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Abstract— Modern workloads suffer high execution-time 

overhead due to page-based virtual memory. We introduce Range 

Translations that map arbitrary-sized virtual memory ranges to 

contiguous physical memory pages while retaining the flexibility 

of paging. A range translation reduces address translation to a 
range lookup that delivers near zero virtual memory overhead. 
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INTRODUCTION 

Virtual memory is a crucial abstraction in modern computer 
systems. It delivers benefits such as security due to process 
isolation and improved programmer productivity due to simple 
linear addressing. Each process has a very large private virtual 
address space managed at granularity of fixed size pages, 
typically 4 KB in size. The operating system (OS) and hardware 
use a page table with a one-to-one virtual-to-physical page map 
to simplify software and hardware memory management. 

 With virtual memory, the processor must translate every 
load and store generated by a process from a virtual to physical 
address. Because address translation is on processors’ critical 
path, a Translation Lookaside Buffer (TLB) accelerates 
translation by caching the most recently used Page Table Entries 
(PTEs). Paging delivers high performance when TLB hits 
service most of the address translations. However, a TLB miss 

triggers a costly hardware page table walk which may require 
multiple memory accesses (up to 4 memory accesses in x86-64) 
to fetch the PTE. 

Growing Overheads of Paging 

Unfortunately, modern workloads are experiencing 
execution time overheads of up to 50% due to paging [2]. The 
following two opposing technology trends are at the root of this 
problem: 

1. Physical memory is growing exponentially cheaper 
and bigger (Figure 1(a)) allowing modern workloads to 
store ever increasing large data sets in memory. 

2. TLB sizes have grown slowly, because TLBs are on the 
processor’s critical path to access memory (Figure 
1(b)). 

This problem is commonly called limited TLB reach—the 
fraction of physical memory that TLBs can map is reducing with 
each hardware generation. For instance, the TLB in Intel’s 
recent Skylake processors covers only 9% of a 256 GB memory. 
We expect this mismatch between TLB reach and memory size 
(i) to keep growing, (ii) to become worse with newer memory 
technologies, which promise petabytes to zetabytes of physical 
memory, and (iii) to increase the overheads of paging due to the 
time required by page walks.

* Both authors contribute equally to this work.  

 
Figure 1 (a) Physical memory sizes purchased with $10,000 for the last 35 years show exponential growth. (b) TLB sizes in Intel processors for last 15 

years are growing slowly. 



 Several prior approaches have been proposed and used to 
reduce paging overheads. 

Hierarchical TLBs 

Hierarchical TLBs increase TLB reach in response to 
stagnating L1 TLB sizes. Each TLB entry still maps one page 
(Figure 2(a)), but a larger and slower L2 TLB caches PTEs to 
reduce expensive page walks. The combined (L1 + L2) TLB 
reach increases, but has not kept pace with the growth of 
physical memory. 

Multipage Mappings 

Multipage Mappings exploit contiguity in groups of virtual 
and physical pages by mapping a small number of pages 
(typically 8-16 pages) with a single TLB entry (Figure 2(b)). 
These approaches leverage the default OS memory allocator that 
creates either (i) small blocks of contiguous physical pages to 
contiguous virtual pages (sub-blocked TLBs [12] and CoLT 
[11]), or (ii) a small set of contiguous virtual pages to a cluster 
of physical pages (Clustered TLB [10]). These approaches 
increase TLB reach by a small fixed multiple. Because 
multipage mappings impose size-alignment restrictions, they 
require effort by the OS to exploit and they do not increase TLB 
reach enough to meet the needs of applications that use modern 
gigabyte-to-terabyte physical memories. 

Huge Pages 

Huge Pages map a much larger aligned fixed size region of 
memory with a single TLB entry (Figure 2(c)). For instance, the 
x86-64 architecture has 4 KB, 2 MB, and 1 GB pages [4,6]. 
Huge pages increase the TLB reach substantially, but their 
effectiveness is reduced by the size alignment restriction: the OS 
can only allocate them when the available physical memory is 
both size-aligned and contiguous. Moreover, many current 

processors provide limited TLB entries for huge pages, which 
further reduces their benefits on modern workloads. 

Direct Segments 

Direct Segments are a hardware/software approach that map 
a single unlimited range of contiguous virtual memory to 
contiguous physical memory with a single hardware entry, while 
the rest of the virtual address space uses standard paging [2]. 
Direct segment entry consists of BASE, LIMIT, and OFFSET 
registers that eliminate page walks within the segment (Figure 
2(d)). The OS maps a virtual address to a direct segment or page, 
but never both. 

Although direct segments provide the foundation for our 
work, they are not general nor transparent. They only map a 
single segment and require developers to explicitly allocate the 
direct segment during startup. While some ‘big memory’ 
applications can preallocate a single large range, many cannot. 
Many applications instead tend to allocate several large ranges 
(Figure 3). Since direct segments are not backed by pages, 
dynamically disabling them is not practical. Due to these 
limitations, direct segments received push-back from industry. 

Table 1 Comparison of RMM with previous approaches for reducing 
virtual memory overhead. RMM achieves best of many worlds. 

 Hierarchical 
TLBs 

Multipage 
Mappings 

Large 
Page 

Direct 
Segments 

RMM 

Flexible 

alignment                        

Arbitrary reach 
                       

Multiple entries 
                        

Transparent to 

applications                         

Applicable to 

all workloads                         

 As the sidebar explains, efforts to address limited TLB reach 
include hierarchical TLBs (adding larger but slower L2 TLBs), 
multipage mappings (mapping several pages with single TLB 
entry), huge pages (mapping much larger aligned memory with 
single TLB entry), and direct segments (providing a single 
arbitrarily large segment along with standard paging). None of 
these approaches deliver a complete solution that solves the TLB 
reach problem, while retaining flexible memory use. 

Goal 

The goal of this work, originally appearing in the 42nd 
International Symposium on Computer Architecture (ISCA’15) 
[8] is a transparent and robust virtual memory implementation 

that has fast address translation and no alignment restrictions 
with near zero overhead across a variety of workloads while 
retaining the flexibility of paging. 

Opportunity 

Many applications exhibit an abundance of contiguity in 
their virtual address space. Figure 3 plots the number of pages 
and the number of contiguous virtual page ranges required to 
map all of an application’s address space for 7 representative 
workloads. All the workloads require less than 112 ranges to 
map their entire virtual address space. If the OS can map this 
virtual contiguity to physical contiguity, a single entry is 
sufficient to translate from a virtual range to a physical range. 

BACKGROUND: EFFORTS TO ADDRESS LIMITED TLB REACH 

Virtual 
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Figure 2 Memory mapped by one entry with various proposals. 



Hence, a modest number of ranges have the potential to 
efficiently perform address translation for the majority of virtual 
memory addresses — orders of magnitude less than with regular 
or even huge page table entries. This paper proposes a 
hardware/software co-design called Redundant Memory 
Mappings that realizes the potential of ranges to improve virtual 
memory performance. 

DESIGN OVERVIEW 

We introduce the key concept of range translation that 
exploits the virtual memory contiguity in modern workloads to 
perform address translation much more efficiently than paging. 
Inspired by direct segments, a range translation is a mapping 
between contiguous virtual pages mapped to contiguous 
physical pages of arbitrary size with uniform protection bits. A 
range translation uses BASE and LIMIT virtual addresses. To 
translate a virtual range address to physical address, the 
hardware adds the virtual address to the physical OFFSET of the 
corresponding range. Range translations are base-page-aligned 
and have no other size or size-alignment restrictions. 

We implement range translations in the Redundant Memory 
Mappings (RMM) architecture. RMM employs 
hardware/software co-design to map the entire virtual address 
space with standard paging and redundantly map ranges with 
range translations. Since range translations are backed by page 
mappings in RMM, the operating system can flexibly choose 
between using range translations or not, retaining the benefits of 
paging for fine-grain memory management when necessary. 
Figure 4 shows how a few range translations map parts of the 
process’s address space in addition to pages in RMM. This 

design addresses the limitations and combines the advantages of 
previous approaches (see Table 1). 

The RMM system (i) efficiently caches range translations in 
a hardware range TLB to increase TLB reach, (ii) manages 
range translations using a per-process software range table just 
like the page table, and (iii) increases physical contiguity to 
increase the range size resulting in modest number of range 
translations per-process using eager paging. Table 2 
summarizes these new components and their relationship to 
paging. 

Compared to prior approaches, RMM delivers multiple 
arbitrarily large regions of memory with range translations, 
improves performance transparently without programmer 
intervention, and enhances robustness since the OS manages 
memory with both ranges and pages. On a range of workloads, 
RMM reduces the cost of virtual memory to less than 1% on 
average. 

RANGE TLB 

The range TLB is a hardware cache that holds multiple range 
translations. Each entry can perform address translation for an 
unlimited range of contiguous virtual pages that are mapped to 
contiguous physical pages with uniform protection bits. Each 
range TLB entry consists of a virtual range and translation. The 
virtual range stores the BASEi and LIMITi of the virtual address 
range. The translation stores the OFFSETi that holds the start of 
the range in physical memory minus BASEi, and the protection 
bits (PB). 

We design a fully associative range TLB. The right side of 
Figure 5 illustrates the range TLB and its logic with N (e.g., 32) 
entries. The range TLB is accessed in parallel with the last-level 
page TLB (e.g., the L2 TLB as shown in Figure 5). The 
hardware compares the virtual page number that misses in the 
L1 TLB, testing BASEi ≤ virtual page number < LIMITi for all 
ranges in parallel in the range TLB. On a hit, the range TLB 
returns the OFFSETi and protection bits for the corresponding 
range translation and calculates the corresponding page table 
entry for the L1 TLB. It adds the requested virtual page number 
to the hit OFFSETi value to produce the physical page number 
and copies the protection bits from the range translation. On a 
miss, the hardware fetches the corresponding range translation–
if it exists–from the range table (introduced next). The original 
paper contains more details and optimizations on the hardware 
and OS design [8]. 

RANGE TABLE 

The range table is an architecturally visible per-process data 
structure that stores the process’s range translations in memory. 
The operating system manages range table entries and it is 
redundant to the page table. 

 
Figure 3 Cumulative distribution function of the application’s 
memory (%) that N translation entries map with pages (solid) and 
with optimal ranges (dashed), for 7 representative applications. 
Ranges map all applications’ memory with one to four orders of 
magnitude fewer entries than pages. 
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Figure 4 Redundant Memory Mappings design. The application’s 
memory space is represented redundantly by both pages and range 
translations. 

Table 2 Overview of Redundant Memory Mappings. 
 Page Translation (x86-64) + Range Translation 

Architecture 

TLB range TLB 

page table range table 

CR3 register CR-RT register 

page table walker range table walker 

OS 
page table management range table management 

demand paging eager paging 

 



A range table implementation should facilitate fast lookup of 
a virtual address to a range translation, be inherently compact 
and be cache friendly. To this end, we propose B-Tree data 
structure with (BASEi, LIMITi) as keys and OFFSETi and 
protection bits as values to store range translations in the range 
table. Figure 6 shows how the range translations are stored in the 
range table and the design of each node. Each node 
accommodates four range translations and points to five 
children, e.g., up to 124 range translations in three levels. Hence, 
each range table node fits in two cachelines. All pointers use 
physical addresses and facilitate hardware walking. With this 
design, a range table on a single 4 KB page can hold 128 range 
translations. 

A hardware walker loads range translations from the range 
table on a range TLB miss. Analogous to the page table pointer 
register (CR3 in x86-64), RMM requires a CR-RT register to 
point to the physical address of the range table root for walking. 

Handling Range TLB misses 

On a miss to the range TLB and page TLB, RMM first 
fetches the missing translation from the page table and installs it 
in the higher-level TLB so that the processor can continue 
executing the pending operation. To identify whether a miss in 
the range TLB can be resolved to a range or not, RMM adds a 
range bit to the PTE, which indicates whether a page is part of a 

range table entry. The page table walker fetches the PTE, and if 
the range bit is set, accesses the range table in the background 
and updates the range TLB with the missing range table entry. 
This approach prevents the increase in the latency of page walks, 
and skips accesses in the range table for pages that are not 
redundantly mapped. 

EAGER PAGING 

Effective range translation requires both virtual contiguity, 
which occurs naturally, and physical contiguity, which may not. 
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Figure 5 Range TLB caches range translations and is accessed in parallel with the last-level page TLB. 
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Figure 6 The range table stores the range translations for a 
process in memory. The OS manages the range table entries 
based on the applications memory management 

operations. 

Compute the memory fragmentation; 
if memory fragmentation ≤ threshold then 

// use eager paging 
while number of pages > 0 do 

for (i = MAX_ORDER-1; i ≥ 0; i--) do 

if freelist[i] ≥ 0 and 2i ≤ number of pages then 

allocate block of 2i pages; 
for all 2i pages of the allocated block do 

construct and set the PTE; 

end 
add the block to the range table; 
number of pages − =  2i; 
break; 

end 

end 

end 

else 

// high memory fragmentation – use demand paging 
for (i = 0; i < number of pages; i++) do 

allocate the PTE; 
set the PTE as invalid so that the first access will trigger 
a page fault and the page will get allocated; 

end 

end 

Figure 7 RMM memory allocator pseudocode for an allocation 
request of number of pages. When memory fragmentation is low, RMM 
uses eager paging to allocate pages at request-time, creating the 
largest possible range for the allocation request. Otherwise, RMM 
uses default demand paging to allocate pages at access-time.  



To enhance physical contiguity, RMM modifies the OS memory 
allocation mechanism with eager paging. 

The default allocation policy—demand paging—allocates 
physical pages at access time and degrades contiguity, because 
(i) it allocates single pages even when large regions of physical 
memory are available, and because (ii) the OS may assign pages 
accessed out-of-order to non-contiguous physical pages even 
though there are contiguous free pages. 

Eager paging generates large range translations by allocating 
consecutive physical pages to consecutive virtual pages eagerly 
at allocation time, rather than lazily on demand. When the 
application allocates memory, the OS establishes one or more 
range translations for the entire request and updates the 
corresponding range and page table entries. Figure 7 shows the 
simplified pseudocode for eager paging based on Linux’s buddy 
page allocator. The OS always updates both the page table and 
the range table to consistently manage the entire memory. Eager 
paging increases latency during allocation and may induce 
fragmentation, because the OS must instantiate all pages in 
memory, even though the application never uses. However, the 
OS may reclaim unused pages at the end of a range or an entire 
range if memory pressure increases. 

METHODOLOGY 

We select workloads with poor TLB performance from 
SPEC 2006 [7], BioBench [1], Parsec [3] and big-memory 
workloads [2]. We implement our OS modifications in the Linux 
kernel v3.15.5 and define RMM hardware with respect to a 
recent Intel x86-64 Sandy Bridge Dual socket Xeon E5-2430 
core (L1 TLB entries: 64 for 4KB page, 32 for 2MB page, 4 for 
1GB page; L2 TLB entries: 512 for 4KB page). We choose a 32-
entry fully associative range TLB accessed in parallel with the 
L2 page TLB, since we estimate that it can meet the L2’s timing 
constraints. We report overheads using a combination of 
hardware performance counters from native application 
executions and TLB performance emulation using a modified 
version of BadgerTrap [5] with a linear performance model. 
Compared to cycle-accurate simulation, we reduce weeks of 
simulation time by orders of magnitude. The original paper has 
more details on methodology, results, and analysis [8]. 

EVALUATION 

Figure 8 compares the overhead spent in page walks for 
RMM to other techniques. The 4 KB, 2 MB Transparent Huge 

Pages (THP) [4] and 1 GB [6] configurations show the measured 
overhead for the three available page sizes. All other 
configurations are emulated. The DS bars show direct segments 
[2] results and the RMM bars show the 32-entry range TLB 
results. 

The results show that RMM performs well on all 
configurations for all workloads, substantially improving over 
other approaches. RMM eliminates the vast majority of page 
walks, significantly outperforms huge pages (THP and 1GB), 
and achieves similar or better performance than direct segments, 
but has none of its limitations. Overall, redundant memory 
mappings achieve negligible overhead—essentially eliminating 
virtual memory overheads for many workloads to less than 1%. 
The original paper [8] also analyzes energy, hardware costs, and 
the impact of eager paging on execution time and memory 
footprint. 

In a subsequent work at HPCA 2016 [9], we characterize and 
then reduce the energy of address translation. We show that L1 
TLB hits consume the majority of address translation energy. 
For instance, Sandy Bridge performs 12 address comparisons on 
every memory reference hit. The key is to reduce energy by 
dynamically downsizing the L1 TLBs when huge pages or range 
translations reduce pressure on them. 

CONCLUSION 

Limited TLB reach is a well-known problem. To address this 
problem, vendors have increased hardware support for huge 
pages and slowly increased TLB sizes. However, we believe that 
this approach falls short. As memory sizes continue to increase 
more aggressively than TLB sizes, the virtual memory 
overheads that manifest in today’s systems with 4KB pages will 
manifest similarly in tomorrow’s systems with huge pages. Our 
evaluation shows that such cases already exist. Furthermore, 
range translations have the potential to pave the way for 
emerging workloads, such as in-memory computing, which 
leverage the growth in physical memory to store huge data sets 
for low latency and real time data analysis. 

In conclusion, we believe RMM has the potential to follow 
the same path as Talluri and Hill’s work [12], which 
bootstrapped research on transparent huge pages. It also required 
changes to both hardware and operating systems, but is now 
common in modern processors. 

 
Figure 8 Execution time overheads due to page walks for 7 representative workloads. 1GB page is only applicable to big-memory workloads. 
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