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Abstract— Modern workloads suffer high execution-time
overhead due to page-based virtual memory. We introduce Range
Translations that map arbitrary-sized virtual memory ranges to
contiguous physical memory pages while retaining the flexibility
of paging. A range translation reduces address translation to a
range lookup that delivers near zero virtual memory overhead.
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INTRODUCTION

Virtual memory is a crucial abstraction in modern computer
systems. It delivers benefits such as security due to process
isolation and improved programmer productivity due to simple
linear addressing. Each process has a very large private virtual
address space managed at granularity of fixed size pages,
typically 4 KB in size. The operating system (OS) and hardware
use a page table with a one-to-one virtual-to-physical page map
to simplify software and hardware memory management.

With virtual memory, the processor must translate every
load and store generated by a process from a virtual to physical
address. Because address translation is on processors’ critical
path, a Translation Lookaside Buffer (TLB) accelerates
translation by caching the most recently used Page Table Entries
(PTEs). Paging delivers high performance when TLB hits
service most of the address translations. However, a TLB miss

triggers a costly hardware page table walk which may require
multiple memory accesses (up to 4 memory accesses in x86-64)
to fetch the PTE.

Growing Overheads of Paging

Unfortunately, modern workloads are experiencing
execution time overheads of up to 50% due to paging [2]. The
following two opposing technology trends are at the root of this
problem:

1. Physical memory is growing exponentially cheaper
and bigger (Figure 1(a)) allowing modern workloads to
store ever increasing large data sets in memory.

2. TLB sizeshave grown slowly, because TLBs are on the
processor’s critical path to access memory (Figure

1(b)).

This problem is commonly called limited TLB reach—the
fraction of physical memory that TLBs can map is reducing with
each hardware generation. For instance, the TLB in Intel’s
recent Skylake processors covers only 9% of a 256 GB memory.
We expect this mismatch between TLB reach and memory size
(i) to keep growing, (ii) to become worse with newer memory
technologies, which promise petabytes to zetabytes of physical
memory, and (iii) to increase the overheads of paging due to the
time required by page walks.

o | 10
ol e 4
= Year  Processor L1TLBsize L2 TLB size
% ol 1999  Pentium il 72 0
2810 2004  Pentium 4 64 0
s [ 1 | 2008 Nehalem 96 512
3 100 2012  Ivybridge 100 512

w | 2014  Haswell 100 1024
s . 2015  Skylake 100 1552

1980 1985 1990 1995 2000 2005 2010 2015
Years
(a) (b)

Figure 1 (a) Physical memory sizes purchased with $10,000 for the last 35 years show exponential growth. (b) TLB sizes in Intel processors for last 15
years are growing slowly.
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Figure 2 Memory mapped by one entry with various proposals.

Several prior approaches have been proposed and used to
reduce paging overheads.

Hierarchical TLBs

Hierarchical TLBs increase TLB reach in response to
stagnating L1 TLB sizes. Each TLB entry still maps one page
(Figure 2(a)), but a larger and slower L2 TLB caches PTEs to
reduce expensive page walks. The combined (L1 + L2) TLB
reach increases, but has not kept pace with the growth of
physical memory.

Multipage Mappings

Multipage Mappings exploit contiguity in groups of virtual
and physical pages by mapping a small number of pages
(typically 8-16 pages) with a single TLB entry (Figure 2(b)).
These approaches leverage the default OS memory allocator that
creates either (i) small blocks of contiguous physical pages to
contiguous virtual pages (sub-blocked TLBs [12] and CoLT
[11]), or (ii) a small set of contiguous virtual pages to a cluster
of physical pages (Clustered TLB [10]). These approaches
increase TLB reach by a small fixed multiple. Because
multipage mappings impose size-alignment restrictions, they
require effort by the OS to exploit and they do not increase TLB
reach enough to meet the needs of applications that use modern
gigabyte-to-terabyte physical memories.

Huge Pages

Huge Pages map a much larger aligned fixed size region of
memory with a single TLB entry (Figure 2(c)). For instance, the
x86-64 architecture has 4 KB, 2 MB, and 1 GB pages [4,6].
Huge pages increase the TLB reach substantially, but their
effectiveness is reduced by the size alignment restriction: the OS
can only allocate them when the available physical memory is
both size-aligned and contiguous. Moreover, many current

processors provide limited TLB entries for huge pages, which
further reduces their benefits on modern workloads.

Direct Segments

Direct Segments are a hardware/software approach that map
a single unlimited range of contiguous virtual memory to
contiguous physical memory with a single hardware entry, while
the rest of the virtual address space uses standard paging [2].
Direct segment entry consists of BASE, LIMIT, and OFFSET
registers that eliminate page walks within the segment (Figure
2(d)). The OS maps a virtual address to a direct segment or page,
but never both.

Although direct segments provide the foundation for our
work, they are not general nor transparent. They only map a
single segment and require developers to explicitly allocate the
direct segment during startup. While some ‘big memory’
applications can preallocate a single large range, many cannot.
Many applications instead tend to allocate several large ranges
(Figure 3). Since direct segments are not backed by pages,
dynamically disabling them is not practical. Due to these
limitations, direct segments received push-back from industry.

Table 1 Comparison of RMM with previous approaches for reducing
virtual memory overhead. RMM achieves best of many worlds.

Hierarchical Multipage Large Direct RMM
TLBs Mappings Page Segments

Flexible b & b &
alignment Er Er Er
Arbitrary reach b & b & b & o o
Multiple entries o o o h & o
Transparent to h &
applications E( E( E( E(
Applicable to b 8
all workloads E( E( E( E(

As the sidebar explains, efforts to address limited TLB reach
include hierarchical TLBs (adding larger but slower L2 TLBs),
multipage mappings (mapping several pages with single TLB
entry), huge pages (mapping much larger aligned memory with
single TLB entry), and direct segments (providing a single
arbitrarily large segment along with standard paging). None of
these approaches deliver a complete solution that solves the TLB
reach problem, while retaining flexible memory use.

Goal

The goal of this work, originally appearing in the 42nd
International Symposium on Computer Architecture (ISCA’15)
[8] is a transparent and robust virtual memory implementation

that has fast address translation and no alignment restrictions
with near zero overhead across a variety of workloads while
retaining the flexibility of paging.

Opportunity

Many applications exhibit an abundance of contiguity in
their virtual address space. Figure 3 plots the number of pages
and the number of contiguous virtual page ranges required to
map all of an application’s address space for 7 representative
workloads. All the workloads require less than 112 ranges to
map their entire virtual address space. If the OS can map this
virtual contiguity to physical contiguity, a single entry is
sufficient to translate from a virtual range to a physical range.
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Figure 3 Cumulative distribution function of the application’s
memory (%) that N translation entries map with pages (solid) and
with optimal ranges (dashed), for 7 representative applications.
Ranges map all applications’ memory with one to four orders of
magnitude fewer entries than pages.

Hence, a modest number of ranges have the potential to
efficiently perform address translation for the majority of virtual
memory addresses — orders of magnitude less than with regular
or even huge page table entries. This paper proposes a
hardware/software co-design called Redundant Memory
Mappings that realizes the potential of ranges to improve virtual
memory performance.

DESIGN OVERVIEW

We introduce the key concept of range translation that
exploits the virtual memory contiguity in modern workloads to
perform address translation much more efficiently than paging.
Inspired by direct segments, a range translation is a mapping
between contiguous virtual pages mapped to contiguous
physical pages of arbitrary size with uniform protection bits. A
range translation uses BASE and LIMIT virtual addresses. To
translate a virtual range address to physical address, the
hardware adds the virtual address to the physical OFFSET of the
corresponding range. Range translations are base-page-aligned
and have no other size or size-alignment restrictions.

We implement range translations in the Redundant Memory
Mappings (RMM) architecture. RMM employs
hardware/software co-design to map the entire virtual address
space with standard paging and redundantly map ranges with
range translations. Since range translations are backed by page
mappings in RMM, the operating system can flexibly choose
between using range translations or not, retaining the benefits of
paging for fine-grain memory management when necessary.
Figure 4 shows how a few range translations map parts of the
process’s address space in addition to pages in RMM. This
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Figure 4 Redundant Memory Mappings design. The application’s
memory space is represented redundantly by both pages and range
translations.

Table 2 Overview of Redundant Memory Mappings.
Page Translation (x86-64)  + Range Translation

TLB range TLB

page table range table

CR3 register CR-RT register
page table walker range table walker

Architecture

page table management range table management

0s demand paging eager paging

design addresses the limitations and combines the advantages of
previous approaches (see Table 1).

The RMM system (i) efficiently caches range translations in
a hardware range TLB to increase TLB reach, (ii) manages
range translations using a per-process software range table just
like the page table, and (iii) increases physical contiguity to
increase the range size resulting in modest number of range
translations per-process using eager paging. Table 2
summarizes these new components and their relationship to

paging.

Compared to prior approaches, RMM delivers multiple
arbitrarily large regions of memory with range translations,
improves performance transparently without programmer
intervention, and enhances robustness since the OS manages
memory with both ranges and pages. On a range of workloads,
RMM reduces the cost of virtual memory to less than 1% on
average.

RANGE TLB

Therange TLB is a hardware cache that holds multiple range
translations. Each entry can perform address translation for an
unlimited range of contiguous virtual pages that are mapped to
contiguous physical pages with uniform protection bits. Each
range TLB entry consists of a virtual range and translation. The
virtual range stores the BASE; and LIMIT; of the virtual address
range. The translation stores the OFFSET; that holds the start of
the range in physical memory minus BASE;, and the protection
bits (PB).

We design a fully associative range TLB. The right side of
Figure 5 illustrates the range TLB and its logic with N (e.g., 32)
entries. The range TLB is accessed in parallel with the last-level
page TLB (e.g., the L2 TLB as shown in Figure 5). The
hardware compares the virtual page number that misses in the
L1 TLB, testing BASE; < virtual page number < LIMIT; for all
ranges in parallel in the range TLB. On a hit, the range TLB
returns the OFFSET; and protection bits for the corresponding
range translation and calculates the corresponding page table
entry for the L1 TLB. It adds the requested virtual page number
to the hit OFFSET; value to produce the physical page humber
and copies the protection bits from the range translation. On a
miss, the hardware fetches the corresponding range translation—
if it exists—from the range table (introduced next). The original
paper contains more details and optimizations on the hardware
and OS design [8].

RANGE TABLE

The range table is an architecturally visible per-process data
structure that stores the process’s range translations in memory.
The operating system manages range table entries and it is
redundant to the page table.
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Figure 5 Range TLB caches range translations and is accessed in parallel with the last-level page TLB.

A range table implementation should facilitate fast lookup of
a virtual address to a range translation, be inherently compact
and be cache friendly. To this end, we propose B-Tree data
structure with (BASE;, LIMIT;) as keys and OFFSET; and
protection bits as values to store range translations in the range
table. Figure 6 shows how the range translations are stored in the
range table and the design of each node. Each node
accommodates four range translations and points to five
children, e.g., up to 124 range translations in three levels. Hence,
each range table node fits in two cachelines. All pointers use
physical addresses and facilitate hardware walking. With this
design, a range table on a single 4 KB page can hold 128 range
translations.

A hardware walker loads range translations from the range
table on a range TLB miss. Analogous to the page table pointer
register (CR3 in x86-64), RMM requires a CR-RT register to
point to the physical address of the range table root for walking.

Handling Range TLB misses

On a miss to the range TLB and page TLB, RMM first
fetches the missing translation from the page table and installs it
in the higher-level TLB so that the processor can continue
executing the pending operation. To identify whether a miss in
the range TLB can be resolved to a range or not, RMM adds a
range bit to the PTE, which indicates whether a page is part of a
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Figure 6 The range table stores the range translations for a
process in memory. The OS manages the range table entries
based on the applications memory management

range table entry. The page table walker fetches the PTE, and if
the range bit is set, accesses the range table in the background
and updates the range TLB with the missing range table entry.
This approach prevents the increase in the latency of page walks,
and skips accesses in the range table for pages that are not
redundantly mapped.

EAGER PAGING

Effective range translation requires both virtual contiguity,
which occurs naturally, and physical contiguity, which may not.

Compute the memory fragmentation;

if memory fragmentation < threshold then

/I use eager paging

while number of pages >0 do

for (i = MAX_ORDER-/, i >0, i--) do

if freelist[i] > 0 and 2' < number of pages then

allocate block of 2' pages;

for all 2' pages of the allocated block do
construct and set the PTE;

end

add the block to the range table;

number of pages — = 2,

break;

end

end

end

else

[/l high memory fragmentation — use demand paging

for (i = 0; i < number of pages; i++) do
allocate the PTE;
set the PTE as invalid so that the first access will trigger
a page fault and the page will get allocated,;

end

end

Figure 7 RMM memory allocator pseudocode for an allocation
request of number of pages. When memory fragmentation is low, RMM
uses eager paging to allocate pages at request-time, creating the
largest possible range for the allocation request. Otherwise, RMM
uses default demand paging to allocate pages at access-time.
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Figure 8 Execution time overheads due to page walks for 7 representative workloads. 1GB page is only applicable to big-memory workloads.

To enhance physical contiguity, RMM maodifies the OS memory
allocation mechanism with eager paging.

The default allocation policy—demand paging—allocates
physical pages at access time and degrades contiguity, because
(i) it allocates single pages even when large regions of physical
memory are available, and because (ii) the OS may assign pages
accessed out-of-order to non-contiguous physical pages even
though there are contiguous free pages.

Eager paging generates large range translations by allocating
consecutive physical pages to consecutive virtual pages eagerly
at allocation time, rather than lazily on demand. When the
application allocates memory, the OS establishes one or more
range translations for the entire request and updates the
corresponding range and page table entries. Figure 7 shows the
simplified pseudocode for eager paging based on Linux’s buddy
page allocator. The OS always updates both the page table and
the range table to consistently manage the entire memory. Eager
paging increases latency during allocation and may induce
fragmentation, because the OS must instantiate all pages in
memory, even though the application never uses. However, the
OS may reclaim unused pages at the end of a range or an entire
range if memory pressure increases.

METHODOLOGY

We select workloads with poor TLB performance from
SPEC 2006 [7], BioBench [1], Parsec [3] and big-memory
workloads [2]. We implement our OS modifications in the Linux
kernel v3.15.5 and define RMM hardware with respect to a
recent Intel x86-64 Sandy Bridge Dual socket Xeon E5-2430
core (L1 TLB entries: 64 for 4KB page, 32 for 2MB page, 4 for
1GB page; L2 TLB entries: 512 for 4KB page). We choose a 32-
entry fully associative range TLB accessed in parallel with the
L2 page TLB, since we estimate that it can meet the L2’s timing
constraints. We report overheads using a combination of
hardware performance counters from native application
executions and TLB performance emulation using a modified
version of BadgerTrap [5] with a linear performance model.
Compared to cycle-accurate simulation, we reduce weeks of
simulation time by orders of magnitude. The original paper has
more details on methodology, results, and analysis [8].

EVALUATION

Figure 8 compares the overhead spent in page walks for
RMM to other techniques. The 4 KB, 2 MB Transparent Huge

Pages (THP) [4] and 1 GB [6] configurations show the measured
overhead for the three available page sizes. All other
configurations are emulated. The DS bars show direct segments
[2] results and the RMM bars show the 32-entry range TLB
results.

The results show that RMM performs well on all
configurations for all workloads, substantially improving over
other approaches. RMM eliminates the vast majority of page
walks, significantly outperforms huge pages (THP and 1GB),
and achieves similar or better performance than direct segments,
but has none of its limitations. Overall, redundant memory
mappings achieve negligible overhead—essentially eliminating
virtual memory overheads for many workloads to less than 1%.
The original paper [8] also analyzes energy, hardware costs, and
the impact of eager paging on execution time and memory
footprint.

In a subsequent work at HPCA 2016 [9], we characterize and
then reduce the energy of address translation. We show that L1
TLB hits consume the majority of address translation energy.
For instance, Sandy Bridge performs 12 address comparisons on
every memory reference hit. The key is to reduce energy by
dynamically downsizing the L1 TLBs when huge pages or range
translations reduce pressure on them.

CONCLUSION

Limited TLB reach isa well-known problem. To address this
problem, vendors have increased hardware support for huge
pages and slowly increased TLB sizes. However, we believe that
this approach falls short. As memory sizes continue to increase
more aggressively than TLB sizes, the virtual memory
overheads that manifest in today’s systems with 4KB pages will
manifest similarly in tomorrow’s systems with huge pages. Our
evaluation shows that such cases already exist. Furthermore,
range translations have the potential to pave the way for
emerging workloads, such as in-memory computing, which
leverage the growth in physical memory to store huge data sets
for low latency and real time data analysis.

In conclusion, we believe RMM has the potential to follow
the same path as Talluri and Hill’s work [12], which
bootstrapped research on transparent huge pages. It also required
changes to both hardware and operating systems, but is now
common in modern processors.
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