as the other algorithms. Esseghir often uses too big of a
working set, resulting in interference. LRW uses a small
working set (often around 50%) because they are limited to
square tiles. TSS may therefore get more benefit from the
second level cache.

TSS always improves or matches execution time when
compared to LRW or Esseghir’s algorithm. On average, TSS
improved over LRW by a factor of 1.05 when the patholog-
ical cases with array sizes of 256�256 are excluded. TSS
improved over Esseghir on average by a more significant fac-
tor of 1.37, and by 2.01 on matrix multiply (again excluding
array sizes of 256�256).

5.2.2 64K Caches

Tables 5 and 6 show the same type of results as the previ-
ous two tables, but for variants of the RS/6000 organization
(64K, 4-way, 128 byte line). The simulated miss rates and
execution times showed more variations than those for the
8K cache. These inconsistencies probably result because the
simulator uses an LRU replacement policy and the RS6000
uses a quicker, but unpublished replacement policy.

TSS still achieves lower miss rates more often (a factor of
1.19 without 256�256 arrays), but Esseghir’s algorithm has
lower miss rates for most of the 4-way simulated results. Es-
seghir’s algorithm out performs TSS and LRW in execution
times on the RS6000 (for TSS, by a factor of 1.03). This
result probably stems from set associativity and efficiency of
the working set size. For this cache organization, Esseghir
tends to encounter less interference because the working set
sizes either fit in cache or are only slightly larger than the
cache. When Esseghir encounters cross interference, the 4-
way associativity is now more likely to over come it through
the cache, rather than the tile sizes. For miss rates, LRW
achieves lower miss rates TSS by a factor of 1.17 (exclud-
ing 256�256 arrays), but most of this comes from SOR2D.
When SOR2D is excluded, TSS has lower miss rates by a
factor of 1.10 (excluding 256�256 arrays). TSS however
continues to out performs LRW on the RS/6000, as it did on
the Alpha, but by less. In both Table 5 and 3, the square
tile sizes use significantly less of the cache and are probably
therefore not as effective.

5.3 Copying

To demonstrate that copying is unnecessary to achieve good
performance, we compared execution times for tiled ma-
trix multiply using tile sizes chosen by TSS to execution

N TSS Tile-and-Copy Speedup
256 1.68 2.92 1.74
300 1.88 3.28 1.75
301 1.82 3.52 1.93
550 11.85 20.15 1.76

Table 7: Matrix multiply execution times (seconds) on the
Alpha

Untiled TSS LRW Esseghir
Size Miss Tile WSet Miss Tile WSet Miss Tile WSet Miss

Kernel Sets N�N Rate Size Size Rate Size Size Rate Size Size Rate

mm 1 256 2.325 170�2 512 1.905 2�2 8 3.778 256�2 770 4.116
mm 2 256 1.699 170�2 512 0.964 2�2 8 1.905 256�2 770 0.969
mm 4 256 1.679 170�2 512 0.878 2�2 8 1.876 256�2 770 0.894

mm 1 300 2.208 16�29 482 0.613 16�16 274 0.650 300�1 602 2.275
mm 2 300 2.147 16�29 482 0.257 16�16 274 0.277 300�1 602 1.617
mm 4 300 2.164 16�29 482 0.197 16�16 274 0.245 300�1 602 1.587

mm 1 301 2.308 28�17 506 0.600 17�17 308 0.596 301�1 604 2.275
mm 2 301 1.706 28�17 506 0.208 17�17 308 0.230 301�1 604 1.618
mm 4 301 1.680 28�17 506 0.177 17�17 308 0.213 301�1 604 1.587

sor2D 1 256 1.966 256�1 768 0.527 2�2 10 0.404 256�1 768 0.527
sor2D 2 256 1.943 256�1 768 0.477 2�2 10 0.253 256�1 768 0.477
sor2D 4 256 1.816 256�1 768 0.098 2�2 10 0.123 256�1 768 0.098

sor2D 1 300 1.214 86�3 440 0.076 14�14 256 0.076 300�1 900 0.409
sor2D 2 300 0.901 86�3 440 0.004 14�14 256 0.004 300�1 900 0.138
sor2D 4 300 0.927 86�3 440 0.004 14�14 256 0.004 300�1 900 0.166

sor2D 1 301 1.125 88�3 450 0.065 15�15 289 0.073 301�1 903 0.429
sor2D 2 301 0.901 88�3 450 0.003 15�15 289 0.003 301�1 903 0.165
sor2D 4 301 0.927 88�3 450 0.004 15�15 289 0.003 301�1 903 0.200

lud2D 1 256 3.605 170�2 512 2.312 2�2 8 0.971 256�2 770 2.381
lud2D 2 256 1.268 170�2 512 0.821 2�2 8 0.783 256�2 770 0.857
lud2D 4 256 1.266 170�2 512 1.107 2�2 8 0.816 256�2 770 1.172

lud2D 1 300 1.537 16�29 509 0.471 16�16 288 0.421 300�1 602 1.234
lud2D 2 300 1.499 16�29 509 0.302 16�16 288 0.274 300�1 602 1.183
lud2D 4 300 1.498 16�29 509 0.271 16�16 288 0.254 300�1 602 1.178

lud2D 1 301 1.537 30�12 402 0.398 17�17 323 0.389 301�1 604 1.233
lud2D 2 301 1.511 30�12 402 0.271 17�17 323 0.246 301�1 604 1.190
lud2D 4 301 1.504 30�12 402 0.249 17�17 323 0.226 301�1 604 1.188

Table 3: Miss rates and tile sizes in 8K (512 element) cache with 32 byte (2 element) lines for N�N arrays.

Untiled TSS LRW Esseghir Speedup
Kernel N�N Time Tile Size Time Tile Size Time Tile Size Time LRW/TSS ESS/TSS

mm 256 1.85 170�2 1.68 2�2 5.69 256�2 1.70 3.39 1.01
mm 300 3.36 16�29 1.88 16�16 1.88 300�1 3.47 1.00 1.85
mm 301 3.41 28�17 1.82 17�17 2.09 301�1 3.64 1.15 2.00
mm 550 26.03 18�27 11.85 18�18 12.95 512�1 25.67 1.09 2.17

sor2D 256 1.53 256�1 1.50 2�2 2.60 256�1 1.50 1.73 1.00
sor2D 300 2.35 88�3 2.07 16�14 2.18 300�1 2.10 1.05 1.01
sor2D 301 2.42 90�3 2.10 17�15 2.27 301�1 2.11 1.08 1.00
sor2D 550 9.81 38�12 7.06 18�16 7.42 512�1 8.87 1.05 1.26

lud2D 256 1.23 170�2 1.13 2�2 3.64 256�2 1.11 3.22 0.98
lud2D 300 1.88 16�29 1.76 16�16 1.76 300�1 1.60 1.00 0.91
lud2D 301 1.91 30�12 1.64 17�17 1.76 301�1 1.61 1.07 0.98
lud2D 550 13.48 18�27 10.32 18�18 10.36 512�1 11.92 1.00 1.15

Average Improvement 1.39 1.27
Average Improvement without 256�256 cases 1.05 1.37

Table 4: Execution Times in seconds on the DEC Alpha (direct-mapped, 8K,32 byte lines)

Untiled TSS LRW Esseghir
Size Miss Tile WSet Miss Tile WSet Miss Tile WSet Miss

Kernel Sets N�N Rate Size Size Rate Size Size Rate Size Size Rate

mm 1 256 4.547 240�16 4088 0.566 16�16 280 0.647 256�16 4360 0.569
mm 2 256 4.441 240�16 4088 0.040 16�16 280 0.080 256�16 4360 0.045
mm 4 256 4.439 240�16 4088 0.036 16�16 280 0.029 256�16 4360 0.030

mm 1 300 0.534 88�41 3704 0.133 41�41 1730 0.193 300�13 4208 0.218
mm 2 300 0.419 88�41 3704 0.042 41�41 1730 0.043 300�13 4208 0.042
mm 4 300 0.419 88�41 3704 0.042 41�41 1730 0.030 300�13 4208 0.036

mm 1 301 0.509 112�26 3086 0.081 53�53 2870 0.172 301�13 4222 0.198
mm 2 301 0.524 112�26 3086 0.045 53�53 2870 0.026 301�13 4222 0.038
mm 4 301 0.419 112�26 3086 0.045 53�53 2870 0.023 301�13 4222 0.036

sor2D 1 256 0.080 256�14 4096 0.157 16�14 256 0.041 256�14 4096 0.157
sor2D 2 256 0.010 256�14 4096 0.005 16�14 256 0.001 256�16 4096 0.005
sor2D 4 256 0.001 256�14 4096 0.003 16�14 256 0.006 256�16 4096 0.003

sor2D 1 300 0.064 300�11 3900 0.161 41�39 1681 0.031 300�11 3900 0.161
sor2D 2 300 0.008 300�11 3900 0.003 41�39 1681 0.001 300�11 3900 0.003
sor2D 4 300 0.001 300�11 3900 0.003 41�39 1681 0.001 300�11 3900 0.003

sor2D 1 301 0.064 301�11 3913 0.161 53�51 2809 0.033 301�11 3913 0.161
sor2D 2 301 0.008 301�11 3913 0.003 53�51 2809 0.001 301�11 3913 0.003
sor2D 4 301 0.001 301�11 3913 0.003 53�51 2809 0.001 301�11 3913 0.003

lud2D 1 256 0.601 240�16 4096 0.245 16�16 288 0.251 256�16 4368 0.244
lud2D 2 256 0.307 240�16 4096 0.034 16�16 288 0.053 256�16 4368 0.030
lud2D 4 256 0.305 240�16 4096 0.038 16�16 288 0.053 256�16 4368 0.034

lud2D 1 300 0.330 88�41 3737 0.075 41�41 1763 0.070 300�13 4213 0.065
lud2D 2 300 0.319 88�41 3737 0.027 41�41 1763 0.030 300�13 4213 0.038
lud2D 4 300 0.318 88�41 3737 0.026 41�41 1763 0.028 300�13 4213 0.038

lud2D 1 301 0.333 112�26 3050 0.050 53�53 2915 0.080 301�13 4227 0.064
lud2D 2 301 0.321 112�26 3050 0.028 53�53 2915 0.029 301�13 4227 0.037
lud2D 4 301 0.522 112�26 3050 0.027 53�53 2915 0.028 301�13 4227 0.038

Table 5: Miss rates and tile sizes in a 64K (4096 element) cache, 128 byte (8 element) lines

Untiled TSS LRW Esseghir Speedup
Kernel N�N Time Tile Size Time Tile Size Time Tile Size Time LRW/TSS ESS/TSS

mm 256 2.08 240�16 1.79 16�16 2.15 256�16 1.76 1.20 0.98
mm 300 3.37 88�41 2.89 41�41 2.99 300�13 2.82 1.03 0.98
mm 301 3.42 112�26 2.87 53�53 2.97 301�13 2.89 1.03 1.01
mm 550 20.80 56�64 18.03 58�58 18.07 550�7 17.76 1.00 0.99

sor2D 256 2.27 256�14 2.21 16�14 2.30 256�16 2.21 1.01 1.00
sor2D 300 3.12 300�11 3.05 41�39 3.06 300�11 3.05 1.00 1.00
sor2D 301 3.14 301�11 3.05 53�51 3.06 301�11 3.05 1.00 1.00
sor2D 550 10.62 550�5 10.27 58�56 10.37 550�5 10.27 1.01 1.00

lud2D 256 1.27 240�16 0.82 16�16 1.04 256�16 0.79 1.27 0.96
lud2D 300 2.02 88�41 1.38 41�41 1.47 300�13 1.29 1.07 0.93
lud2D 301 2.06 112�26 1.35 53�53 1.45 301�13 1.28 1.07 0.95
lud2D 550 12.87 56�64 8.70 58�58 8.65 550�7 7.94 0.99 0.91
Average Improvement 1.06 0.98
Average Improvement without 256�256 cases 1.02 0.97

Table 6: Execution Times in seconds on the RS/6000 (64K, 4-way, 128 byte lines)

times for code generated by Esseghir’s Tile-and-Copy algo-
rithm [Ess93]. These results appear in Table 7. The execu-
tion times for TSS include computing the tile sizes at run-
time. Tile sizes for Esseghir’s code were calculated using
the formulaTS = pCS=CLS � 2 whereTS is the tile
size. We also used Esseghir’s algorithm to select rectangular
tile sizes, but these execution times were longer. TSS sig-
nificantly speeds up performance as compared to Esseghir’s
Tile-and-Copy algorithm. Because copying is an expensive
run-time operation, tiling alone performs significantly better,
even on the pathologicalN = 256 case where there is severe
self interference.

6 Summary

This paper presents a new algorithm for choosing problem-
size dependent tile sizes using the cache size and line size.
Its runtime cost is negligible making it practical for selecting
tile sizes and deciding when to tile whether or not array sizes
are unknown at compile time. This algorithm performs bet-
ter than previous algorithms on direct-mapped caches. It also
performs well for caches of higher associativity when matri-
ces are larger in comparison to the cache size. It obviates the
need for copying. As compilers for scalar and parallel com-
pilers increasingly turn their attention to data locality, tiling
and other data locality optimizations will only increase in
importance. We have shown the tile size selection algorithm
to be a dependable and effective component for use in a com-
piler optimization strategy that seeks to use and manage the
cache effectively.

Acknowledgements

We would like to thank Sharad Singhai for assisting in the
initial experiments on this work and James Conant and Susan
Landau for their insights on the Euclidean Algorithm.

References

[BJWE92] F. Bodin, W. Jalby, D. Windheiser, and C. Eisen-
beis. A quantitative algorithm for data local-
ity optimzation. InCode Generation-Concepts,
Tools, Techniques. Springer-Verlag, 1992.

[CK92] S. Carr and K. Kennedy. Compiler blockability
of numerical algorithms. InProceedings of Su-
percomputing ’92, Minneapolis, MN, November
1992.

[CL95] S. Carr and R. B. Lehoucq. A compiler-
blockable algorithm for QR decomposition. In
Proceedings of the Eighth SIAM Conference on
Parallel Processing for Scientific Computing,
San Francisco, CA, February 1995.

[CMT94] S. Carr, K. S. McKinley, and C. Tseng. Com-
piler optimizations for improving data locality.
In Proceedings of the Sixth International Con-
ference on Architectural Support for Program-
ming Languages and Operating Systems, San
Jose, CA, October 1994.

[Col94] S. Coleman. Selecting tile sizes based on cache
and data organization. Master’s thesis, Dept. of
Computer Science, University of Massachusetts,
Amherst, September 1994.

[Ess93] K. Esseghir. Improving data locality for caches.
Master’s thesis, Dept. of Computer Science,
Rice University, September 1993.

[GJG88] D. Gannon, W. Jalby, and K. Gallivan. Strate-
gies for cache and local memory management by
global program transformation.Journal of Par-
allel and Distributed Computing, 5(5):587–616,
October 1988.

[IT88] F. Irigoin and R. Triolet. Supernode partition-
ing. InProceedings of the Fifteenth Annual ACM
Symposium on the Principles of Programming
Languages, San Diego, CA, January 1988.

[Kob87] Neal Koblitz. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1987.

[LRW91] M. Lam, E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked
algorithms. InProceedings of the Fourth In-
ternational Conference on Architectural Sup-
port for Programming Languages and Operat-
ing Systems, Santa Clara, CA, April 1991.

[NJL94] J. J. Navarro, T. Juan, and T. Lang. Mob forms:
A class of multilevel block algorithms for dense
linear algebra operations. InProceedings of the
1994 ACM International Conference on Super-
computing, pages 354–363, Manchester, Eng-
land, June 1994.

[Smi82] A. J. Smith. Cache memories.Computing Sur-
veys, 14(3):473–530, September 1982.

[TGJ93] O. Temam, E. Granston, and W. Jalby. To copy
or not to copy: A compile-time technique for
assessing when data copying should be used to
eliminate cache conflicts. InProceedings of
Supercomputing ’93, Portland, OR, November
1993.

[WL91] M. E. Wolf and M. Lam. A data locality optimiz-
ing algorithm. InProceedings of the SIGPLAN
’91 Conference on Programming Language De-
sign and Implementation, Toronto, Canada, June
1991.

[Wol89] M. J. Wolfe. More iteration space tiling. In
Proceedings of Supercomputing ’89, pages 655–
664, Reno, NV, November 1989.

A Tiled Kernels

A.1 SOR

Successive over relaxation is a five-spot stencil on a two di-
mensional array. The point algorithm with the best locality
appears in Figure 6(a). The tiled versions for one and two
dimensions appear in Figure 6(b) and (c), respectively.

(a) SOR
DO K = 1, N

DO J = K+1, N
DO I = 2, N-1

A(I,J) = 0.2(A(I,J) + A(I+1,J) + A(I-1,J)
+ A(I,J+1) + A(I,J-1)+ + +

(b) sor1d: SOR Tiled in One Dimension
DO K = 1, N

DO II = 2, N-1, TI
DO J = 2, N-1

DO I = II, MIN(N-1,II+TI-1)
A(I,J) = 0.2(A(I,J) + A(I+1,J) + A(I-1,J)

+ A(I,J+1) + A(I,J-1)+ + +
(c) sor2d: SOR Tiled in Two Dimensions

DO JJ = 2, N-1, TJ
DO K = 1, N

DO II = 2, N-1, TI
DO J = JJ, MIN(N-1, JJ+TJ-1)

DO I = II, MIN(N-1, II+TI-1)
A(I,J) = 0.2(A(I,J) + A(I+1,J) + A(I-1,J)

+ A(I,J+1) + A(I,J-1)

Figure 6:

A.2 Livermore Loop 23

Livermore Loop 23 is also a stencil kernel, but over 4 distinct
arrays. The point and one dimensional tiled versions appear
in Figure 7 respectively.

(a) Livermore Loop 23
DO J = 2, M

DO K = 2, N
QA= ZA(K,J+1)*ZR(K,J) +ZA(K,J-1)*ZB(K,J) +

ZA(K+1,J)*ZU(K,J) +ZA(K-1,J)*ZV(K,J) +ZZ(K,J)
ZA(K,J)= ZA(K,J) +fw*(QA -ZA(K,J))+ + +

(b) liv23: Livermore Loop 23 Tiled in One Dimension
DO KK = 2,N,TK

DO J = 2,M
DO K = KK,MIN(KK+TK-1,N)

QA= ZA(K,J+1)*ZR(K,J) +ZA(K,J-1)*ZB(K,J) +
ZA(K+1,J)*ZU(K,J) +ZA(K-1,J)*ZV(K,J) +ZZ(K,J)

ZA(K,J)= ZA(K,J) +fw*(QA -ZA(K,J))

Figure 7:

A.3 LUD

LUD decomposes a matrix A into two matrices, L and U,
where U is upper triangular and L is a lower triangular unit
matrix. The point algorithm for LUD appears in Figure 8(a).
The version of LUD tiled in one dimension in Figure 8(b)

(a) LUD
DO K = 1, N

DO J = K+1, N
A(J,K) = A(J,K)/A(K,K)
DO I = K+1, N

A(I,J) = A(I,J) - A(I,K) � A(K,J)+ + +
(b) lud1d: LUD Tiled in One Dimension

DO KK = 1, N, TK
DO K = KK, MIN(N,KK+TK-1)

DO I = K+1, N
A(I,K) = A(I,K)/A(K,K)

DO J = K+1, N
DO I = K+1, N

A(I,J) = A(I,J) - A(I,K) � A(K,J)
DO J = KK+TK, N

DO I = KK+1, N
DO K = KK, MIN(MIN(N,KK+TK-1),I-1)

A(I,J) = A(I,J) - A(I,K) � A(K,J)+ + +
(c) lud2d: LUD Tiled in Two Dimensions

DO JJ = 1, N, TJ
DO II = 1, N, TI

DO K = 1, N
DO J = MAX(K+1,JJ), MIN(N,JJ+TJ-1)

DO I = MAX(K+1,II), MIN(N,II+TI-1)
IF ((JJ�K+1) & (K+1�JJ+TJ-1) &

(J = MAX(K+1,JJ))
A(I,K) = A(I,K)/A(K,K)

END IF
A(I,J) = A(I,J) - A(I,K) � A(K,J)

Figure 8:

is taken from Carr and Kennedy [CK92]. The version tiled
in two dimensions in Figure 8(c) is a modified version of
the one Wolf and Lam use [WL91]. Their original version
targeted C’s row-major storage and we modified it to target
Fortran’s column-major storage.

