In The 24th Conference on Artificial Intelligence, New Scientific and Technical Advances in Research (NECTAR) track (AAAI-10),

Atlanta, GA, July 2010.

Evolving Compiler Heuristics to Manage Communication and Contention

Matthew E. Taylor,” Katherine E. Coons, Behnam Robatmili,
Bertrand A. Maher, Doug Burger,’ and Kathryn S. McKinley
* Lafayette College, taylorm@cs.lafayette.edu
The University of Texas at Austin, {coonske, beroy, bmaher, mckinley} @ cs.utexas.edu
T Microsoft Research, dburger@microsoft.com

Abstract

As computer architectures become increasingly complex,
hand-tuning compiler heuristics becomes increasingly te-
dious and time consuming for compiler developers. This pa-
per presents a case study that uses a genetic algorithm to learn
a compiler policy. The target policy implicitly balances com-
munication and contention among processing elements of the
TRIPS processor, a physically realized prototype chip. We
learn specialized policies for individual programs as well as
general policies that work well across all programs. We also
employ a two-stage method that first classifies the code being
compiled based on salient characteristics, and then chooses a
specialized policy based on that classification.

This work is particularly interesting for the AI community
because it 1) emphasizes the need for increased collaboration
between Al researchers and researchers from other branches
of computer science and 2) discusses a machine learning
setup where training on the custom hardware requires weeks
of training, rather than the more typical minutes or hours.

Introduction

Modern compilers employ many heuristic functions to gen-
erate high-performance code for today’s complex computer
architectures. These heuristics are typically hand-written
by compiler developers, who use a combination of labori-
ous benchmarking and human intuition to develop heuris-
tics that achieve good performance. To alleviate this bur-
den from compiler writers and to achieve more optimal so-
lutions within the complex space of heuristics, our work uses
a genetic algorithm to learn better compiler policies (Coons
et al. 2008). We represent a compiler heuristic function,
a key component of the compiler’s policy, as a neural net-
work. Training improves the heuristic functions to optimize
the performance of compiled benchmark code.

Using this methodology, we learn specialized heuris-
tics for particular benchmark programs, achieving a 12%
speedup over hand-tuned heuristics and 4% over a simulated
annealing solution. We also learn a general heuristic by opti-
mizing the average performance over the entire set of bench-
marks, but achieve only a 1% improvement over the hand-
tuned heuristic. To create general heuristics that approach
the performance of the specialized heuristics, we then use
clustering to group similar segments of code. By learning
reusable, per-cluster heuristics, we achieve speedups of 4—
6% over existing hand-tuned heuristics.

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Up to 8 instructions per tile

[E] Execution tile

[Register tile

&l Data cache tile
Global control tile

E8 t~| E9 [~ E10 [~ E11
{ i { 1 —
E12 - E13 [~ E14 — E15

| _— 1 cycle communication latency

Figure 1: Instruction placement example

The remainder of this section provides an overview of
the compiler problem we address: developing an instruc-
tion placement policy that balances communication and con-
tention for a novel processor architecture. The Solution
Techniques and Results section describes the methods we
used to attack this problem at three levels of policy general-
ity. Finally, the Discussion section argues that this type of
collaboration between the Al and systems communities will
become increasingly important and enumerates the lessons
learned from this case study.

Instruction Placement for EDGE Architectures

Explicit Dataflow Graph Execution (EDGE) architectures
are a recently developed class of instruction set architec-
tures (ISAs) that express a program as a sequence of multi-
instruction blocks. Each block contains a set of machine in-
structions, which are mapped to an array of functional units.
The TRIPS processor, a physical instantiation of an EDGE
ISA, has a 4 x 4 array of functional units (see Figure 1).
Instructions within a block execute in dataflow order: each
instruction waits until its operands arrive and then sends its
result to a set of farget instructions that use that result. In-
struction placement is thus critical for fast execution.

An EDGE compiler transforms source code into blocks
of machine instructions (Maher et al. 2006; Smith et al.
2006). The compiler represents instructions within a block
as a directed acyclic graph, where the nodes are instructions
and the edges are dependencies. Using this graph, the in-
struction scheduler assigns each instruction to the particular
functional unit where it will execute at runtime. To achieve
high performance, the scheduler must balance the desire for
concurrency against the cost of communication. To maxi-
mize concurrency, instructions should be placed on separate
functional units; to minimize communication, however, de-

pendent instructions should be placed nearby or on the same
functional unit.

Our prior work introduced Spatial Path Scheduling (SPS),
an algorithm for EDGE architectures to select a location for
each instruction based on a placement cost (Coons et al.
2006). SPS uses a heuristic function to compute the place-
ment cost, which is a real-valued number, from several in-
puts: features of the instruction, the location under consid-
eration, and the graph in which the instruction resides. The
scheduler then uses this cost to place instructions, greedily
placing the highest cost instruction on the functional unit
with the lowest placement cost (i.e., a minimax strategy).

Prior instruction placement techniques rely on a combi-
nation of laborious benchmarking and human intuition to
create hand-tuned heuristics. In this work, a genetic algo-
rithm learns a placement cost heuristic. Prior work shows
that the hand-tuned SPS heuristic provides results within 5%
of those found via simulated annealing (Coons et al. 2006).
Although this may suggest that this heuristic is close to an
upper bound, results in this paper show that significant im-
provement over simulated annealing is possible.

To enable learning, we replaced the SPS heuristic function
with a neural network that determines the placement cost for
an instruction at a given location (see Figure 2). The place-
ment cost fully specifies the scheduler’s placement policy.

We focused on short-running benchmarks to minimize
training time and selected programs with varied character-
istics, including available parallelism and register/memory
usage, to provide a range of placement requirements during
training. The final benchmark set contained 47 benchmarks,
large enough to ensure that the benchmark set sizes would
be reasonable after clustering (discussed later). After com-
pilation, the evolved networks were evaluated by executing
the generated code on the TRIPS processor.

Solution Techniques and Results
This section describes the genetic algorithm used for opti-
mization, then provides an overview of the three types of
experiments conducted.

NEAT

This paper uses Neuro-Evolution of Augmenting Topologies
(NEAT) (Stanley & Miikkulainen 2002), a genetic algorithm
to learn neural networks that compute the placement cost.
NEAT uses a neural network to specify each heuristic func-
tion and uses biologically-inspired operators to stochasti-
cally improve a fitness metric over time. Specifically, we use
the variant FS-NEAT (Whiteson et al. 2005), which assists
with feature selection by incrementally adding links from
possible inputs into the neural network over time, using an
add link mutation. This procedure allows evolution to de-
termine the features that most improve the fitness of each
network. Each network’s fitness is the speedup, in proces-
sor cycles, of its compiled code over code produced by the
baseline hand-tuned heuristic. There is a fixed-size popula-
tion of networks, and FS-NEAT uses the networks’ fitnesses
to evolve and create the next generation of networks.
NEAT is an appropriate choice for multiple reasons. First,
NEAT is a publicly available package with nine different im-

Placement Cost

Negative weight
Positive weight

Output node
Hidden node

Input node

000 | |

Q RS o + Q& o L 2 .S
Sy & P S Fo &L
& > V2 K NS BN A0
& RGN N N © 5 ¥ N
C© O N 3 ISIES Ny
O N N

Figure 2: An example neural network including: inputs (features),
output (placement cost), two hidden nodes, and edge weights

plementations. Second, NEAT is a well understood, domain-
independent method that has been successfully applied to a
variety of tasks. Third, the process of complexification has
been empirically shown to reduce training times (Stanley &
Miikkulainen 2002) and thus make large optimization prob-
lems tractable. Fourth, NEAT requires relatively little pa-
rameter tuning in practice for successful learning, which is
critical for discovering a good heuristic quickly.

Specialized Solution

The most straightforward setup uses NEAT to learn one
heuristic per benchmark. This experiment produced 47 pop-
ulations of heuristics, each specialized for a different pro-
gram. Although this required 47 separate training runs,
these training runs could execute in parallel. As expected,
we found that learning heuristics for individual benchmarks
leads to overfitting. These overfit heuristics, however, re-
sulted in better per-benchmark performance than hand-tuned
heuristics or placements generated via simulated annealing.
Although these specialized heuristics may not provide ro-
bust general solutions, this technique is appropriate for opti-
mizing performance-critical programs or libraries.

Initial experiments indicated that training plateaued
within 100 generations. After training for 100 generations,
we compared results for specialized heuristics to results for
both the instruction scheduler’s hand-tuned heuristic, and a
simulated annealing scheduler. Simulated annealing, as used
in prior work, finds a placement, not a heuristic to produce
placements (Coons et al. 2006). Thus, if the source pro-
gram changes the entire annealing process must run again to
accommodate the changes. With NEAT, however, the end
result is a heuristic that can be used to place any program.

We implemented a simulated annealing scheduler for
TRIPS and used the instruction scheduler’s placement as
the starting point. Table 1 shows the geometric mean of the
speedup across 46 of the 47 benchmarks in the training suite
normalized to the hand-tuned scheduler’s performance on
the same benchmark (one benchmark was omitted due to in-
compatibility with the annealer). These results show that 1)
NEAT outperforms hand tuning, 2) NEAT outperforms sim-
ulated annealing as an optimization method in this problem,
but 3) the policies produced by NEAT are not optimal and

Technique Speedup Table 1: Relative
Hand-tuned 1.00 speedups for
Hand-tuned + Annealing | 1.08 benchmark-specific
NEAT 1.12 heuristics

NEAT + Annealing 1.14

further tuning may yield still faster programs, as shown in
the last line of Table 1 where simulated annealing improved
upon NEAT-generated compiler policies.

General Solution

The previous section discussed training a separate heuristic
for each benchmark; this section presents results of training
a single heuristic across all benchmarks. Training NEAT to
maximize the speedup across the entire set of benchmarks
resulted in a more general heuristic that was not special-
ized for any particular benchmark. The best network trained
using this approach provided an average speedup of 1.010
over the hand-tuned SPS heuristic. To test this general so-
lution on new data, we ran the best network trained across
the 47 benchmark set on a different (test) benchmark set, but
the average speedup was only 1.005, nearly identical to the
hand-tuned solution.

Although this result is significant given that it is com-
pared to a highly hand-tuned result, it is modest compared
to results observed in Stephenson et al.’s Meta Optimization
work, which observed speedups of 1.44, 1.03, and 1.31 for
hyperblock formation, register allocation, and data prefetch-
ing, respectively, using a general heuristic trained across sets
of ten or fewer benchmarks (Stephenson et al. 2003). On
novel benchmarks, they observed speedups of 1.09, 1.02,
and 1.01 for the same three optimization problems.

One explanation for these limited speedups using the gen-
eral solution may be that our baseline is better optimized for
the general case; prior work showed that the baseline came
within 5% of simulated annealing solutions (Coons et al.
2006). Another explanation might be the potential for im-
provement — Stephenson et al. focused on optimizations
such as hyperblock formation, which may have greater im-
pact on performance than instruction placement. Although
we were unable to find general solutions that significantly
outperformed the hand-tuned solution, the difference be-
tween the best specialized heuristics and the general heuris-
tic suggests that further improvements are possible.

Clustered Benchmark Optimization

Different blocks of instructions may require different place-
ment policies. For example, some blocks may contain
many instructions that can execute in parallel, whereas other
blocks may contain many dependences between instruc-
tions, forcing them to execute sequentially. When these
block-level factors vary significantly, a heuristic specialized
for that particular type of block may be preferable.

To help NEAT take advantage of these higher-level dif-
ferences between blocks, we introduced a clustering and
classification stage to better optimize blocks based on their
salient characteristics. One difficulty of this clustering ap-
proach, however, is that we can evaluate performance on a

per-benchmark basis, yet we cannot extract meaningful fea-
tures for an entire program. Conversely, while we can ex-
tract features from a block of instructions, we cannot eval-
uate the performance of a block in isolation. Furthermore,
while the benchmarks we used were quite small, real pro-
grams are large and complex, and may need different heuris-
tics for different parts of the same program.

These problems motivate a critical block approach, where
we associate the performance of a benchmark with the per-
formance of its most critical blocks — the blocks that to-
gether represent over 80% of that benchmark’s execution
time. Because the benchmarks were quite small, they typi-
cally contained only a few critical blocks. We cluster bench-
marks based on their performance, and train a classifier for
those clusters based on the features of the critical blocks
in the cluster. This section describes this compromise ap-
proach, in which we 1) determine which benchmarks per-
form well with the same SPS heuristics, 2) use this similar-
ity metric to cluster the benchmarks and their corresponding
critical blocks, 3) train a classifier to label novel blocks into
one of the specified clusters, 4) train a heuristic for each
cluster, and 5) evaluate the classifier and trained heuristics.

Defining a Similarity Metric To cluster blocks, we de-
fined a metric based on how well benchmarks perform when
scheduled with the same heuristic. After training NEAT on
each benchmark individually, we used the top ten networks
in the population to compile every other benchmark. Using
this data, we created a similarity graph in which the nodes
represent benchmarks and the edges between nodes repre-
sent the tendency of those benchmarks to perform similarly
with the same heuristics. We used the publicly available
graph clustering tool Graclus to cluster benchmarks via the
similarity graph (Dhillon, Guan, & Kulis 2007).

Critical Block Features and Classification We assigned
the critical blocks within each benchmark to that bench-
mark’s cluster and built a classifier to place new blocks into
the appropriate cluster. After finding the class associated
with each critical block (i.e., its benchmark’s cluster), we
extracted 16 block-level features' for the classifier to use to
predict their class.

We tested four different classifiers in Weka (Witten &
Frank 2005): a decision tree, a propositional rule learner,
a support vector machine, and a multi-layer perceptron. We
tested each classifier with 3, 4, 5, and 6 clusters. When many
clusters were allowed, Graclus tended to produce clusters
with one or two blocks, grouping the rest of the training set
into a single cluster. By using cross validation, we found
that the rule learning method (JRip, based on RIPPER (Co-
hen 1995)) with three classes (i.e., clusters) produced high
accuracy results, as well as a fairly equal distribution of crit-
ical blocks across the different clusters.

After training the classifier, we again used NEAT to train
heuristics for each of the three clusters. We found that one
of the classes contained a catch-all for blocks that did not

"We did not use the same feature set as used to place instruc-
tions — features used to classify blocks must be representative of
the entire block rather than individual instructions.

fit into either of the other classes, and we saw very little
speedup by training on these blocks. We opted to use hand-
tuned SPS to schedule those blocks to save training time.
Thus, NEAT produced two different heuristics for the two
clusters, one containing 17 benchmarks and the other 12.

Clustering and Classification Results We trained NEAT
heuristics to optimize critical blocks per-cluster (excluding
the third catch-all cluster). One experimental advantage to
the clustering technique is that we could perform the train-
ing runs in parallel (per cluster). While it took multiple
weeks to perform a complete training run with the general
solution, it required less than a week to obtain significantly
better results with classification. Across the 17 benchmarks
that contained critical blocks belonging to the first cluster,
we saw a speedup of 1.06. Among the 12 benchmarks con-
taining critical blocks belonging to the second cluster, we
saw a speedup of 1.04 after only a day of training.

Discussion

The work presented in this paper is an example of “use-
inspired” learning: this project started when an Al student
attended a practice talk for a compilers conference. In Al
we sometimes focus on “toy problems,” which are valuable
for initial exploration, but provide little guidance when one
must decide what algorithms to use when presented with a
novel real-world problem. In addition to defining and ad-
dressing such a problem, this study is noteworthy because
it describes a complex domain that necessitated long train-
ing times. Rather than learning a heuristic in a matter of
seconds or minutes, learning time was measured in days or
weeks. In light of this problem, feature selection became
quite important. Enabling the genetic algorithm to search
over a constrained policy space was critical, not just con-
venient. Even though we selected a learning algorithm (FS-
NEAT) that was designed to handle many irrelevant features,
we found that off-line feature selection using lasso regres-
sion was an important component to achieving high perfor-
mance (Coons et al. 2008). Using FS-NEAT we determined
that different benchmarks likely require different features to
produce good placements: only 20% of the 47 benchmarks
made use of all 12 of the hand-selected features.

It was informative to see what features FS-NEAT selected
for the neural network inputs. By examining sets of high
performance policies, we can develop an understanding of
the most important features. Al researchers may often be
satisfied with a neural network (or other “black boxes”) as
outputs, but the systems community is much more likely to
want to understand which features are important to assist in
the design of future systems.

Systems problems often involve many intertwined and
complex components. In the final set of experiments us-
ing clustering and classification, NEAT effectively learned
a placement heuristic given a particular compiler configura-
tion, but the solutions were not robust when other parts of the
compiler changed. For example, heuristics learned at a par-
ticular compiler optimization level were not effective with a
different optimization level, even for the same benchmarks.
Furthermore, the best heuristic for one class depended on the

heuristics used for the other classes, indicating additional
gains may come from co-evolving the different heuristics.
Ideally any optimization technique used would be robust to
such changes, better handling the complex interactions be-
tween the many parts of a system.

Although NEAT and FS-NEAT have many parameters,
the default settings have been reported to work well in prac-
tice (Stanley & Miikkulainen 2002). While the results ob-
tained were provably non-optimal, the reality of high train-
ing times precluded carefully optimizing NEAT’s 24 pa-
rameters. Weka provides a general off-the-shelf solution to
many classification and regression problems by providing
a simple interface to tens of learning methods, but there is
no such package for evolutionary algorithms. Al techniques
will become more commonly used in systems research, in
both hardware (Ipek e al. 2008) and software (Stephenson
et al. 2003; Coons et al. 2008) — providing such packages
would make our field’s techniques more accessible.

Acknowledgements
We thank Steijn Kistemaker, W. Bradley Knox, Jason Tsai,
and the anonymous reviewers for helpful comments and sug-
gestions on this paper. Research described in this paper was
conducted while all authors were at The University of Texas
at Austin.

References
Cohen, W. W. 1995. Fast effective rule induction. In ICML.

Coons, K. E.; Chen, X.; Burger, D.; McKinley, K. S.; and Kush-
waha, S. K. 2006. A spatial path scheduling algorithm for EDGE
architectures. In ACM Conf. on Architectural Support for Program-
ming Languages and Operating Systems.

Coons, K. K.; Robatmili, B.; Taylor, M. E.; Maher, B. A.; McKin-
ley, K.; and Burger, D. 2008. Feature selection and policy opti-
mization for distributed instruction placement using reinforcement
learning. In The Seventh Intl. Joint Conf. on Parallel Architectures
and Compilation Techniques.

Dhillon, I. S.; Guan, Y.; and Kulis, B. 2007. Weighted graph cuts
without eigenvectors: A multilevel approach. IEEE Trans. Pattern
Anal. Mach. Intell. 29(11):1944-1957.

Ipek, E.; Mutlu, O.; Martinez, J. F; and Caruana, R. 2008.
Self-optimizing memory controllers: A reinforcement learning ap-
proach. In Intl. Sym. on Computer Architecture.

Mabher, B. A.; Smith, A.; Burger, D.; and McKinley, K. S. 2006.
Merging head and tail duplication for convergent hyperblock for-
mation. In IEEE/ACM Intl. Sym. on Microarchitecture.

Smith, A.; Burrill, J.; Gibson, J.; Maher, B.; Nethercote, N.; Yoder,
B.; Burger, D.; and McKinley, K. S. 2006. Compiling for EDGE
architectures. In Intl. Sym. on Code Generation and Optimization.
Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural net-
works through augmenting topologies. Evolutionary Computation
10(2):99-127.

Stephenson, M.; Amarasinghe, S.; Martin, M.; and O’Reilly, U.-M.
2003. Meta optimization: Improving compiler heuristics with ma-
chine learning. In ACM Conf. on Programming Language Design
and Implementation.

Whiteson, S.; Stone, P.; Stanley, K. O.; Miikkulainen, R.; and
Kohl, N. 2005. Automatic feature selection in neuroevolution.
In GECCO.

Witten, . H., and Frank, E. 2005. Data Mining: Practical machine
learning tools and techniques, 2nd Ed. Morgan Kaufmann.

