Tile Size Selection Using Cache Organization and Data L ayout

Stephanie Coleman Kathryn S inley
scoleman@dsd.camb.inmet.com mckinley@cs.umass.edu
Intermetrics, Inc., 733 Concord Ave. Computer Science, OGBniversity of Massachusetts
Cambridge, MA 02138 Amherst, MA 01003
Abstract In this paper, we focus on how to choose the tile sizes

When dense matrix computations are too large to fit in given a tiled nest..As ip previous research, our algorithm
cache, previous research proposes tiling to reduce or elim-{@rgets 100p nests in which the reuse of a single array dom-
inate capacity misses. This paper presents a new algorithn{Nt€s. Given a problem size, the Tile Size Selection (TSS)
for choosing problem-size dependent tile sizes based on thedlgorithm selects a tile size that eliminates self-interference
cache size and cache line size for a direct-mapped cache@nd capacity misses for the tiled array in a direct-mapped
The algorithm eliminates both capacity and self-interference caChe. It uses the data layout for a problem size, cache size,
misses and reduces cross-interference misses. We measuréti!d cache line size to generate potential tile sizes. If the nest
simulated miss rates and execution times for our algorithm 26Ce€Sses other arrays or other parts of the same array, TSS

and two others on a variety of problem sizes and cache or-Selects atile size that minimizes expected cross interferences
ganizations. At higher set associativity, our algorithm does P&tween these accesses and for which the working set of the
not always achieve the best performance. However on direct-ltile and other accesses fits in a fully associative LRU cache.
mapped caches, our algorithm improves simulated miss rates W€ Present simulated miss rates and execution times for
and measured execution times when compared with previous? variety of tiled nests that illustrate the effectiveness of the

work. TSS algorithm. We compare these results to previous algo-
_ rithms by Lamet al. [LRW91] and Esseghir [Ess93]. On
1 Introduction average, TSS achieves better miss rates and performance

Due to the wide gap between processor and memory speed ifPn direct-mapped caches than previous algorithms because
current architectures, achieving good performance requiresit Selects rectangular tile sizes that use the majority of the
high cache efficiency. Compiler optimizations to improve cache. In some cases, it achieves significantly better perfor-
data locality for uniprocessors is increasingly becoming a mance. If the problem size is unknown at compile time, the
critical part of achieving good performance [CMT94]. One additional overhead of computing problem-dependent tile
of the most well-known Comp"er Optimizationgiﬁ;ng (a|50 sizes at runtime is negllglble We show that because TSS ef-
known asblocking. It combines strip-mining, loop permu- fectively uses the majority of the cache and its runtime over-
tation, and skewing to enable reused data to stay in the caché1ead is negligible, copying is unnecessary and significantly
for each of its uses,e., accesses to reused data are moved degrades performance.

closer together in the iteration space to eliminate capacity ~Section 2 compares our strategy to previous research. In
misses. Section 3, we briefly review the relevant terminology and

Much previous work focuses on how to do the loop nest features of caches, reuse, and tiling. Section 4 describes the
restructuring step in tiling [CK92, CL95, IT88, GJG88, tile size selection algorithm, TSS. It generates a selection of
WLO91, Wol89]. This work however ignores the effects of tile sizes without self-interference misses in a direct-mapped
real caches such as low associativity and cache line size orfache using the array size, the cache size, and the cache line
the cache performance of tiled nests. Because of these facsize. It selects among these tile sizes to generate the largest
tors, performance for a given prob|em size can vary W||d|y tile size that fits in cache and that minimizes expected Cross-
with tile size [LRW91]. In addition, performance can vary interference misses from other accesses. Section 5 presents
wildly when the same tile sizes are used on very similar Simulation and execution time results that demonstrate the
problem sizes [LRW91, NJL94]. These results occur be- efficacy of our approach and compares it to the work of Es-
cause low associativity causes interference misses in addiseghir and Lanet al. [Ess93, LRWI1].

tion to capacity misses. 2 Reated Work

Several researchers describe methods for how to tile nests
[BJWE92, CK92, CL95, IT88, GJG88, Wol89]. None of
this work however addresses interference, cache replace-
ment policies, cache line size, or spatial locality which are
important factors that determine performance for current
machines.

More recent work has addressed some of these factors

Original in SIGPLAN’95: Conference on Program
ming Language Design and Implementatiobna

Jolla, CA, June 1995. This version contains correc-
tions to the algorithm.

for selecting tile sizes [Ess93, LRW91]. Esseghir selects
tile sizes for a variety of tiled nests [Ess93]. His algorithm

chooses the maximum number of complete columns that fit
in the cache. This algorithm leaves one large gap of un-
used cache. All of his experiments were performed on the
RS6000 (64K, 128 byte line, 4-way set associative). For this

to a fully associative LRU cache. If a cache line con-
taining data that will be reused is replaced before it is
reused, a capacity miss occurs when the displaced data
is next referenced. The miss is classified as a capac-
ity miss only if it would occur in a fully LRU cache.
Otherwise, it is classified as an interference miss.

cache organization, Esseghir’s strategy slightly out performs | nterference misses occur when a cache line that contains

the TSS algorithm by a factor of 1.03. However, when com-
pared to TSS or Larat al.[LRW91] on an 8K cache with 1,

2, or 4-way set associative caches using matrices that are rel-
atively large with respect to cache sizzd.,300x300), Es-
seghir’s algorithm results in significantly higher miss rates.
For example, TSS out performs it on the DEC Alpha (8K, 32
byte line, direct mapped) for matrix multiply by an average
factor of 2 (Section 5).

Lamet al. present cache performance data for tiled matrix
multiply and describe a model for evaluating cache interfer-
ence [LRW91]. The model evaluates reuse for one variable,
and quantifies self-interference misses for matrix multiply
as a function of tile size. They show choosing a tile size that
uses a fixed fraction of the cache performs poorly compared

data that will be reused is replaced by another cache
line. An interference miss is distinguished from a ca-
pacity miss because not all the data in the cache at
the point of the miss on the displaced data will be
reused. Intuitively, interference misses occur when
there is enough room for all the data that will be reused,
but because of the cache replacement policy data maps
to the same location. Interference misses on arrays can
be divided into two categories.

e Sdf-interference misses result when an element of the

same array causes the interference miss.

e Cross-interference misses result when an element of a

different array causes the interference miss.

to tile sizes that are tailored for a problem and cache size.32 Reuse

They present an algorithm which chooses the largest size forT

a square tile that avoids self interference based on array size
Square tiles use a smaller portion of the cache and result
in higher miss rates and execution times when compared to,

the data-dependent rectangular tiles chosen by our algorithn}n

(Section 5). TSS consistently improves execution times over
Lam et al. by an average factor of 1.12 on the DEC Alpha
and a smaller factor of 1.02 on the RS6000.

Esseghir, Lamet al, and Temanet al. [TGJ93] all rec-

he two sources of data reuse &enporalreuse, multiple
accesses to the same memory location,spatialreuse, ac-
cesses to nearby memory locations that share a cache line.
Without loss of generality, we will assume Fortran’s column-
ajor storage. Tiling only benefits loop nests with temporal
reuse. We will also take advantage of spatial locality in tiled
nests.

3.3 Tiling

ommend copying as a method to avoid self-interference andTiling reduces the volume of data accessed between reuses
cross-interference misses. Copying also requires knowledgeof an element, allowing a reusable element to remain in the
of array sizes which may not be available until runtime. It cache until the nexttime it is accessed. Consider the code for

makes performance much more predictable for varying tile matrix multiply in Figure 1(a) and its corresponding reuse
sizes. However, computing the tile sizes at runtime with any patterns illustrated in Figure 2(a). The reference Y(J,K) is

of TSS, Esseghir, or Larat al. has no noticeable impact on

loop-invariant with respect to the | loop. Each iteration of

performance. TSS achieves significantly better performancethe | loop also accesses one row each of X and Z. Therefore,
than copying because it uses the majority of the cache, elimi-2*N + N? elements are accessed per iteration of the I loop.

nates self interference, and minimizes cross interference (see
Section 5).

3 Background
3.1 CacheMemory

Tiling can be applied to registers, the TLB, or any other
level of the memory hierarchy. In this paper, we concen-
trate on tiling for the first level of cache memory. The
cache is described by its size, line size, and set associativ-
ity [Smi82]. Unless otherwise indicated, we assume a direct-

mapped cache. We divide cache misses into three categories.

Compulsory misses occur when a cache line is referenced
for the first time. Without prefetching, these misses are
unavoidable.

Capacity misses occur when a program’s working set size
is larger than the cache size and are defined with respect

(a) Matrix Multiply

DOI=1,N
DOK=1,N
R = X(K,I)
DOJ=1,N
Z(3,)=Z@3,) + R* Y(J,K)
4 U 4

(b) Tiled Matrix Multiply
DOKK=1,N, TK

DOJI=1,N,TJ
DOI=1,N
DO K = KK, MIN(KK+TK-1,N)
R = X(K,)

DO J = JJ, MIN(JJ+TJ-1,N)
ZAN)=Z@)+R*YJ,K)

Figure 1:

1 N 1k 1 ,
k i ! !
k
& .
j
N N N
(b) X Y z
I 1IN Kk
i ;
Kk i
E iTJ i
k
N N]
Figure 2: Iteration space traversal in (a) untiled and (b) tiled matriltiphy
Between each reuse of an element of Y there are N distinct = = = .
elements of Z accessed on the J loop, N elements of the X | ” euse Factor ” ootprint |
array on the K loop, and N- 1 elements of the Y array. If Array | | | K | J | K|J
the cache is not large enough to hold this many elements, XKNH) o] o |13 TK 111
then the reusable Y data will be knocked out of the cache, YUOK)IN| O] 0 |TKTI | TI|1
and the program will have to repeat a costly memory access. ZQ) | 0O]TK] © N |11

Previous research has focused on how to transform a nest))))
into a tiled version to eliminate these capacity misses [CK92, Table 1: Reuse Factor and Footprint for Tiled Matrix Multi-
CLO95, IT88, GIG88, Wol89]. We assume as input a tiled nest PIY
produced by one of these methods and turn our attention the
selection of tile sizes for the nest.

For example, tiled matrix multiply appears in Figure 1(b) 4 TileSize Selection
and its corresponding reuse pattern in Figure 2(b). In the Gjen, 4 target array reference, we now show how to select a
tiled nest, one iteration of the | loop now accesses only TK tile size for the reference.

+ TJ + TK*TJ elements. Between reuse of an element of) o

Y, the J and K loops access TK distinct elements of X, TJ 41 Detectingand Eliminating Self Interference

elements of Z, and TK * TJ elements of Y. We call the por- In this section, we describe how to detect and eliminate self-
tion of an array which is referenced by a loop thetprint interference misses when choosing a tile size. We compute
of that array reference [Wol89]. We call the number of times a selection of tile sizes that exhibit no self interference and
the same element is referenced by a looprthese factor no capacity misses. Factors such as cross interference and
We call the innermost loop that has not been strip mined andworking set size determine which size we select. We use the
interchanged théarget loop the | loop in matrix multiply; cache size, the line size, and the array column dimension.
the target nest accesses a tile of data. Inspection of the arWe only select tile sizes in which the column dimension is a
ray accesses, loop nesting, and loop bounds of the tiled nestultiple of the cache line size.

determines the footprint and reuse factor [Wol89]. Table 1 Consider the layout of a 2000 array Y in a direct-
illustrates these quantities for the version of tiled matrix mul- mapped cache that can hold 1024 elements of Y as illus-
tiply in Figure 1(b). trated in Figure 3. Without loss of generality, we assume

The largest tile with the most reuse on the | loop is the the first element of array Y falls in the first position of the
access to Y. We therefore target this reference to fit and staycache. Setsare defined as groups of consecutive columns
in cache. We wantto choose TK and TJ such that the TK whose staring positions differ by. The first set therefore
submatrix of Y will still be in the cache after each iteration consists of columns 1 through 6. LEéEbe the cache size in
of the | loop and there is enough room in the cache for the elementsCLSthe cache line size in elements, axthe col-
working set size of the | loop, TKTJ + TK + TJ. umn dimension (the consecutively stored dimension). The

1 200 400 600 800 1000
f f f f H 1024 1st set
I

I

|

| 176 376 976!

I f {)—‘ 2nd set

| |

! 152 !

[I 3rd set

[|

| |

| |

| |

18 208 |

H— | 9th set
|

Figure 3: Column Layout for a 200200 Array in a 1024 Element Cache

number of complete columns that fit in the cache is simply will eventually becomé&ap= Nmod SetDiff The row size
is determined by the point at which the difference changes
ColsPerSet= |C'S/N]. 1) from r, to Gap. The algorithm for computing the row size

))) for a column size which is a Euclidean remainder appears
For Figure 3 ColsPerSet 5 for a tile of 200<5 (Esseghir i Figure 4. The algorithm divides the cache into two sec-

selects this tile size [Ess93]). A 2@G tile uses 97% _percent tions: (1) ther; gap at the end of the first set and (2) the
of a 1024 element cache, but leaves a single contiguous gapregt of the cache. It divides naturally because of the pattern
If N evenly divides'S, we also select this tile size. Other- , saction 2. If an additional column starts a new set in sec-
wise, we look for a smaller column dimension with a larger i 2 and does not interfere with previous sets then at least
row size that does not incur interference, combining to use a4, aqditionalColsPerSewill not interfere. A space of size

higher percentage of the cache. Gap occurs at the end of the cache (in section 1, between the
We use the Euclidean algorithm [Kob87] to generate po- ¢t column and the end of the cache) and eventually occurs
tential column dimensions. The Euclidean algorithm finds |atveen starting positions in section 2
. 3 . "
theg.c.d(a,b) a > b, in O(log®(a)) time. It computes For each of section 1 and 2, we thus compute (a) the num-
ber of columns ofcolSizethat fit between the starting ad-

Z i q}i ++T; dresses differing betDiff and (b) the number of columns
- enTn that fit in the spaces of siz8ap. Since we only use Eu-
T1 = q3r2+7T3

clidean column size€olsPerGap= | Gap/ colSize|.
Thk=1 = 41Tk + Th+1 For section 2 of the cach&olsPerNis the number of

)) o _)) colSizecolumns that fit between two complete columns of
until a remainder divides a previous remainder. Remaindersgize N dictated bySetDiff ColsPerSetDiffis the num-

are always decreasing. For our purposes, C'S the cache per of columns ofcolSizethat fit between columns that
size, anch = N the column dimension. Each remainderis paye starting positions with differences S8etDIff Since

a potential column size. Given our example with= 1024 columns are Euclidean numbers, it is the minimum distance
andb = 200, Euclid generates the following. allowed between starting positions of columns in different
1024 = 5%200+ 24 sets.ColsPerGayis the number that fit in th&ap. This pat-

200 — 82448 tern repeat&olsPerSetimes. The number of columns that
fit in section 2 of the cache is thus

Since 8 divides 24, 8 g.c.d(1024, 200) and it terminates. (ColsPerSetDifi ColsPerN+ ColsPerGap « ColsPerSet
We begin with an initial column size df = N. We When SetDiff< r, patterns of colgmns fitin sec;'uon 1, the

must reduce the column size to at leasbefore additional ~ Pattern columns totaColsPerSetDifk | r, / SetDiff|. The

columns will notincur interference. Look at thécolumn’s ~ totalis thus any pattern columns pl@sisPerGap

starting position in Figure 3. Even if we reduce the column ~ Returning fo the example in Figure BolsPerSet 5,

size from 200 to 25, no additional columns will fit because "1 = 24, SetDiff= 176, andColsPerN= 1. Given a column

when the6t column is of length 25 or greater it interferes SiZ€ Of 24,ColsPerSetDiff= 7 andColsPerGap= 1. Thus

with the first column. When the column size equals 24 rowSize= 7*1*5 + 1*5 + 0 + 1 = 41, for a tile size of 2441.

in this example, it becomes possible to fit more columns. 4.2 CachelLineSize

(Whenr, > N —ry, only one more column fits with a col- 14 take advantage spatial locality, we choose column sizes
umn size of, as opposed td/. Otherwise, the row size (the h4t are multiples of the cache line size in terms of elements,

number of columns) increases by at legS/N |) CLS We assume the start of an array is aligned on a cache

The starting positions of the first and second set differ by |ine boundary. After we find the row size, we simply adjust
SetDiff = N — ry. The difference between subsequent sets

Input: CS Cache SizeN: Column Dimension,

colSize=r}.: Euclidean remainder
Output: rowSize max rows without interference
Invariants: ColsPerSet ¢; = [C'S/N |

ry =CS mod N
SetDiff= N — r;
ColsPerN= | N/SetDiff |
Gap= Nmod SetDiff
procedure ComputeRows (colSize
if (colSize= N) return ColsPerSet
elseif (colSize= r; & colSize> SetDiff
return ColsPerSet + 1
dse
ColsPerSetDiff= | SetDiff/ colSize|
ColsPerGap= | Gap/ colSize|
rowSize= ColsPerSetDiff« ColsPerN« ColsPerSet
+ ColsPerGapr ColsPerSet
+ ColsPerSetDiff | r1 / SetDiff| + ColsPerGap
return rowSize
endif

Figure 4: Row Sizes for Euclidean Column Sizes

procedure TSS(C'S,CLS, N, M)

Input: CS: cache size(’LS: cache line size,
N: column length,M: row length
Output: tile size sbestCok bestRow

bestCol= oldCol= N
bestRows rowSize= C'S/N
colSize= C'S - bestColx bestRow
while (colSize> C'LS & oldCol mod colSize#£ 0 & rowSize< M)
rowSize= computeRows (colSizé
tmp= colSizeadjusted to a multiple of' L S
if (WSet (tmp, rowSize> WSet (bestCol, bestRow
& WSet (tmp, rowSizp< CS
& CIR (tmp, rowSizp < CIR (bestCol, bestRow
bestCol = tmp
bestRow = rowSize
endif
tmp= colSize
colSize= oldCol mod colSize
oldCol=tmp
endwhile
if necessary, adjusiestColto meet the working set size constraint
end TSS

Figure 5: Tile Size Selection Algorithm

colSizeas follows.

colSize if colSizenod CLS= 0, or

if colSize = column length
{@c’l%'sz—ﬂ CLS otherwise

colSize=

If colSizeis equal to the length of the column, we do not
adjust it to a multiple of the line size.

4.3 Minimizing Cross|nterference

In this section, we compute worst case cross-interference
misses for tiled nests. We use footprints to determine the

amount of data accessed in the tile and choose a tile size tha

has a working set size that fits in the cache and minimizes

the number of expected cross-interference misses.
Consider again matrix multiply from Figure 1. On an

iteration of the | loop (from Table 1), we access XKJ

elements of Y, TJ elements of Z, and TK elements of X.

If we completely fill up the cache with array Y, then ev-
ery reference to Z causes a cross-interference miss on the
next reference to the victimized element of Y. Another cross-
interference miss will occur on the next reference to the same
element of Z. There are potentially 2 * TJ cross interfer-
ences between Z and Y. Despite the fact that the element
of X that is reused in the J loop is register-allocated, it still
uses a cache line on its first access. This access causes a
cross-interference miss on the next reference to any victim-
ized element of Y. We ignore the cross-interference misses
of Z caused by X because they happen very infrequently
and are hard to predict. In the worst case, the number of
cross-interference misséslM, that will occur as a result of

a TKxTJ tile size in matrix multiply is

CIM =2+«xTJ+TK. (2)
The cross-interference raté/ R, is thus
CIR = CIM/(TJ % TK), (3)

the number of cross-interference misses per element of Y
in a single iteration of the | loop. To compute this rate in
general, we use the footprints for the target nest for array ac-
cesses other than the target. Each footprintis then multiplied
by 2 if they do not reduce to one on the next inner loop in
the nest.

We also minimize expected cross interference by selecting
tile sizes such that the working set will fit in the cachey.,
for matrix multiply theworking set size constraiig

TJ+TK+TJ+1xCLS < CS. (4)

(Since X is register allocated, we reduce its footprint to
CLS) The left-hand side of equation 4 is exactly the amount
of cache need for an fully-associative LRU cache. In gen-
eral, the working set is simply the sum of the footprints for
the target loop which accesses the tile.

We use the cross-interference rate and working set size
constraint to differentiate between tile sizes generated by the
algorithm described in Section 4.1. As the algorithm iter-
ates, we select a new tile size without self interference if its
working set size is larger than a previous tile size and still fits
in cache and the new size has a lov@#R than the previous
size. (Section 5 demonstrates that these tile sizes result in
lower miss rates for direct-mapped caches.)

If the tile we select does not meet these constraints, we
decreaseolSizeby CLSuntil it does. Both this phase and
the self interference phase result in numerous gaps through
out the cache, rather than one large gap. Because cross-
interfering arrays typically map all over the cache, multiple
gaps minimize the expected interfereneg.,the columns
of Z are more likely to map to one of many gaps rather than
(f')ne larger gap.

4.4 Tile Size Selection Algorithm

The pseudo code for the TSS algorithm which completely
avoids self interference, capacity misses, and minimizes ex-
pected cross interference appears in Figure 5. We begin by

selecting the column dimension which is the maximeot mm_| Matrix Multiply, tiled in 2 dimensions -
Sizeand determine the maximurowSizewithout self inter- sor_| Successive Over Relaxation, tiled in 1 & 2 dimensions
. lud LU Decomposition, tiled in 1 & 2 dimensions
ference. In the pathological case, the column length evenly w5z Tiermore loop 23, tied in T dimension
divides the cache and the algorithm terminates (this case of-
ten occurs with power of 2 array sizes). If the tile sizes are The point and tiled versions of SOR, LUD, and Livermore
larger than the array or the bounds of the iteration space,loop 23 appear in Appendix A. We used square arrays ex-
there is no need to tile. In addition, if any of the dimen- cept for Livermore loop 23. The original Livermore loop 23
sions of the tiles are larger than the bounds of the itera-is 101x7. We increase both its bounds by a factor of 3 to
tion space, the tiles are adjusted accordingly. For simplicity, preserve its shape and make it worthwhile to tile. Matrix
these checks are omitted from Figure 5. multiply and Livermore loop 23 incur self and cross inter-
The while loop iterates finding potential tile sizes without ference. SOR and LUD operate on a single array and thus
self interference using Euclidean numbers as candidates foiby definition incur only self interference. Some of self inter-
column dimensions. After determining the row size that will ference for LUD results from non-contiguous accesses and
not interfere for the given column size, the column size is we minimize it the same way we do cross interference for
adjusted to a multiple of the’LS. If any newly compute ~ matrix multiply.
tile size has a larger working set size that is also less than We selected problem sizes of 26856 to illustrate the
CS and for which theC TR is less than the previous best tile pathological case, and 38300 and 30%301 to illustrate
size, we set this tile to be the best. If the initial tile size does the effect a small change in the problem size has on selected
not meet the working set size constraint and no subsequentile sizes and performance. We used these relatively small
tile size does either, we use the initial tile size, but reduce its Sizes in order to obtain timely simulation results. For exe-
column size byC' LS until it meets the constraint. cution results, we added a problem size of %560. We
45 Set Associativity expect, and others have demonstrated, more dramatic im-

. o , provements for larger array sizes.
Set associativity does not affect the tile size picked by the])]
algorithm for a particular cache size. As expected, increas->-1 Simulation Resultsfor Tiled Kernel
ing the set associativity usually decreases the miss rate on aVe ran simulations on these programs using the Shade cache
particular tile size because more cross interferences, if theysimulator. We used a variety of cache parameters: a cache
exist, are eliminated. Our results in Section 5 confirm this size of 8K and 64K; set-associativity of 1, 2, and 4; and a
expected benefit from set associativity and illustrate that in- cache line size of 32, 64, and 128 [Col94]. Of these, we
creasing set associativity causes the differences in miss ratepresent cache parameters corresponding to the DEC Alpha
between distinct tile sizes to become less extreme. Model 3000/400 (8K, 32 byte line, direct-mapped) and the
RS/6000 Model 540 (64K, 128 byte line, 4-way) with vari-

)]) ations in line size and associativity. We also executed the
A translation lookaside buffer (TLB) is a fast memory used | arnels on these machines.

for storing virtual to physical address mappings for the most |, taple 2. we show simulated miss rates in an 8K cache
recently reference page entries. All addresses referenced ing, qouble precision arrays (16 byte) for the untiled algo-

the CPU must be translated from virtual to physical before iy, and the version tiled with TSS. We present results for
the search for an element is performed. If the mapping for gt associativities of 1, 2, and 4 and cache line sizes of 32

the element is not in the TLB, a TLB miss occurs, causing pytes and 128 bytes. TSS achieves significant improvement
the rest of the system to stall until the mapping completes. j; \he miss rates for most of these kernels. On average, it im-

A TLB miss can take anywhere from 30 to more than 100 oyes miss rates by a factor of 14. It improves SOR2D by a
cycles, depending on the machine and the type of TLB mMiSS. ¢3.1or of 66.21 on a 8K, 4-way, 32 byte line cache. The im-
Toavoid a TLB misses, tile sizes should enable the TLB 0 5y ement for 32 byte lines is higher, a factor of 21.8, than
hold all the entries required f_orthe tile. In general, the height o+ for 128 byte lines, 6.8, because the longer line sizes ben-
(column in Fortran) of the tile should be much larger than gt these kernels, all of which have good spatial locality. If
the width of the tile. Since a TLB miss can cause a cache o qramatic improvements of SOR2D are ignored, our al-

stall, ensuring that no TLB misses occur is more impor- 4 qvithm improves miss rates by an average of 2.5 (3.3 on 32
tant than the cross and self-interference constraints. The t'lebyte lines and 1.7 on 128 byte lines).

size therefore needs to be constrained such that the number” 1,5 more trends for tiled kernels are evident in this table.
of non-consecutive elements accesses, fows) is smaller
than the number of page table entries in the TLB.

4.6 Trandation Lookaside Buffer

The first trend is to be expected: even though TSS selects
tile sizes for direct-mapped caches, these tile sizes always
5 Reaults improve their performance when associativity is higher. The
second trend is that for the untiled kernels and direct-mapped
cache, the 128 byte lines have higher miss rates than 32 byte
lines for all but MM and LIV23. The interference from the
larger line size plays an important role. For 4-way caches,

For our experiments, we used the following tiled ker-
nels on double precision (16 byte) two dimensional arrays.

Untiled TSS

Line Improvement
Kernel | Sets| (bytes) Size | Miss Rate| Tile Size | Miss Rate| in Miss Rate
mm 1 32 300x300 2.208| 16x29 0.613 3.60
mm 2 32 300x 300 2.147| 16x29 0.257 8.35
mm 4 32 300x300 2.164| 16x29 0.197 10.98
mm 1 128 | 300x300 1.176| 16x29 1.139 1.03
mm 2 128 | 300300 0.458| 16x29 0.274 1.67
mm 4 128 | 300x300 0.426| 16x29 0.322 1.32
sorlD | 1 32 300x300 1.214| 300x86 1.204 1.01
sorlD | 2 32 300x 300 0.901 | 300x86 0.882 1.02
sorlD | 4 32 300x300 0.927 | 300x 86 0.880 1.05
sorlD | 1 128 | 300x300 1.980| 300x86 1.506 1.32
sorlD | 2 128 | 300300 0.992 | 300x 86 0.262 3.79
sorlD | 4 128 | 300x300 0.255| 300x 86 0.255 1.00
sor2D | 1 32 300x 300 1.214| 86x3 0.076 15.97
sor2D | 2 32 300x300 0.901| 86x3 0.004 225.25
sor2D | 4 32 300x 300 0.927| 86x3 0.004 231.75
sor2D | 1 128 | 300300 1.980| 80x3 0.248 1.56
sor2D | 2 128 | 300x300 0.992| 80x3 0.176 5.63
sor2D | 4 128 | 300x300 0.248| 80x3 0.003 82.67
ludiD | 1 32 300x 300 1.482| 300x2 0.746 1.99
ludiD | 2 32 300x300 1.002| 300x2 0.439 2.28
ludiD | 4 32 300x 300 0.990| 300x2 0.398 2.49
ludiD | 1 128 | 300300 1.947| 300x2 1.010 1.93
ludiD | 2 128 | 300x300 0.366 | 300x2 0.166 2.21
ludiD | 4 128 | 300300 0.302| 300x2 0.117 2.58
lud2D | 1 32 300x 300 1.537| 16x29 0.471 3.26
lud2D | 2 32 300x300 1.505| 16x29 0.302 4.98
lud2D | 4 32 300x 300 1.498| 16x29 0.271 5.52
lud2D | 1 128 | 300300 0.604 | 16x29 0.463 1.30
lud2D | 2 128 | 300x300 0.405| 16x29 0.203 2.00
lud2D | 4 128 | 300300 0.401| 16x29 0.183 2.19
liv23 1 32 303x21 6.061| 64x21 5.850 1.04
liv23 2 32 303x21 5.713| 64x21 5.258 1.09
liv23 4 32 303x21 4.761| 64x21 4,708 1.01
liv23 1 128 303x21 4.161| 64x21 4.087 1.02
liv23 2 128 303x21 3.316| 64x21 3.117 1.06
liv23 4 128 303x21 2.764| 64x21 2.576 1.07
Aver age | mprovement 14.0
Average lmprovement for 32 byte lines 21.8
Average lmprovement for 128 bytelines 6.8

Table 2: Miss rates in 8K cache for double precision element (16 byte) arrays

all of the untiled kernels have lower miss rates for 128 byte as the other algorithms. Esseghir often uses too big of a
lines because the increased set associativity has overcomeorking set, resulting in interference. LRW uses a small
the interference. working set (often around 50%) because they are limited to
square tiles. TSS may therefore get more benefit from the
second level cache.

TSS always improves or matches execution time when
compared to LRW or Esseghir’s algorithm. On average, TSS

5.2 Comparing Algorithms

In both simulations and execution results, we compare our
tile sizes to those chosen by Lash al. [LRW91] and Es-
seghir's algorithms [Ess93]. We use the algorithms pre-

.37, and by 2.01 on matrix multiply (again excludin
column length NV for the column tile size angC'S/N.| for array sizes of 25%256). ply (ag g

the row size. For 1 dimensional tiling, simply choosing the
correct number of complete columns of si¥esuffices and ~ 922 64K Caches
as a result comparisons are uninteresting. We therefore con-Tables 5 and 6 show the same type of results as the previ-
sider matrix multiply, SOR2D, and LUD2D since they are ous two tables, but for variants of the RS/6000 organization
tiled in 2 dimensions and the algorithms usually produce dif- (64K, 4-way, 128 byte line). The simulated miss rates and
ferent tile sizes. We compare the results for 8K and 64K execution times showed more variations than those for the
caches separately since they have slightly different behav-8K cache. These inconsistencies probably result because the
iors. simulator uses an LRU replacement policy and the RS6000
521 8K Caches uses a ql_Jicker,_ but unpublished replacement policy.

. . . TSS still achieves lower miss rates more often (a factor of
Table 3 presents ?'m“.'?‘ted miss rates for an 8K, 32 byte IIne1.19 without 256256 arrays), but Esseghir’s algorithm has
cachg with aSSOCIa.tIVItleS of 1,2, and 4 for TSS, LRW, Es- lower miss rates for most of the 4-way simulated results. Es-
seghir, and the untiled kernels. For each kernel, we presenrseghir’s algorithm out performs TSS and LRW in execution
the selected tiIe_size (the_ actual parameters to the tiled_ algo+imes on the RS6000 (for TSS, by a factor of 1.03). This
rithm), the Workl_ng set S|_ze\/((Se), and the simulated miss result probably stems from set associativity and efficiency of
rates. The working set size is presented to demonstrate thefhe working set size. For this cache organization, Esseghir

g?chg eﬁlfler;cg)lsfzge_?ﬁlectzd t".e SIZ€S. Not|cfe thﬁ redUCKEdtends to encounter less interference because the working set
tle sizes for - The reduction accounts for the Work- g, o4 ejther fit in cache or are only slightly larger than the

ing set size of SORZ_D which is two greater than the tile size. cache. When Esseghir encounters cross interference, the 4-
LRW has lower miss rates than TSS only on LUD2D. TSS way associativity is now more likely to over come it through

gf(i)sngvslegmiss rates '(I)'gSM'M and Iowe_r or Sim"sr rz?ctes on fthe cache, rather than the tile sizes. For miss rates, LRW
- h average, | 5s IMproves miss rates by a factor ofy .hieves lower miss rates TSS by a factor of 1.17 (exclud-
1.83 over LRW, excluding arrays of size 26856. (We ex-

lude thi i dding i bablv a b uti ing 256x 256 arrays), but most of this comes from SOR2D.
clude this case since padding Is probably & better solution 10y pen SOR2D s excluded, TSS has lower miss rates by a
pathological interference). TSS has consistently lower sim- factor of 1.10 (excluding 256256 arrays). TSS however

ulated miss rates than_ Esseghir, on average a factor of 6'66continues to out performs LRW on the RS/6000, as it did on
(excluding arrays of size 2556, including them 5.34). the Alpha, but by less. In both Table 5 and 3, the square

qu example, on SOR2D 36501 4'Wa.V’ TSS improves tile sizes use significantly less of the cache and are probably
miss rates by a factor of 50 over Esseghir. These results hOIdtherefore not as effective

for larger line sizes as well [Col94]. _

TSS's lower simulated miss rates translate into better per-°-3 Copying
formance. Table 4 presents execution time results on theTo demonstrate that copying is unnecessary to achieve good
DEC Alpha (first level cache: 8K, direct-mapped, 32 byte performance, we compared execution times for tiled ma-
line; second level cache: 512K, banked). We measured thetrix multiply using tile sizes chosen by TSS to execution
execution times for TSS with and without computing the tile
sizes at runtime. It made no measurable impact on perfor-

mance. N | TSS] Tileand-Copy | Speedup]
The simulated miss rates and execution times for SOR2D

256 | 1.68 2.92 1.74
do not always agree (TSS and LRW should be closer), nor
. L 300| 1.88 3.28 1.75
do the miss rates and execution times for LUD2D when TSS
) ; - 301| 1.82 3.52 1.93
is compared to Esseghir (TSS should be significantly better). 550 (1185 5015 176
We believe these inconsistencies result due to a combination . . .

of two factors: the difference in working set sizes and the 1,p1e 7 Matrix multiply execution times (seconds) on the
Alpha’s large second level cache (512K). TSS always has atAIpha

least as good cache efficiency in terms of working set size

Untiled TSS LRW Esseghir

Size | Miss Tile WSet | Miss Tile WSet | Miss Tile WSet | Miss
Kernel | Sets| NxN | Rate Size Size | Rate Size Size | Rate Size Size | Rate
mm 1 256 | 2.325| 170x2 512 | 1.905| 2x2 8 | 3.778|| 256x2 770 | 4.116
mm 2 256 | 1.699| 170x2 512 | 0.964 | 2x2 8 | 1.905|| 256x2 770 | 0.969
mm 4 256 | 1.679| 170x2 512 | 0.878 | 2x2 8 | 1.876|| 256x2 770 | 0.894
mm 1 300 | 2.208| 16x29 482 | 0.613| 16x16 274 | 0.650| 300x1 602 | 2.275
mm 2 300 | 2.147| 16x29 482 | 0.257| 16x16 274 | 0.277| 300x1 602 | 1.617
mm 4 300 | 2.164| 16x29 482 | 0.197| 16x16 274 | 0.245| 300x1 602 | 1.587
mm 1 301 | 2.308| 28x17 506 | 0.600| 17x17 308 | 0.596| 301x1 604 | 2.275
mm 2 301 | 1.706 | 28x17 506 | 0.208| 17x17 308 | 0.230| 301x1 604 | 1.618
mm 4 301 | 1.680| 28x17 506 | 0.177 | 17x17 308 | 0.213| 301x1 604 | 1.587
sor2D | 1 256 | 1.966 | 256x1 768 | 0.527 | 2x2 10 | 0.404 || 256x1 768 | 0.527
sor2D | 2 256 | 1.943| 256x1 768 | 0.477 | 2x2 10 | 0.253 || 256x1 768 | 0.477
sor2D | 4 256 | 1.816| 256x1 768 | 0.098 | 2x2 10 | 0.123|| 256x1 768 | 0.098
sor2D | 1 300 | 1.214| 86x3 440 | 0.076| 14x14 256 | 0.076| 300x1 900 | 0.409
sor2D | 2 300 | 0.901| 86x3 440 | 0.004| 14x14 256 | 0.004 | 300x1 900 | 0.138
sor2D | 4 300 | 0.927| 86x3 440 | 0.004 | 14x14 256 | 0.004 | 300x1 900 | 0.166
sor2D | 1 301 | 1.125| 88x3 450 | 0.065| 15x15 289 | 0.073| 301x1 903 | 0.429
sor2D | 2 301 | 0.901| 88x3 450 | 0.003| 15x15 289 | 0.003| 301x1 903 | 0.165
sor2D | 4 301 | 0.927| 88x3 450 | 0.004| 15x15 289 | 0.003| 301x1 903 | 0.200
lud2D | 1 256 | 3.605| 170x2 512 | 2.312| 2x2 8 | 0.971|| 256x2 770 | 2.381
lud2D | 2 256 | 1.268| 170x2 512 | 0.821 | 2x2 8 | 0.783]| 256x2 770 | 0.857
lud2D | 4 256 | 1.266| 170x2 512 | 1.107 | 2x2 8 | 0.816|| 256x2 770 | 1.172
lud2D | 1 300 | 1.537| 16x29 509 | 0.471|| 16x16 288 | 0.421| 300x1 602 | 1.234
lud2D | 2 300 | 1.499| 16x29 509 | 0.302 || 16x16 288 | 0.274 | 300x1 602 | 1.183
lud2D | 4 300 | 1.498| 16x29 509 | 0.271| 16x16 288 | 0.254 | 300x1 602 | 1.178
lud2D | 1 301 | 1.537| 30x12 402 | 0.398| 17x17 323 | 0.389| 301x1 604 | 1.233
lud2D | 2 301 | 1.511| 30x12 402 | 0.271| 17x17 323 | 0.246| 301x1 604 | 1.190
lud2D | 4 301 | 1.504| 30x12 402 | 0.249| 17x17 323 | 0.226| 301x1 604 | 1.188

Table 3: Miss rates and tile sizes in 8K (512 element) cache with 32 byte (2etehmes for NxN arrays.

Untiled TSS LRW Esseghir Speedup
Kernel | NxN [Time || Tile Size | Time || Tile Size | Time | Tile Size | Time || LRW/TSS | ESS/TSS
mm 256 1.85| 170x2 1.68 | 2x2 5.69 || 256x2 1.70 3.39 1.01
mm 300 3.36 || 16x29 1.88 || 16x16 1.88 || 300x1 3.47 1.00 1.85
mm 301 3.41 | 28x17 1.82 | 17x17 2.09| 301x1 3.64 1.15 2.00
mm 550 | 26.03| 18x27 11.85|| 18x18 12.95| 512x1 25.67 1.09 2.17
sor2D | 256 1.53 | 256x1 1.50| 2x2 2.60| 256x1 1.50 1.73 1.00
sor2D | 300 2.35| 88x3 2.07 | 16x14 2.18| 300x1 2.10 1.05 1.01
sor2D | 301 2.42 || 90x3 2.10|| 17x15 2.27 || 301x1 2.11 1.08 1.00
sor2D | 550 9.81| 38x12 7.06 || 18x16 7.42 | 512x1 8.87 1.05 1.26
lud2D | 256 1.23| 170x2 1.13 || 2x2 3.64 || 256x2 1.11 3.22 0.98
lud2D | 300 1.88| 16x29 1.76 || 16x16 1.76 || 300x1 1.60 1.00 0.91
lud2D | 301 1.91| 30x12 1.64 | 17x17 1.76 || 301x1 1.61 1.07 0.98
lud2D | 550 | 13.48| 18x27 10.32|| 18x18 10.36| 512x1 11.92 1.00 1.15
Aver age | mprovement 1.39 1.27
Average | mprovement without 256 x 256 cases 1.05 1.37

Table 4: Execution Times in seconds on the DEC Alpha (direct-mappe@38Byte lines)

Untiled TSS LRW Esseghir
Size | Miss Tile WSet | Miss Tile WSet | Miss Tile WSet | Miss
Kernel | Sets| NxN | Rate Size Size | Rate Size Size | Rate Size Size | Rate
mm 1 256 | 4.547| 240x16 | 4088 | 0.566 | 16x16 280 | 0.647| 256x16 | 4360 | 0.569
mm 2 256 | 4.441| 240x16 | 4088| 0.040|| 16x16 280 | 0.080| 256x16 | 4360 0.045
mm 4 256 | 4.439| 240x16 | 4088| 0.036|| 16x16 280 | 0.029| 256x16 | 4360 0.030
mm 1 300 | 0.534| 88x41 3704 | 0.133|| 41x41 | 1730 0.193| 300x13 | 4208| 0.218
mm 2 300 | 0.419| 88x41 3704 | 0.042]|| 41x41 | 1730| 0.043| 300x13 | 4208| 0.042
mm 4 300 | 0.419| 88x41 3704 | 0.042|| 41x41 | 1730 0.030| 300x13 | 4208| 0.036
mm 1 301 | 0.509| 112x26 | 3086 | 0.081| 53x53 | 2870| 0.172| 301x13 | 4222| 0.198
mm 2 301 | 0.524| 112x26 | 3086 | 0.045| 53x53 | 2870| 0.026 || 301x13 | 4222| 0.038
mm 4 301 | 0.419| 112x26 | 3086 | 0.045| 53x53 | 2870| 0.023 || 301x13 | 4222| 0.036
sor2D | 1 256 | 0.080| 256x14 | 4096 | 0.157 || 16x14 256 | 0.041| 256x14 | 4096 | 0.157
sor2D | 2 256 | 0.010| 256x14 | 4096 | 0.005|| 16x14 256 | 0.001| 256x16 | 4096 | 0.005
sor2D | 4 256 | 0.001| 256x14 | 4096 | 0.003|| 16x14 256 | 0.006| 256x16 | 4096 | 0.003
sor2D | 1 300 | 0.064| 300x11 | 3900 0.161| 41x39| 1681| 0.031 | 300x11| 3900| 0.161
sor2D | 2 300 | 0.008| 300x11 | 3900 0.003| 41x39| 1681 | 0.001 | 300x11| 3900| 0.003
sor2D | 4 300 | 0.001| 300x11| 3900 0.003| 41x39| 1681 | 0.001 | 300x11| 3900| 0.003
sor2D | 1 301 | 0.064| 301x11 | 3913| 0.161| 53x51 | 2809 | 0.033 || 301x11| 3913| 0.161
sor2D | 2 301 | 0.008| 301x11 | 3913| 0.003| 53x51 | 2809| 0.001 | 301x11| 3913| 0.003
sor2D | 4 301 | 0.001| 301x11| 3913| 0.003| 53x51 | 2809| 0.001 | 301x11| 3913| 0.003
lud2D | 1 256 | 0.601| 240x16 | 4096 | 0.245|| 16x16 288 | 0.251| 256x16 | 4368 | 0.244
lud2D | 2 256 | 0.307| 240x16 | 4096 | 0.034 || 16x16 288 | 0.053| 256x16 | 4368 | 0.030
lud2D | 4 256 | 0.305| 240x16 | 4096 | 0.038|| 16x16 288 | 0.053| 256x16 | 4368 | 0.034
lud2D | 1 300 | 0.330| 88x41 3737 | 0.075|| 41x41 | 1763 | 0.070| 300x13 | 4213 | 0.065
lud2D | 2 300 | 0.319| 88x41 3737 | 0.027|| 41x41 | 1763 | 0.030| 300x13 | 4213| 0.038
lud2D | 4 300 | 0.318| 88x41 3737 | 0.026|| 41x41 | 1763 | 0.028| 300x13 | 4213| 0.038
lud2D | 1 301 | 0.333| 112x26 | 3050 0.050| 53x53 | 2915| 0.080 | 301x13 | 4227| 0.064
lud2D | 2 301 | 0.321| 112x26 | 3050 0.028| 53x53 | 2915| 0.029|| 301x13 | 4227| 0.037
lud2D | 4 301 | 0.522| 112x26 | 3050 0.027| 53x53 | 2915| 0.028| 301x13 | 4227| 0.038
Table 5: Miss rates and tile sizes in a 64K (4096 element) cache, 128 byte (@)dimes
Untiled TSS LRW Esseghir Speedup
Kernel | NxN [Time || Tile Size | Time || Tile Size | Time [Tile Size| Time || LRW/TSS | ESS/TSS
mm 256 2.08 || 240x16 1.79 | 16x16 2.15| 256x16 1.76 1.20 0.98
mm 300 3.37 || 88x41 2.89 || 41x41 2.99| 300x13 2.82 1.03 0.98
mm 301 3.42 || 112x26 2.87 || 53x53 2.97 | 301x13 2.89 1.03 1.01
mm 550 | 20.80| 56x64 18.03 || 58x58 18.07 || 550x7 17.76 1.00 0.99
sor2D | 256 2.27 || 256x14 2.21|| 16x14 2.30| 256x16 2.21 1.01 1.00
sor2D | 300 3.12 || 300x11 3.05|| 41x39 3.06 || 300x11 3.05 1.00 1.00
sor2D | 301 3.14 || 301x11 3.05|| 53x51 3.06 || 301x11 3.05 1.00 1.00
sor2D | 550 10.62 || 550x5 10.27 || 58x56 10.37 || 550x5 10.27 1.01 1.00
lud2D | 256 1.27 || 240x16 0.82 || 16x16 1.04 | 256x16 0.79 1.27 0.96
lud2D | 300 2.02 || 88x41 1.38 || 41x41 1.47 || 300x13 1.29 1.07 0.93
lud2D | 301 2.06 || 112x26 1.35|| 53x53 1.45| 301x13 1.28 1.07 0.95
lud2D | 550 12.87 || 56x64 8.70 || 58x58 8.65 || 550x7 7.94 0.99 0.91
Aver age | mprovement 1.06 0.98
Average | mprovement without 256 x 256 cases 1.02 0.97

Table 6: Execution Times in seconds on the RS/6000 (64K, 4-way, 12dibgs)

times for code generated by Esseghir’s Tile-and-Copy algo- [Col94]
rithm [Ess93]. These results appear in Table 7. The execu-

tion times for TSS include computing the tile sizes at run-

time. Tile sizes for Esseghir's code were calculated using

the formulaT’S = /CS/CLS — 2 whereTS is the tile [Ess93]
size. We also used Esseghir’s algorithm to select rectangular

tile sizes, but these execution times were longer. TSS sig-
nificantly speeds up performance as compared to Esseghir’s[G JG88]
Tile-and-Copy algorithm. Because copying is an expensive
run-time operation, tiling alone performs significantly better,

even on the pathologic&l = 256 case where there is severe

self interference.

6 Summary [IT88]

This paper presents a new algorithm for choosing problem-

size dependent tile sizes using the cache size and line size.

Its runtime cost is negligible making it practical for selecting

tile sizes and deciding when to tile whether or not array sizes [Kob87]
are unknown at compile time. This algorithm performs bet-

ter than previous algorithms on direct-mapped caches. It also[LRW91]
performs well for caches of higher associativity when matri-

ces are larger in comparison to the cache size. It obviates the

need for copying. As compilers for scalar and parallel com-

pilers increasingly turn their attention to data locality, tiling

and other data locality optimizations will only increase in
importance. We have shown the tile size selection algorithm [NJL94]
to be a dependable and effective component for use in a com-

piler optimization strategy that seeks to use and manage the

cache effectively.

Acknowledgements

We would like to thank Sharad Singhai for assisting in the
initial experiments on this work and James Conant and Susal
Landau for their insights on the Euclidean Algorithm.

Jsmig2]

[TGJ93]
References
[BJWE92] F. Bodin, W. Jalby, D. Windheiser, and C. Eisen-
beis. A quantitative algorithm for data local-
ity optimzation. InCode Generation-Concepts,
Tools, Techniquespringer-Verlag, 1992.

S. Carr and K. Kennedy. Compiler blockability
of numerical algorithms. IProceedings of Su-
percomputing '92Minneapolis, MN, November
1992.

S. Carr and R. B. Lehoucq. A compiler-
blockable algorithm for QR decomposition. In
Proceedings of the Eighth SIAM Conference on
Parallel Processing for Scientific Computing
San Francisco, CA, February 1995.

S. Carr, K. S. MKinley, and C. Tseng. Com-
piler optimizations for improving data locality.
In Proceedings of the Sixth International Con-
ference on Architectural Support for Program-
ming Languages and Operating SysterSan
Jose, CA, October 1994.

[CK92] [WL91]

[CL95]
[Wol89]

[CMT94]

S. Coleman. Selecting tile sizes based on cache
and data organization. Master’s thesis, Dept. of
Computer Science, University of Massachusetts,
Ambherst, September 1994,

K. Esseghir. Improving data locality for caches.
Master’s thesis, Dept. of Computer Science,
Rice University, September 1993.

D. Gannon, W. Jalby, and K. Gallivan. Strate-
gies for cache and local memory management by
global program transformatiordournal of Par-
allel and Distributed Computing(5):587-616,
October 1988.

F. Irigoin and R. Triolet. Supernode patrtition-
ing. InProceedings of the Fifteenth Annual ACM
Symposium on the Principles of Programming
LanguagesSan Diego, CA, January 1988.

Neal Koblitz. Graduate Texts in Mathematics
Springer-Verlag, New York, 1987.

M. Lam, E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked
algorithms. InProceedings of the Fourth In-
ternational Conference on Architectural Sup-
port for Programming Languages and Operat-
ing SystemsSanta Clara, CA, April 1991.

J. J. Navarro, T. Juan, and T. Lang. Mob forms:
A class of multilevel block algorithms for dense
linear algebra operations. FProceedings of the
1994 ACM International Conference on Super-
computing pages 354-363, Manchester, Eng-
land, June 1994.

A. J. Smith. Cache memorie€omputing Sur-
veys 14(3):473-530, September 1982.

O. Temam, E. Granston, and W. Jalby. To copy
or not to copy: A compile-time technique for
assessing when data copying should be used to
eliminate cache conflicts. I®roceedings of
Supercomputing '93Portland, OR, November
1993.

M. E. Wolf and M. Lam. A data locality optimiz-
ing algorithm. InProceedings of the SIGPLAN
'91 Conference on Programming Language De-
sign and Implementatigforonto, Canada, June
1991.

M. J. Wolfe. More iteration space tiling. In
Proceedings of Supercomputing ;§$hges 655—
664, Reno, NV, November 1989.

A Tiled Kernels
A.l SOR

Successive over relaxation is a five-spot stencil on a two di-

mensional array. The point algorithm with the best locality
appears in Figure 6(a). The tiled versions for one and two
dimensions appear in Figure 6(b) and (c), respectively.

(a) SOR
DOK=1,N
DO J=K+1,N
DO1=2,N-1
A(1,9) = 0.2(A(1,J) + A(I+1,3) + A(I-1,J)
+A(1,J+1) + A(1,3-1)
I U I
(b) sor1d: SOR Tiled in One Dimension
DOK=1,N
DOII=2,N-1, Tl
DOJ=2,N-1
DO I = II, MIN(N-1,11+TI-1)
A(1,9) = 0.2(A(1,9) + A(I+1,J) + A(I-1,J)
+A(1,J+1) + A(1,J-1)
U U U
(c) sor2d: SOR Tiled in Two Dimensions
DOJJ=2,N-1,TJ
DOK=1,N
DO II=2,N-1, Tl
DO J =J3J, MIN(N-1, JJ+TJ-1)
DO I = 1I, MIN(N-1, 1+TI-1)
A(1,9) = 0.2(A(1,J) + A(I+1,3) + A(I-1,J)
+A(1,J+1) + A(1,J-1)

Figure 6:

A.2 Livermorel oop 23

Livermore Loop 23 is also a stencil kernel, but over 4 distinct
arrays. The point and one dimensional tiled versions appea
in Figure 7 respectively.

(a) Livermore Loop 23
DOJ=2,M
DOK=2,N
QA= ZA(K,J+1)*ZR(K,J) +ZA(K,J-1)*ZB(K,J) +
ZA(K+1,J)*ZU(K,J) +ZA(K-1,J)*ZV(K,J) +ZZ(K,J)
ZA(K,J)= ZA(K,J) +fw*(QA -ZA(K,J))

4 U 4
(b) liv23: Livermore Loop 23 Tiled in One Dimension
DO KK =2,N,TK
DOJ=2M

DO K = KK,MIN(KK+TK-1,N)
QA= ZA(K,J+1)*ZR(K,J) +ZA(K,J-1)*ZB(K,J) +
ZA(K+1,9)*ZU(K,J) +ZA(K-1,3)*ZV(K,J) +ZZ(K,J)
ZA(K,J)= ZA(K,J) +Hw*(QA -ZA(K,J))

Figure 7:

A3 LUD

LUD decomposes a matrix A into two matrices, L and U,
where U is upper triangular and L is a lower triangular unit
matrix. The point algorithm for LUD appears in Figure 8(a).
The version of LUD tiled in one dimension in Figure 8(b)

f

() LUD
DOK=1,N
DO J=K+1, N
A@JK) = AQJ,KIAK,K)
DO I = K+1, N
A(1LJ) = A(LI) - ALK) = A(K,J)
4 U 4

(b) lud1d: LUD Tiled in One Dimension
DOKK=1,N, TK
DO K = KK, MIN(N,KK+TK-1)
DOI1=K+1,N
A(LK) = A(LKYA(K,K)
DOJ=K+1,N
DOI=K+1, N
A(1,J) = A(1LJ) - A(LK) = A(K,J)
DO J =KK+TK, N
DO I =KK+1, N
DO K = KK, MIN(MIN(N,KK+TK-1),I-1)
A(,J) = A(,J) - A(LK) * A(K,J)

I U I
(c) lud2d: LUD Tiled in Two Dimensions
DOJJ=1,N,TJ
DOII=1,N, Tl
DOK=1,N

DO J = MAX(K+1,33), MIN(N,JJ+TJ-1)
DO | = MAX(K+L,11), MIN(N,[1+TI-1)
IF (QXKK+1) & (K+1<II+TI-1) &
(3 = MAX(K+1,J2))
A(LK) = A(LKYA(K,K)
END IF
A1) = AQLJ) - ALK) * A(K,J)

Figure 8:

is taken from Carr and Kennedy [CK92]. The version tiled
in two dimensions in Figure 8(c) is a modified version of
the one Wolf and Lam use [WL91]. Their original version
targeted C’s row-major storage and we modified it to target
Fortran’s column-major storage.

