Partial Collection Replication For Information Retrieval

Zhihong Lu Kathryn S. McKinley
AT&T Laboratories Deptartment of Computer Sciences
200 South Laurel Ave. University of Texas
Middletown, New Jersey 07748 Austin, Texas 78712
zhihonglu@att.com mckinley@cs.utexas.edu
Abstract

The explosion of content in distributed information retak(IR) systems requires new mechanisms in
order to attain timely and accurate retrieval of unstrueditext. This paper shows how to exploit locality by
building, using, and searchingartial replicasof text collections in a distributed IR system. In this woak,
partial replica includes a subset of the documents fronetacgllection(s) and the corresponding inference
network search mechanisms. For each query, the distrilsystdm determines if partial replica is a good
match and then searches it, or it searches the originalktiolle \WWe demonstrate the performance of partial
replication is better than systems that useheswhich only store previous query and answer pairs. We
first use logs from THOMAS and Excite to show to build partiglicas and caches from frequent queries.
We show that searching replicas can improve locality (frobo 20%) over the exact match required by
caching. Replicas increase locality because they satisfyies which are distinct but return the same or
very similar answers. We then present a novel inferencear&tveplica selection function. We vary its
parameters and compare it to previous collection seledtinotions, demonstrating a configuration that
directs most of the appropriate queries to replicas in ag@plierarchy. We then explore the performance
of partial replication in a distributed IR system. We congpiamvith caching and partitioning. Our validated
simulator shows that the increases in locality due to rafibe make it preferable to caching alone, and
that even a small increase of 4% in locality translates irgerformance advantage. We also show a hybrid
system with caches and replicas that performs better thanaatheir own.

Keywords:Partial replication, Replica Selection, Distributed imf@mtion retrieval architectures.

1 Introduction

Due to the explosion of information and users on the Intesindtintranets, a major challenge for distributed

information retrieval systems is providing fast and sclagderformance. Information retrieval (IR) systems

solve the problem of finding documents related to a queryrdissue a query, and the IR server typically re-

sponds with a list of relevant documents and snippets oftent these documents. If any of these documents
meet the users information need, they request one or mohewof.tIf not, users refine or change their query.

To achieve scalable performance on this workload, IR systisiribute queries, and restrict the search to as

little data as possible while maintaining acceptableee#diaccuracy. Previous work on distributed databases
and Web search engines improve performance using multgdkecand/or full replica servers to distribute
workloads. When these servers are closer to their usergfteasource collection, they also reduce network
traffic, minimizing network latency.

To achieve accurate results with caches and other mechaitfisitrestrict query search, IR systems need
to exhibit and exploiguery locality i.e., users issue the same, or closely related queriespgrdvements
are of course limited by the locality the queries present dlassic system mechanism to exploit locality is
cachingwhich in an IR system stores pairs of recently issued quanesresults. For example, Web search
engines adopt query caches that store a map between quadiessalt lists. They use a simple, exact test
of set membership to determine if the query is in the cache. cBthe improves performance when queries
exactly matcta previous query in the cache.

In this work, we proposeartial replicaswhich exploit locality from the samand from closely related
gueries. Because information retrieval engines find shityl@ar relevance between queries and documents,
partial replicas build on this functionality to query a sebsf the collection and return relevant documents. A
partial replica thus includes query logic as well as a subftite documents. If two queries are not the same,
but return the same top documents, partial replicas find apbbi this locality. Partial replicas therefore
can more thoroughly exploit locality because the queriesimet match. To be more effective than caches,
partial replicas need to provide additional locality, dicégnt selection mechanism to direct queries to partial
replica(s) or the original collection, and a scalable IRh#tecture. We examine all these components in this
paper.

To motivate our approach, we first investigate the type anouentof locality for a few traces. Although
others report on query locality (Croft, Cook, & Wilder, 19%®WImedahl, Smaith, & Yu, 1998), there exist no
widely available, shared, or standard query sets. In amditio results divide locality into exact match and
similar queries (we conservatively define similar queriagtjuire the top 20 documents to match). We report
locality properties on server logs from THOMAS (THOMAS, B)%or 62 days and Excite (Excite, 1997) for
1 day. These results show that locality remains high (ab6¢6)2ver time (weeks) for the THOMAS logs.
For both traces, inexact match increases locality from 3% U %, even with our very restrictive definition
of query similarity. These results are due to human variedy tesults in queries that do not exactly match
but return the same results. We then turn to exploiting thtitdal locality of partial replicas as compared
to caches to improve performance.

To maintain retrieval effectiveness, a selection functimmst determine whether a replica contains all,
some, or none of the relevant documents for a query. We desstich a function that uses an inference
networks and demonstrate its effectiveness using the 20 RIBCTVLC collections and TREC queries. We
vary the selection function parameters and compatre it vatlection ranking functions. For a given query,
this function correctly selects the most relevant of a se¢plicas or the original collection, when appropriate.

It maintains the highest retrieval effectiveness whilercleiag the least amount of data as compared to the

other replica selection functions we explore.

We then describe our distributed IR architecture and réggeerformance as a function of locality using a
validated simulator (Lu, 1999). We show that the simulatosely matches our prototype system which uses
InQuery for the basic IR functionality on all the collect®foriginal and replicated) (Callan, Croft, & Broglio,
1995). We compare the performance of searching a terabyexbiéising partial replication to partitioning
and caching. Partition simply divides a large collecticioimultiple parts and stores them on separate servers.
We find partial replication is more effective at reducing@ax#on time, even with many fewer resources, and
it requires only modest query locality to achieve bettemetimes much better, performance than partitioning
and caching.

In summary, this paper is the first to explore partial repicza We first show that there is sufficient query
locality in a few real traces to justify this exploration. f&en develop a novel and effective replica selection
function which is able to choose between a hierarchy of capland the original collection to achieve high
accuracy and high performance. We furthermore show thaiapageplication offers a performance benefit
over exact match caching, and can work in cooperation withiog to further improve performance.

The remainder of this paper is organized as follows. The sestion further compares our work to re-
lated work. In Section 3, we characterize the locality anmbas patterns of our test logs from THOMAS and
Excite. We also define our notion of query similarity, andwlibincreases locality up to 15%. Section 4
describes the replication architecture. Section 5 desstitow to select a partial replica based on relevance,
and compares its effectiveness with the ranking functionsdllection ranking. Section 6 reports on the per-
formance of searching a terabyte of text using partial cagibn and compares performance with collection

partitioning as well as caching. Section 7 summarizes aultgand concludes.

2 Related Work

This paper combines and extends our previous work studyiregyglocality (Lu & McKinley, 2000) and
developing a replica selection function (Lu & McKinley, 89 We include here a more detailed presentation
of retrieval effectiveness on using partial replicas wignymg numbers of top documents, strategies on update
replicas, data validating our simulator, and a richer s@esformance studies, including using a hierarchy of
replicas rather than just one. We discuss below a varietglated research topics by others: architectures for
fast, scalable, and effective large scale informatiorieedt; single query performance; IR versus database

systems; IR versus the web; caching; and collection selecti
2.1 ScalableIR Architectures

In this section, we discuss architectures for parallel dattiduted IR systems. Our research combines and
extends previous work in distributed IR (Burkowski, 199@&rkhan, McCoy, Toense, & Candela, 1991; Cou-
vreur et al., 1994; Burkowski, Cormack, Clarke, & Good, 1998hoon & McKinley, 1996; Hawking, 1997;
Hawking, Craswell, & Thistlewaite, 1998; Cahoon, McKinl&y Lu, 2000) since we model and analyze

a complete system architecture with replicas, replicactele, and collection selection under a variety of

workloads and conditions. We base our distributed system@nery (Callan, Croft, & Harding, 1992; Tur-
tle, 1991), a proven, effective retrieval engine. We alsaeb@rchitectures with very large text collections;
up to 1 terabyte of data on up to 32 InQuery servers. Much optle work on distributed IR architectures
has been restricted to small collections, typically lessith GB and/or 16 servers. Participants in the TREC
Very Large Collection track use collections up to 100 GB,thely only provide query processing times for a
single query at a time (Hawking et al., 1998). It is clear $@he industrial sites use collections larger than
what we simulate, but they choose not to report on them initbature to maintain their competitive edge,
with an exception of Google, the most popular search engim@days, which has reports on its technologies
when it was a research project (Brin & Page, 1998).

Harman et al. show the feasibility of a distributed IR systeyndeveloping a prototype architecture
and performing user testing to demonstrate usefulnessr(&taet al., 1991). Unlike our research which
emphasizes performance, Harman et al. do not study efficissues and they use a small text collection
(i.e., less than 1 GB).

Burkowski et al. report on a simulation study which meastinesretrieval performance of a distributed
IR system (Burkowski, 1990; Burkowski et al., 1995). Theesiments explore two strategies for distributing
a fixed workload across a small number of servers. The firstlgadistributes the text collection among all
the servers. The second splits servers into two groups, omgdor query evaluation and one group for
document retrieval. They assume a worst case workload wdsarie user broadcasts queries to all servers
without any think time. We experiment with larger configimas, and consider collection selection and
replicas with replica selection.

Couvreur et al. analyze the performance and cost factorsathing large text collections on parallel
systems (Couvreur et al., 1994). They use simulation mddeals/estigate three different hardware archi-
tectures and search algorithms including a mainframe systEng an inverted list IR system, a collection
of RISC processors using a superimposed IR system, and elkpepose machine architecture that uses a
direct search. The focus of the work is on analyzing the wdetween performance and cost. Their results
show that the mainframe configuration is the most cost é¥fecThey also suggest that using an inverted list
algorithm on a network of workstations would be beneficialthey are concerned about the complexity. In
their work, each query is evaluated against all collections

Hawking designs and implements a parallel informatiorieetd system, called PADRE97, on a collec-
tion of workstations (Hawking, 1997). The basic architeetof PADRE97, which is similar to ours, contains
a central process that checks for user commands and braesitieas to the IR engines on each of the work-
stations. The central process also merges results befodingea final result back to the user. Hawking
presents results for a single workstation and a cluster okstations using a single 51 term query. A large
scale experiment evaluates query processing on a systérnupvip 64 workstations each containing a 10.2
GB collection. The experiment uses four short queries of ¥6tterms. This work focus on the speedup of a

single query, while our work evaluates the performance foaded system under a variety of workloads and

collection configurations.

The founders of Google reported Google’s architecturevagerand core technology: PageRank before
Google went to commercial (Brin & Page, 1998). Since thegretéince of search was not the major focus
of their research at that time, the paper just mentions thind to speed up Google considerably through
distribution and hardware, software, and algorithmic ioy@ments, without any supporting experiments. As
far as we know, there are no recently published reports opdnrmance or architecture of their current
system.

Cahoon et al. report a simulation study on a distributedrmftion retrieval system based on In-
Query (Cahoon & McKinley, 1996; Cahoon et al., 2000). Thesuase the collections are uniformly dis-
tributed, and experiment with collections up to 128 GB usingariety of workloads. They measure per-
formance as a function of system parameters such as cliemhand rate, number of document collections,
terms per query, query term frequency, number of answeusned, and command mixture. They demon-
strate system organizations for which response time gnligefegrades as the workload increases and per-
formance scales with the number of processors under sortisticeavorkloads. Our work builds on and

extends this work by adding replicas, a replica selectiowtion, and caches.
2.2 Howto Search Large Collections

The TREC conference recently added the Very Large Colledtick for evaluating the performance of IR
systems on large text collections (Hawking & Thistlewalt®97; Hawking et al., 1998). To handle large col-
lections, participants use shared-memory multiprocessiod/or distributed architectures. The experiments
in TREC-7 use 49 long queries on a 100 GB collection of web dwnis. The Very Large Collection track
summary (Hawking et al., 1998) presents precision and goygessing time results but does not provide
significant details about each system. The experimentstrepgponse times for a single query at a time,
rather than for a variety of workloads as we do. None of théesys report results for caching or searchable
replicas. Two of the participants present details of thatridbuted systems elsewhere, but neither provide

significant performance evaluations (Burkowski et al.,3;%rown & Chong, 1997).
2.3 Databaseversus|R Architectures

There is also a large volume of work on architectures forithisted and parallel database systems including
research on performance (Stonebraker et al., 1983; Del¥ilt, d 986; Mackert & Lohman, 1986; Hagmann
& Ferrari, 1986; DeWitt & Gray, 1992; Bell & Grimson, 1992)ItAough the fields of information retrieval
and databases are similar, there are several distinctibithwnake studying the performance of IR systems
unigue. A major difference between database systems aoiriafion retrieval systems is structured versus
unstructured data. In structured data, the tests resemabtaembership. In unstructured data, we measure
similarity of queries to documents. The unstructured reatifrlR data raises questions about how to create
large, efficient architectures. Our work attempts to discmome of the factors that affect performance

when searching and retrieving unstructured data. Furthexpthe types of common operations that are

typical to database and IR systems are slightly differeat.example, the basic commands in an IR system,
guery evaluation and document retrieval, differ from thiose database system. In our IR system, we are not
concerned with updates (commit protocols) and concurreantrol which are important issues in distributed

database systems. We assume our IR system performs upfiétes o

2.4 Web versusIR Architectures

Although commercial information retrieval systems, suslitee web search engines AltaVista and Infoseek
exploit parallelism, parallel computers, caching, anceotiptimizations to support their services, they have
not published their hardware and software configuratiohs;ivmakes comparisons difficult.

There are several important differences between the IRhtdogy we discuss here and the web’s im-
plementation. We consider a more static collection of wtstred text on a local area network, such as a
collection of case law or journal articles. Whereas the wabore structured text on a wide area network
whose content is very dynamic. On the web, most caches dtddnspecific documents, not for querying
against as we do here (Wang, 1999). The web’s document canpl/sises set membership tests to deter-
mine if the cache has a requested document. Web users doyesgalch engines for queries, which can
maintain query caches, but the query caches seem not tothbutisd because of the very dynamic nature of

the web’s content (as far as we know).

25 Caching

Caching in distributed IR systems has a long research kig8mpson & Alonso, 1987; Martin, Macleod,
Russell, Lesse, & Foster, 1990; Martin & Russell, 1991; Tsim& Garcia-Molina, 1992). The client caches
data so that operations are not repeatedly sent to the resmoter. Instead, the client locally performs
frequent operations. These early reports show that the fusching is significantly beneficial for systems
that are distributed over slow networks or that evaluateigaslowly.

Recently, Markatos reports on caching search engine seddétrkatos, 1999). He analyzes a trace from
the Excite search engine and uses trace-driven simulatioosmpare several cache replacement policies.
He shows that medium-sized caches (a few hundred Mbytes)laem achieve the hit ratio of around 20%,
and effective cache replacement policies should take iotownt both recency and frequency of access in
their replacement decisions. Larger caches should of edomgrove hit rates.

Saraiva et al. report on a two-level caching schema for keamgines where one level caches query
results, and another level caches inverted lists (Sardiw,€2001). They experiment with this caching
schema using a set of log queries from a real case searcheemagit show that the throughput of the two-
level cache is up to 52% higher than the cache of invertegidistl 36% higher than the cache of query results.
Our results are complementary to these, and our mechanighwgonk in their system as well.

Researchers have also used replication techniques totbelyeoblem of scale in the Web (Katz, Butler,
& McGrath, 1994; Bestavros, 1995; Baentsch, Molter, & Stufrf896). Katz et al. report a prototype

of a scalable web server (Katz et al., 1994). They treat abv@entically configuredht t p servers as a

cluster, and use the DNS (Domain Name System) service toldist ht t p requests across the cluster in
a round-robin fashion. Bestavros proposes a hierarcharalathd-based replication strategy that optimally
disseminates information from its producer to serversdhatcloser to its consumers in the environment of
the web (Bestavros, 1995). The level of dissemination dépen the popularity of that document (relative
to other documents in the system) and the expected reduaotimaffic that results from its dissemination.
Baentsch9 et al. implement a replication system called G4R$ (Caching goes Replication/Web Location
and Information Service) (Baentsch et al., 1996). As theamauaggests, CgR/WLIS turns web caches into
replicated servers as needed. In addition, the primareseferward the data to their replicated servers. A
name service WLIS is used to manage and resolve differei¢sap data.

Although we also organize replicas as a hierarchy, our weudifferent from those above, because our
system is a retrieval system that supports queries whilegbesers contain Web documents and only support
document fetching. Our work is different from Web cachingciuse we use searchable replicas and a replica
selector to select a partial replica based on content artj tather than simple membership test in caching.
Compared with caching, selection based on content incse@tsserved locality, and is thus able to offload
more work from servers that process original collection@weler, there is an additional space overhead
with partial replicas compared to caches which will sligldegrade locality as well, since the partial replicas
will store less (see Section 3.3 for a discussion and quigtresults for our traces). In addition, the query
processing of partial replication is greater than simplgaact match test. These overheads indicate, that the
partial replica will need more than a slight locality bentdiimprove performance, and that the best system

architecture will probably include both caches and paréglicas.
2.6 Collection Selection

A number of researchers have been working on how to select ralevant collections for a given query
(Callan, Lu, & Croft, 1995; Chakravarthy & Haase, 1995; DighAhn, Noll, & Obraczka, 1991; Gra-
vano, Garcia-Molina, & Tomasic, 1994; Voorhees, Gupta, &nkon-Laird, 1995; Fuhr, 1999; Xu & Croft,
1999). Only this and our previous work (Lu & McKinley, 1999 rwsiders partial replica selection based on
relevance.

Danzig et al. use a hierarchy of brokers to maintain indioesilbcument abstracts as a representation of
the contents of primary collections (Danzig et al., 1991)ey support Boolean keyword matching to locate
the primary collections. If users’ queries do not use keyisan the brokers, they have difficulty finding the
right primary collections. Our approach is thus more gelnera

Voorhees et al. exploit similarity between a new query amelvence judgments for previous queries to
compute the number of documents to retrieve from each dalle¢Voorhees et al., 1995). Netserf extracts
structured, disambiguated representations from the ggiarid matches these query representations to hand-
coded representations (Chakravarthy & Haase, 1995). Bmihoaches require manual intervention which
limits them to relatively static and small collections.

Callan et al. adapt the document inference network to rankoilections by replacing the document

node with the collection node (Callan et al., 1995). Thigaysis called CORI. CORI stores the collection
ranking inference network with document frequencies and feequencies for each term in each collection.
Experiments using CORI with the INQUERY retrieval systerd eire 3 GB TREC Volumes 1+2+3 collection
which is basically organized by source show that this mettedselect the top0% of subcollections and
attain similar effectiveness to searching all subcoltai

GLOSS uses document frequency information for each caledd estimate whether, and how many,
potentially relevant documents are in a collection (Gravahal., 1994; Gravano & Garcia-Molina, 1995).
The approach is easily applied to large numbers of collastisince it stores only document frequency and
total weight information for each term in each collectiorreich et al. compare GLOSS with CORI and
demonstrate that CORI consistently returns better resiite searching fewer collections citeFrench99.

Fuhr proposes a decision-theoretic approach to solve thection selection problem (Fuhr, 1999). He
makes decisions by using the expected recall-precisiorecnhich yields the expected number of relevant
documents, and uses cost factors for query processing anaehmt delivery. He does not report on effec-
tiveness.

Xu and Croft propose cluster-based language models foeat@h selection (Xu & Croft, 1999). They
first apply clustering algorithms to organize documents ullections based on topics, and then apply the
approach of (Callan et al., 1995) to select the most relexaligctions. They find that selecting the top 10%
of topic collections can achieve retrieval accuracy corabkerto searching all collections.

Our work on partial replica selection reported here and in&McKinley, 1999) modifies the collection
inference network model of (Callan et al., 1995), to rankiphreplicas and the original collections, proposes

a new algorithm for replica selection, and shows that itfieaive and improves performance.

3 AccessCharacteristicsin Real Systems

In this section, we examine query locality in two logs fronalreystems. We examine query similarity
versus exact match, how locality changes over time, andfisteon the size of replicas. We also suggest
mechanisms for keeping replicas up to date.

Since currently there exists no widely available, sharedtandard set of queries with locality properties,
we obtained our own sets of server logs from THOMAS (THOMAS98) and Excite (Excite, 1997). The
THOMAS system is a legislative information service of th&&UCongress through the Library of Congress.
THOMAS contains the full text Congressional Records and biitroduced from the 101st Congress to 105th
Congress. We analyze the logs of THOMAS between July 14 apte8ber 13, 1998, during which the Starr
Report became available. We obtained full day logs for 4Gdagd partial logs for remaining 22 days due
to lack of disk space in the mailing system of the library oih@ess. The Excite system provides online
search for more than 50 million Web pages. The Excite log wainbd contains one day of log information
for September 16, 1997.

Since the logs do not contain document identifiers returnaa fiuery evaluation, we built our own test

databases to cluster similar queries. We defitepéc as all queries whose top 20 documents completely

Num. Num. Topics

queries unique queries total occurring only once| more than once| more than one unique query
8143 (7703) 4876 (4651) 4069 2888 (71%) 1181 (29%) 412
percentages of queries that top topics account for
100 200 500 1000 2000
21.2% 28.7% 41.5% 54.1% 73.0%

percentages of queries that top unique queries account for
100 200 500 1000 2000
18.1% 24.5% 36.4% 49.4% 64.5%

(a) Query locality in the THOMAS log

Num. Num. Topics
queries unique queries total occurring only once| more than once| more than one unique query
499836 (444899)| 365276 (320987)| 249405 196672 (79%) 52733 (21%) 32750
percentages of queries that top topics account for
500 1000 5000 10000 20000
12.3% 16.0% 27.9% 34.4% 42.0%

percentages of queries that top unique queries account for
500 1000 5000 10000 20000
7.9% 10.4% 18.4% 23.0% 28.2%

(b) Query locality in the Excite log

Table 1: Query locality in the logs

overlap. This definition of query similarity is arbitrary dmestrictive; a looser definition would further
improve the locality we observe. Exact top 20 overlap is lésdy to occur if we increase the number of
documents. For large collections, partial overlap wouldbably yield results almost as accurate as exact
overlap, and would also yield better locality than full degx For queries from the THOMAS log, we
reran all queries against a test database that uses theeSsrigecord for 103rd Congress (235 MB, 27992
documents). For queries from the Excite log, we reran alfiggegainst a test database using downloads of

the websites operated by ten Australian Universities (725 8334 documents).
3.1 Query Locality

Table 1 shows query locality statistics for our THOMAS anctiixlogs. We collect the average number of
gueries, unique (singleton) queries, topics, topics a@ugionly once, topics occurring more than once, and
topics that contain more than one unique query. We also prése percentages of queries that correspond to
the top topics and top unique queries, respectively. Tatagshows the average numbers in the THOMAS
logs over 40 days with full day logs. The numbers of querias dlctually find matching documents from our
test database are in the parentheses in columns 1 and 2. $eniesclo not find any matching documents,
due to misspelling, or because query terms do not exist indbiedatabase. The statistics show that on
the average, 29% of topics occur more than once, and theyatfar 63% ((7703-2888)/7703) of queries.

Among the topics occurring more than once, 35% (412) comtaire than one unique query. The top 100

topics (2.5% of topics) and the top 500 topics (12% of topaexiount for 21.2% and 41.5% of queries, while
the top 100 unique queries and top 500 unique queries actmutB.1% and 36.4%.

The Excite log on September 16, 1997, shown in Table 1(b)ptsinates that the Excite queries also have
high query locality: 21% of topics occur more than once, ey ticcount for 56% ((444899-196672)/444899)
of queries. Among the topics occurring more than once, 622%4%0) contain more than one unique query.
The top 1000 topics and the top 10000 topics account for 1&08634.4% of queries, while the top 1000
unigue queries and top 10000 unique queries account fobd amtl 23.0%. Both sets of logs see a drop in

locality between 3 and 14% if we require an exact match.
3.2 Locality asa Function of Time

We also examine the THOMAS logs to see how many queries onea gigy match a topic or a query that
appears on a previous day or week, in order to examine thdapvas a function of time. Table 2 shows
for a number of days between July 15 and September 11, 1998ticentage of queries that match a top
query through topic match and exact query match on a predaysr week. Column 1 lists date. Columns 2
through 4 list the query overlap when we build a replica usimpgtopics or top unique queries on the previous
day and update it daily. Columns 5 through 7 list the querylapevhen we build a replica using top topics
or top unique queries on July 14, 1998, without update afiesta: Columns 8 through 10 list the query
overlap when we build a replica using top topics or top uniqueries in the week from July 14 to July 20,
1998, without update afterwards. Replicas may actualigfyatnore queries than we report, because we do
not include queries whose top documents appear in the agpiicause the response is a combination of two
or more other topic queries. Since the logs do not containment identifiers and our test database is pretty
small, we can not obtain accurate figures about this sitnatio

The statistics also show that topic matching finds up to 15%enowerlap than exact query match for
the same size replicas over time. For example on Septembd998, we saw many distinct queries such
as “Starr,” “Starr Report,” “Bill Clinton,” and “Monica Lemsky,” all presumably trying to access the Starr
Report.

For topic match, we build a replica with the top documentstli@r top topics. For exact query match,
we build a replica with the top documents for the top uniqueritps. For example, when we build replicas
using top 1000 topics or unique queries of the week of Julyolduty 20, topic match on July 23 increases
the overlap from 28.6% (query exact match) to 35.9%, whichmse replica can satisfy 7.3% more queries

from the original server. Replicating more topics furthedens this difference.
3.3 Estimating the Size of Replicas

Based on query locality, we may estimate the replica sizecwis a function of average document size,
query locality, and number of top documents per query weehmstore, as shown in Table 3. The average
document size varies from source to source. For exampleatbege document sizes of the USENET

News, Wall Street Journal, and the websites operated by Bir&lia Universities are 2 KB, 3 KB, and 9

10

Overlap with

the previous day 7114 the week of 7/14-7/20
Topic match Topic match Topic match
date all top 500 | top 1000 all top 500 | top 1000 all top 500 | top 1000
7/15 || 43.3% | 24.8% 30.1% 43.3% | 24.8% 30.1% n/a n/a n/a
7/16 || 44.4% | 24.4% 30.4% 42.6% | 24.0% 29.2% n/a n/a n/a
7/23 || 45.0% | 27.3% 31.5% 41.4% | 23.4% 28.7% 60.8% | 29.0% 35.9%
7131 n/a n/a n/a 38.5% | 21.9% 26.4% 58.0% | 26.0% 32.3%
8/14 36.6% | 21.9% 26.1% 38.1% | 21.3% 26.0% 54.9% | 25.6% 31.0%
8/28 || 32.9% | 19.1% 23.0% 34.3% | 18.3% 23.4% 51.9% | 22.8% 28.4%
9/11 || 78.1% | 69.2% 71.7% 44.0% | 8.7% 22.2% 58.6% | 11.2% 27.0%
Exact query match Exact query match Exact query match
date all top 500 | top 1000 all top 500 | top 1000 all top 500 | top 1000
7/15 || 33.1% | 18.9% 23.3% 33.1% | 18.9% 23.3% n/a n/a n/a
7/16 || 34.5% | 19.3% 23.0% 32.9% | 18.1% 22.4% n/a n/a n/a
7123 36.4% | 21.1% 24.6% 32.3% 17.9% 22.3% 49.4% | 23.7% 28.6%
7131 n/a n/a n/a 29.4% 16.9% 20.3% 46.5% | 20.8% 25.1%
8/14 28.2% 16.3% 20.0% 29.0% 16.4% 20.0% 43.4% | 20.2% 24.1%
8/28 || 25.4% | 14.5% 17.6% 25.9% | 14.0% 17.5% 41.2% | 18.2% 22.2%
9/11 || 71.8% | 63.6% 65.2% 249% | 6.6% 18.7% 432% | 8.2% 19.3%
Table 2: Overlap over time in the THOMAS log: Topics vs. ex@uéry match

Top % of Replica Size (top 200 documents per query)
topics | queries | (2 KB perdoc) | (3 KB perdoc) | (9 KB perdoc)
1000 | 16.0% 400 MB 600 MB 1.8GB
5000 | 27.9% 2GB 3GB 9GB
10000 | 34.4% 4GB 6 GB 18 GB
20000 | 42.0% 8GB 12GB 36 GB

Table 3: The Replica Size Based on the Excite log

11

KB, respectively (Harman, 1997). The average documentafizke 20 GB TREC VLC collection is 2.8
KB (Harman, 1997). The TREC VLC text collection consists afalfrom 18 sources, such as news, patents,
and Web sites. Our estimation uses three different numBéB; 3 KB, and 9 KB. For query locality, we use
the statistics obtained from the Excite log, since its waoakls are at the level of the system we investigate.
We obtain the top 200 documents for each query. The size @giinear function (e.g., 100 MB for 20,000
documents). Table 3 contains overestimates because waaskare is no overlap among the documents,
although as shown above, distinct queries often result @mlapping documents. In Table 3, columns 1 and
2 show the query locality from the Excite log; columns 3 tlgh® show the estimated replica size when we
vary the average document size. For example, a 4 GB, 6 GB, &@Blreplica satisfies at least 34.4% of

gueries with an average document size of 2 KB, 3 KB, and 9 K&peetively.
3.4 When toBuild or Update a Replica

Query overlap tends to decrease very gradually as timeedapgsr example, 35.9% of queries on July 23
and 32.3% of queries on July 31, 1998 matched a topic in theaepovering top documents for top 1000
topics of the week of July 14 to July 20, respectively. Theasstics suggest that we do not need to update
the replica daily on a typical day, since significant numloéigueries match a top query that appeared several
days ago. However we do need some mechanism to deal with &y lbuest like the Starr Report, as shown
by the sharp decrease in locality on September 11, 1998.|&edaily updating would catch this event, but
it may be too costly, react too slowly, or unnecessarily ddgiperformance when the system experiences the
expected gradual degradation of locality. We propose twd@mand updating strategies as follows:

e Event triggered updating: watch for bursty events, andy&ighe updating procedure when some

special events happen.
e Performance triggered updating: watch the percentage dileaxds the replica selector sends to the

replicas, and trigger the updating procedure when the peage falls below some threshold.

For event triggered updating strategy, we can simply useamintervention. When the system manager
anticipates or observes a special event, and increasinghymsers issue queries on it, she initiates the
updating procedure. Automatic event detection is an ongyoésearch topic. When it becomes effective,
we suggest using it to trigger the updating procedure aufoally. Instead of rebuilding a replica, we could
add documents into replicas without deleting others fockgr updates, which means we need to save some
extra space for bursty events.

Performance triggered updating is very easy to implemehgicurrent system. We let the replica selector
record the percentage of queries that it sends to eachaeplien the percentage falls below a threshold, the
system informs the system manager. Performance trigggating also works for bursty events, if a lot of

users search for an event that does not exist in the replicas.

12

Original Collection)

B Replica 1

Figure 1: The replication hierarchy

4 Replication Architecture

We now propose a logical hierarchy of replicas to exploitgb&ential of enhanced query locality in a system
with small partial replicas of a larger collection.

For our experiments, we will replicate the top documentsthei index in a partial replica which helps
gueries about the same and similar topics but that use elifféerms to find their relevant documents in these
partial replicas. We determine which documents to repdiee follows: for a given query, we tag all top
n documents that query processing returns as “accessedharahient their access frequencies, regardless
of whether the user requests the text of these documents.e@fetke access frequency for each document
within a time period, e.g., a week, and then replicate thetrineguently accessed documents the most.

We organize replicas as a hierarchy, illustrated in FigurEhk top node represents an original collection
that could be a single collection residing on a network node wirtual collection consisting of several
collections distributed over a network. The bottom nodesegent users. We may divide users into different
clusters, each of which reside within the same domain, ssiemanstitution, or geographical area. The inner
nodes represent partial replicas. The replica in a lowesrlég/a subset of the replicas in upper layers, i.e.,
Replica 1-1C Replica 1C Original Collection. The replica that is closest to a usastdr contains the set of
documents that are most frequently used by the cluster. Aserdpyer replica may contain frequently used
documents for more than one cluster of users. The solid ililustrate data is disseminated from the original
collection to replicas. Along the arcs from the originalleotion, the most frequently used documents are
replicated many times.

The replica selection database directs queries to a rdl@aatial replica or to the original collection
along the arcs from the top node depending on relevance &ed atfiteria, such as server load. The dotted
lines illustrate the interaction between users and datae Iflo not divide the users into different groups, the
hierarchy is simply a linear hierarchy in which each layes baly one partial replica. Replica selection is
a two-step process in this architecture: it ranks replicaeld on relevance, and then selects one of the most
relevant replicas based on load.

In the next section, we will show that the inference netwoddel is very effective at selecting a relevant

13

Collection
Network

Query
Network

Figure 2: The collection retrieval inference network.

replica. We implement the replica selection inference néetvas a pseudo InQuery database, where each
pseudo document corresponds to a replica or collection,tariddex stores the document frequency and
term frequency for each term in any of the replicas. Sincer¢ipdica selection database stores document
frequency and collection term frequency for each term thatics in any of replicas, its size is determined by
the number of unique terms in the largest replica. Based oolmervations, the size of the replica selection
database is approximately 6 MB for every 100,000 uniquesekife know the 20 GB TREC VLC collection
has 13,880,064 unique terms. If our largest replica is 20 B8,estimated size of the replica selection
database is around 1.2 GB. Based on these statistics, weasthe replica selection database for 1 terabyte

of text is between 1 and 2 GB.

5 Partial Replica Selection Based on Relevance

The first step of replica selection is how to find a partial iegpthat contains enough relevant documents for
a given query. In this section, we investigate how to do th&k twith inference networks, and evaluate the
effectiveness of our replica selection approach usingrikuéry retrieval system (Callan et al., 1992), and
the 2 GB TREC Volumes 2+3 collection and the 20 GB TREC VLCaexlbn. We use queries developed
for TREC topics 51-350 in our experiments. We compare oup@sed replica selection function with the
collection ranking function. We measure the system’s gbibt pick the expected partial replica, and the
precision of the resulting response as compared with siggytte original collection.

The rest of the section is organized as follows: Sectionéstigates how to rank partial replicas and
the original collection using the inference network mod@action 5.2 describes the experimental settings,
Section 5.3 compares our proposed replica selection fumetith the collection selection function, Sec-
tion 5.4 and Section 5.5 further demonstrate the effecigsiof our approach for both replicated queries and

unreplicated queries, and Section 5.6 summarizes thesesuhis section.
5.1 Ranking Partial Replicas with the I nference Network M odel

We adapt the collection retrieval inference networks @uakt al., 1995) to rank partial replicas and the

original collection. The collection retrieval inferencetwork model consists of two component networks:

14

_— dfi;
dfi k(L= b) + b i)

ave_cw

IN]

log(2 + 0.5)

[= —————

log(|N|+ 1.0)
P(rjlD;)=a+(1—a)-T- 1

where
dfi; is the number of documents that contain terjrin collection D;,
cw; is the number of words in collectioBP;,

ave_cw is the average number of words,

N is the number of collections,

cf is the number of collections that contaip.

k is a constant that controls the magnitudeipf(the default is 200),
b is a constant varying from 0 to 1 used to control the sengjtivi

the function tocw (the default is 0.75), and
@ is a default belief (set to 0.4).

Figure 3: The collection ranking function in InQuery.

a collection network and a query network, illustrated inlk@2. TheD; nodes correspond to collections,
and ther; nodes correspond to concepts in the collections. mode represents a query, and th@odes
correspond to query concepts in the query. By using the aaie retrieval inference network, collection
ranking becomes an estimate®{I|D;) from combining the conditional probabilities through thetwiork.
When we adapt the collection retrieval inference networklehto rank replicas, we ugde; nodes to represent
the original collection and partial replicas, whdvg represents the original collectio;,i = 1,2,..n — 1
represent partial replicas, aréh C D» C ... C D,. (In the collection retrieval inference network);,
nodes do not have a subset relationship.) The purpose oh@phrtial replicas is to find ainglereplica
that satisfies a given query instead of a subset of collextiothe collection retrieval inference network. We
refer to this inference network as to the replica selectidarence network. As in the collection retrieval
inference network modelP(c;|r;) is set to1.0. The central work of applying this inference network to
replica selection is to develop an effective replica ragKimction to estimatd(r;|D;).

Since we adapt the collection retrieval inference netwaikfirst examine whether the InQuery collection
ranking function works well with ranking partial replicaghe InQuery collection ranking function uség
(the document frequency of each term) as the basic metiicfaaors collections with largeif, as shown in
Figure 3 (Callan etal., 1995). In our experiment settingantion 5.2, the default InQuery collection ranking
function directs more thafi0% of the replicated queries to the original collection, hoagsince we use
these replicated queries to build replicas, the replicacsef should direct them to the replicas instead of the
original collection. Although we can tune the parameterthefinQuery collection ranking function to direct
more queries to the replicas, the precision drops too muchexXample, the precision drops approximately

25% when the function directs 80% of replicated querieséadplicas (see Section 5.3 for the details). The

15

ctf;;
avetf = —2

i

log(DN;)
cutoff, = cutoff, lo8(DN1)

avetf if df;; > cutoff;
AT = tf. 2ig therwi
avetf- ohiogs othenwise
AT
T= ave_doclen;
AT +k-((1—-b)+b- ave_ave_docllen)
IN|
_ log(LF +0.5)
log(IN[+ 1.0)
P(rjlD;)=a+(1l—a)-T- I
where
ctf; 5 number of occurrences of term in replica/collectionD;,
dfi; number of documents that contain termin D;,
DN; number of documents i;,
cutoff, cutoff value for the smallest replic®; , which we set as the
number of top documents for each query,

cutoff; cutoff number of documents ib;,
N number of replicas plus the original collection,
rf number of replicas and the collection that contajn
avedoclen average document length in;,

aveavedoclen averagezve-doclen;,

k constant that controls the magnitudeAT,

b constant varying from 0 to 1 used to control the sensitivity o
the function toave.doclen and

«a default belief (set to 0.4).

Figure 4: The replica selection function.

InQuery collection ranking function does not work well wittplica selection, because it favors collections
with largerdf, but partial replicas typically have smalléf than the original collection.

Since a patrtial replica contains the top documents of the frexuently used queries, by examining the
document ranking function, we know that the top documerggamked as the top, just because query terms
occur more often in these documents than the others. Therifa replica contains the top documents for
a query, the average term frequency of each query term irethleca should be higher than in the original
collection. Based on this heuristic, we construct a repdiekection function based on the average term
frequency. In addition, we find a term is important in selegtieplicas if it occurs often (with middle or
high term frequency) in that replica/collection and it atexurs in a certain number of documents (above
a cutoff for document frequency). A term occurring in too fdacuments does not help even though it has
high term frequency. We need to ignore these terms. Figuhastrates our replica selection function which
uses the average term frequency and penalizes the termepiaar less than a given cutoff number in the
corresponding replica/collection. We compare this fuorctvith the InQuery collection ranking function in

Section 5.3, and demonstrate its effectiveness using 3FCT@ueries on a 2 GB collection and a 20 GB

16

collection in Section 5.4 and Section 5.5.

We implement the replica selection inference network aags InQuery database, where each pseudo
document correspondsto areplica or collection, its inderes thedf (document frequency) arudf (replica/collection
term frequency) for each term. We do not store any proxinmifgrimation in order to minimize the space
requirements of the replica selection database. As in thection retrieval inference network, all proximity

operators are replaced with Boolean AND operators.
5.2 Experimental Settings

We evaluate the effectiveness of our replica selectionagmr using InQuery (Callan et al., 1992) against a
2 GB TREC collection that contains collections from TRECWwuok 2 and TREC Volume 3, and a 20 GB
collection that contains all TREC-6 VLC collections. We ugeeries developed for TREC topics 51-350 in
our experiments. We measure the system’s ability to pickelevant partial replica, and the precision of the
resulting response as compared with searching the origoilgction. We use TREC queries instead of the
gueries from the logs, because some of TREC queries hawaneke judgments that enable us to produce
precision and recall figures for evaluating the effectivwne

By using the 2 GB collection, we compare the effectivenessusfreplica selection function with the
InQuery collection ranking function using short queriesd alemonstrate the effectiveness of our replica
selection function using both short queries and long geeAeshort query is simply a sum of the terms in the
corresponding description field of the topic. Long queriesautomatically created from TREC topics using
InQuery query generation techniques (Callan et al., 198B)¢ch consist of terms, phrases and proximity
operators. Generally, a long query for a topic is more effedhan the short query (Callan et al., 1992).
The average number of terms per query for the set of shoriepuisr8 after removing the stopwords, and
the average number of terms per query for the set of long @s1&3i120. For each set of queries, we divide
gueries into two categories: replicated queries and uizapd queries, wherthe replicated queries are
those whose top documents are used to build the repliase only topics 51-150 and topics 202-250 have
relevance judgmentfiles for the 2 GB TREC collection, a @rgal contains 50 random unreplicated queries
from these 149 topics, and we use them report the effectbscioe these topics.

We conduct our experiments by repeating the following pdoce 5 times, each trial uses a different
number as the seed to produce random numbers, and thus [fiekert queries for a query set. In each
trial, we randomly choose 50 queries from queKiB4-150, 202-25Pas ourunreplicatedquery setl’, and
randomly divide the remaining 250 queries in queries 518505 sets:{Q;,7 = 1,2,3,4,5}, each set
containing 50 queries. We then build a 6-layer replicatimrdrchy by using the 2 GB TREC collection or
the 20 GB collection as the original collectiéh and collecting the top documents resulting from searching
the original collection for each query {®;,7 = 1,2, 3,4, 5} to build 5 partial replica§ D;,i = 1,2, 3,4, 5},
whereD; contains at most * ¢ documents, consisting of the tepdocuments for each query in query sets
{Qj;,j =1,...,i}. Clearly,D; C Dy C D3 C D5 C C. This structure mimics 5 replicas that increase in

size and thus includes more of the top queries. We build @ceeptlection inference network to rank these

17

five replicas and the original collection. The queries inrgsets{Q;,: = 1,2, 3,4, 5} are calledeplicated
gueries.

By using the 20 GB collection, we examine how the size of otilbm affects the effectiveness of our
replica ranking function. Since we do not have relevancgiuent files for topics 51-150 and topics 202-
250 against the 20 GB collection, and the 2 GB collection islasst of the 20 GB collection, we use the
relevance judgment files for the 2 GB collection to produeeptecision figures. We also conduct another
set of experiments in order to make up for insufficient refeejudgments for topic§51-150, 202-25).

We use queries 301-350 as our unreplicated quer§’ssince these 50 topics are more thoroughly judged
against the 20 GB VLC collection than topif51-150, 202-25p. We use queries 51-100 g5, 101-150 as
Q2, 151-200 a%);, 202-250 a%)4, and 251-300 ags.

When using the 2 GB collection as the original collectior, $ize of replicas ranges from 0.3% to 1.5%,
1% to 5%, 2% to 10%, and 5% to 20% of the original collection wheplicating the top 30, 100, 200, and
500 documents, respectively. When using the 20 GB colleetothe original collection, the size of replicas
ranges from 0.1% to 0.5%, 0.2% to 1%, and 0.5% to 2% of themalgiollection when replicating the top
100, 200, and 500 documents, respectively.

When we evaluate a document or collection ranking functiem say a function is better than others if
and only if it can produce higher precision at selected nusibé& documents or at all standard levels of
recall. In the case of replica selection, we need to add anatfiterion for the ranking function: directing
as many queries as possible to the relevant replicas in tvdemprove system response time. We can tune
the parameters of our functions to control the percentagemlicated queries to the replicas (as shown in
Section 5.3). The range varies from 0% to 90%. None of thetfoneve tested can direct 100% of replicated
queries to the replicas. However when we direct more quésiéise replicas, we have to tolerate a larger
precision loss. In our experiments, we compare the preci@ach function when it directs more than 80%
of replicated queries to the replicas.

For a replicated query, since we know which replica contamtop documents, we define gxpected
replica as the smallest replica that is built with the top documemtdtfe query. For an unreplicated query,
since replicas may contain some relevant documents, weeapereplica selector will direct some of these
queries to a relevant replica. We define éxpected replicéor an unreplicated query as the smallest replica
that causes a precision drop less than 5%. For both kindsearieg, especially unreplicated queries, we
expect we will have to tolerate some loss in precision in ptdevoid searching the entire collection. We
choose a drop in precision betwe@and10% for a query as our acceptable range, i.e., searching thetsdle
replica retrieves at most one less relevant document foye@documents as compared with searching the
entire original collection.

We definecollection precise querieas those queries that can achieve the precision ab@féewhen
searching the original collection for the tepdocuments, i.e., the query finds at least one relevant datiume

for every ten documents. We exclude collection impreciserigs when we present the ability of a replica

18

selector to pick the relevant replicas for unreplicatedigsebecause a replica with zero relevant documents
is probably an acceptable choice for a query whose precisibelow 10% in the original collection. We
definereplica precise querieas those for which searching the selected replica causescesipn loss less

than 5% of the precision attained by searching the origiokéction.
5.3 Comparing Ranking Functions

In this section, we compare the effectiveness of the InQoeligction ranking function illustrated in Figure 3
and our replica selection function illustrated in Figureyd/aryingk andb for short queries in test trial 1 when
we replicate the top 200 documents for each query. (We aldorpeed experiments replicating the top 100
and 500 documents with similar results.) We will show thatreplica selection function is comparable to the
collection ranking function in ability to pick the expectezplica for replicated queries, but that it significantly
improves precision and finds the expected replica much narsistently for unreplicated queries.

Table 4 lists the results of replica selection by counting tiimber of queries to which replica or col-
lection each function directs the queries, when the pararsét andb, vary. Table 4(a) lists the results for
99 replicated queries for which we have relevance judgméatsle 4(b) lists the results for 37 unreplicated
collection precise queries, 18 of which are replica pregiggries. In both tables, columns 1 through 3 list the
name of functions, the values of parameteendb, and the function abbreviations. In both tables, columns
4 through 9 contains the number of queries that the repliezt®e sends to each of the replicd3;{ as well
as the original collection(). (Table 4(b) only includes collection precise queries.)

For replicated queries in Table 4(a), columns 10 throughatain the percentages of queries that it di-
rects to the expected replica (right), smaller replicaydareplica, and the original collection. The “expected”
(E) row lists the number of judged queries that a perfecicagelector would direct to each replica and to the
original collection. For unreplicated queries in Table)4blumn 10 contains the percentages of collection
precise queries that are directed to the original collactiod the replicas that cause a precision loss less than
5%; columns 11 through 12 contain the percentages of cmlleptecise queries that are directed to replicas
that cause a precision loss from 5% to 10%, and more than 1@#n 13 contains the percentage of 18
replica precise queries that are directed to the origin&ciion. The “expected” (E) row for the unreplicated
gueries contains the number of queries that we expect to gadb of replicas and the original collection
with less than a 5% drop in precision.

First lets consider replicated queries in Table 4(a). FerttQuery collection ranking function, varying
k from 100 to 400 does not significantly change effectivenesmpare 13-15). When we sétto 200 (the
default of the InQuery collection ranking function) andriease the value df, the replica selector directs
more queries to the replicas. The default InQuery collectanking function (k=200,b=0.75) directs only
30% of queries to the replicas, which is not our choice. Whenume the parameters to k=200 and b=1, the
function directs 89% of queries to the replicas.

For the replica selection functiok,= 2 gets better results than= 1 andk = 4 (compare the functions

R3-R5). When we decrease the valueothe replica selector directs more queries to the replieas k=2

19

Ranking Parameters| Func. Replica % to replicas

Function k, b code D1 | D> | D3 | D4 | Ds C right | smaller | larger C
Expected E 18 16 25 21 19 0 100% 0% 0% 0%
Random Ran 17 | 17| 17| 16| 16 | 16 16% 35% 33% 16%
InQuery 200, 0.25 11 0 0 0 0 0| 99 0% 0% 0% 100%
Collection | 200, 0.75 12 0 1 4 5 20 | 69 14% 0% 16% 70%
Ranking | 200, 1 13 28 14 | 22 14 10 | 11 65% 16% 8% 11%
Function | 100, 1 14 28 15 | 22 14 10 | 10 65% 17% 8% 10%
400, 1 15 29 14 | 23 14 8 | 11 64% 17% 8% 11%
2,0 R1 22 12 10 12 32 11 59% % 23% 1%
Replica 2,0.2 R2 20 15 11 17 | 24 | 12 57% % 22% 12%
Selection 2,08 R3 6 3 3 5 1] 81 15% 1% 2% 82%
Function 1,0.2 R4 17 6 7 14 28 | 27 47% 5% 20% 27%
4,0.2 R5 21 10 10 11 26 | 21 54% 7% 18% 21%

(a) Replicated queries (99 queries)

Replica Precision loss % of replica

Ranking Parameters| Func. C+ 5% — precise
Function k, b code D1 D> D3 D4 Ds C < 5% 10% > 10% queriesto C

Expected E 1 6 6 2| 19

Random Ran 7 8 7 4 6 35% 19% 46% 22%
InQuery 200, 0.25 11 0 0 0 0| 37 100% 0% 0% 100%
Collection | 200, 0.75 12 0 0 0 6 | 31 89% 3% 8% 89%
Ranking | 200, 1 13 6 5 11 7 2 6 40% 30% 30% 11%
Function | 100, 1 14 5 6 12 7 2 5 38% 30% 32% 11%
400, 1 15 6 6 11 11 6 2 40% 30% 30% 11%

2,0 R1 8 7 1 2 9| 10 51% 19% 30% 6%

Replica 2,0.2 R2 7 6 2 2 8 | 12 68% 16% 16% 11%
Selection 2,08 R3 0 0 0 0 1] 36 100% 0% 0% 94%
Function 1,0.2 R4 4 2 1 1 13 | 16 73% 14% 14% 22%
4,0.2 R5 7 2 2 1 10 | 15 64% 14% 22% 22%

(b) Unreplicated queries (37 collection precise queries)

Table 4: Comparing ranking functions using short queriether2GB TREC Volumes 2+3 collection (replicas

built with top 200 documents)

and b=0.2, the function directs 88% of queries to the repli€ar unreplicated queries in Figure 5(b), we see
that ranking the collection functions degrade precisionwgr 10% for around 30% of the queries when they
avoid searching the entire collection (13, 14, 15), and igsgimot a good choice here either.

Among the functions listed in Table 4(a), six functiolasdom 13, 14, 15, R1, and R2 direct more than
80% of replicated queries to the replicas. We compare thagioa of these six functions in Table 5.

The first column lists the number of documents at which wegrethe precision. Column 2 lists the
precision when all queries go to the original collectioa,,iwhat percent of the tap documents is relevant
when searching the original collection. Columns 3 througjbt&he results using random selection and each
ranking function. The numbers in parentheses show thegioecpercentage difference as compared with

searching the original collection. Table 5(a) lists theutessfor replicated queries, and Table 5(b) lists the

20

atm Precision of Replicated Queries (%)
docs C random 13 14 15 R1 R2
10 || 48.7 | 40.4(-17.2) | 47.7 (-2.3)| 48.2 (-1.2) | 47.2 (-3.3)| 48.4 (-0.8) | 48.3 (-1.6)
20 || 44.8 | 36.1(-19.6) | 43.2 (-3.7) | 43.3 (-3.4) | 42,9 (-4.4)| 44.4 (-1.0) | 44.2 (-1.9)
30 || 40.7 | 32.4(-20.4) | 39.3 (-3.4)| 394 (-3.0) | 39.1 (-4.0)| 40.2 (-1.1) | 40.2 (-1.2)
100 || 31.1 | 23.9(-23.1) | 29.4 (-5.6) | 29.5 (-5.5) | 29.3 (-6.1) | 30.5 (-2.2) | 30.5 (-2.1)
200 || 25.1 | 18.7(-25.3) | 23.0 (-8.4) | 23.0 (-8.4) | 22.9 (-87) | 24.8 (-2.8) | 24.3 (-3.2)

(a) 99 Replicated queries

atm Precision of Unreplicated Queries (%)

docs C random 13 14 15 R1 R2
10 || 39.8 | 24.6(-38.2) | 30.0(-24.6) | 29.4(-26.1) | 30.0(-24.6) | 33.6(-15.6) | 35.9 (-9.6)
20 || 36.8 | 23.7(-35.6) | 27.2(-26.1) | 26.6(-27.7) | 27.3(-25.8) | 32.3(-12.2) | 34.4 (-7.9)
30 || 33.4 | 22.3(-33.1) | 24.9(-25.4) | 24.3(-27.2) | 24.9(-25.4) | 30.8 (-7.8) | 31.9 (-4.6)
100 || 26.4 | 15.0(-43.1) | 16.9(-35.9) | 16.2(-38.7) | 16.9(-35.9) | 22.8(-13.6) | 23.5(-10.8)
200 || 21.1 | 10.4(-50.5) | 11.7 (-44.7) | 11.1(-47.3) | 11.7 (-44.7) | 17.1(-19.2) | 18.1(-14.5)

(b) 50 Unreplicated queries

Table 5: Effectiveness of different ranking functions gsshort queries on the 2 GB TREC Volumes 2+3

collection (replicas built with top 200 documents)

results for unreplicated queries. Replicated queriesymednuch better results than unreplicated queries,
because their top documents are stored in at least one afphieas.

It is not surprising that random selection performs podicause it has high probability of picking a
replica with few relevant documents. For replicated quegriiecauses a precision loss ranging frofi% to
25%. For unreplicated queries, it causes a precision perceibag ranging from38% to 50% as compared
with searching the original collection, C.

For the other five functions in Table 5, when we examine theigi@n for replicated queries (Table 5(a)),
all these functions are acceptable, since the precisiopsdess than 8.7%. However, when we examine
the precision for unreplicated queries (Table 5(b)), thecimion difference is significant. Using InQuery
collection ranking function3 where we set = 200 andb = 1, the precision loss of unreplicated queries
range from 24.6% to 44.7%. We get our best result using odiceepelection functiorR2 with & = 2
andb = 0.2. The precision of the replicated queries drops less 2 of the original collection, and is
better when fewer documents are returned. The precisiarolithe unreplicated queries range frdr@% to
14.5%. For the top 30 documents, the precision loss of unreplicateries range from.8% to 9.6%.

In the remaining experiments, the replica selector usesdpkca ranking function withk = 2 and
b = 0.2, because it sends appropriate queries to replicas with @eptable precision loss of at most 9.6%

for the top 30 documents in this test suite.
5.4 Effectivenesswith Replicated Queries

This section evaluates our proposed replica selectiontitméor replicated queries on a wider range of

gueries and collections. For replicated queries, we watgdbwhether the replica selector directs most of

21

Query Top Average Num. of Queries to Replica, % to Replica

Size Type n D: Do D3 Ds Ds C right smaller | larger C
Expected 216 | 166 | 214 | 206 | 18.8 0

30 16.0 | 116 | 13.2 | 13.2 | 246 | 20.4 || 52.7% 4.2% 22.6% | 20.6%
100 17.2 | 13.0 | 158 | 152 | 24.0 | 13.8 || 58.4% 5.9% 21.8% | 13.9%
2GB short 200 200 | 132 | 142 | 17.0 | 21.0 | 13.6 || 59.8% 8.1% 18.4% | 13.7%
500 250 | 144 | 158 | 186 | 156 | 9.6 65.1% | 12.7% | 12.5% | 9.7%
Ave. 195 | 13.0 | 148 | 16.0 | 21.3 | 14.3 || 59.0% 7.7% 18.9% | 14.4%

100 158 | 134 | 13.2 | 13.2 | 25.8 | 17.6 || 52.7% 5.8% 23.6% | 17.8%
2GB long 200 18.0 | 174 | 126 | 144 | 282 | 84 57.0% 8.5% 26.0% | 8.5%
500 218 | 176 | 140 | 150 | 240 | 6.6 62.4% | 10.7% | 20.2% | 6.7%
Ave. 185 | 16.1 | 13.3 | 14.2 | 26.0 | 10.9 || 57.4% 8.3% 23.3% | 11.0%

100 156 | 142 | 128 | 158 | 20.2 | 20.4 || 54.3% 4.2% 21.0% | 20.6%
20GB short 200 154 | 132 | 120 | 154 | 246 | 18.4 || 56.5% 4.2% 20.6% | 18.6%
500 182 | 144 | 122 | 16.0 | 25.8 | 124 || 64.2% 4.2% 19.0% | 12.5%
Ave. 16.4 | 139 | 123 | 157 | 235 | 17.1 || 58.3% 4.2% 20.2% | 17.3%

Table 6: Replica selection for replicated queries

them to an expected replica. Note it is possible for a refdinaller than the expected one to contain all top
documents for a given query, since the top documents of afinreries could include the top documents for
this query. Although we use 250 queries to build replicasonlg present the results for 99 replicated queries

which have relevance judgment files in this section.
Finding the Expected Relevant Replica

This section measures the ability of the replica selectgidk the expected replica by counting the number
of queries that are directed to different replicas and thgiral collection, as shown in Table 6. In Table 6,
columns 1 and 2 indicate the size of collection and the typmpefies we use in our experiments. Column 3
indicates the number of top documents for each query. Thairéng columns are the same as Table 4(a).

For short queries on the 2 GB collection, on average, ouia@pklector direct85.6% (59.0% + 7.7% +
18.9%) of replicated queries to the replicas, ɩ% of queries to the expected replica or a replica smaller
than we expect. Increasing the number of replicated doctsrircreases the accuracy of replica selection,
because the replicas contain more relevant documentgflicated queries. For example, when using the top
500 documents for each query to build replicas, the rephtector direct90.3% of queries to the replicas
on the average. When using the top 100 documents, it di#8éct$; of queries to the replicas on average.

For long queries on the 2 GB collection, on average, ourcadéelector direct®9.0% (57.4% + 8.3% +
23.3%) of replicated queries to the replicas, &1d7% of queries to the expected replica or a replica smaller
than expected. Increasing the number of replicated doctsaéso increases the accuracy of replica selection,
similar to the results for the short queries.

For short queries on the 20 GB collection, on average, oliceegelector direct82.7% (58.3% +4.2% +
20.2%) of replicated queries to the replicas, @&&15% of queries to the expected replica or a replica smaller

than we expect. Increasing the number of replicated doctarircreases the accuracy of replica selection,

22

at Precision

m docs || orig. Top 30 Top 100 Top 200 Top 500
10 || 47.3 || 46.9(-0.8) || 47.0(-0.6) || 47.4(+0.3) || 46.9 (-0.8)
20 || 43.5 || 43.0(-1.2) || 43.0(-1.1) || 43.3 (-0.4) || 42.9(-1.3)
30 || 39.6 || 39.0(-1.5) || 39.1(-1.3) || 39.4 (-0.7) || 39.2(-0.9)

100 || 30.8 29.9(-2.7) || 30.1 (-2.0) || 30.1(-2.1)
200 || 24.7 24.0 (-3.0) || 24.0(3.0)
500 || 16.5 16.0 (-3.1)

(a) short queries on the 2 GB collection

at Precision
m docs || orig. Top 100 Top 200 Top 500
10 || 56.3 || 56.1(-0.4) || 56.4(+0.1) || 56.2(-0.2)
20 || 54.6 || 54.2(-0.7) || 54.3 (-0.6) || 54.1(-0.9)
30 || 51.7 || 51.3(-0.8) || 51.1 (-1.1) || 51.2(-1.0)
100 || 41.5 || 41.1(-1.1) || 41.0 (-1.2) || 41.0(-1.1)
200 (| 34.1 33.4 (-2.1) || 33.6(-1.6)
500 || 22.9 22.4 (-2.4)

(b) long queries on the 2 GB collection

at Precision
m docs || orig. Top 100 Top 200 Top 500
10 155 || 155 (-1.2) || 15.4(-1.2) || 15.5 (-0.3)
20 || 15.0 || 15.0 (-0.3) || 15.0(-0.5) || 15.0 (+0.0)
30 || 14.0 || 14.0(+0.0) || 14.0(-0.1) || 14.0(+0.2)
100 || 115 || 11.4 (-0.9) || 11.5(-0.6) || 11.5 (-0.3)
200 9.8 9.7 (-0.9) 9.7 (-0.1)
500 7.5 7.4 (-0.8)

(c) short queries on the 20 GB collection

Table 7: Effectiveness of replica selection for replicajeéries (each trial has 99 judged queries)

similar to the results for the 2 GB collection.
Precision of Replica Selection versusthe Original Collection

Since the replica selector directs a few queries to a reiiatis smaller than expected, we compare the
effectiveness of executing queries against replicas ootiggnal collection selected by the replica selector
with against the original collection. Table 7 compares therage precision of replica selection over 5 test
trials with searching the original collection for short gies on the 2 GB collection, long queries on the 2
GB collection, and short queries on the 20 GB collection. Hese tables, column 1 lists the number of
documents at which we present the precision figures. ColulistsZhe precision figures when all queries go
to the original collection. Columns 3 through 6 list the pséan figures when building replicas using different
numbers of top documents. The numbers in the parenthesegisbd@recision percentage difference.

For short queries on the 2 GB collection, replica selectasuits in a precision percentage loss less than

3.1% of searching the original collection for the same numbeesponses or fewer. For long queries on the

23

2 GB collection, replica selection results in a precisiorcpatage loss less tha&m%.

For short queries on the 20 GB collection, replica selectesults in a precision percentage loss less
than1.2% as compared to searching the original collection, and samestthe precision improves a little,
because the replica does not contain some top-ranked van¢ldocuments. In other words, selecting a

smaller replica occasionally does no harm.
5.5 Effectivenesswith Unreplicated Queries

This section evaluates our proposed replica selectiortiftmon a wider range of queries and collections for

unreplicated queries. See Section 5.2 for detailed expatahsetting.
Finding the Relevant Replica

Table 8 lists the average expected number of collectioriggepieries in each replica over five test trials and
shows the results of replica selection by collecting the@ye number of collection precise queries that are
directed to different replicas as well as the original aditen. We list results for short queries on the 2 GB
TREC VWolumes 2+3 collection, long queries on the 2 GB TREQms 2+3 collection, and short queries on
the 20 GB TREC VLC caollection. In Table 8, columns 1 and 2 iatkcthe size of collection and the type of
the query sets. Column 3 indicates the number of documenrsdstor each query. The remaining columns
are the same as Table 4(b).

For short queries on the 2 GB collection, on the average, eplica selector direct’83.6% (70.2% +
13.4%) of collection precise queries to the replicas that causeeigion loss less thar0% (our acceptable
level) as well as the original collection, and only diret&s1% of queries which are replica precise to the
original collection. For long queries on the 2 GB collection the average, our replica selector dirédt$%
(75.5% + 16.0%) of collection precise queries to the replicas that causegion loss less thaid% as well
as the original collection, and only dired$.9% of replica precise queries to the original collection.

For short queries on the 20 GB collection, when we experiméthtthe same setting as the 2 GB col-
lection, on the average, our replica selector dir@6t8% (85.1%+5.7%) of collection precise queries to the
replicas that cause a precision loss less g4 as well as the original collection. When we experiment with
queries 301-350 as our unreplicated queries, our replieatse directs 87.7% (85.8%+1.9%) of collection

precise queries to the replicas that cause a precisiondesshari 0% as well as the original collection.
Precision of Replica Selection versusthe Original Collection

This section compares the retrieval precision of executmgplicated queries against replicas or the original
collection selected by our replica selector with only sharg the original collection. Table 9 lists average
precision over 5 test trials for short queries on the 2 GB TRB&mes 2+3 collection, long queries on the
2 GB TREC Volumes 2+3 collection, and short queries on the BOM&EC VLC collection.

For the 2 GB collection using short queries, the precisi@sés range fror.8% to 17.1%. Increasing
the number of replicated documents for each query imprdneeprtecision, because the replicas contain more

relevant documents for each replicated query, which hedpsrohining the similarity between unreplicated

24

Coll. Precision loss less than 5%
Top Query Precise Ave. Queries Expected
Size Type n queries || D1 D> D3 Dy Ds C
30 38.2 26 | 10| 22| 12| 14 | 298
100 37.8 38| 28| 32| 22| 10| 2438
2GB short 200 37.8 46 | 38| 26 | 32| 12| 224
500 37.8 62| 38| 44| 34| 14| 186
Ave. 37.9 43| 29| 31| 25| 13| 239
100 42.4 36| 34| 34| 22| 12| 286
2GB long 200 424 52| 38| 34| 22| 20| 258
500 424 82| 54| 40| 28| 20| 20.0
Ave 42.4 57| 42| 36| 24 | 1.7 | 2438
100 18.4 08| 06| 08| 1.0 | 00 | 15.2
20GB short 200 19.0 04| 10| 12| 12| 06 | 146
500 19.2 22| 20| 20| 10| 10| 110
Ave. 18.9 1.1 (12| 13| 11| 05| 137
100 36 0 1 1 0 3 31
20GB || 301-350 200 35 0 0 1 0 4 30
short 500 35 0 1 0 1 4 29
Ave. 35.3 0 06 | 06 | 03| 3.7 | 30.0
(a) Expected number of collection precise queries in egulicee
Query Top Ave. Queries to Replica Precision Loss % of Repl.Prec.
Size Type n D; | Do | D3 | Da D5 C C+< 5% | 5% —10% | > 10% queries to C
30 26 | 20| 20| 28 | 56 | 232 72.4% 7.4% 16.2% 27.9%
100 26 | 30| 32| 34 8.2 17.4 70.5% 12.2% 17.4% 13.8%
2GB short 200 40| 34 | 24 | 48 6.8 16.4 71.5% 11.2% 17.3% 15.3%
500 48 | 30| 46 | 6.4 | 58 | 132 66.2% 22.7% 11.1% 15.4%
Ave. 35| 28| 31| 44| 66 | 175 70.2% 13.4% 15.5% 18.1%
100 36| 24| 18| 28| 66 | 25.2 77.5% 13.1% 9.4% 25.9%
2GB long 200 48 | 40| 1.8 | 3.0 | 11.2 | 176 70.6% 17.6% 11.8% 13.1%
500 54| 48| 32| 50| 10.2 | 138 78.5% 17.4% 4.2% 5.7%
Ave. || 46 | 3.7 | 23| 36 | 9.3 | 189 75.5% 16.0% 8.5% 14.9%
100 04| 04| 06| 08| 22 | 140 84.7% 4.5% 10.8% 37.0%
20 GB short 200 06| 06| 12| 14| 18 | 134 84.2% 6.3% 9.5% 31.6%
500 04| 08| 18| 1.2 2.6 12.4 86.4% 6.2% 7.3% 29.0%
Ave 05| 06| 12| 11 2.2 13.3 85.1% 5.7% 9.2% 32.5%
100 2 1 0 1 1 31 86.1% 0.0% 13.8% 50.0%
20GB 301-350 200 2 1 0 1 1 30 85.7% 0.0% 14.3% 40.0%
short 500 1 1 0 1 2 30 85.7% 5.8% 8.5% 40.0%
Ave 1.7 | 10| 00| 1.0 1.3 30.3 85.8% 1.9% 12.2% 43.3%

(b) Results of replica selection for collection preciseripe

Table 8: Replica selection for unreplicated queries

25

atm Precision
docs || orig. Top 30 Top 100 Top 200 Top 500
10 428 || 37.8(-11.9) || 38.9 (-9.2) || 39.4 (-8.0) || 39.9 (-6.8)
20 39.4 || 34.0(-13.8) || 35.8 (-9.1) || 36.1 (-8.4) || 35.6 (-9.7)
30 35.5 || 30.3(-14.6) || 32.6 (-8.2) || 32.7 (-7.8) || 32.7 (-7.9)
100 || 27.2 23.3(-14.0) || 24.0(-11.6) || 24.2 (-10.8)
200 || 21.8 18.3(-16.5) || 18.8 (-13.9)
500 14.3 11.8 (-17.1)
(a) short queries on the 2 GB collection
atm Precision
docs || orig. Top 100 Top 200 Top 500
10 || 55.3 || 52.9 (-4.3) || 52.0 (-6.0) || 54.8 (-0.9)
20 52.7 || 49.4 (-6.2) || 48.6 (-7.8) || 50.9 (-3.4)
30 50.0 || 46.2 (-7.6) || 45.7 (-8.7) || 47.9 (-4.3)
100 || 40.4 || 35.3(-12.6) || 35.1(-13.2) || 36.8 (-8.8)
200 || 33.1 27.3(-17.4) || 29.1(-12.0)
500 || 21.8 18.2 (-16.6)
(b) long queries on the 2 GB collection
atm Precision
docs || orig. Top 100 Top 200 Top 500
10 || 12.8 || 12.4(-3.1) || 12.6 (-1.6) || 12.4 (-3.4)
20 || 12.3 || 11.6(-5.5) || 11.9 (-3.1) || 11.8 (-3.4)
30 || 11.8 || 11.4(-3.1) || 11.9(+0.8) || 11.8(+0.3)
100 10.0 9.1(-9.6) 9.6 (-4.2) || 10.1(+0.2)
200 8.4 7.7 (-7.9) 8.3 (-1.0)
500 6.4 59 (-7.7)
(c) short queries on the 20 GB collection
atm Precision
docs || orig. Top 100 Top 200 Top 500
10 404 || 36.2(-10.4) || 36.2(-10.4) || 37.8 (-6.4)
20 35.4 || 30.7(-13.3) || 30.7(-13.3) || 31.3(-11.6)
30 || 31.3 || 26.9(-14.2) || 26.9(-14.2) || 27.0(-14.0)
100 || 20.2 || 17.8(-11.9) || 17.8(-11.9) || 17.2 (-15.0)
200 14.4 12.8(-10.9) || 12.2(-14.0)
500 7.8 6.7 (-14.0)

Table 9: Effectiveness of unreplicated queries (eachhaal50 queries)

(d) short queries (topics 301-350) on the 20 GB collection

26

and replicated queries. When the number of top retrievedmeats is less than 30 documents, which are the
retrieval levels that concern online users most, our ragéector causes an average precision percentage loss
within 14.6% and 10% of searching the original collection, when we onpficate the top 30 documents and
the top 100 documents for each replicated query, respéctiFer the 2 GB collection using long queries,
the precision losses range frabd% to 17.4%. For the top 30 retrieved documents, on the average, the
precision drops less than 8.7% when we replicate more th@nddBuments for each replicated queries,
which is slightly better than short queries.

For the 20 GB collection using short queries, when we expaminwith the same setting as the 2 GB
collection and use the relevance files for the 2 GB collectibe precision ranges from losing 9.6% to
improving 0.8%. For the top 30 retrieved documents, theipi@tloss is less than 5.5%. When we use short
queries 301-350 as our unreplicated queries, the predisssrfor the top 30 documents is less than 14.2%.
Since topics 301-350 were much more thoroughly judged thpie${51-150, 202-25pfor the 20 GB VLC
collection, although still only the top 30 documents of egclery were judged, we think the results using
topics 301-350 are more accurate, which means our replieatem performs slightly worse on the 20 GB
collection than on the 2 GB collection. However, the pragigdercentage loss of 14.2% in our context only

means we retrieve one less relevant document for the top Qnaents.
5.6 Summary

This section showed a function that selects a relevantgbasdplica using the inference network model.
Our approach enables a system to efficiently rank partidicay and select one when appropriate based
on relevance for a given query. We illustrate using the TREIR=ction that our replica selection function
is more effective than previous work on collection rankingdtion. Our replica selection function directs
at least 82% of replicated queries to a relevant partiaicaphther than the original collection. When we
use replicas with the 100 top documents for each query, muatifon achieves a precision percentage loss
less than 10% for the 2 GB collection and 14.2% for the 20 GBectibn, i.e., it returns one less relevant

document out of the top 30 for a given query.

6 Performance of Partial Replication for Searching a Terabyte of Text

This section explores the performance benefits of partla®s. We first briefly describe the server ar-
chitectures we explore, measure a few configurations of arabsystem, and compare those results to our
simulator. The remaining results use a simulator whichustsasily control and vary our experiment. The
bulk of this section compares partial replication with fiming, caching, and a combination of replication
and caching. It demonstrates that the additional locaktydfits of replicas have performance benefits, and

these benefits can be substantial.

6.1 Our Distributed Information System

We illustrate our distributed IR system in Figure 5. Clientguery servers, and the connection broker re-

side on different machines. Clients are typically lightiget user interfaces to the retrieval system. InQuery

27

[InQuery server 1
/ - Original
| : Collection !

\ InQuery Server k K
Connection Broker
InQuery Server k+l

“Replica ! i |
' Selector ! ! : Replical »

N InQuery Server p
Client m i .

Figure 5: Our Distributed Information Retrieval System

(/ InQuery Server n Replica d\‘

servers store the original collection and partial replieasl perform IR service such as query evaluation, ob-
taining summaries, and document retrieval. A collectioa oeplica may be distributed over several InQuery
servers. The connection broker keeps track of all the In@servers for replicas or otherwise, outstanding
client requests, and organizes response from InQueryrserizer partial replication, the connection broker

also performs replica selection based on both relevancéandd

In addition to queries, our clients isssammary anddocumentommands to provide a more realistic
command mix. For each query, a client obtains one or more suieson relevant documents. The summary
information of a document typically consists of the titledahe most relevant passages in the document. A
client may also retrieve complete documents.

When a client sends a query to the connection broker, theemtiom broker first uses a replica selector
to determine whether there is a partial replica that is nbt o¥levant to the query, but is not overloaded. If
there is one, the connection broker sends the query to thadrny@erver(s) that maintain the relevant replica,
otherwise it sends the query to the InQuery servers thattaiaithe original collection. After each involved
InQuery server returns the query results, the connectiokdsrmerges results and returns them to the client.
For a summary command, the connection broker sends the codhwizich contains server and document
identifiers returned in a query result to the correspondiq@uiery servers. The connection broker merges the
summary information responses and sends a single messagtlhe client. For a document command, the
connection broker sends the command to the InQuery seraecdmtains the document, and then forwards
the document to the client as soon as it receives the documeemthe InQuery server.

In this system, if query locality is high, the replica setecinay send too many queries to a replica
which results in load imbalance. We load balance by preticthe response time of each replica and the
original collection using the average response time andtimber of the outstanding queries. When the
replica selector chooses a replica based on relevance, ladate the predicted response timeresp; of
the replica, any larger replica , and the original collettisingave_resp; - (1 + num_wait_mes;), where

ave_resp; is the average response time for last 200 responses for #itheeplica or the original collection,

28

Average Query Response Time (Seconds)

60

50

40

30

T T
Partitioning (4 disks) ~—

Replication (HR=40%) —+- |

5 10 15
Command Arrival Rate (requests per second)

(a) the real system

Average Query Response Time (Seconds)

60

50

40

30

Partitioning (4 disks) ~<—
Replication (HR=40%) —+- |

5 10 15
Command Arrival Rate (requests per second)

(a) the simulator

Figure 6: Performance validation of simulator with parteglication.

andnum_wait_mes; is the number of the outstanding queries to which neitherotiginal collection or

the replica have responded. We send the query to the one hétleastp_resp;. The connection broker
obtains information on the response time as it receivesegigrsponses and tracks the number of outstanding
messages.

We evaluate the performance of our distributed informatetnieval system using a simulator with a
performance model that is driven by measurements obtaisiag InQuery running on DEC Alpha Server
2100 5/250 with 3 CPUs (clocked at 250 MHZ) and 1024 MB main mfrunning Digital Unix V3.2D-1
(Rev 41). Servers are connected by a 10 Mbps Ethernet. Iimomework, we showed the simulator closely
matches a multithreaded implementation of InQuery (Calet@h., 2000; Lu, McKinley, & Cahoon, 1998).

In addition, we report on the validation of some of our sintiolaresults below, comparing partitioning and
replication with varying degrees of locality for a 16GB eaition on a single server, and again our measured
times closely match our simulator. Of course, simulatioaldes us to explore in a controlled environment

high loads and very large configurations.
6.2 Validation of Partial Replication Perfor mance

This section compares the simulator and an implementafigradial replication for searching a 16 GB
collection on a multi-tasking server using InQuery 3.1 asdhery arrival rate increases on a 3-CPU Alpha
Server 2100 5/250 running Digital UNIX V3.2D-1 (Rev 41). Weed a multi-tasking server instead of a
multithreaded server just to save us time from implementépdica selection in our legacy system, which
uses too many global variables.

In this experiment, we distribute a 16 GB collection over gkdiand used an extra disk to store a 4 GB
replica. We assume queries arrive as a Poisson processsariDwshort queries with average of 2 terms
per query. Figure 6 compares the performance of using tHesysem and the simulator when the replica
satisfies 40% of queries, and shows that two systems prdseigsame trends and expected improvements
from partial replication.

Our earlier work showed that the multitasking server penfisimilarly to the multithreaded server,

29

|| Parameters | Abbre. || Values ||

Num. of Commands Necom 1000
Command Arrival Rate 0.1 2 4 6 8 10
Poisson dist. (avg. commands/sec) A 12 14 16 18 20

Command Mixture Ratio

query:summary:document Rem 1:1.5:2

Terms per Query (average)

shifted neg. binomial dist. Nipg 2

Query Term Frequency Obs.

dist. from queries Dy Dist.

Data per Server Ssize 32GB

Size of Collection Ciize 1TB

Replication Percentage Prepr 3% (32 GB)

Hit Rate HR 10% - 100% by 10

Table 10: Configuration Parameters for Terabyte Experiment

although the multithreaded server is always slightly fagi6% of measured response times fall witHig%
of each other) (Lu et al., 1998). Our previous work also usedhalidated this simulator using parameters
that matched a slower MIPS processor. Taken together tleséts show that our simulator is robust with

respect to target architecture and could be used to modk<tst, fastest processor.
6.3 Searching a Terabyte of Text

In this section, we compare the simulated performance aigbaeplication with collection partitioning using
one and a hierarchy of replicas. We model command arrivalRssson process. We use short queries with
an average of 2 terms per query, and set the ratio of query emsy summary commands, and document
commandsto 1:1.5:2, as we observed in the THOMAS log. Waas®ach server stores a 32 GB collection.
As our baseline, we use 32 servers to store 1 terabyte offthese experiments use a 32 GB replica, which
is sufficient to satisfy more than 40% of queries in the Exigite We vary thehit rate which represents the
percentage of queries that the replica selector directartigpreplicas. The hit rate is also the percentage of
mixed commands sent to partial replicas, since if a querirécted to a partial replica, and its corresponding
summary and document commands will go to that replica tobleTEO presents the experimental parameters,

their abbreviations, and values.
Partial Replication versus Collection Partitioning
In this section, we compare the performance of the follovdagfigurations with the baseline (partitioning

over 32 servers):

¢ Partitioning over additional servers: partitioning 1 TBtekt over 33, and 64 servers, each of which
stores 31 GB and 16 GB of data.

¢ Partial Replication: building a 32 GB replica on one addiibserver (33 total servers).

Figure 7 illustrates the average query response time whepantion 1 TB of text over 32, 33, and

64 servers, and over 32 servers plus one server that comté83GB replica. We vary the hit rate which

30

indicates the percent of queries sent to the replica. Fig(ag(c) illustrate when commands arrive at 4, 10,
and 20 commands per second. The graphs plot query resporesgdisus the hit rate. When we have one
additional server, using it to store a replica performs igicemtly better than further partitioning over this
server, especially when the commands arrive at a high mth@wn in Figure 7(c). The improvementoccurs
when the replica satisfies only 3% of commands for more hilgfdged systems, e.g., 10 and 20 commands
per second, and the improvement increases with increaspseiy locality. Using one partial replica also
performs similar or better than partitioning over twice asnyas servers when the replica satisfies at least
20% of commands. For example, when the arrival rate is 20 camaisper second, partitioning over 64
servers reduces the average query response time by a fadtd, avhile one partial replica reduces it by
a factor of 2.3 when the replica satisfies 40% of commands. e hit rate becomes high, the replica
selector load balances between the replica and the paddioriginal collection which maintains retrieval
effectiveness and quick response times.

There are two major reasons that partial replication ofdpers partitioning. (1) A server takes around
3/5 the time to search half the data according to our measmesnand thus when we partition a terabyte
of text over 64 servers instead of 32 servers, each servaragorocess twice as many commands as using
32 servers. (2) Searching a replica results in less netwafiict and needs less coordination of the results
from each partition in the connection broker. For example,utilization of the network and the connection
broker for partitioning over 64 servers are 28% and 70%, evthie corresponding utilization for using 32
servers and one partial replica is 12% and 58%. For highlyddaystems, replication significantly improves

performance over partitioning and uses only about half efrésources!
6.4 Partial Replication asa Hierarchy

In this section, we assume 1, 2, and 4 additional servers sgahize them as a hierarchy of replicas. We
examine how much improvement a hierarchy of replicas widduce. We assume the first, second, third, and
fourth additional server stores 32 GB, 16 GB, 8 GB and 4 GB td.dahereR; D R> D R; D R4 andR;
represents the data on tih additional server. The replicas satisfy accuratelytal wf p% of commands,
i.e., the hitrate is p%. Of these p% of commands the repliggse sends to replicas, all are satisfied by the
largest replica, 10% less, i.e., (p% - 10%) are satisfied bysdtond largest replica, another 10% less, i.e.,
(p% - 20%) by the third largest replica, and (p% - 30%) by thartio replica, where all the commands sent
to ai-th largest replica may also be satisfied at(the 1)-th largest replica.

Figure 8 illustrates the average query response time whebuile¢ one and two replicas, where the
replicas’ hit rate (HR) is 20%, 40%, and 60%, as well as foplicas, where the hit rate is 40% and 60%.
The results show that 2 replicas are sufficient to achiegelperformance improvements beyond partitioning
when the replicas satisfy 40% and 60% of commands. In outibaspartitioning over 32 servers achieves an
average query response time below 10 seconds at 7 commarskcpead. Using one replica to satisfy 20%
of commands and using two replicas to satisfy 40% and 60% miftands achieve average query response

time below 10 seconds at 9, 16, and more than 20 commandsquerdseespectively, while partitioning over

31

@ 5 T T T m 60 T T
2 Partitioning (32 servers) —— 2 Partitioning (32 servers) ——
3 Partitioning (33 servers) -+-- IS Partitioning (64 servers) -+--
3 4k Partitioning (64 servers) -8-- | 3 50 - Replication (HR=20% -
o Replication (one replica) - by Replication (HR=40%) -
£ £ Replication (HR=60%) -&-
= = 40 - -
F F
g 3 1 3
c e : : t t t t : c
2 x. g 30r
0 % 0
) oL S, i)
L S Bt CREc R c S EEEES - SR SEPE o
2 2 20
@ @
=} =3
& 1k] &
! $ 1wf
© © -
[[v
é 0 L L L L é o =%~ T_E
0 20 40 60 80 100 0 5 0 15 20
Hit Rate (%) Command Arrival Rate (requests per second)
@x=14 (a) one replica
m 60 T T T m 60 T T T
2 Partitioning (32 servers) —— 2 Partitioning (32 servers) ——
3 Partitioning (33 servers) -+-- 3 Partitioning (64 servers) -—+—--
3 50 | Partitioning (64 servers) -8-- 7 3 50 | Replication (HR=2 H=EE
o Replication (one replica) - o Replication (HR=40%) -
£ £ Replication (HR=60%) -~
£ 40 g £ 40 g
Q Q
1% 1%
5 5
3 30 & P g 30
n ! ¥ ¥ + ¥ ¥ + ¥ ¥ + n
] — t t f t t f t t]
4 . 14
f 20 vy 4 > 20 k
@ 5 @
=] N =]
o X o
g 10 gr-- @ 5B Fe B BB @B N 10
@ e o
° fa e x o
> > ==
< 0 1 1 1 1 < 0
0 20 40 60 80 100 0 5 10 5
Hit Rate (%) Command Arrival Rate (requests per second)
(b)yx =10 (b) two replicas
a 60 : T T > 60 T T T
2 Partitioning (32 servers) —— 2 Partitioning (32 servers) ——
8 E artifonng (33 servers)—=— 8 Partitioning (64 servers) -
3 50 artitioning (64 servers) -8-- 3 50 - Replication (HR=40% -
o . Replication (one replica) -~ o Replication (HR=60%) -
£ £
£ 40 F % g £ 40 g
i i
1% 1%
=S | B EF---- -~ E---- - E}--------- E}---- c >
g 30 E g 30]
a T a ¥
2 .] B
[v4 > P X 2 P X [v4 +/x+’
> 20 - g > 20 - g
[[a
=3 > %
(o4 (o4 At P
(3 10 g (3 10 o = g
o o =
[5] P) X
5: 0 1 I 1 | 3: 0 e TR . X o
0 20 40 60 80 100 0 5 10 15 20
Hit Rate (%) Command Arrival Rate (requests per second)
A =20 (c) four replicas

Figure 7: Partial replication versus partitioning as aFigure 8: Partial replication versus a hierarchy of
function of hit rate, for three command arrival ratesreplicas as a function of command arrival rate

(A =4, 10, 20 requests per second)

32

64 servers (using 32 additional servers) only achievesageeuery response time below 10 seconds at 10
commands per second.

Thus, for our system (slower than the current state of thewaet achieve query response times under 10
seconds for a relatively highly loaded system with 20 retpuesr second using 4 replicas and query locality
of about 50%. With a faster base system, replication is gtéferable to partitioning given even modest
query locality, however fewer replicas are necessary totam fast response times. We show this result
elsewhere (Lu, 1999).

6.5 Partial Replication versus Caching

In this section, we compare the performance of partial cagithn to caching which is the most widely used
mechanism to improve performance for IR systems. We silpetitioning 1 TB of text over 32 servers as

the baseline, and compare it with the following configunasio

Partitioning: partition 1 TB of text over one additional server (33 sesviartotal), each of which stores 31
GB of data.

Connection broker cachingpartition 1 TB of text over 33 servers and build a cache inntfaén memory of
the connection broker.

Server cachingpartition 1 TB of text over 33 servers and build a cache imtlaén memory of each InQuery
server.

Partial Replication partition 1TB of text over 32 servers and use one additiseaVer to build a partial
replica.

Partial replication and connection broker cachingartition 1TB of text over 32 servers and use one addi-
tional server to build a partial replica, and also build aheam the main memory of the connection
broker. When a command comes in, first check the cache, ifibvtisn the cache, then use the replica
selector to select the relevant replica. We assume thatdheection broker cache satisfies 10% of

commands, and the replica satisfié® — 10% of commands.

For caching, we present an upper bound of its performancenlecount the time for cache lookup and
assume cache replacement takes no time. We assume thdis¢sdittr most frequently used queries are in
cache. We also assume the documents and query summariesnaesniory, although not many machines
have several to several tens of GB worth of memory. For thégbaeplica, we assume the summaries and
documents must be fetched from disk. We thus give the cachiga Advantage. We explore server caching
to show the benefits of same server caching for independdéattions which may not permit connection
broker caching.

Figures 9(a) and (b) compare connection broker caching art@preplication. They illustrate the aver-
age query response time versus the command arrival ratetb@onnection broker cache satisfies 20% and
30% of commands, as we found in our logs. The results showifttia partial replica and the connection

broker cache satisfy the same amount of commands, pariédagon results in slightly worse performance

33

60 T 60 T L T
Partition (32 servers) —+—

Partition (33 servers) ---x---__
50 - Partition+Conn.Cache(HR=30%,33 servers) == -

Partition (32 servlers) ——
Partition (33 servers) ---x---__
50 |- Partition+Conn.Cache(HR=20%,33 servers) -—-—==-

Replica (HR=20%,33 serversy & Replica (HR=30%,33 serversy -
Replica (HR=23%,33 sertérs) ——m-- Replica (HR=33%,33 servérs) ——m--
40 - Replica (HR=30%,33 sérvers) ---o--- - 40 - Replica (HR=40%,33 sérvers) - -0~

Replica (HR=45%,33 servers) ----e---

Replica (HR=35%,33 servers) - --o--

Average Query Response Time (Seconds)
Average Query Response Time (Seconds)

30 | 30 |

-

20 | 20 | =
10 | 10 |
0 &= 0%

0 0 20

Command Arrival Rate (requests per second) Command Arrival Rate (requests per second)
(a) a cache hit rate of 20% (b) a cache hit rate of 30%

Figure 9: Partial replication versus caching as a functiomommand arrival rate

D
o

T T
Partition (32 servers) —+——
Partition (33 servers) ---x---

Partition + Conn.Cache (33 servers) ---*---
Partition + Server Cache (33 servers) &
Replica (33 servers) --m-

Replica + Conn.Cache (33 servers) ---o---

a
o
T

N
o
T

[
o
T

=
o
T

o

Average Query Response Time (Seconds)
w
o
T
1

Hit Rate (%)

Figure 10: Partial replication versus caching as a funatidmt rate at\ = 10
as compared with connection broker caching. But when theceehit rate increases by just 3%, partial repli-
cation performs better than connection broker cachingerifqgms almost a factor of 2 better when the replica
hit rate increases by 15% for high command arrival rates. Ashowed in Section 3.2, replicas can improve
locality from 7% to over 20% over time as compared with exaatah caching. Searching the replica is so
much faster than searching the entire collection, evenlamalunts of locality have a significant impact on
performance.

Figure 10 demonstrates the effect of the hit rate more gle#rplots the average query response time
versus the hit rate when commands arrive at 10 commandsgmrderigure 10 shows that the performance
of server caching is slightly worse than connection brolkahing, since the connection broker cache elim-
inates the coordination time of multiple servers and redumwork traffic between the connection broker
and InQuery servers. Partial replication outperforms eation broker caching when the replica satisfies 3%
or more of commands until partial replication needs loadibeihg (which occurs when the hit rate is around
40%). After this point, partial replication performs sificantly worse than connection broker caching, since
it redirects significant amount of commands to the origieavers, while caching does not. The log analysis

in Section 3 shows that the cache achieves a hit rate betwdén 30%, or less in most cases. However,

34

combining the connection broker cache and partial reptindtirther improves performance; an unsurprising

result at this point.

7 Conclusions

In this paper, we investigated how to search a terabyte béisrg partial replication. We built a hierarchy of
replicas based on query frequency and available resowacdsised the InQuery retrieval system for the repli-
cas and the original collection. We examined queries fromDMAS (THOMAS, 1998) and Excite (Excite,
1997) to find locality patterns in real systems. We find themauificient query locality that remains high over
long periods of time which will enable partial replicatianrhaintain effectiveness and significantly improve
performance as compared to caching. For THOMAS, updatiplicees hourly or even daily is unnecessary.
However, we need to some mechanism to deal with bursty eval@propose two simple updating strategies
that trigger updates based on events and performanceadhsteegular updating. In our traces, requiring
exact match for a query misses locality between queriesdiftbrent terms that in fact return the same top
documents, whereas partial replication with an effectefica selection function will find the similarities.
We believe this trend will hold for other query sets agaiast tollections and for web queries.

We investigate how to select a relevant partial replicagiiire inference network, and demonstrate the
effectiveness of our approach using the InQuery retrieystiesn and TREC collections. The results show
that the inference network model is a very promising apprdacranking partial replicas. By using our new
replica selection function, our replica selector can diatteast 82% of replicated queries to a relevant partial
replica rather than the original collection, and it ach&seprecision percentage loss withidfs and 14.2%
for the top 30 retrieved documents for those unreplicatestigs, when sizes of replicas range from 2% to
10% for the 2 GB collection, and 0.2% to 1% for the 20 GB coltattrespectively.

We demonstrate the performance of our system searchinglayterof text using a validated simulator.
We compare the performance of partial replication withiiarting over additional servers. Our results show
that partial replication is more effective at reducing exem times than partitioning on significantly fewer
resources. For example, using 1 or 2 additional serverefiica(s) achieves similar or better performance
than partitioning over 32 additional servers, even whendhgest replica satisfies only 20% of commands.
Higher query locality further widens the performance difeces. We also compare partial replication with
caching under a variety of workloads. The performance dfigdareplication with a connection broker ex-
ceeds that of connection broker caching as well as serveirgpander a variety of configurations when the
partial replica increases the hit rate by at least 3%. Oukworting and validating InQuery and the simula-
tor from a slower MIPS processor to the Alpha, as well as earpents with faster querying times which are
reported elsewhere (Lu, 1999; Lu & McKinley, 2000), leadab¢lieve the performance trends will hold for
faster systems using fewer resources. Although the sithpb€ caching is appealing, a combined approach

that incorporates partial replication will yield both arfesftive and better performing system.

35

Acknowledgments

The authors performed this research at the University ofdsletsusetts at Amherst. This material was sup-
ported in part by the National Science Foundation, Librdrongress and Department of Commerce un-
der cooperative agreement number EEC-9209623, supporfeatt by United States Patent and Trademark
Office and Defense Advanced Research Projects Agency/ITHerulRPA order number D468, issued by
ESC/AXS contract number F19628-95-C-0235, and also stgqar part by grants from Digital Equipment,
NSF grant EIA-9726401, and an NSF Infrastructure grant GI3A82639. Kathryn S. McKinley was sup-
ported by an NSF CAREER award CCR-9624209, NSF ITR grant OQ856792, and F33615-01-C-1892.
Any opinions, findings and conclusions or recommendatiopsessed in this material are the authors and
do not necessarily reflect those of the sponsors.

We would like especially to thank Bruce Croft for his entlassic and continued support of this work.
We thank Ben Mealey and Library of Congress for providingETREOMAS log. We thank Doug Cutting and
Excite for providing the Excite log. We also appreciate tetaded comments of one of our reviewers which

helped us to improve our presentation.

References

Baentsch, M., Molter, G., & Sturm, P. (1996). Introducingpbgation-level replication and naming into to-
day's Web. InProceedings of fifth international world wide web confeencParis, France; Available at

http://www5conf.inria.fr/fichhtml/papers/P3/Overview.html.
Bell, D., & Grimson, J. (1992)Distributed database systen’ddison-Wesley Publishers.

Bestavros, A. (1995). Demand-based document dissemimati@duce traffic and balance load in distributed infororati
systems. IrProceedings of spdp’95: The 7th ieee symposium on paraikbldistributed processingpp. 338-345).

San Anotonio, Texas.

Brin, S., & Page, L. (1998). The anatomy of a large-scale ttggaual web search engine. Rroceedings of wwwipp.
107-117). Brisbane, Australiamiw?. scu. edu. au/ pr ogr amme/ f ul | paper s/ 1921/ conl921. ht m

Brown, E. W., & Chong, H. A. (1997). The GURU system in TREC-# Proceedings of the sixth text REtrieval
conference (trec-6)pp. 535-540). Gaithersburg, MD.

Burkowski, F., Cormack, G., Clarke, C., & Good, R. (1993)global search architecturéTech. Rep. No. CS-95-12).

Waterloo, Canada: Department of Computer Science, Uriiyers\Waterloo.

Burkowski, F. J. (1990). Retrieval performance of a distiélnl text database utilizing a parallel process documemeise
In 1990 international symposium on databases in parallel aistributed systemp. 71-79). Trinity College,

Dublin, Ireland.

Cahoon, B., & McKinley, K. S. (1996). Performance evaluatid a distributed architecture for information retrievi.
Proceedings of the nineteenth annual international acrir signference on research and development in informa-

tion retrieval (pp. 110-118). Zurich, Switzerland.

Cahoon, B., McKinley, K. S., & Lu, Z. (2000). Evaluating therformance of distributed architectures for information

36

retrieval using a variety of workload#&\CM Transaction on Information Syeterd§(1), 1-43.

Callan, J. P., Croft, W. B., & Broglio, J. (1995). TREC and BIFER experiments with INQUERY Information
Processing & Managemer31(3), 327—343.

Callan, J. P., Croft, W. B., & Harding, S. M. (1992). The INQRE retrieval system. IrProceedings of the 3rd

international conference on database and expert systeticagipns (p. 78-93). Valencia, Spain.

Callan, J. P., Lu, Z., & Croft, W. B. (1995). Searching distiied collections with inference networks. Prmoceedings of
the eighteenth annual international acm sigir conferenceesearch and development in information retriefgd.

21-29). Seattle, WA.

Chakravarthy, A., & Haase, K. (1995). Netserf: Using sericakriowledge to find internet information archives.Rro-
ceedings of the eighteenth annual international acm sigifference on research and development in information

retrieval (pp. 4-11). Seattle, WA.

Couvreur, T. R., Benzel, R. N., Miller, S. F., Zeitler, D. Nlge, D. L., Singhai, M., Shivaratri, N., & Wong, W. Y. P.
(1994). An analysis of performance and cost factors in siagdarge text databases using parallel search systems.

Journal of the American Society for Information Sciert{d5), 443—-464.

Croft, W. B., Cook, R., & Wilder, D. (1995). Providing govenent information on the Internet: Experiences with

THOMAS. In The second international conference on the theory and weacf digital libraries. Austin, TX.

Danzig, P. B., Ahn, J., Noll, J., & Obraczka, K. (1991). Distited indexing: A scalable mechanism for distributed
information retrieval. IrProceedings of the fourteenth annual international acnir signference on research and

development in information retrievgbp. 221-229). Chicago, IL.

DeWitt, D., Graefe, G., Kumar, K. B., Gerber, R. H., Heytelis L., & Muralikrishna, M. (1986). GAMMA — a high
performance dataflow database machine.Pioceedings of the Twelfth International Conference ory\learge
Data Basegpp. 228—-237). Kyoto, Japan.

DeWitt, D., & Gray, J. (1992). Parallel database systems fGiture of high performance database systeBmnmuni-
cations of the ACM35(6), 85-98.

Excite. (1997). http://lwww.excite.com

French, J. C., Powell, A. L., C. L. Viles, J. C. anc, EmmeittPrey, K. J., & Mou, Y. (1999). Comparing the performance
of database selection algorithms. Pmoceedings of the twenty-second annual international aiin conference

on research and development in information retriefd. 238—245). Berkeley, CA.

Fuhr, N. (1999). A decision-theoretic approach to datalagection in networked irACM Transactions on Information
Systemgl7(3), 229-249.

Gravano, L., & Garcia-Molina, H. (1995). Generalizing GL®® vector-space databases and broker hierarchies. In
Proceedings of the Twenty First International Conferenoé/ery Large Data Base@p. 78—89). Zurich, Switch-

land.

Gravano, L., Garcia-Molina, H., & Tomasic, A. (1994). Théeefiveness of GLOSS for the text database discovery

problem. InProceedings of the 1994 acm sigmod international conferemcmanagement of dafpp. 126-137).

37

Minneapolis, MN.

Hagmann, R. B., & Ferrari, D. (1986). Performance analykigweral backend database architectud&M Transactions
on Database Systentsl(1), 1-26.

Harman, D. (Ed.). (1997).The sixth text retrieval conference (TREC-6%aithersburg, MD: National Institute of

Standards and Technology Special Publication.

Harman, D., McCoy, W., Toense, R., & Candela, G. (1991). ®yping a distributed information retrieval system that

uses statistical rankingnformation Processing & Managemei27(5), 449—460.

Hawking, D. (1997). Scalable text retrieval for large digiibraries. InFirst european conference on research and

advanced technology for digital librarigpp. 127-145). Pisa, Italy: Springer.

Hawking, D., Craswell, N., & Thistlewaite, P. (1998). Oviw of TREC-7 very large collection track. Proceedings
of the seventh text REtrieval conference (tre¢pp). 91-104). Gaithersburg, MD.

Hawking, D., & Thistlewaite, P. (1997). Overview of the TREGery large collection track. IRroceedings of the sixth
text REtrieval conference (trec-@p. 93—106). Gaithersburg, MD.

Holmedahl, V., Smaith, B., & Yu, T. (1998). Cooperative cachof dynamic content on a distributed web server. In
Proceedings of HPDC-{p. 243-250). Chicago, IL.

Katz, E., Butler, M., & McGrath, R. (1994). A scalable HTTRs&: the NCSA prototype Computer Networks and
ISDN System27(2), 155-164.

Lu, Z. (1999).Scalable distributed architectures for information retral. Unpublished doctoral dissertation, University

of Massachusetts at Amherst.

Lu, Z., & McKinley, K. S. (1999). Partial replica selectiomaded on relevance for information retrieval.Aroceedings
of the 22th annual international acm sigir conference oresesh and development in information retriegp.

97-104). Berkeley, CA.

Lu, Z., & McKinley, K. S. (2000). Partial replica selectioensus caching for information retrieval. Rtoceedings of the
23rd annual international acm sigir conference on reseanl development in information retrievg. 248-255).

Athens, Greek.

Lu, Z., McKinley, K. S., & Cahoon, B. (1998). The hardwardta@re balancing act for information retrieval on

symmetric multiprocessors. Proceedings of europar'98Southhampton, U.K.

Mackert, L. F., & Lohman, G. M. (1986)R" optimizer validation and performance evaluation for distired queries. In

Proceedings of the Twelfth International Conference ory\l@rge Data Basefpp. 149-159). Kyoto, Japan.

Markatos, E. P. (1999)On caching search engine resu(fBech. Rep. No. 241). Institute of Computer Science (ICS)
Foundation for Research & Technology - Hellas (FORTH), Geee

Martin, T. P., Macleod, I. A, Russell, J. |, Lesse, K., & FrsB. (1990). A case study of caching strategies for a
distributed full text retrieval systeninformation Processing & Manageme6(2), 227-247.

Martin, T. P., & Russell, J. I. (1991). Data caching stratsgdior distributed full text retrieval systemsnformation
Systemsl6(1), 1-11.

38

Saraiva, P. C., Moura, E. S. de, Ziviani, N., Meira, W., FaasdR., & Ribeiro-Neto, B. (2001). Rank-preserving two-
level caching for scalable search enginesPtaceedings of the 24th annual international acm sigir eoafice on

research and development in information retrieg@. 51-58). New Orleans, LA.

Simpson, P., & Alonso, R. (1987). Data caching in informatietrieval systems. IRroceedings of the tenth annual
international acm sigir conference on research and develeqt in information retrieva(pp. 296-305). New

Orleans, LA.

Stonebraker, M., Woodfill, J., Ranstrom, J., Kalash, J.,olkinK., & Anderson, E. (1983). Performance analysis of
distributed data base systems. Rroceedings of the Third Symposium on Reliability in Dimtted Software and

Database Systenfpp. 135-138). Clearwater Beach, FL.
THOMAS. (1998). legislative information on the internéttp://thomas.loc.gav

Tomasic, A., & Garcia-Molina, H. (1992)Caching and database scaling in distributed shared-ngthifformation
retrieval systemg§Tech. Rep. No. STAN-CS-92-1456). Stanford University.

Turtle, H. R. (1991). Inference networks for document retrievalnpublished doctoral dissertation, University of

Massachusetts.

Voorhees, E. M., Gupta, N. K., & Johnson-Laird, B. (1995).atréng collection fusion strategies. Rroceedings of
the eighteenth annual international acm sigir conferenceesearch and development in information retriefd.
172-179). Seattle, WA.

Wang, J. (1999). A survey of web caching schemes for theriste€omputer Communication Revie2®(5), 36—46.

Xu, J., & Croft, W. (1999). Cluster-based language modetsdfstributed retrieval. IrProceedings of the twenty-
second annual international acm sigir conference on resea@nd development in information retrievg. 254-

261). Berkeley, California.

39

