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Abstract
Despite some clear advantages and recent advances, refer-
ence counting remains a poor cousin to high-performance
tracing garbage collectors. The advantages of reference
counting include a) immediacy of reclamation, b) incremen-
tality, and c) local scope of its operations. After decades
of languishing with hopelessly bad performance, recent
work narrowed the gap between reference counting and the
fastest tracing collectors to within 10%. Though a major ad-
vance, this gap remains a substantial barrier to adoption in
performance-conscious application domains.

Our work identifies heap organization as the principal
source of the remaining performance gap. We present the
design, implementation, and analysis of a new collector,
RC Immix, that replaces reference counting’s traditional
free-list heap organization with the line and block heap
structure introduced by the Immix collector. The key in-
novations of RC Immix are 1) to combine traditional ref-
erence counts with per-line live object counts to identify
reusable memory and 2) to eliminate fragmentation by in-
tegrating copying with reference counting of new objects
and with backup tracing cycle collection. In RC Immix, ref-
erence counting offers efficient collection and the line and
block heap organization delivers excellent mutator local-
ity and efficient allocation. With these advances, RC Immix
closes the 10% performance gap, outperforming a highly
tuned production generational collector. By removing the
performance barrier, this work transforms reference count-
ing into a serious alternative for meeting high performance
objectives for garbage collected languages.

Categories and Subject Descriptors Software, Virtual Machines,
Memory management, Garbage collection

Keywords Reference Counting, Immix, Mark-Region, Defragmenta-
tion
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1. Introduction
In 1960, researchers introduced the two main branches of
automatic garbage collection: tracing and reference count-
ing [14, 24]. Reference counting directly identifies dead ob-
jects by counting the number of incoming references. When
the count goes to zero, the object is unreachable and the
collector may reclaim it. Tracing takes the opposite tack. It
identifies live objects by performing a transitive closure over
the object graph, implicitly identifying dead objects. It then
reclaims all untraced objects.

Reference counting has advantages. 1) It may reclaim ob-
jects as soon as they are no longer referenced. 2) It is inher-
ently incremental. 3) Its operations are object-local, rather
than global in scope. Its major disadvantage is that it can-
not reclaim cycles and therefore it requires a backup trac-
ing collector [2, 18]. This limitation has the practical con-
sequence that any reference counter that guarantees com-
pleteness (i.e., it will eventually reclaim all garbage) es-
sentially requires two collector implementations. Further-
more, the performance of reference counting implementa-
tions lagged high performance tracing collectors by 30% or
more until recently [21, 22, 27]. In 2012, Shahriyar et al.
solved two problems responsible for much of the perfor-
mance overhead of reference counting. This paper identifies
and solves the remaining problems, completely eliminating
performance degradation as a barrier to adoption.

Shahriyar et al. identify the following characteristics of
programs and use them to optimize reference counting. (We
call their collector RC for simplicity.)

1. The vast majority of reference counts are low, less than
five. The RC collector uses only a few bits for the ref-
erence count. It sticks counts at a maximum before they
overflow and then corrects stuck counts when it traces the
heap during cycle collection.

2. Many reference count increments and decrements are to
newly allocated objects. RC elides reference counting of
new objects and allocates them as dead, which eliminates
a lot of useless work.

RC performs deferred reference counting and occasional
backup cycle tracing. Deferral trades vastly fewer reference
counting increments and decrements for less immediacy of
reclamation. RC divides execution into three distinct phases:
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mutation, reference counting collection, and cycle collec-
tion. The result is a reference counting collector with the
same performance as a whole-heap tracing collector, and
within 10% of the best high performance generational col-
lector in MMTk [6, 8, 27].

This paper identifies that the major source of this 10%
gap is that RC’s free-list heap layout has poor cache local-
ity and imposes instruction overhead. Poor locality occurs
because free-list allocators typically disperse contemporane-
ously allocated objects in memory, which degrades locality
compared to allocating them together in space [6, 8]. Instruc-
tion overheads are greater in free lists, particularly when pro-
gramming languages require objects to be pre-initialized to
zero. While a contiguous allocator can do bulk zeroing very
efficiently, a free-list allocator must zero object-by-object,
which is inefficient [33].

To solve these problems, we introduce Reference Count-
ing Immix (RC Immix). RC Immix uses the allocation strat-
egy and the line and block heap organization introduced by
Immix mark-region garbage collection [6]. Immix places ob-
jects created consecutively in time consecutively in space in
free lines within blocks. Immix allocates into partially free
blocks by efficiently skipping over occupied lines. Objects
may span lines, but not blocks. Immix reclaims memory at a
line and block granularity.

The granularity of reclamation is the key mismatch be-
tween reference counting and Immix that RC Immix re-
solves. Reference counting reclaims objects, whereas Im-
mix reclaims lines and blocks. The design contributions of
RC Immix are as follows.
• RC Immix extends the reference counter to count live

objects on a line. When the live object count of a line
is zero, RC Immix reclaims the free line.

• RC Immix extends opportunistic copying [6], which
mixes copying with leaving objects in place. RC Im-
mix adds proactive copying, which combines reference
counting and copying to compact newly allocated live
objects. RC Immix on occasion reactively copies old ob-
jects during cycle detection to eliminate fragmentation.

Combining copying and reference counting is novel and sur-
prising. Unlike tracing, reference counting is inherently lo-
cal, and therefore in general the set of incoming references to
a live object is not known. However, we observe two impor-
tant opportunities. First, in a reference counter that coalesces
increments and decrements [21, 22], since each new object
starts with no references to it, the first collection must enu-
merate all references to that new object, presenting an op-
portunity to move that object proactively. We find that when
new objects have a low survival rate, the remaining live ob-
jects are likely to cause fragmentation. We therefore copy
new objects, which is very effective in small heaps. Second,
since completeness requires a tracing cycle collection phase,
RC Immix seizes upon this opportunity to incorporate reac-
tive defragmentation of older objects. In both cases, we use

opportunistic copying, which mixes copying and leaving ob-
jects in place, and thus can stop copying when it exhausts
available memory.

Two engineering contributions of RC Immix are im-
proved handling of roots and sharing the limited header
bits to serve triple duty for reference counting, backup cy-
cle collection with tracing, and opportunistic copying. The
combination of these innovations results in a collector that
attains great locality for the mutator and very low overhead
for reference counting.

Measurements on a large set of Java benchmarks show
that for all but the smallest of heap sizes RC Immix outper-
forms the best high performance collector in the literature.
In some cases RC Immix can perform substantially better. In
summary, we make the following contributions compared to
the previous state of the art [27].
1. We identify heap organization as the remaining perfor-

mance bottleneck for reference counting.

2. We merge reference counting with the heap structure of
Immix by marrying per-line live object counts with object
reference counts for reclamation.

3. We identify two opportunities for copying objects — one
for young objects and one that leverages the required cy-
cle collector — further improving locality and mitigating
fragmentation both proactively and reactively.

4. RC Immix improves performance by 12% on average
compared to RC and sometimes much more, outperform-
ing the fastest production and eliminating the perfor-
mance barrier to using reference counting.

Because the memory manager determines performance for
managed languages and consequently application capabili-
ties, these results open up new ways to meet the needs of
applications that depend on performance and prompt recla-
mation.

2. Motivation and Related Work
This section motivates our approach and overviews the nec-
essary garbage collection background on which we build.
We start with a critical analysis of the performance of
Shahriyar et al’s reference counter [27], which we refer to
simply as RC. This analysis shows that inefficiencies derive
from 1) remaining reference counting overheads and 2) poor
locality and instruction overhead due to the free-list heap
structure. We then review existing high performance collec-
tors, reference counting, and the Immix [6] garbage collector
upon which we build.

2.1 Motivating Performance Analysis
All previous reference counting implementations in the lit-
erature use a free-list allocator because when the collector
determines that an object’s count is zero, it may then imme-
diately place the freed memory on a free list. We start our
analysis by understanding the performance impact of this
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Figure 1. Immix Heap Organization

choice, using hardware performance counters. We then an-
alyze RC further to establish its problems and opportunities
for performance improvements.

Free-List and Contiguous Allocation The allocator plays
a key role in mutator performance since it determines the
placement and thus locality of objects. Contiguous mem-
ory allocation appends new objects by incrementing a bump
pointer by the size of the new object [13]. On the other
hand, modern free-list allocators organize memory into k
size-segregated free lists [4, 8]. Each free list is unique to a
size class and is composed from blocks of contiguous mem-
ory. It allocates an object into a free cell in the smallest size
class that accommodates the object. Whereas a contiguous
allocator places objects in memory based on allocation or-
der, a free list places objects in memory based on their size
and free memory availability.

Blackburn et al. [8] show that contiguous allocation in a
copying collector delivers significantly better locality than
free-list allocation in a mark-sweep collector. Feng and
Berger [17] show similar locality benefits from initial con-
tiguous allocation in a free list for C applications, but only
when allocation to live ratios are very low since with high
ratios the allocator reverts to free-list allocation. We confirm
the locality benefits of contiguous on contemporary hard-
ware, workloads, and allocator implementations below.

When contiguous allocation is coupled with copying col-
lection, the collector must update all references to each
moved object [13], a requirement that is at odds with refer-
ence counting’s local scope of operation. Because reference
counting does not perform a closure over the live objects,
in general, a reference counting collector does not know of
and therefore cannot update all pointers to an object it might
otherwise move. Thus far, this prevented reference counting
from copying and using a contiguous allocator.

On the other hand, the Immix mark-region heap layout
offers largely contiguous heap layout, line and block recla-
mation, and copying [6]. Figure 1 shows how Immix allo-
cates objects contiguously in empty lines and blocks (see
Section 2.3 for more details). In partially full blocks, Immix
skips over occupied lines.

First to explore the performance impact of free-list allo-
cation, we compare the mutator time, which is the total time

Mutator Immix Mark-Sweep Semi-Space

Time 1.000 1.087 1.007

Instructions Retired 1.000 1.071 1.000

L1 Data Cache Misses 1.000 1.266 0.966

Table 1. The mutator characteristics of mark-sweep relative
to Immix using the geometric mean of the benchmarks. GC
time is excluded. Free-list allocation increases the number
of instructions retired and L1 data cache misses. Semi-space
serves as an additional point of comparison.

minus the collector time, in Table 1. We measure Immix,
mark-sweep using a free list, and semi-space [13], across
a suite of benchmarks. (See Section 4 for methodology de-
tails.) We compare mutator time of Immix to mark-sweep to
cleanly isolate the performance impact of the free-list allo-
cator versus the Immix allocator. Mark-sweep uses the same
free-list implementation as RC, and neither Immix nor mark-
sweep use barriers in the mutator. We also compare to semi-
space. Semi-space is the canonical example of a contiguous
allocator and thus an interesting limit point, but it is incom-
patible with reference counting. The semi-space data con-
firms that Immix is very close to the ideal for a contiguous
allocator.

The contiguous bump allocator has two advantages over
the free list, both of which are borne out in Table 1. The
combined effect is almost a 9% performance advantage. The
first advantage of a contiguous allocator is that it improves
the cache locality of contemporaneously allocated objects by
placing them on the same or nearby cache lines, and interacts
well with modern memory systems. Our measurements in
Table 1 confirm this intuition, showing that a free list adds
26% more L1 data cache misses to the mutator, compared to
the Immix contiguous allocator. This degradation of locality
has two related sources. 1) Contemporaneously allocated
objects are much less likely to share a cache line when
using a free list. 2) A contiguous allocator touches memory
sequentially, priming the prefetcher to fetch lines before the
allocator writes new objects to them. On the other hand, a
free-list allocator disperses new objects, defeating hardware
prefetching prediction mechanisms. Measurements by Yang
et al. show these effects [33].
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Mutator StickyImmix RC Immix

Time 1.000 1.093 0.975

Instructions Retired 1.000 1.092 0.972

L1 Data Cache Misses 1.000 1.329 1.018

Table 2. The mutator characteristics of RC and
Sticky Immix, which except for heap layout have simi-
lar features. GC time is excluded. RC’s free list allocator
increases instructions retired and L1 cache misses. Immix
serves as a point of comparison.

The second advantage of contiguous allocation is that it
uses fewer instructions per allocation, principally because
it zeros free memory in bulk using substantially more effi-
cient code [33]. The allocation itself is also simpler because
it only needs to check whether there is sufficient memory to
accommodate the new object and increase the bump pointer,
while the free-list allocator has to look up and update the
metadata to decide where to allocate. However, we inspect
generated code and confirm the result of Blackburn et al. [8]
— that in the context of a Java optimizing compiler, where
the size of most objects is statically known, the free-list al-
location sequence is only slightly more complex than for the
bump pointer. The overhead in additional instructions shown
in Table 1 is therefore solely attributable to the substantially
less efficient cell-by-cell zeroing required by a free-list al-
locator. We measure a 7% increase in the number of retired
instructions due to the free list compared to Immix’s con-
tiguous allocator.

Analyzing RC Overheads We use a similar analysis to
examine mutator overheads in RC [27] by comparing to
Sticky Immix [6, 15], a generational variant of Immix. We
choose Sticky Immix for its similarities to RC. Both collec-
tors a) are mostly non-moving, b) have generational behav-
ior, and c) use similar write barriers. This comparison holds
as much as possible constant but varies the heap layout be-
tween free list and contiguous.

Table 2 compares mutator time, retired instructions, and
L1 data cache misses of RC and Sticky Immix. The mutator
time of RC is on average 9.3% slower than Sticky Immix,
which is reflected by the two performance counters we re-
port. 1) RC has on average 9.2% more mutator retired in-
structions than Sticky Immix. 2) RC has on average 33%
more mutator L1 data cache misses than Sticky Immix.
These results are consistent with the hypothesis that RC’s
use of a free list is the principal source of overhead com-
pared to Sticky Immix, and motivates our design that com-
bines reference counting with the Immix heap structure.

2.2 High Performance Reference Counting
The first account of reference counting was published by
George Collins in 1960 [14], just months after John Mc-
Carthy first described tracing garbage collection [24]. The

two approaches are duals. Reference counting directly iden-
tifies dead objects by keeping a count of the number of ref-
erences to each object, freeing the object when its count
reaches zero. Tracing algorithms, such as McCarthy’s, do
not directly identify dead objects, but rather, they identify
live objects, and the remaining objects are implicitly dead.
Most high performance tracing algorithms are exact, which
means that they precisely identify all live objects in the heap.
To identify live objects, they must enumerate all live refer-
ences from the running program’s stacks, which means that
the runtime must maintain accurate stack maps. Maintaining
stack maps is a formidable engineering burden, and is a rea-
son why some language developers use reference counting
rather than tracing [19]. To build stack maps, the compiler
(or interpreter) must be able to determine for every register
and stack location, at every point in the program’s execution
where a GC is legal, whether that location contains a valid
heap reference or not.

Collins’ first reference counting algorithm suffered from
significant drawbacks including: a) an inability to collect
cycles of garbage, b) overheads due to tracking very frequent
pointer mutations, c) overheads due to storing the reference
count, and d) overheads due to maintaining counts for short
lived objects. The following paragraphs briefly outline five
important optimizations developed over the past fifty years
to improve over Collins’ original paper. Shahriyar et al.
show that together these optimizations deliver competitive
performance [27].

Deferral To mitigate the high cost of maintaining counts
for rapidly mutated references, Deutsch and Bobrow intro-
duced deferred reference counting [16]. Deferred reference
counting ignores mutations to frequently modified variables,
such as those stored in registers and on the stack. Deferral re-
quires a two phase approach, dividing execution into distinct
mutation and collection phases. This tradeoff reduces refer-
ence counting work significantly, but delays reclamation.

Since deferred references are not accounted for during
the mutator phase, the collector counts other references and
places zero count objects in a zero count table (ZCT) defer-
ring their reclamation. Periodically in a GC reference count-
ing phase, the collector enumerates all deferred references
into a root set and then reclaims any object in the ZCT that
is not in the root set.

Bacon et al. [3] eliminate the zero count table by buffer-
ing decrements between collections. At collection time, the
collector temporarily increments a reference count to each
object in the root set and then processes all of the buffered
decrements. Although much faster than naı̈ve immediate ref-
erence counting, these schemes typically require stack maps
to enumerate all live pointers from the stacks. Stack maps are
an engineering impediment, which discourages many refer-
ence counting implementations from including deferral [19].

Coalescing Levanoni and Petrank observed that all but the
first and last in any chain of mutations to a reference within a
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given window can be coalesced [21, 22]. Only the initial and
final states of the reference are necessary to calculate correct
reference counts. Intervening mutations generate increments
and decrements that cancel each other out. This observation
is exploited by remembering (logging) only the initial value
of a reference field when the program mutates it between
periodic reference counting collections. At each collection,
the collector need only apply a decrement to the initial value
of any over-written reference (the value that was logged),
and an increment to the latest value of the reference (the
current value of the reference).

Levanoni and Petrank implemented coalescing using ob-
ject remembering. The first time the program mutates an
object reference after a collection phase a) a write barrier
logs all of the outgoing references of the mutated object
and marks the object as logged; b) all subsequent reference
mutations in this mutator phase to the (now logged) object
are ignored; and c) during the next collection, the collector
scans the remembered object, increments all of its outgoing
pointers, decrements all of its remembered outgoing refer-
ences, and clears the logged flag. This optimization uses two
buffers called the mod-buf and dec-buf. The allocator logs
all new objects, ensuring that outgoing references are incre-
mented at the next collection. The allocator does not record
old values for new objects because all outgoing references
start as null.

Limited Bit Counts Each object has a reference count. A
dedicated word for the count guarantees that it will never
overflow since a word is large enough to count a pointer
from every address in the address space. However, reference
counting may use fewer bits [20]. Shahriyar et al. show
that using a full word adds non-negligible overhead. They
instead use just four bits that are available in the object’s
header word in many systems [27]. The reference counter
leaves any count that is about to overflow in a stuck state,
protecting the integrity of the remainder of the header word,
but introducing a potential garbage leak. Each time the cycle
collector runs it resets each reference count, which has the
effect of bounding the impact of stuck reference counts.
Shahriyar et al. show that this strategy performs well.

Cycle Collection Reference counting suffers from the
problem that cycles of objects will sustain non-zero refer-
ence counts, and therefore cannot be collected. To attain
completeness, a separate backup tracing collector executes
from time to time to eliminate cyclic garbage [31]. Backup
tracing must enumerate live root references from the stack
and registers, which requires stack maps. For this reason,
naı̈ve reference counting implementations usually do not
perform cycle collection.

A backup tracing collector typically collects cycles by
performing a mark-sweep trace of the entire heap. Re-
searchers tried limiting tracing to mutated objects [2], but
subsequently Frampton showed backup tracing, starting
from the roots, performs better [18].

Both RC and RC Immix use backup tracing [18, 27]. Per-
forming the trace requires a mark bit in each object header.
During the trace, RC takes the opportunity to recompute all
reference counts and thus may fix stuck counts. RC then
sweeps all dead objects to the free list. RC Immix uses the
same approach, except that it also recomputes object counts
on lines and then reclaims free lines and blocks.

Young Objects As the weak generational hypothesis states,
most objects die young [23, 30], and as a consequence,
young objects are a very important optimization target. All
high performance collectors today exploit this observation,
typically via a copying generational nursery [30]. Prior work
applies the weak generational hypothesis to reference count-
ing by combining reference counting with a copying nurs-
ery [5] and by in-place mark-sweep tracing [25].

Shahriyar et al. applied two optimizations to deferred, co-
alescing reference counting to exploit short lived young ob-
jects: 1) lazy mod-buf insertion and 2) allocate as dead. Lazy
mod-buf insertion avoids adding new objects to the mod-
buf. Instead, it sets a new bit in object headers during allo-
cation and the collector only adds new objects to the mod-
buf lazily when it processes increments. During collection
whenever the subject of an increment has its new bit set,
the collector first clears the new bit and then pushes the ob-
ject into the mod-buf. Because in a coalescing deferred ref-
erence counter, all references from roots and old objects will
increment all objects they reach, this approach will only re-
tain new objects directly reachable from old objects and the
roots. For each object in the mod-buf, the collector will in-
crement each of its children, which makes this scheme tran-
sitive. Thus new objects are effectively traced.

The allocate as dead optimization is a simple extension
of the above strategy. Instead of allocating objects live with
a reference count of one and enqueueing a compensating
decrement, this strategy allocates new objects as dead and
does not enqueue a decrement. This optimization inverts the
presumption: the reference counter does not need to identify
new objects that are dead, but it must rather identify live ob-
jects. This inversion means that the collector performs work
in the infrequent case when a new object survives a col-
lection, rather that in the common case when it dies. New
objects become live when they receive their first increment
when the collector processes the mod-buf. This strategy re-
moves the need for creating compensating decrements and
avoids explicitly freeing short lived objects.

Modern widely used implementations of reference counting
employ few, if any, of the above optimizations. The likely
explanation for this phenomena is two-fold. First, reference
counting lagged the best generational garbage collectors by
40% until 2012 when Shahriyar et al. closed the gap to 10%.
Consequently, reference counting is not currently used in
performance critical settings. Second, one attraction of sim-
ple reference counting implementations is that they do not
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require sophisticated runtime system support, such as pre-
cise stack maps. Many of the optimizations we describe here
require the same runtime support as a tracing collector, un-
dermining a principal advantage of a simple implementation.
The reference counting implementations in widely used lan-
guages such as PHP and Objective-C are naı̈ve. Because they
lack these optimizations, they are inefficient. Shahriyar et
al.’s collector implements all these optimizations and is our
RC baseline.

We have outlined the state of the art in reference counting.
RC Immix builds upon this foundation and then extends it by
a) changing the underlying heap structure, and b) performing
proactive and reactive copying to mitigate fragmentation
and improve locality. The result is that RC Immix entirely
eliminates the 10% performance overhead suffered by the
fastest previous reference counting implementation.

2.3 Heap Organization and Immix
Blackburn and McKinley outline three heap organizations:
a) free lists, b) contiguous, and c) regions [6]. Until now, ref-
erence counting used a free-list heap structure. In this paper,
we adapt reference counting to use regions. In particular, we
combine object reference counting with the line and block
reclamation strategy used by Immix.

Free List A free-list allocator uses a heap structure that di-
vides memory into cells of various fixed sizes [32]. When
space is required for an object, the allocator searches a data
structure called a free list to find a cell of sufficient size to
accommodate the object. When an object becomes free, the
allocator returns the cell containing the object to the free list
for reuse. Free lists are used by explicit memory manage-
ment systems and by mark-sweep and reference counting
garbage collectors. Importantly, free-list allocators do not
require copying of objects, which makes them particularly
amenable to systems that use reference counting and to sys-
tems that require support for pinning of objects (i.e. objects
that cannot be moved).

Free lists support immediate and fast reclamation of in-
dividual objects, which makes them particularly suitable for
reference counting. Other systems, such as evacuation and
compaction, must identify and move live objects before they
may reclaim any memory. Also, free lists are a good fit to
backup tracing used by many reference counters. Free lists
are easy to sweep because they encode free and occupied
memory in separate metadata. The sweep identifies and re-
tains live objects and returns memory occupied by dead ob-
jects to the free list. Free lists suffer two notable shortcom-
ings. First, they are vulnerable to fragmentation of two kinds.
They suffer from internal fragmentation when objects are
not perfectly matched to the size of their containing cell, and
they suffer external fragmentation when free cells of particu-
lar sizes exist, but the allocator requires cells of another size.
Second, they suffer from poor locality because they often po-

sition contemporaneously allocated objects in spatially dis-
joint memory, as discussed in Section 2.1.

Mark-Region Mark-region memory managers use a sim-
ple bump pointer to allocate objects into regions of contigu-
ous memory [6]. A tracing collection marks each object and
marks its containing region. Once all live objects have been
traced, it reclaims unmarked regions. This design addresses
the locality problem in free-list allocators. A mark-region
memory manager can choose whether to move surviving ob-
jects or not. By contrast, evacuating and compacting col-
lectors must copy, leading them to have expensive space or
time collection overheads compared to mark-sweep collec-
tors. Mark-region collectors are vulnerable to fragmentation
because a single live object may keep an entire region alive
and unavailable for reuse, and thus must copy some objects
to attain good performance.

Immix: Lines, Blocks, and Opportunistic Copying Immix
is a mark-region collector that uses a region hierarchy with
two sizes: lines, which target cache line locality, and blocks,
which target page level locality [6]. Each block is composed
of lines, as shown in Figure 1. The allocator places new ob-
jects contiguously into empty lines and skips over occupied
lines. Objects may span lines, but not blocks. Immix uses
a bit in the header to indicate whether an object straddles
lines, for efficient line marking. Immix recycles partially free
blocks, allocating into them first.

Immix tackles fragmentation using opportunistic defrag-
mentation, which mixes marking with copying. At the be-
ginning of a collection, Immix identifies fragmentation as
follows. Blocks with available memory indicate fragmenta-
tion because although available, the memory was not usable
by the mutator. Furthermore, the live/free status for these
blocks is up-to-date from the prior collection. In this case,
Immix performs what we call here, a reactive defragment-
ing collection. To mix marking and copying, Immix uses two
bits in the object header to differentiate between marked and
forwarded objects. At the beginning of a defragmenting col-
lection, Immix identifies source and target blocks. During
the mark trace, when Immix first encounters an object that
resides on a source block and there is still available mem-
ory for it on a target block, Immix copies the object to a
target block, leaving a forwarding pointer. Otherwise Immix
simply marks the object as usual. When Immix encounters
forwarded objects while tracing, it updates the reference ac-
cordingly. This process is opportunistic, since it performs
copying until it exhausts memory to defragment the heap.
The result is a collector that combines the locality of a copy-
ing collector and the collection efficiency of a mark-sweep
collector with resilience to fragmentation.

The best performing production collector in Jikes RVM
is generational Immix (GenImmix) [6], which consists of a
copying young space and an Immix old space.
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3. Design of RC Immix
This section presents the design of RC Immix, which com-
bines the RC and Immix collectors described in the previous
section. This combination requires solving two problems.
1) We need to adapt the Immix line/block reclamation strat-
egy to a reference counting context. 2) We need to share the
limited number of bits in the object header to satisfy the de-
mands of both Immix and reference counting.

In addition, RC Immix seizes two opportunities for de-
fragmentation using proactive and reactive opportunistic
copying. When identifying new objects for the first time,
it opportunistically copies them, proactively defragmenting.
When it, on occasion, performs cyclic garbage collection,
RC Immix performs reactive defragmentation.

Similar to RC, RC Immix has frequent reference counting
phases and occasional backup cycle tracing phases. This
structure divides execution into discrete mutation, reference
counting collection, and cycle collection phases.

3.1 RC and the Immix Heap
Until now, reference counting algorithms have always used
free-list allocators. When the reference count for an object
falls to zero, the reference counter frees the space occupied
by the object, placing it on a free list for subsequent reuse
by an allocator. Immix is a mark-region collector, which
reclaims memory regions when they are completely free,
rather than reclaiming memory on a per-object basis. Since
Immix uses a line and block hierarchy, it reclaims free lines
and if all the lines in a block are free, it reclaims the free
block. Lines and block cannot be reclaimed until all objects
within them are dead.

RC Immix Line and Block Reclamation RC Immix de-
tects free lines by tracking the number of live objects on a
line. RC Immix replaces Immix’s line mark with a per-line
live object count, which counts the number of live objects
on the line. (It does not count incoming references to the
line.)

As mentioned in Section 2.2, each object is born dead in
RC, with a zero reference count to elide all reference count-
ing work for short lived objects. In RC Immix, each line is
also born dead with a zero live object count to similarly elide
all line counting work when a newly allocated line only con-
tains short lived objects. RC only increments an object’s ref-
erence count when it encounters it during the first GC af-
ter the object is born, either directly from a root or due to
an increment from a live mutated object. We propagate this
laziness to per-line live object counts in RC Immix.

A newly allocated line will contain only newly born
objects. During a reference counting collection, before
RC Immix increments an object’s reference count, it first
checks the new bit. If the object is new, RC Immix clears
the new object bit, indicating the object is now old. It then
increments the object reference count and the live object
count for the line. When all new objects on a line die before

RC!RC!RC!RC! LG!LG!N!M!

(a)  RC! (b)  Immix!

(c)  RC Immix during mutation!
      and  reference counting!

RC!RC!RC! LG!LG!N!M!S!

M! F! F!S!

(d)  RC Immix during tracing!

RC!RC!RC! N!M!S! F! F!

LG:! Logged !
N:! New object!

F:! Forwarded!M:! Marked!
RC: ! Reference Count! S:! Straddles lines !

Figure 2. How RC, Immix, and the different phases of
RC Immix use the eight header bits.

the collection, RC Immix will never encounter a reference
to an object on the line, will never increment the live object
count, and will trivially collect the line at the end of the first
GC cycle. Because Immix’s line marks are bytes (stored in
the metadata for the block) and the number of objects on a
line is limited by the 256 byte line size, live object counts do
not incur any space penalty in RC Immix compared to the
original Immix algorithm.

Limited Bit Count In Jikes RVM, one byte (eight bits) is
available in the object header for use by the garbage collec-
tor. RC uses all eight bits. It uses two bits to log mutated
objects for the purposes of coalescing increments and decre-
ments, one bit for the mark state for backup cycle tracing,
one bit for identifying new objects, and the remaining four
bits to store the reference count. Figure 2(a) illustrates how
RC fully uses all its eight header bits. Table 3 shows that four
bits for the reference count is sufficient to correctly count
references to more than 99.8% of objects.

To integrate RC and Immix, we need some header bits
in objects for Immix-specific functionality as well. The
base Immix implementation requires four header bits, fewer
header bits than RC, but three bits store different informa-
tion than RC. Both Immix and RC share the requirement
for one mark bit during a tracing collection. Immix however
requires one bit to identify objects that span multiple lines
and two bits when it forwards objects during defragmenta-
tion. (Copying collectors, including Immix and RC Immix,
first copy the object and then store a forwarding pointer in
the original object’s header.) Figure 2(b) shows the Immix
header bits.

Immix and RC Immix both require a bit to identify ob-
jects that may span lines to ensure that all affected lines are
kept live. Immix and RC Immix both use an optimization
called conservative marking which means this bit is only set
for objects that are larger than one line, which empirically
is relatively uncommon [6]. Immix stores its line marks in
per-block metadata and RC Immix does the same.
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1 47.65 33.93 57.31 9.37 66.77 7.29 20.23 44.76 34.74 49.54 47.08 86.36 49.68 96.89 66.31 75.83 38.23 59.62 13.54 47.83

2 6.75 0.08 0.16 0.80 4.96 0.16 0.95 0.95 15.74 2.54 1.83 9.38 4.73 47.38 20.75 5.57 4.67 5.15 0.01 2.47

3 0.65 0 0.08 0.68 0.59 0 0.16 0.01 6.69 0.10 0.02 1.15 0.31 0.21 0.16 0.01 0.14 1.53 0.01 0.59

4 0.11 0 0.06 0.68 0.28 0 0.08 0 0.06 0.05 0.01 0.24 0.10 0.01 0.01 0.01 0.02 0.26 0.01 0.17

5 0.06 0 0.03 0.49 0.12 0 0.03 0 0.06 0.03 0.01 0.07 0.05 0.01 0.01 0.01 0.01 0.14 0.01 0.06

Table 3. Percentage of objects that overflow for a given number of reference counting bits. RC Immix and RC use three and
four bits, respectively. Data from Shahriyar et al. [27]. On average, 0.65% of objects overflow with three bits.

Immix and RC Immix both need to forward objects dur-
ing defragmentation. Forwarding uses two bits during a col-
lection to record the forwarding state (not forwarded, being
forwarded, forwarded).

At first cut, it seems that there are not enough bits since
adding Immix functionality to RC requires three bits and
would thus reduce the bits for the reference count to just one.
However, we observe that RC Immix only needs the logged
bits for an object to coalesce increments and decrements dur-
ing reference counting, and it only needs forwarding bits
when tracing new objects and during backup cycle collec-
tion. These activities are mutually exclusive in time, so they
are complementary requirements.

We therefore put the two bits to use as follows. 1) Dur-
ing mutation RC Immix follows RC, using the logged bits to
mark modified objects that it has remembered for coalesc-
ing. 2) During a reference counting collection, RC Immix
follows RC. For old objects, RC Immix performs increments
and decrements as specified by coalescing and then clears
the two bits. 3) For new objects and during cycle collec-
tion, RC Immix follows Immix. It sets the now cleared bits
to indicate that it has forwarded an object and at the end of
the collection, reclaims the memory. RC Immix thus over-
loads the two bits for coalescing and forwarding. Figure 2(c)
shows how RC Immix uses the header bits during mutation
and reference counting. Figure 2(d) shows how RC Immix
repurposes the logged bits for forwarding during a collec-
tion. All the other bits remain the same in both phases.

Consequently, we reduce the number of reference count-
ing bits to three. Three bits will lead to overflow in just
0.65% of objects on average, as shown in Table 3. When
a reference count is about to overflow, it remains stuck un-
til a cycle collection occurs, at which time it is reset to the
correct value or left stuck if the correct count is higher.

Several optimizations and languages such as C# require
pinning. Pinned objects are usually identified by a bit in the
header. The simplest way to add pinning is to steal another
bit from the reference count, reducing it to two bits. A
slightly more complex design adds pinning to the logged and
forwarded bits, since each of logged and forwarding only
require three states. When we evaluated stealing a reference

count bit for pinning, it worked well (see Section 5.3), so
we did not explore the more complex implementation. Our
default RC Immix configuration does not use pinning.

3.2 Cycle Collection and Defragmentation
Cycle Collection Reference counting suffers from the
problem that cycles of objects will sustain non-zero refer-
ence counts and therefore cannot be collected. The same
problem affects RC Immix, since line counts follow object
liveness. RC Immix relies on a backup tracing cycle collec-
tor to correct incorrect line counts and stuck object counts. It
uses a mark bit for each object and each line. It takes one bit
from the line count for the mark bit and uses the remaining
bits for the line count. The cycle collector starts by setting all
the line marks and counts to zero. During cycle collection,
the collector marks each live object, marks its corresponding
line, and increments the live object count for the line when it
first encounters the object. At the end of marking, the cycle
collector reclaims all unmarked lines.

Whenever any reference counting implementation finds
that an object is dead, it decrements the reference counts of
all the children of the dead object, which may recursively
result in more dead objects. This rule applies to reference
counting in RC and RC Immix. RC and RC Immix’s cycle
collection is tasked with explicitly resetting all reference
counts. In addition, RC Immix restores correct line counts.
This feature eliminates the need to sweep dead objects alto-
gether and RC Immix instead sweeps dead lines.

RC Immix performs cycle collection on occasion. How
often to perform cycle collection is an empirical question
that trades off responsiveness with immediacy of cycle recla-
mation that we explore below.

Defragmentation with Opportunistic Copying Reference
counting is a local operation, meaning that the collector is
only aware of the number of references to an object, not their
origin. Therefore it is generally not possible to move objects
during reference counting. However, RC Immix seizes upon
two important opportunities to copy objects and thus mit-
igate fragmentation. First, we observe that when an object
is subject to its first reference counting collection, all ref-
erences to that object will be traversed, giving us a unique
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opportunity to move the object during a reference counting
collection. Because each object is unreferenced at birth, at
its first GC, the set of all increments to a new object must
be the set of all references to that object. Second, we exploit
the fact that cycle collection involves a global trace, and thus
presents another opportunity to copy objects. In both cases,
we use opportunistic copying. Opportunistic copying mixes
copying with in-place reference counting and marking such
that it can stop copying when it exhausts the available space.

Proactive Defragmentation RC Immix’s proactive defrag-
mentation copies as many surviving new objects as possible
given a particular copy reserve. During the mutator phase,
the allocator dynamically sets aside a portion of memory as
a copy reserve, which strictly bounds the amount of copy-
ing that may occur in the next collection phase. In a classic
semi-space copying collector, the copy reserve must be large
enough to accommodate all objects surviving because it is
dictated by the worst case survival scenario. Therefore, every
new block of allocation requires a block for the copy reserve.
Because RC Immix is a mark-region collector, which can
reuse partially occupied blocks, copying is optional. Copy-
ing is an optimization rather than required for correctness.
Consequently, we size the copy reserve according to perfor-
mance criteria.

Choosing the copy reserve size reflects a tradeoff. A large
copy reserve eats into memory otherwise available for allo-
cation and invites a large amount of copying. Although copy-
ing mitigates fragmentation, copying is considerably more
expensive than marking and should be used judiciously. On
the other hand, if the copy reserve is too small, it may not
compact objects that will induce fragmentation later.

Our heuristic seeks to mimic the behavior of a genera-
tional collector, while making the copy reserve as small as
possible. Ideally, an oracle would tell us the survival rate of
the next collection (e.g., 10%) and the collector would size
the copy reserve accordingly. We seek to emulate this policy
by using past survival rate to predict the future. Computing
fine-gain byte or object survival in production requires look-
ing up every object’s size, which is too expensive. Instead,
we use line survival rate as an estimate of byte survival rate.
We compute line survival rates of partially full blocks when
we scan the line marks in a block to recycle its lines. This
computation adds no measurable overhead.

Table 4 shows the average byte, object, line, and block
percentage survival rates. Block survival rates significantly
over predict actual byte survival rates. Line survival rates
over predict as well, but much less. The difference between
line and block survival rate is an indication of fragmentation.
The larger the difference between the two, the more live
objects are spread out over the blocks and the less likely a
fresh allocation of a multi-line object will fit in the holes
(contiguous free lines).

We experimented with a number of heuristics and choose
two effective ones. We call our default copy reserve heuristic

Immix Min Immix Survival
Alloc Heap Byte Object Line Block

Benchmark MB MB % % % %

compress 0.3 21 6 5 7 11

jess 262 20 1 1 7 53

db 53 19 8 6 8 10

javac 174 30 17 19 32 66

mpegaudio 0.2 13 41 37 44 100

mtrt 97 18 3 3 6 11

jack 248 19 3 2 6 32

avrora 53 30 1 4 8 9

bloat 1091 40 1 1 5 32

chart 628 50 4 5 17 67

eclipse 2237 84 6 6 7 36

fop 47 35 14 13 29 69

hsqldb 112 115 23 23 26 56

jython 1349 90 0 0 0 0

luindex 9 30 8 11 11 15

lusearch 1009 30 3 2 4 22

lusearch-fix 997 30 1 1 2 8

pmd 364 55 9 11 14 26

sunflow 1820 30 1 2 5 99

xalan 507 40 12 5 24 51

pjbb2005 1955 355 11 12 24 87

Table 4. Benchmark characteristics. Bytes allocated into the
Immix heap and minimum heap, in MB. The average sur-
vival rate as a percentage of bytes, objects, lines, and blocks
measured in an instrumentation run at 1.5⇥ the minimum
heap size. Block survival rate is too coarse to predict byte
survival rates. Line survival rate is fairly accurate and adds
no measurable overhead.

Heap Size
Heuristic 1.2⇥ 1.5⇥ 2⇥

MAX 1.031 0.984 0.976

EXP 1.036 0.990 0.982

Table 5. Two proactive copying heuristics and their perfor-
mance at 1.2, 1.5 and 2 times the minimum heap size, av-
eraged over all benchmarks. Time is normalized relative to
GenImmix. Lower is better.

MAX. MAX simply takes the maximum survival rate of the
last N collections (4 in our experiments). Also good, but
more complex, is a heuristic we call EXP. EXP computes
a moving window of survival rates in buckets of N bytes of
allocation (32 MB in our experiments) and then weights each
bucket by an exponential decay function (1 for the current
bucket, 1/2 for the next oldest, 1/4, and so on). Table 5 shows
that the simple MAX heuristic performs well. We believe
better heuristics are possible.

Reactive Defragmentation RC Immix also performs reac-
tive defragmentation, during cycle collection. At the start
of each cycle collection, the collector determines whether
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Threshold Heap Size
Cycle Defrag 1.2⇥ 1.5⇥ 2⇥

1% 1% 1.030 0.983 0.975
5% 5% 1.041 0.983 0.976

10% 10% 1.096 0.993 0.980

Table 6. Sensitivity to frequency of cycle detection and re-
active defragmentation at 1.2, 1.5 and 2 times the minimum
heap size, averaged over all benchmarks. Time is normalized
relative to GenImmix. Lower is better.

to defragment based on fragmentation levels, any available
free blocks, and any available partially filled blocks contain-
ing free lines, using statistics it gathers in the previous col-
lection. RC Immix uses these statistics to select defragmen-
tation sources and targets. If an object is unmovable when
the collector first encounters it, the collector marks the ob-
ject and line live, increments the object and line counts, and
leaves the object in place. When the collector first encoun-
ters a movable live object on a source block, and there is
still sufficient space for it on a target block, it opportunisti-
cally evacuates the object, copying it to the target block, and
leaves a forwarding pointer that records the address of the
new location. If the collector encounters subsequent refer-
ences to a forwarded object, it replaces them with the value
of the object’s forwarding pointer.

A key empirical question for cycle detection and defrag-
mentation is how often to perform them. If we perform them
too often, the system loses its incrementality and pays both
reference counting and tracing overheads. If we perform
them too infrequently, it takes a long time to reclaim objects
kept alive by dead cycles and the heap may suffer a lot of
fragmentation. Both waste memory. This threshold is nec-
essarily a heuristic. We explore thresholds as a function of
heap size.

We use the following principle for our heuristic. If at the
end of a collection, the amount of free memory available
for allocation falls below a given threshold, then we mark
the next collection for cycle collection. We can always in-
clude defragmentation with cycle detection, or we can per-
form it less frequently. Triggering cycle collection and de-
fragmentation more often enables applications to execute in
smaller minimum heap sizes, but will degrade performance.
Depending on the scenario, this choice might be desirable.
We focus on performance and use a free memory threshold
which is a fraction of the total heap size. We experiment with
a variety of thresholds to pick the best values for both and
show the results for three heap sizes in Table 6. (See Sec-
tion 4 for our methodology.) Based on the results in Table 6,
we use 1% for both.

3.3 Optimized Root Scanning
The existing implementation of the RC algorithm treats Jikes
RVM’s boot image as part of the root set [27], enumerating

each reference in the boot image at each collection. We
identified this as a significant bottleneck in small heaps and
instead treat the boot image as a non-collected part of the
heap, rather than part of the root set. This very simple change
delivers a significant performance boost to RC in modest
heaps and is critical to RC Immix’s performance in small
heaps (Figure 4(a)).

4. Methodology
This section presents software, hardware, and measurement
methodologies that we use to evaluate RC Immix.

Benchmarks. We draw 21 benchmarks from DaCapo [10],
SPECjvm98 [28], and pjbb2005 [9]. The pjbb2005 bench-
mark is a fixed workload version of SPECjbb2005 [29] with
8 warehouses that executes 10,000 transactions per ware-
house. We do not use SPECjvm2008 because that suite does
not hold workload constant, so is unsuitable for GC evalua-
tions unless modified. Since a few DaCapo 9.12 benchmarks
do not execute on our virtual machine, we use benchmarks
from both 2006-10-MR2 and 9.12 Bach releases of DaCapo
to enlarge our suite.

We omit two outliers, mpegaudio and lusearch, from our
figures and averages, but include them grayed-out in tables,
for completeness. The mpegaudio benchmark is a very small
benchmark that performs almost zero allocation. The luse-

arch benchmark allocates at three times the rate of any other.
The lusearch benchmark derives from the 2.4.1 stable release
of Apache Lucene. Yang et al. [33] found a performance
bug in the method QueryParser.getFieldQuery(), which
revision r803664 of Lucene fixes [26]. The heavily executed
getFieldQuery() method unconditionally allocated a large
data structure. The fixed version only allocates a large data
structure if it is unable to reuse an existing one. This fix cuts
total allocation by a factor of eight, speeds the benchmark up
considerably, and reduces the allocation rate by over a factor
of three. We patched the DaCapo lusearch benchmark with
just this fix and we call the fixed benchmark lusearch-fix. The
presence of this anomaly for over a year in public releases of
a widely used package suggests that the behavior of lusearch

is of some interest. Compared with GenImmix, RC Immix
improves the performance of lusearch by 34% on i7-2600,
but we use lusearch-fix in our results.

Jikes RVM & MMTk. We use Jikes RVM and MMTk for
all of our experiments. Jikes RVM [1] is an open source
high performance Java virtual machine (VM) written in a
slightly extended version of Java. We use Jikes RVM re-
lease 3.1.2+hg r10475 to build RC Immix and compare it
with different GCs. MMTk is Jikes RVM’s memory man-
agement sub-system. It is a programmable memory manage-
ment toolkit that implements a wide variety of collectors that
reuse shared components [8].

All of the garbage collectors we evaluate are paral-
lel [7]. They use thread local allocation for each applica-
tion thread to minimize synchronization. During collection,
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the collectors exploit available software and hardware par-
allelism [12]. To compare collectors, we vary the heap size
to understand how well collectors respond to the time space
tradeoff. In our experiments, no collector consistently ran
in smaller heaps than the other collectors. Therefore we se-
lected for our minimum heap size the smallest heap size in
which all of the collectors execute, and thus have complete
results at all heap sizes for all collectors.

Jikes RVM does not have a bytecode interpreter. Instead,
a fast template-driven baseline compiler produces machine
code when the VM first encounters each Java method. The
adaptive compilation system then judiciously optimizes the
most frequently executed methods. Using a timer-based ap-
proach, it schedules periodic interrupts. At each interrupt,
the adaptive system records the currently executing method.
Using a cost model, it then selects frequently executing
methods it predicts will benefit from optimization. The opti-
mizing compiler compiles these methods at increasing levels
of optimizations.

To reduce perturbation due to dynamic optimization and
to maximize the performance of the underlying system that
we improve, we use a warmup replay methodology. Be-
fore executing any experiments, we gathered compiler opti-
mization profiles from the 10th iteration of each benchmark.
When we perform an experiment, we execute one complete
iteration of each benchmark without any compiler optimiza-
tions, which loads all the classes and resolves methods. We
next apply the benchmark-specific optimization profile and
perform no subsequent compilation. We then measure and
report the subsequent iteration. This methodology greatly re-
duces non-determinism due to the adaptive optimizing com-
piler and improves underlying performance by about 5%
compared to the prior replay methodology [11]. We run each
benchmark 20 times (20 invocations) and report the average.
We also report 95% confidence intervals for the average us-
ing Student’s t-distribution.

Operating System. We use Ubuntu 10.04.01 LTS server
distribution and a 64-bit (x86 64) 2.6.32-24 Linux kernel.

Hardware Platform. We report performance, performance
counter, and detailed results on a 32nm Core i7-2600 Sandy
Bridge with 4 cores and 2-way SMT running at 3.4GHz.
The two hardware threads on each core share a 32KB L1 in-
struction cache, 32KB L1 data cache, and 256KB L2 cache.
All four cores share a single 8MB last level cache. A dual-
channel memory controller is integrated into the CPU. The
system has 4GB of DDR3-1066 memory installed.

5. Results
We first compare RC Immix with other collectors at a moder-
ate 2⇥ heap size, then consider sensitivity to available mem-
ory, and perform additional in depth analysis.

5.1 RC Immix Performance Overview
Table 7 and Figure 3 compare total time, mutator time, and
garbage collection time of RC Immix and RC Immix without
proactive copying (‘no PC’) against a number of collectors.
The figure illustrates the data and the table includes raw per-
formance as well as relative measurements of the same data.
This analysis uses a moderate heap size of 2⇥ the minimum
in which all collectors can execute each benchmark. Pro-
duction systems often use this heap size because it strikes
a balance in the space-time tradeoff exposed by garbage col-
lected languages between memory consumption and garbage
collection overheads. We explore the space-time tradeoff in
more detail in Section 5.2. In Figure 3(c) and 3(d), results
are missing for some configurations on some benchmarks.
In each of these cases, either the numerator or denominator
or both performed no GC (see Table 7).

The table and figure compare six collectors.

1. GenImmix, which uses a copying nursery and an Immix
mature space.

2. Sticky Immix, which uses Immix with an in-place gener-
ational adaptation [6, 15].

3. Full heap Immix.
4. RC from Shahriyar et al.
5. RC Immix (no PC) which excludes proactive copying and

performs well in moderate to large heaps due to very low
collection times.

6. RC Immix as described in the previous section, which
performs well at all heap sizes.

We normalize to GenImmix since it is the best performing
in the literature [6] across all heap sizes and consequently is
the default production collector in Jikes RVM. All of the col-
lectors, except RC, defragment when there is an opportunity,
i.e., there are partially filled blocks without fresh allocation
and fragmentation is high, as described in Section 3.2.

These results show that RC Immix outperforms the best
performing garbage collector at this moderate heap size and
completely eliminates the reference counting performance
gap. The time

gc

show that, not surprisingly, Immix, the only
full heap collector that does not exploit any generational be-
haviors, has the worst collector performance, degrading by
on average 34%. Since garbage collection time is a relatively
smaller influence on total time in a moderate heap, all but RC
perform similarly on total time. At this heap size RC Immix
performs the same as RC Immix (no PC), but its worse-case
degradation is just 5% while its best case improvement is
22%. By comparison, RC Immix (no PC) has a worst case
degradation of 12% and best case improvement of 24%. Ta-
ble 7 and Figure 3(c) show that RC Immix (no PC) has the
best garbage collection time, outperforming GenImmix by
48%. As we show later, RC Immix has an advantage over
RC Immix (no PC) when memory is tight and fragmentation
is a bigger issue.
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(a) Total slowdown compared to GenImmix
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(b) Mutator slowdown compared to GenImmix
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(c) GC slowdown compared to GenImmix
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(d) Percentage of total execution time spent in GC

Figure 3. RC Immix performs 3% better than GenImmix, the highest performance generational collector, at a moderate heap
size of 2 times the minimum. The first three graphs compare total, mutator, and GC slowdowns relative to GenImmix; lower is
better. The fourth graph indicates the GC load seen by each configuration. RC Immix eliminates all the mutator time overheads
of RC. Error bars are not shown, but 95% confidence intervals are given in Table 7.
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Benchmark GenImmix StickyImmix Immix RC RC Immix (no PC) RC Immix
milliseconds ——————————– Normalized to GenImmix ——————————–

time time

mu

time

gc

time time

mu

time

gc

time time

mu

time

gc

time time

mu

time

gc

time time

mu

time

gc

time time

mu

time

gc

compress

2256

±0.2

2237

±0.2

20

±4.6

1.00

±0.2

1.00

±0.2

1.37

±5.9

0.99

±0.2

0.99

±0.2

1.09

±4.1

1.00

±0.1

1.00

±0.2

0.76

±3.2

0.97

±0.2

0.98

±0.2

0.25

±2.9

0.97

±0.2

0.97

±0.2

0.28

±1.6

jess

485

±0.7

453

±0.7

32

±4.3

0.98

±0.6

0.99

±0.6

0.77

±3.2

1.09

±0.8

1.00

±0.8

2.42

±8.0

1.33

±1.1

1.28

±1.2

2.08

±7.4

1.02

±0.9

1.03

±1.0

0.85

±6.7

1.01

±0.7

1.01

±0.6

0.98

±6.8

db

1491

±0.4

1460

±0.4

31

±7.1

1.06

±0.5

1.01

±0.5

3.29

±17.8

0.96

±1.0

0.96

±1.0

0.92

±5.6

1.09

±0.8

1.10

±0.8

0.68

±4.0

0.96

±0.9

0.97

±0.8

0.51

±7.0

0.97

±0.7

0.97

±0.8

0.85

±8.0

javac

1048

±0.7

911

±0.4

137

±4.5

1.02

±0.6

1.01

±0.3

1.10

±4.6

0.86

±0.4

0.95

±0.3

0.25

±0.9

0.97

±0.5

1.08

±0.3

0.20

±0.7

0.89

±0.5

1.01

±0.3

0.08

±1.5

1.05

±2.3

1.03

±0.5

1.17

±15.2

mpegaudio

1406

±0.1

1406

±0.1

0

±0.0

1.01

±0.2

1.01

±0.2

0.00

±0.0

1.01

±0.1

1.01

±0.1

0.00

±0.0

1.00

±0.1

1.00

±0.1

0.00

±0.0

0.97

±0.1

0.97

±0.1

0.00

±0.0

0.97

±0.1

0.97

±0.1

0.00

±0.0

mtrt

340

±3.5

302

±3.8

38

±2.8

1.00

±3.7

1.01

±4.2

0.92

±7.1

1.06

±2.6

0.98

±2.7

1.72

±5.7

1.06

±2.6

1.07

±2.9

1.00

±3.9

0.96

±3.6

1.01

±4.2

0.58

±3.0

0.98

±3.3

0.99

±3.4

0.89

±7.0

jack

715

±0.7

665

±0.7

50

±7.3

0.94

±0.6

0.97

±0.6

0.57

±3.4

1.00

±0.8

0.97

±0.7

1.40

±7.4

1.18

±0.8

1.13

±0.7

1.75

±9.2

0.97

±0.8

0.98

±0.7

0.72

±6.6

0.97

±0.7

0.99

±0.7

0.74

±4.6

mean 1056
±0.9

1005
±0.9

51
±4.4

geomean 1.00 1.00 1.12 0.99 0.97 1.06 1.10 1.11 0.85 0.96 1.00 0.39 0.99 0.99 0.75

avrora

3154

±1.2

3134

±1.2

20

±9.6

0.99

±1.3

1.00

±1.3

0.21

±1.7

0.98

±1.1

0.98

±1.1

0.58

±5.1

0.97

±1.3

0.98

±1.3

0.35

±2.6

0.98

±1.2

0.98

±1.2

0.12

±1.2

0.98

±1.1

0.99

±1.1

0.46

±16.4

bloat

3164

±0.4

3018

±0.5

145

±1.7

1.04

±0.5

1.03

±0.6

1.09

±2.1

1.07

±0.8

0.99

±0.8

2.71

±6.4

1.20

±0.5

1.19

±0.6

1.51

±2.6

1.02

±0.8

1.02

±0.7

0.90

±4.0

0.99

±0.5

1.00

±0.5

0.68

±3.1

chart

3750

±0.2

3473

±0.1

276

±1.6

1.02

±0.2

1.02

±0.2

1.09

±1.4

0.98

±0.5

1.01

±0.5

0.60

±0.9

1.08

±0.5

1.13

±0.5

0.48

±0.9

0.99

±0.8

1.04

±0.8

0.35

±1.0

0.99

±0.5

1.03

±0.7

0.52

±3.2

eclipse

16203

±4.0

15382

±4.2

821

±1.1

1.07

±5.7

1.04

±5.9

1.51

±1.5

1.06

±13.1

1.01

±8.5

2.06

±170.2

1.12

±5.7

1.13

±6.1

0.99

±1.0

0.99

±4.9

1.02

±5.2

0.57

±0.7

1.03

±5.2

1.04

±5.5

0.79

±4.5

fop

868

±0.8

848

±0.8

20

±2.0

1.05

±0.9

1.04

±0.9

1.11

±1.9

0.99

±0.9

0.99

±0.9

0.98

±4.1

1.02

±0.9

1.02

±0.9

0.92

±1.8

0.97

±0.9

0.98

±0.9

0.59

±1.2

0.99

±1.0

0.99

±1.0

1.16

±12.4

hsqldb

970

±0.8

783

±0.1

188

±4.3

1.13

±1.9

0.98

±0.2

1.72

±11.2

1.41

±2.4

0.96

±2.8

3.25

±10.0

1.11

±0.7

1.16

±0.2

0.88

±2.7

0.92

±0.6

0.98

±0.5

0.66

±2.3

1.03

±0.6

0.98

±0.1

1.26

±3.9

jython

3581

±0.5

3493

±0.5

88

±1.8

1.03

±0.5

1.01

±0.5

1.66

±2.8

1.02

±0.4

0.95

±0.4

3.71

±9.1

1.15

±0.5

1.12

±0.5

2.36

±3.4

0.99

±0.4

1.00

±0.4

0.58

±4.2

0.98

±0.6

0.99

±0.6

0.61

±1.5

luindex

626

±0.3

620

±0.3

7

±4.4

1.02

±0.3

1.01

±0.3

1.50

±6.8

0.99

±0.3

1.00

±0.3

0.00

±0.0

1.02

±0.3

1.02

±0.3

1.10

±4.7

1.02

±0.3

1.03

±0.3

0.50

±2.9

1.04

±0.4

1.04

±0.4

0.73

±5.1

lusearch

3154

±0.3

2147

±0.3

1007

±0.9

1.01

±0.7

0.77

±0.5

1.52

±2.4

0.91

±0.4

0.72

±0.5

1.30

±1.1

1.12

±0.7

0.89

±0.6

1.61

±1.4

0.66

±0.4

0.75

±0.6

0.46

±0.5

0.66

±0.5

0.75

±0.8

0.46

±0.5

lusearchfix

887

±3.2

767

±3.7

120

±2.9

0.92

±2.8

0.96

±3.2

0.66

±1.7

1.03

±3.0

0.89

±3.1

1.90

±4.2

1.23

±4.1

1.11

±4.5

2.05

±4.3

0.92

±2.7

0.94

±3.2

0.75

±1.7

0.89

±2.2

0.92

±2.6

0.68

±1.7

pmd

934

±1.2

790

±1.2

144

±4.5

0.96

±1.0

0.98

±1.2

0.82

±4.5

1.00

±1.4

0.98

±1.0

1.07

±7.8

1.09

±1.5

1.15

±1.2

0.78

±6.0

0.98

±1.2

1.03

±1.2

0.73

±5.3

0.94

±1.1

0.98

±1.1

0.72

±3.5

sunflow

2482

±1.1

2175

±1.3

307

±1.5

0.95

±1.1

0.98

±1.2

0.72

±1.4

1.11

±1.1

0.95

±1.1

2.23

±3.8

1.18

±1.1

1.06

±1.1

2.03

±2.9

1.12

±1.3

0.98

±1.1

2.12

±5.5

0.95

±1.0

0.98

±1.2

0.73

±2.5

xalan

1393

±8.5

1008

±11.6

385

±1.1

1.09

±6.7

0.90

±7.5

1.58

±3.6

0.93

±11.1

0.91

±10.5

0.97

±22.9

0.98

±6.0

0.98

±8.1

0.99

±1.9

0.76

±5.8

0.92

±9.1

0.34

±0.6

0.78

±4.8

0.90

±7.7

0.45

±1.2

mean 3168
±1.8

2957
±2.1

210
±2.9

geomean 1.02 1.00 1.01 1.04 0.97 0.00 1.09 1.08 1.05 0.97 0.99 0.56 0.96 0.99 0.70

pjbb2005

3775

±1.0

3363

±1.1

412

±2.1

1.07

±1.0

1.00

±1.1

1.61

±3.7

1.11

±20.4

1.07

±23.7

1.37

±8.1

1.07

±1.1

1.11

±1.2

0.80

±4.7

1.05

±1.2

1.01

±1.3

1.40

±4.5

0.97

±1.3

1.00

±1.3

0.74

±6.5

min 340 302 7 0.92 0.90 0.21 0.86 0.89 0.00 0.97 0.98 0.20 0.76 0.92 0.08 0.78 0.90 0.28

max 16203 15382 821 1.13 1.04 3.29 1.41 1.07 3.71 1.33 1.28 2.36 1.12 1.04 2.12 1.05 1.04 1.26

mean 2533
±1.4

2362
±1.6

171
±3.4

geomean 1.02 1.00 1.07 1.03 0.98 1.34 1.09 1.09 0.97 0.97 1.00 0.52 0.97 0.99 0.72

Table 7. RC Immix performs 3% better than GenImmix at a moderate heap size of 2⇥ the minimum. We show at left total,
mutator, and GC time for GenImmix in milliseconds and performance of RC, Immix, Sticky Immix, RC Immix (no PC), and
RC Immix normalized to GenImmix. Lower is better. We grey-out and exclude from aggregates lusearch and mpegaudio

because of their pathological behaviors, although both perform very well with our systems. The numbers in grey beneath
the corresponding arithmetic mean report 95% confidence intervals, expressed as percentages.
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Mutator GenImmix RC RC Immix

Time 1.000 1.087 0.985

Instructions Retired 1.000 1.094 1.012

L1 Data Cache Misses 1.000 1.313 1.043

Table 8. Mutator performance counters show RC Immix
solves the instruction overhead and poor locality problems in
RC. Applications executing RC Immix compared with Gen-
Immix in a moderate heap size of 2⇥ the minimum exe-
cute the same number of retired instructions and see only
a slightly higher L1 data cache miss rate. Comparing RC to
RC Immix, RC Immix reduces miss rates by around 20%.

The time

mu

columns of Table 7 and Figure 3(b) show
that RC Immix matches or beats the Immix collectors with
respect to mutator performance and improves significantly
over RC in a moderate heap. The reasons that RC Immix im-
proves over RC in total time stem directly from this improve-
ment in mutator performance. RC mutator time is 9% worse
than any other collector, as we reported in Table 2 and dis-
cussed in Section 2.1. RC Immix completely eliminates this
gap in mutator performance.

Table 8 summarizes the reasons for RC Immix’s improve-
ment over RC by showing the number of mutator retired
instructions and mutator L1 data cache misses for RC and
RC Immix normalized to GenImmix. RC Immix solves the
instruction overhead and poor locality problems in RC be-
cause by using a bump pointer, it wins twice.

First, it gains the advantage of efficient zeroing of free
memory in lines and blocks, rather than zeroing at the gran-
ularity of each object when it dies or is recycled in the free
list (see Section 2.1 and Yang et al.’s measurements [33]).
Second, it gains the advantage of contiguous allocation in
memory of objects allocated together in time. This heap lay-
out induces good cache behavior because objects allocated
and used together occupy the same cache line, and because
the bump pointer marches sequentially through memory,
the hardware prefetcher correctly predicts the next line to
fetch, so it is in cache when the program (via the mem-
ory allocator) accesses it. Yang et al.’s prefetching measure-
ments quantify this effect [33]. Table 8 shows that compared
to RC, RC Immix reduces cache misses by around 20%
(1.043/1.313). GenImmix has slightly lower cache miss
rates than RC Immix, which makes sense because it always
allocates new objects contiguously (sequentially) whereas
RC Immix sometimes allocates into partially full blocks and
must skip over occupied lines.

5.2 Variable Heap Size Analysis
Figure 4 evaluates RC Immix performance as a function of
available memory. Each of the three graphs varies heap size
between 1⇥ and 6⇥ the minimum in which all collectors can
execute the benchmark. The graphs plot total time, mutator
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(c) GC time

Figure 4. The performance of GenImmix, RC, RC Immix,
and RC Immix with no proactive copying (No PC) as a
function of heap size.

time, and GC time as a geometric mean of the benchmarks,
showing RC Immix, GenImmix, RC, RC with no boot image
scanning (Section 3.3), and RC Immix with the no proac-
tive copying. Figure 4(a) shows total time, and reveals that
RC Immix dominates RC at all heap sizes, and consistently
outperforms GenImmix at heap sizes above 1.4⇥ the mini-
mum. Figures 4(b) and 4(c) reveal the source of the behavior
of RC Immix seen in Figure 4(a). Figure 4(b) reveals that
the mutator performance of RC Immix is consistently good.
This graph makes it clear that the underlying heap structure
has a profound impact on mutator performance. Figure 4(c)
shows that in GC time, RC Immix outperforms RC in tighter
heaps, matches GenImmix at heap size 1.3⇥ the minimum
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and outperforms GenImmix at heap sizes above 1.4⇥ the
minimum.

The faster degradation in RC Immix compared to GenIm-
mix at the very smallest heap sizes is likely to be due to the
more aggressive defragmenting effect of GenImmix’s copy-
ing nursery. When a nursery collection occurs, those objects
that survive are all copied into the mature space, which uses
the Immix discipline, in the case of GenImmix. So while the
surviving objects may be scattered throughout the nursery
at the start of the collection, they will generally be contigu-
ous after the nursery collection. GenImmix will tend to have
a less fragmented mature space than RC Immix because the
mature space is not intermingled with the fragmented young
space, as it is in RC Immix and Sticky Immix. The result
will be two-fold; both improved spatial locality and more
importantly, reduced fragmentation which will substantially
reduce GC load at small heap sizes, as seen in Figure 4(c).
Furthermore, as hinted by the data cache miss rates for semi-
space in Table 1, the copying order of a copying collector
will generally result in particularly good locality among the
surviving objects.

5.3 Pinning
We conducted a simple experiment to explore the tradeoff
associated with dedicating a header bit for pinning (see Sec-
tion 3.1). While a pinning bit could be folded into the logged
and forwarding bits, in this case we simply trade pinning
functionality for reduced reference counting bits. In Jikes
RVM, pinning can be utilized by the Java standard libraries
to make IO more efficient, so although no Java application
can exploit pinning directly, there is a potential performance
benefit to providing pinning support.

Table 9 shows the result of a simple experiment with
three configurations at three heap sizes. The performance
numbers are normalized to GenImmix and represent the ge-
ometric mean of all benchmarks. In the first row, we have
three reference counting bits and no pinning support, which
is the default configuration used in this paper. Then we re-
duce the number of reference counting bits to two, without
adding pinning. Finally we use two reference counting bits
and add support for pinning. The results show that to the
first approximation, the tradeoff is not significant, with the
performance variations all being within 0.8% of each other.
Although the variations are small, the numbers are intrigu-
ing. We see that at the 2⇥ heap, the introduction of pinning
improved total performance by around 0.5% when holding
the reference counting bits constant. More interestingly, we
see that the reduction in reference counting bits from three
to two makes very little difference, perhaps even improv-
ing performance at 1.2⇥ and 1.5⇥. This second result seems
counter-intuitive. We surmise that the reason for this is that
while the bulk of objects only need two bits to be correctly
counted, many of the overflows may be attributable to ob-
jects that also overflow with three bits. The reduction in bits
may thus be reducing the total number of increments and

Bits Used Heap Size
count pin 1.2⇥ 1.5⇥ 2⇥

3 0 1.030 0.998 0.978

2 0 1.022 0.991 0.979

2 1 1.023 0.991 0.974

Table 9. Performance sensitivity of RC Immix with pinning
bit at 1.2, 1.5 and 2 times the minimum heap size, averaged
over all benchmarks. Time is normalized relative to GenIm-
mix. Lower is better.

decrements performed without greatly reducing the efficacy
of reclamation.

5.4 Benchmark Analysis
Table 7 reveals that sunflow is significantly slower on RC Immix (no PC)
than on GenImmix, whereas xalan and lusearch are signifi-
cantly faster when using RC Immix. We now analyze these
outlier results.

Sunflow Table 7 shows that sunflow is 12% slower in to-
tal time on RC Immix (no PC) than GenImmix, and that this
slowdown is entirely due to a garbage collection slowdown
of 2.12⇥. The source of this problem appears to be high frag-
mentation among surviving young objects in sunflow. It was
this observation that encouraged us to explore proactive de-
fragmentation, and this benchmark shows that the strategy is
hugely effective, as RC Immix improves over GenImmix by
5%. sunflow has a high allocation rate [33], and our obser-
vation that GenImmix does a large number of nursery col-
lections, but no mature space collections at 2⇥ minimum
heap size confirms this behavior. RC Immix (no PC) does a
large number of collections, many of which are defragment-
ing cycle collections, and yet sunflow has few cycles [27].
Furthermore, Table 4 shows that although the line survival
rate for sunflow is 5%, the block survival rate is a remarkable
99%. This indicates that surviving objects are scattered in the
heap generating fragmentation, thus Immix blocks are being
kept alive unnecessarily. We also established empirically that
sunflow’s performance degraded substantially if the standard
defragmentation heuristic was made less aggressive.

Xalan Both RC Immix (no PC) and RC Immix perform
very well on xalan, principally because they have lower GC
time than GenImmix. RC Immix (no PC) has 66% lower GC
time than GenImmix and RC Immix has 55% lower GC time
than GenImmix. xalan has a large amount of medium life-
time objects, which can only be recovered by a full heap
collection with GenImmix, but are recovered in a timely
way in RC Immix.

Lusearch RC Immix performs much better on lusearch

than GenImmix. In fact GenImmix has substantially worse
mutator time than any other system. This result is due to
the bug in lusearch that causes the allocation of a very large
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number of medium sized objects (Section 4), leading Gen-
Immix to perform over 800 nursery collections, destroying
mutator locality. The allocation pathology of lusearch is es-
tablished and is the reason why we use lusearch-fix in our
results, exclude lusearch from all of our aggregate (mean
and geomean) results, and leave it greyed out in Table 7.
If we were to include lusearch in our aggregate results then
both RC Immix (no PC) and RC Immix would be 5% faster
in geomean than GenImmix.

5.5 Further Analysis and Opportunities
We have explored three further opportunities for improving
the performance of RC Immix, namely reference level coa-
lescing, conservative stack scan, and root coalescing.

Reference Level Coalescing When Levanoni and Petrank
first described coalescing of reference counts, they described
it in terms of remembering the address and value of each ref-
erence when it was first mutated [21]. However, in practice
it is easier to remember the address and contents of each
object when the first of its reference fields is mutated [22].
In the first case, the collector compares the GC-time value of
the reference with the remembered value and decrements the
count for the object referred to by the remembered reference
and increments the count for the object referred to by the lat-
est value of the reference. With object level coalescing, each
reference within the object is remembered and compared.
The implementation challenge is due to the need to only re-
member each reference once, and therefore efficiently record
somewhere that a given reference had been remembered. Us-
ing a bit in the object’s header makes it easy to do coalescing
at an object granularity. Both RC and RC Immix use object
level coalescing.

As part of this work, we implemented reference level co-
alescing. We did this by stealing a high order bit within each
reference to record whether that reference had been remem-
bered. We then map two versions of each page to a single
physical page (each one corresponding to the two possible
states of the high order bit). We must also modify the JVM’s
object equality tests to ensure that the stolen bit is ignored in
any equality test. We were disappointed to find that despite
the low overhead bit stealing approach we devised, we saw
no performance advantage in using reference level coalesc-
ing. Indeed, we observed a small slowdown. We investigated
and noticed that reference level coalescing places a small but
uniform overhead on each pointer mutation, but the potential
benefit for the optimization is dominated by the young ob-
ject optimizations implemented in RC and RC Immix. As a
result, we use object level coalescing in RC Immix.

Conservative Stack Scan One of the explanations for the
continued use of naı̈ve reference counting rather than de-
ferred reference counting is that deferred reference counting
requires an enumeration of roots [16], which is challeng-
ing to implement correctly. To precisely enumerate roots re-
quires implementing stack maps. We note that a conservative

stack scan could only introduce false positives, and therefore
could never lead to an incorrect decrement, and thus recla-
mation of a live object. We therefore believe that RC Immix
could be implemented with conservative stack scans, cir-
cumventing a major barrier to the use of high performance
reference counting. We plan to explore this in future work.

Root Elision A key advantage of reference counting over
generational collection is that it continuously collects mature
objects. The benefits are borne out by the improvements we
see in xalan, which has many medium lived objects. These
objects are promptly reclaimed by RC and RC Immix, but
are not reclaimed by a generational collector until a full heap
collection occurs. However, this timely collection of mature
objects does not come for free. Unlike a nursery collection
in a generational collector, a reference counting collector
must enumerate all roots, including all pointers from the
stacks and all pointers from globals (statics). We realized
that it may be possible to greatly reduce the workload of
enumerating roots by selectively enumerating only those
roots that have changed since the last GC. In the case of
globals/statics this could be achieved either by a write barrier
or by keeping a shadow set of globals. We note that the latter
may be feasible because the amount of space consumed by
global pointers is typically very low. In the case of the stack,
we could utilize a return barrier [34] to only scan the parts
of the stack that have changed since the last GC. We plan to
explore this in future work.

6. Conclusion
In the garbage collection literature, two fundamental algo-
rithms identify dead objects. Reference counting identifies
them directly and tracing identifies them implicitly. Despite
its intrinsic advantages, such as promptness of recovery and
dependence only on local rather than global state, refer-
ence counting did not deliver high performance and it suf-
fered from incompleteness due to cycles. Recent advances
by Shahriyar et al. closed, but did not eliminate this perfor-
mance gap.

This paper identified heap organization as the principal
source of this gap. In the literature, allocators use three heap
organizations to place objects in memory: free lists, contigu-
ous, and regions. Until this paper, reference counting always
used a free list because it offered a constant time operation
to reclaim each dead object. Unfortunately, optimizing for
reclamation time neglects the more essential performance
requirement of cache locality on modern systems. We show
that indeed RC in a free list heap suffers poor locality com-
pared to contiguous and hierarchical memory organizations.
Unfortunately, the contiguous heap organization and freeing
at an object granularity are fundamentally incompatible. For-
tunately, the region heap organization and reference count-
ing are compatible.

We describe the design and implementation of a new hy-
brid RC Immix collector. The key design contributions of
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our work are an algorithm for performing per-line live object
counts and the integration of proactive and reactive oppor-
tunistic copying. We show how to copy new objects proac-
tively to mitigate fragmentation and improve locality. We
further show how to combine reactive defragmentation with
backup cycle detection. The key engineering contribution of
our work is how to use limited header bits efficiently, serving
triple duties for reference counting, backup cycle collection
with tracing, and opportunistic copying.

Looking forward, we believe that RC Immix offers a new
direction for both high performance throughput collectors
and soft real-time collectors because of its ability to provide
incremental reclamation with high throughput.
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