A Shape Analysis for Optimizing Parallel Graph Programs *

Dimitrios Prountzos?

Roman Manevich?

Keshav Pingali'-? Kathryn S. McKinley'

!Dept. of Computer Science, The University of Texas at Austin, Texas, USA.
2Institute for Computational Engineering and Sciences, The University of Texas at Austin, Texas, USA.
{dprountz @cs.utexas.edu,roman @ices.utexas.edu,pingali @cs.utexas.edu,mckinley @cs.utexas.edu }

Abstract

Computations on unstructured graphs are challenging to parallelize
because dependences in the underlying algorithms are usually com-
plex functions of runtime data values, thwarting static paralleliza-
tion. One promising general-purpose parallelization strategy for
these algorithms is optimistic parallelization.

This paper identifies the optimization of optimistically paral-
lelized graph programs as a new application area, and develops the
first shape analysis for addressing this problem. Our shape analysis
identifies failsafe points in the program after which the execution
is guaranteed not to abort and backup copies of modified data are
not needed; additionally, the analysis can be used to eliminate re-
dundant conflict checking. It uses two key ideas: a novel top-down
heap abstraction that controls state space explosion, and a strategy
for predicate discovery that exploits common patterns of data struc-
ture usage.

We implemented the shape analysis in TVLA, and used it to
optimize benchmarks from the Lonestar suite. The optimized pro-
grams were executed on the Galois system. The analysis was suc-
cessful in eliminating all costs related to rollback logging for our
benchmarks. Additionally, it reduced the number of lock acquisi-
tions by a factor ranging from 10x to 50%, depending on the ap-
plication and the number of threads. These optimizations were ef-
fective in reducing the running times of the benchmarks by factors
of 2x to 12x.

Categories and Subject Descriptors D.1.3 [Programming Tech-
nigues]: Concurrent Programming—Parallel Programming; D.1.3
[Programming Techniques]: Object-oriented Programming; F.3.2
[Logics and Meanings of Programs]: Program analysis

General Terms Algorithms, Languages, Performance, Verifica-
tion

Keywords Abstract Interpretation, Compiler Optimization, Con-
currency, Parallelism, Shape Analysis, Static Analysis, Amorphous
Data-parallelism, Irregular Programs, Optimistic Parallelization,
Synchronization Overheads, Cautious Operators.

* This work was supported by NSF grants 0833162, 0719966, 0702353,
0724966, and 0739601, as well as grants from the IBM and Intel Corpora-
tions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26-28, 2011, Austin, Texas, USA.

Copyright © 2011 ACM 978-1-4503-0490-0/11/01. .. $10.00

1. Introduction

Computations on large, unstructured graphs are ubiquitous in many
problem domains such as computational biology, machine learning,
and data mining. They are difficult to parallelize because most de-
pendences between computations in these algorithms are functions
of values known only at runtime such as the structure of the (possi-
bly mutating) graph; therefore, it is impossible to parallelize these
algorithms statically using techniques such as shape analysis and
points-to analysis [27].

One general-purpose solution to parallelizing graph compu-
tations is optimistic parallelization: computations are performed
speculatively in parallel, but the runtime system monitors conflicts
between concurrent computations, and rolls back offending com-
putations as needed. There are many implementations of this high-
level idea such as thread-level speculation [3 1], transactional mem-
ory [9, 12], and the Galois system [17]. For concreteness, our re-
sults are presented in the context of the Galois system but they are
applicable to other systems as well.

In the Galois system, applications programmers write algo-
rithms in sequential Java augmented with a construct called the
Galois unordered-set iterator'. This iterator iterates in some un-
specified order over a set of active nodes, which are nodes in the
graph where computations need to be performed. The body of the
iterator is considered to be an operator that is applied to the active
node to perform the relevant computation, known as an activity. An
activity may touch other nodes and edges in the graph, and these
are collectively known as the neighborhood for that activity. These
nodes and edges must be accessed by invoking methods from graph
classes provided in the Galois library.

OlCIRCINC

5

o (e ®

Figure 1. Neighborhoods in Boruvka’s MST algorithm

We illustrate these concepts using Boruvka’s minimal spanning
tree (MST) algorithm [7], the running example in this paper. The
MST starts as a forest with each node in its own component. The
algorithm iteratively contracts the graph by non-deterministically
choosing a graph node, examining all edges incident on that node
to find the lightest weight edge, and contracting that edge, which is

' The Galois system also supports ordered-set iterators, but we do not
consider these in this paper.

added to the MST. The algorithm terminates when the graph has
been contracted to a single node. Figure 1 shows an undirected
graph. For active node e, the neighborhood of the corresponding
activity consists of nodes d, e and f, and the edges between these
nodes, since these are the edges that must be examined to find and
contract the lightest weight edge connected to e.

In most algorithms, each neighborhood is a small portion of
the overall graph, so it is possible to work on many active nodes
concurrently provided the corresponding neighborhoods do not
overlap. For example, in Figure 1, the neighborhood for the activity
at node c is disjoint from the neighborhood for the activity at
node e, so these activities can be performed in parallel. However,
the activity at node b cannot be performed concurrently with the
activity at e since the neighborhoods overlap.

In the Galois system, this concurrency is exploited by adding
all graph nodes to the work-set and executing iterations of the
Galois set-iterator speculatively in parallel. All concurrency control
is performed within the library graph classes. Conceptually, an
exclusive lock called an abstract lock is associated with each graph
element, and this lock is acquired by an activity when it touches
that element by invoking a graph API method. If the lock has
already been acquired by another activity, a conflict is reported
to the runtime system, which rolls back offending activities. To
permit rollback, methods that modify the state of the graph also
record undo actions that are executed on rollback. The idea of
handling conflicts at the abstract data type level rather than at the
memory level is also used in boosted TM systems [1 |]. The Galois
system has been used to parallelize complex graph algorithms in
the Lonestar benchmark suite [15].

Compared to static parallelization, optimistic parallelization has
several overheads.

1. Wasted work from aborted activities: Because conflicts between
activities are detected online, an activity may be rolled back
after it has performed a lot of computation.

2. Conflict checking: Abstract locks must be acquired and released
by activities, and this is an overhead even if no activities are ever
aborted.

3. Undo actions: These must be registered for every graph API
call that might mutate the graph.

In this paper, we present a novel shape analysis that can be
utilized to reduce the overheads of conflict checking and registering
undo actions (reducing the number of aborted activities is mainly
a scheduling problem, and is dealt with elsewhere [16]). Our main
contributions are the following.

e Shape Analysis: We develop a novel shape analysis for pro-
grams with set and graph data structures, which infers prop-
erties for optimizing speculative parallel graph programs. We
utilize the structure of stores arising in our programs to design a
hierarchy summarization abstraction, which uses a finite set of
reachability relations relative to a given property (the “object-
is-locked” property), to abstract stores into shape graphs . Our
abstraction assigns unary predicates only to root objects, cap-
turing reachability facts from root objects to objects deeper in
the heap. Thus, the size of an abstracted store is linear in the
number of variables, and the number of abstracted stores at a
program point depends on the number of explored variable-alias
sets, which tends to be constant in our programs (~6). There-
fore the number of abstract states explored by our analysis in
practice is linear in the size of the program, circumventing the
state-space explosion that is the bane of existing shape analyses.

Predicate Discovery: We develop a simple yet effective tech-
nique for discovering predicates relevant for inferring the set

objects that are always locked, at each program location, from
data structure specifications and “footprints” of data structure
method specifications.

Evaluation of effectiveness: We implement our shape analysis
in the TVLA framework and use a Java-to-TVLA front-end
to analyze several benchmarks from the Lonestar Benchmark
Suite [15], a collection of real-world graph-based applications
that exhibit irregular behavior. Our analysis takes at most 16
seconds on each benchmark and infers all available optimiza-
tions. These optimizations result in substantial improvements
in running time, ranging from 2x to 12x.

Several existing heap abstractions, including Canonical Ab-
straction [32], Boolean heaps [28], indexed predicate abstrac-
tion [20], and generalized typestates [21], abstract the heap by
recording a set of unary predicates for every object and summariz-
ing the heap by collapsing equivalence classes of objects with the
same set of predicate values. Such abstractions achieve high preci-
sion, as they express every Boolean combination of intersection and
union of objects satisfying those predicates. However, the size of a
summarized heap can be exponential in the number of predicates,
and the summarization of a set of stores can be doubly-exponential.
We call these bottom-up abstractions, since they typically express
reachability facts for objects in the depth of the heap relative to
heap roots. Our experience with bottom-up abstraction shows that
heaps are partitioned very finely, leading to state space explosion.
As we discuss in Section 4, our top-down abstraction runs several
orders of magnitude faster than an implementation of the bottom-
up abstraction approach when analyzing our benchmarks.

The rest of the paper is organized as follows. Section 2 provides
an overview of our optimizations and shape analysis on Boruvka’s
MST example. Section 3 presents our shape analysis via hierarchy
summarization and predicate discovery. Section 4 describes the
static analysis implementation and gives experimental results that
demonstrate the effectiveness of the approach presented in this
paper. Section 5 discusses related work.

2. Overview

This section introduces the programming model, the performance
optimizations, and our shape analysis informally, using Boruvka’s
MST algorithm as the running example.

2.1 Boruvka’s MST algorithm

Pseudocode for the algorithm is shown in Figure 2. The Galois
iterator on line 25 iterates over the graph nodes in some non-
deterministic order, performing edge contractions. In lines, 31-38
we examine the neighbors of the active node a, and identify the
neighbor 1t, which is connected to a by a lightest weight edge. In
lines 44-59 we contract the two components by removing 1t from
the graph, and updating all of 1t’s neighbors to become neighbors
of a. This is done by the loop in lines 45-58. If a neighbor n
of 1t is already connected to a, we update the data value of the
edge connecting them (lines 49-54). Otherwise, we add an edge
connecting the two nodes (lines 55-57).

In Boruvka’s algorithm, the neighborhood of an active node a
consists of the immediate neighbors of a and 1t and their related
edges and data. In more complex examples like Delaunay mesh
refinement, the neighborhood of an activity can be an unbounded
subgraph.

2.2 Speculative Execution in Galois

The graph data structure Graph<ND,ED> is parameterized by data
objects referenced by nodes and edges, respectively. The work list
of active nodes is stored in a set GSet<Node>. The Weight ob-

1 class GaloisRuntime {
2 @rep static set <Object> locks; // abstract locks

3 // Flag options

4 static int LOCK_UNDO=0; // acquire locks + log undo
5 static int UNDO =1; // log undo

6 static int LOCK =2; // acquire locks

7 static int NONE =3; / no locks and no undo

s}

10 class Weight {

11 static Weight MAX_WEIGHT;

12 int v;

13 // Werecord the end—points of the edge that
14 // holds the weight in the input graph.

15 final Node< Void> initSrc, initDst ;

16 int compareTo(Weight other);

18 class Boruvka {

19 void main() {

20 Graph< Void,Weight> g = ...// read from file
21 GSet<Node> wl = new GSet<Node>();

22 wl.addAll(g.getNodes(NONE), NONE);

23 GBag < Weight> mst = new GBag <Weight>();

25 // Galois iterator

26 foreach (Nodea : wl) { / in any order

27 L1: Set<Node> aNghbrs = g.getNeighbors(a, LOCK);
28 // Find neighbor incident to lightest edge
29 Weight minW = Weight MAX_WEIGHT;

30 Node It = null;

31 L2: for (Noden : aNghbrs) { / Iterator nlter
32 Edge e = g.getEdge(a, n, NONE);

33 Weight w = g.getEdgeData(e, NONE);

34 if (w.compareTo(minW) < 0) {

35 minW = w;

36 It =n;

37 }

38

39 if (It ==null) / no neighbors

40 continue;

41 // Contract edge (a, It)

42 L3: g.getNeighbors(lt, LOCK); / avoids undo in L4
43 L4: g.removeEdge(a, 1t, NONE);

44 L5: Set<Node> 1tNghbrs = g.getNeighbors(lt, NONE);
45 L6: for (Noden : 1tNghbrs) { /# Iterator nlter

46 Edge e = g.getEdge(1t, n, NONE);
47 Weight w = g.getEdgeData(e, NONE);
48 Edge an = g.getEdge(a, n, NONE);
49 if (an != null) { / merge edges

50 Weight wan = g.getEdgeData(an, NONE);
51 if (wan.compareTo(w) < 0)

52 w =wan; / use minimal weight
53 L7: g.setEdgeData(an, w, NONE);

54

55 else { // new neighbor for a

56 L8: g.addEdge(a, n, w, NONE);

59 L9: g.removeNode(lt, NONE);

60 L10: mst.add(minW, NONE);

L11: wl.add(a, NONE); // put node back on worklist
62 IR

o

Figure 2. Simplified implementation of Boruvka’s algorithm.

jects, which record the weights of the MST edges and their end-
points (nodes) in the original graph, are stored in another collection
GBag<Weight>, which only allows addition operations in a concur-
rent context. The last argument to a data structure method is a flag
that tells the runtime system whether the method should attempt to
acquire abstract locks and whether it should log an inverse method
call. The default value LOCK_UNDO is always a safe choice, ensuring
correctness of speculative execution.

The Galois system protects user-defined data types, such as
Weight, using a read-write lock (allowing concurrent read oper-

Syntactic Categories
TName Types
OFld Pointer fields
SFld Set fields
Field All fields

PVar Pointer variables
BVar Boolean variables
Svar Set-valued variables
Var All variables
Data Types (EBNF)
TypeDecl ::= class TName{FieldDecl* MethodDef"}
FieldDecl ::= [@rep] [static] TName OFld; |
Orep [static| set(TName) SFId;
MethodDef = @locks(Path™) @op(Stmt™) Java-code
Stmt := Var = Expr | Var.Field = Expr
Expr = Path | Path + Path | Path — Path | choose(Path) |
Path in Path | Path notIn Path |
isEmpty(Path) | new TName((Field = Var)™)
Path ::= Var.(Var + Field|:SVar] + rev(Field)[:SVar])"

Figure 3. EBNF grammar for specified data structures. The nota-
tion [x] means that x is optional.

ations but at most one write operation) and maintaining backup
copies of such objects.

Iterations of the Galois set iterator are executed speculatively in
parallel, and this execution has transactional semantics: an iteration
either completes and commits, or is rolled back and retried.

2.3 Data Structure Specifications

Figure 3 shows the syntax for a lightweight specification of ab-
stract data types (for all clients), defining their abstract state, ab-
stract locks acquired by each method, and operational semantics
of each method in terms of abstract fields. The set of variables,
includes method parameters, the special ret parameter for return-
ing values, static variables, and temporary variables used to define
the semantics of methods. The formal semantics of this language
can be found in the accompanying report [30]. Our analysis op-
erates in terms of these specifications, ignoring the internal details
of library ADT’s. We assume the correctness of the specifications;
approaches such as [34] can be used for their verification.

Figure 4 shows a graph type built from the Node and Edge types
and the parametric types ND and ED, used to store user-defined data
on the graph nodes and edges. In our example, nodes do not store
any data objects and thus their nd fields are null. Figure 5 shows a
bag, a set, and an iterator type.

Specifying Abstract Data Types. The @rep annotations in Fig-
ure 4 define the abstract state of a data structure in terms of set-
fields [18], i.e., fields whose values are sets of objects.

For example, the abstract state of Graph is given by a pair of
sets — ns and es — representing the set of graph nodes and edges,
respectively. > We represent an undirected edge by a single edge,
directed arbitrarily.

GaloisRuntime contains a static (i.e., global) locks set, rep-
resenting the set of abstract locks acquired by an iteration. >

Example 1. Figure 6 shows an abstract store representing the
input graph of Figure | where a references the active node a
and 1t references ¢ — the node connected to a by the lightest
edge, discovered on the second iteration after iterating over b.

2 The full specification includes additional first-order constraints.

3 Galois implements a lock coarsening scheme by maintaining a single set
of abstract locks, shared among all data structure instances.

class Graph<ND,ED> { // Undirected boosted graph
@rep set<Node> ns; // graph nodes
@rep set<Edge> es; // graph edges

@locks(n.rev(src).dst, n.rev(dst).src)

@op(nghbrs = n.rev(src).dst + n.rev(dst).src,
ret = new Set<Node<ND>>(cont=nghbrs))

Set<Node<ND>> getNeighbors (Node<ND> n, int opt);

@locks(f.rev(src).dst.t, t.rev(src).dst.f)

@op(f.rev(src):eft.dst.t, t.rev(src):etf.dst.f,
ret = choose(eft + etf))

Edge<ED> getEdge (Node<ND> f, Node<ND> t, int opt);

@locks(f, t, f.rev(src).dst.t, t.rev(src).dst.f)
@op(f.rev(src):eft.dst.t, t.rev(src):etf.dst.f,
ret = (eft+etf) in es,
ne = new Edge<ED>(src=f, dst=t, ed=d),
es += ne)
boolean addEdge (Node<ND> f, Node<ND> t, ED d,
int opt);

@locks(n.rev(src).dst, n.rev(dst).src)
@op(ret = n in ns, ns —= n,

es —= n.rev(src) + n.rev(dst))
boolean removeNode(Node<ND> n, int opt);

@locks(f.rev(src).dst.t, t.rev(src).dst.f)
@op(f.rev(src):eft.dst.t, t.rev(src):etf.dst.f,

ret = (etf + eft) in es, es —= (etf + eft))
boolean removeEdge (Node<ND> f, Node<ND> t, int opt);

@locks(n)
@op(ret = n.nd)
ND getNodeData(Node<ND> n, int opt);

@locks(e, e.src, e.dst)
@op(ret = e.ed)
ED getEdgeData(Edge<ED> e, int opt);

@locks(e, e.src, e.dst)
@op(e.ed = d)
void setEdgeData(Edge<ED> e, ED d, int opt);

}

class Node<ND> {
ND nd; // data object

}

class Edge<ED> {
Node src; // edge origin
Node dst; // edge destination
ED ed; // data object

}

Figure 4. Graph specification samples.

The figure does not show objects used by the internal (concrete)
representation of specified data types. Instead, it uses the (@rep)
set fields to indicate that an object is contained in a set field of a
data structure.

Filled locks denote objects in GalotisRuntime. locks; hollow
locks denote objects for which our analysis infers that lock protec-
tion is not required.

Path Language. We use a language of access path expressions
(access paths for short) to denote the set of objects that can be ob-
tained by following variables and fields in a store: a variable (x) de-
notes the object it references; a pointer field e . £ denotes an object
obtained by traversing the field £ forward from an object denoted
by the prefix expression e; a set field denotes any object stored in
the set stored in a given object; a reverse field, written rev(f) or

F
f , denotes objects obtained by traversing field £ backwards. We
formalize path expressions in Section 3.

class GSet<E> { // boosted set

@rep set<E> gcont;// set contents
@locks(e)

@op(ret = e in gcont)

boolean contains(E e);

@locks(e)

@op(ret = e notIln gcont, gcont += e)
boolean add(E e);

}

class GBag<E> {//boosted bag for reduction operations
@rep set<E> bcont; // bag contents

@locks() // No locks required!

@op(bcont += e)

void add(E e);

@op(ret = new Set<E>(bcont))

Set<E> toSet(); // used only in sequential code

}

interface Set<BE> { // sequential set from java.util
@rep set<E> cont; // set contents

}

interface Iterator<BE> { // iterator from java.util
@rep Set<E> all; // underlying set

@rep set<E> past; // past iteration elements
@rep E at; // element at current iteration
@rep set<E> future; // future iteration elements

Figure 5. Set, bag and iterator specification samples.

We use the notation :x inside a path expression to denote a set
of intermediate objects during an access path traversal. We write +
and - for set union and difference respectively.

Example 2 (Legend). The following paths are derived from the
abstract store in Figure 6:

® a.rev(src) represents the outgoing edges of a: {2, 3}.

® a.rev(dst) represents the incoming edges of a: (.

e a.rev(src).dst + a.rev(dst).src represents all of the
graph nodes adjacent to a: {b, c}.

e g.rev(src):xz.dst.lt sets the temporary variable x to the
edge from ato 1t: x = {3} (2 is not on a path from a to 1t).

Specifying Abstract Locks. A @locks annotation defines the set
of abstract locks a method should acquire by a set of path ex-
pressions. To keep specifications succinct, access paths expressions
in @locks stand for all of their prefixes (e.g., n.rev(src) .dst
stands forn, n.rev(src), and n.rev(src) .dst).

We call a node referenced by n along with its incident edges and
adjacent nodes the immediate neighborhood of n. We specify the
set of locks for such a neighborhood by @locks (n.rev(src) .dst,
n.rev(dst) .src).

Example 3 (Commutativity via abstract locks). The removeNode
method specifies locks for the immediate neighborhood of the node
being removed. A call to removeNode (c,LOCK) attempts to lock
the Node object c, the Edge objects referencing c via the src
field or the dst field (the edges incident to c), and the Node ob-
Jects that are neighbors of c. This ensures the concurrent method
calls removeNode (c,LOCK) and removeNode (e, LOCK) will not
cause their respective iterations to abort, since the immediate
neighborhoods of c and e do not overlap.

Specifying Method Semantics. An @op annotation defines the se-
mantics of a method by a simple imperative language. The language
allows a sequence of statements, using set expressions over method
parameters, static fields, and temporary variables. Expressions of
the form a in b, a notIn b, and isEmpty(a), test whether a is
contained in b, a is not contained in b, and whether a is an empty

niter —| past | at | future | all cont [<— aNghbrs 7 mst
@ ~T—_ TO®
0,

Figure 6. An abstract store arising at L2, using as input the graph
from Figure 1. Object are shown by rectangles sub-divided by
their fields; circles are used to name objects; locks show objects
contained in the global GaloisRuntime.locks set. We label Node
objects by the same labels used in Figure 1 and other objects by a
running index.

aNghbrs.cont
aNghbrs.cont.rev(dst)
aNghbrs.cont.rev(dst).src
aNghbrs.cont.rev(dst).ed

Iter 7>| past | at | future | all |* >| cont aNghbrs
@ 15

— It
{0 It.rev(dst)

It.rev(dst).src

It.rev(dst).ed

niter.past
d ‘ nlter.at
a.rev(src)
a.rev(dst)
a.rev(src).dst
a.rev(dst).src
a.rev(src).ed

a.rev(dst).ed

niter.future
niter.all.cont

src/l dst nt; < | geont |<7 - wl
ed v=T
1 geont |<f' mst

Figure 7. A shape graph obtained by applying hierarchy summa-
rization abstraction to the store in Figure 6. Grey boxes represent
sets of locked objects. v=T indicates that the numeric value of v
has been abstracted away.

set, respectively. (We overload these expressions to treat reference
variables as singleton sets.) Statements of the form a += exp and
a -= exp are shorthand fora = a + expanda = a - exp, re-
spectively. choose (exp) non-deterministically chooses an object
from a set denoted by exp.

2.4 Optimization Opportunities

Our static analysis enables the following optimizations.

Eliminating Usage of Concurrent Data Structures. The follow-
ing conditions allow replacing a concurrent implementation of a
data structure by a sequential implementation: the data structure is
iteration private, or the data structure is never modified. We use a
purity analysis [33] to discover objects that are never modified in-
side an iteration (such as Weight in the running example).

Reducing Rollback Logging. ILogging inverse method calls for
iterations that commit represents wasted work, as the log is cleared
when the iteration commits and the logged method calls are never
used.

Our static analysis finds a minimal set of failsafe points — pro-
gram locations in the client program such that an iteration reaching
them cannot abort. The analysis computes an under-approximation
of the set of objects that are always locked at a program location.
If the set of locks computed for a location L subsumes the set of
locks computed for all locations reachable from L, then L is a fail-
safe point. An iteration reaching a failsafe point will never fail to
acquire a lock and therefore cannot abort. We eliminate logging
inverse actions for method calls appearing after a failsafe point.

If no method call before a failsafe point modifies shared data
structures, rollback logging is not needed anywhere in the iteration.
Algorithms with this property are called cautious algorithms [26].

Eliminating Redundant Locking. Our analysis can also be used
to find method calls for which all locks have already been acquired
by preceding method calls. Lock acquisitions can be eliminated
for these calls. Furthermore, our analysis finds user-defined objects
“dominated” by other locked objects, i.e., objects that can only be
accessed after a unique abstract lock is acquired. We eliminate lock
operations for such objects as well.

2.5 Optimizing the Running Example by Static Analysis

We develop a sound static analysis to automatically infer available
optimizations of the kind discussed above. The input to our analysis
is a Java program with a single parallel loop, given by the foreach
construct, operating over a library of specified boosted data struc-
tures. The output of our analysis is an assignment of option flags to
each ADT method call and a list of (user-defined) types that do not
need “transactional” protection.

The core component of our analysis is a shape analysis that
under-approximates the set of objects that are always locked at
a program point. Intuitively, our analysis abstracts stores into
bounded-size shape graphs by collapsing all objects not referenced
by variables together and recording for each root object a set of
path expressions denoting the set of locked objects.

Figure 7 shows a shape graph obtained by applying our abstrac-
tion to the store in Figure 6. The object labeled by a double-circle
shows the set of collapsed objects. The grey box pointing to a ex-
presses the fact that the immediate neighborhood of a is locked,
along with the Weight objects referenced by its incident edges.
This shape graph represents an intermediate invariant inferred by
our analysis at L2. The full invariant is given by a set of the shape
graphs at that point, at the fixpoint.

Below, we provide sample invariants that our analysis infers for
Figure 2 and the corresponding path expressions denoting sets of
objects all of which are locked:

Invl: At L2, the immediate neighborhood of a is locked:
a + a.rev(dst).src + a.rev(src).dst.

Inv2: At L4-L9, the immediate neighborhoods of a and 1t are
locked:
a + a.rev(dst).src + a.rev(src).dst +
1t + 1lt.rev(dst).src + 1lt.rev(src).dst.

Inv3: At L2 and L6, all graph nodes accessible by the itera-
tor nIter (past, present, and future iterations) are locked:
nlter.past + nlter.at + nlIter.future.

Inv4: At 33, 47, 50, and 53, the edges referenced by e and an and
the nodes they reference are locked:
e + an + e.src + e.dst + an.src + an.dst.

Inv1 is part of the invariant needed to prove that L4 is a failsafe
point (before executing the statement). /nv1 needs to be maintained
from L2 and on. It is also used to eliminate locking in lines 32-33.
Inv2 helps establish L4 as a failsafe point, since all accesses to
nodes and edges in the second loop are to objects known to be
locked. Also, it helps eliminate redundant locking at L9. Inv3 helps

establish the failsafe point at L4 by the fact that the node referenced
by n is locked at 46 and 48, and eliminate locking at 32. Finally,
Inv4 establishes that the calls to getEdgeData and setEdgeData
in lines 33, 47, 50, and 53 do not lock new objects.

Additionally, our analysis infers that Weight objects are read-
only, which enables eliminating all lock operations and backup
copy maintenance for them. Points L7, L8, L10, L11 are after the
failsafe point and do not require storing inverse actions. At L10, the
calls to the add method of Bag do not require acquiring locks, and
trivially commute.

We apply these optimizations to the code of Figure 2 by setting
the LOCK option at L1 and L3, which eliminates rollback logging,
and setting the NONE option in all other calls, eliminating both
abstract locking and rollback logging.

This implementation of Boruvka’s algorithm is cautious: our
analysis infers that the failsafe point is L4 and that no modifications
are made to the graph between L1 and L4. If we remove the
statement at L3, the failsafe point is at L5, which requires logging
an inverse method call for g.removeEdge(a, 1t).*

3. A Shape Analysis for Graph Programs

This section presents our static analysis for enabling the optimiza-
tions described in previous sections. Our analysis considers only
sequential executions, but the inferred properties apply to concur-
rent executions as well. We use a result by Filipovic et al. [8] and
the fact that our concurrent executions are strictly serializable to
formally justify this [30].

The core component of the analysis is a shape analysis that
under-approximates the set of objects that are always locked, at
each program location. This section is organized as follows: (1) we
discuss the class of programs and stores that our shape analysis
addresses; (2) we define Canonical Abstraction [32] and partial
join [23] in our setting; (3) we define Hierarchy Summarization
Abstraction (HSA); (4) we present a technique for discovering
predicates relevant to our analysis; (5) we explain how the results
of the shape analysis are used; (6) we contrast our abstraction with
Backward Reachability Abstraction (BRA), a commonly used form
of shape abstraction; (7) we discuss how our analysis can aid the
programmer by providing non-cautiousness counterexamples; and
finally (8) we discuss limitations of our analysis.

3.1 A Class of Programs and Stores

We analyze Java programs (excluding recursive procedures) where
the implementation of specified data structures is replaced by the
abstract fields in the @rep annotations and the semantics of meth-
ods is given by the @op annotations.

Figure 8 defines stores in terms of pointer fields and set-valued
fields defined by the @rep annotations. We define the meaning of
path expressions (recursively), which denote sets of objects reach-
able from a variable by following fields in specified directions and
going through specified variables. The last definition in Figure 8
provides the meaning of variables assigned to intermediate objects
along path expressions, such as f.rev(src) :eft.dst.t.

Bounded-depth Hierarchical Stores. We define the set of types
reachable from an object o (by forward paths) to be the set of types
of all objects in [Jo.p] for all path expressions p.

This paper focuses on the class of bounded-depth hierarchical
stores — stores where the set of types reachable from [o.£] is
a proper subset of the set of types reachable from o, for every
object o and field f. Such stores are acyclic — the length of any

4Swapping L4 and L5 makes the code cautious once again, but breaks
sequential correctness, since in the Galois library it is illegal to remove an
edge while iterating over the neighbors of a node incident to it.

unidirectional path, i.e., a path where all fields are either forward
or reverse, is linearly bounded by the number of program types.

3.2 Canonical Abstraction and Partial Join

We implement our shape analysis using the TVLA system [22],
which allows defining stores by first-order predicates, program
statements by first-order transition formulae (formulae relating the
values of predicates after a statement to those before), and abstract
states by first-order abstraction predicates. The system automati-
cally generates sound abstract operations and transformers, yield-
ing a sound abstract interpretation for a given program.

TVLA uses Canonical Abstraction [32], which abstracts stores
into 3-valued logical structures. To focus our presentation on the
important details of our analysis, we simplify our description of
TVLA’s abstraction and use shape graphs for abstract states instead
of 3-valued structures.

Definition 3.1 (Shape Graph). Let P = AP U NAP be a set of
predicates consisting of two disjoint sets of unary predicates called
abstraction predicates (AP) and non-abstraction predicates (NAP).
A shape graph G is a tuple (N, P¢, E) where N is a set of
abstract objects, PG : N¢ — 27 assigns predicates to objects, and
E® : OFId U SFld — N x N€ is a set of may-edges for each
field. We denote the set of shape graphs over P by ShapeGraph[P].

We call the set of abstraction predicates assigned to an abstract
node v € N€ its canonical name: CName(v) = PC(v) N AP. A
shape graph G is bounded if no two abstract nodes have the same
canonical name. This means that the number of abstract nodes in
a bounded shape graph is exponentially bounded by the number of
abstraction predicates.

We define the abstraction function 3[P] : Store — BGraph[P)],
which maps a store o = (57, H?) into a bounded shape graph G
as follows. We use the helper function P° : To — 2F, which eval-
uates the predicates in P for each object, and u”¢ : To — N€,
which maps store objects having an equal canonical name to an
abstract node representing their equivalence class in G. The pred-
icate assignment function assigns to abstract nodes the predicates
common to all objects they represent, and a field edge exists be-
tween two abstract nodes if there exist two objects represented by
the abstract nodes that are related by that field.

1% (01) = 7 (02) <= P7(01) NAP = P7(03) N AP

PS(n) = P?(0)
ost.n=p%G(0)
ES(f) = {(n1,n2) | Jo1,02: n1 = pu”%(01),n2 = p”(02).
02 = H?(f)(01), [€ OFld;
02 € H°(f)(01), [€ SFld.

We say that a shape graph G’ subsumes a shape graph G, written
G C @, if there exists an onto function MG’GI :N¢ 5 N Gl, such
that P%(n) 2 PY (u%% (n)) forall m € N, and (n1,n2) €
EC(f) implies that (,uG’G/ (m),uG’Gl(ng)) e EY (f) for all
ni,ne € N, f € OFld U SFld.

The meaning of a shape graph G is given by the function v[P] :
ShapeGraph|P] — 257 defined as y[P](G) = {o | B[P](o) C
G

We say that two shape graphs G and G’ are congruent if there
exists a bijection between their sets of abstract nodes ,uG’G/
NS — N, which preserves the abstraction predicates: P (n) N
AP = pY’ (uG’G/ (n)) NAP for all n € N€. Two congruent shape
graphs G and G’ can be subsumed by a congruent shape graph
G"” = G U G, by intersecting corresponding predicate values
and taking the union of corresponding edges using the bijections

Stores

To Objects
Stack : PVar — To U Stacks
SVar — 270 U
BVar — {T,F} [p-el(o)

Heap : (To x OFld) — To U Heaps
(To x SFld) — 2%0
Store : Stack x Heap Stores
o= (S7,H°) Store notation

Semantics of Path Expressions

[Path] : Store — 270
Base case. Variables:

[z](o) = ;{g‘gg(x)}, x € PVar;

(2), x € SVar.

Inductive case. p € Path, [p](o) is known, and e is a field or variable:

[p] (o) N [e] (o), e € PVar U SVar;
{H(0,¢) | 0 € [p](0)}, e € OFld;

H?(o,¢), e € SFld,
o€[pl(o)

{o€To | H (o, f) € [p](o)}, e =rev(f), f € OFld;
{o€eTo | H (o, f) N [p](c) £ 0}, e=rev(f),[f € SFld.

For an object o € T and path p € Path, we define

[o.p](c) =lety be fresh, o’ = (S°|y + 0, H?) in [y.p](c”)

Meaning of intermediate variables:

The expression x.p:v.q assigns to v the set of objects that are both on a path
from z to g and in x.p. For x € Var,v € SVar,p,q € Path

[Vi(e) = [z.p](c) N{o € To | [0.4] (o) # 0}.

Figure 8. Stores and semantics of path expressions.

pC" ¢ N — N%and u&"¢" . NG - N
NG” — NG
PO (n) 0 PV (u" ()
(n1,m2) € B (f) &
(n

We use TVLA’s partial join operator [23], which merges con-
gruent shape graphs into a single shape graph, and keeps non-
congruent shape graphs in a set:

(Guay s { }gJ_CI;,C;}, gs?;]d G’ are congruent;

The abstraction of a set of stores a[P] : 25 — 2867t P jg
defined as o[P](X2) = ||, 5 B[P](0).

3.3 Hierarchy Summarization Abstraction

Our abstraction is defined relative to a set of abstraction paths,
denoted by AbsPaths, which represent possible paths from variables
to locked objects. The next subsection discusses a technique to
discover a set of useful abstraction paths for a set of data structures.

Let 0 = (S, H?) be a store. For a pointer variable x and an
abstraction path p, we define a unary predicate expressing the fact
that v is a root object referenced by x and all objects reachable from
it by the path p are locked:

ForwardReach[z, p|(v) £ [2]° = {v} A [z.p]° C [locks]” .

We encode hierarchy summarization abstraction via shape
graphs and the set of predicates P4, shown in Table 1, and the ab-
straction paths in Table 2. Since a pointer variable points to at most
one node, the number of abstract nodes in a bounded shape graph
G € BGraph[P™*] is equal to at most the number of heap roots
+ 1 (in the case where there exist non-root objects). The canonical
names in such a shape graph are the sets of aliased pointer vari-
ables. We call such sets aliasing configurations. In practice, the
average number of different aliasing configurations discovered by
our analysis is a small constant (/26), which means that the set of
bounded shape graphs our analysis explores is linear in the number
of program locations.

Figure 7 shows the result of applying 3[P"*] to the store in
Figure 6 and the predicates in Table 1. Heap roots are labeled with
path expressions that denote the sets of objects that are reachable

(1 (1), 1" (n2)) € EC(f) o
G (), 1u" (n2)) € B (f)

Predicates Meaning
Abstraction Predicates
{z(v) | z € Var} x references v
Non-abstraction Predicates
{ForwardReach[z,p](v) | Hierarchy summarization
x € Var,p € AbsPaths} predicates

Table 1. P predicates for hierarchy summarization abstraction.

Type Abstraction Paths

es, es.src, es.dst, ns, ns.§rc7 ns.§s1:7
ns.dst.ed, ns.gst.ed, ns.§rc.dst, ns.dst.src,

Graph
ns.nd, ns.8rc.dst.nd, ns.dst.src.nd,
es.ed, es.src.nd, es.dst.nd

Node a, 1t, n, m, ést, m.dst, gt.src, nd

g:.ed, E:.ed, E:.dst.nd, st.src.nd

Edge e, an, src, dst, ed, src.nd, dst.nd

Weight :d, <e_d.src7 gd.dst, <e_d.src.nd7 gd.dst.nd
cont, con‘c.gc7 cont.&, cont.H:.dst7
Set cont.gc.src7 con‘c.?c.ed7 cont.&.ed7
cont.H:.dst.nd, cont.gz.src.nd, cont.nd
GSet gcont, gcont.nd

GBag bcont

all, all.cont, all.cont.nd,

Iterat
erator past, at, future, past.nd, at.nd, future.nd

Table 2. Abstraction paths for the running example. We omit Java
Generics parameters when no confusion is likely.

from them and are definitely locked. At L2, we would expect that
node a, its neighbors, and the edges connecting a are locked. This
is specified by the path expressions labeling node a. For example,
a.rev(src).dst,a.rev(dst).src refer to all the neighbors of
a. Additionally, the current element that we are iterating over is
node ¢, which is the lightest neighbor of a; this node has its single
incoming edge and edge data locked. All other (non-root) nodes,
edges, and Weight objects are collapsed by our abstraction.

3.4 Predicate Discovery

We now describe heuristics for generating the set of abstraction
paths from the data structures in a program, and show how it finds
paths expressing the invariants described in Section 2. Our tech-
nique constructs paths in three phases: (a) building the type de-
pendence graph, (b) discovering variable-to-lock paths in method
specifications, and (c) combining variable-to-lock paths and all for-
ward paths in the type dependence graph.

Definition 3.2 (Type Dependence Graph). A type dependence
graph for a program, contains a type node Nt for each program
type T, labeled by the set of program variables of that type; and a
field edge from type node Nt to type node N, labeled by a field
of type T' or set(T") declared in type T.

Figure 9 shows the type dependence graph for Figure 2. For the
rest of this section, we fix the set of variables and fields, and define
the set of well-formed path expressions, WFPath.

Definition 3.3 (Well-formed Path Expressions). Define the type-
node pair of a path expression element as follows: TNPair(x) =
(NT, Nr) for a variable x of type T; TNPair(f) = (Nr, Nt+)
for a field f of type T' or set(T') declared in a type T; and

TNPair(f) = (Ng/, Nr) for a reversed field expression f, if
TNPair(f) = (N1, N7/).

Let p be a path expression e; .ea. er and let the correspond-
ing sequence of type-node pairs be (N1, N7), ..., (Ng, N;). We
say that p is well-formed if the sequence of type-nodes
N1, Ni,..., N, Ny is an undirected path in the type dependence
graph. We define the type-node pair of p to be TNPair(p) =
(N1, Np).

— .
Example 4. For example, nIter.at.gcont.wl is well-formed,
whereas g.nd and ed.es are not.

In the sequel, we consider only well-formed path expressions.
We say that a path expression p contains a cycle if the correspond-
ing path in the type dependence graph contains a cycle. A forward
path is a (well formed) path expression that contains no reversed
field sub-expressions.

Definition 3.4 (Forward Closure). The forward closure of a path
expression p, written Forward(p), is the set of all path expressions
of the form p.p" where p' is a forward path not containing program
variables (p.p’ is well-formed) and p' does not introduce cycles
other than ones already contained in p. The forward closure of a
type T is the set of all forward paths starting from type T, not
containing program variables.

Path closures of sets of path expressions and types are obtained
by taking the union of the closures of all set members.

Example 5. Forward(Edge) = {ed, src, dst, Srfid’ dst.nd}
and Forward(an.src.dst) = {an.src.dst, an.src.dst.ed}.

The forward closure of the types in the type dependence graph
represent data access patterns where a sequence of method calls
is used to obtain an object of type 7' from an object of a type T”
higher in the hierarchy. For example, in lines 32-33 of Figure 2, a
sequence of method calls is used to obtain an edge from the graph
and a Weight from an edge. In particular, the forward closure gives
us the paths needed to express Inv3 and Inv4.

However, these paths ignore the effect of methods, which create
more intricate paths, such as the ones needed for /nvl and Inv2.
Those are discovered by “summarizing” method specifications, as
explained next.

aNghbrs
niter ItNghbrs wi

mst
Iterator 3 Gset GBag
<Node> <Node> <Weigh

past,\a\fj\\\
future

@ w,
nd

— wan,

@ minW

Figure 10. Footprint graph for Graph.getNeighbors. A lock is
shown next to each node labeled by locks.

3.4.1 Discovering Paths in Method Footprints

We now explain how to find variable-to-lock paths, which repre-
sent possible paths between objects referenced by the method pa-
rameters (and returned value) and objects accessed by the @locks
specification, after the @op specification “executes”.

To find these paths, we construct a footprint graph for each
method. Intuitively, this graph represents the set of objects accessed
by the method, sometimes referred to as the “footprint” of the
method. The idea of “footprint analysis” was defined by Calcagno
et al. [3] to infer method preconditions and postconditions. We put
this idea to use for a different purpose.

We create a footprint graph by the following steps:

Handling statements We interpret the statements in @op in the or-
der they appear. For each statement, we create a graph repre-
senting every path expression on the right-hand side of an as-
signment. This is done by creating a new node for each position
in the expression, connecting them by the respective fields, and
labeling nodes by the variables along the expression. If the left-
hand side of the assignment is a pointer or set variable (Locks),
we use it to label the last node of each path graph. If it is a field
of the type containing the method, we create a node of that type
labeled by this and connect an edge field from that node to
the last node of every path graph created for the right-hand side
expression.

Creating @locks paths We create path graphs for all path expres-
sions in @locks that do not already appear in @op.

Merging We merge nodes labeled by a common (pointer or set)
variable.

Setting locks We label every node matching a path expression in
Q@locks by locks.

Example 3.5. Figure 10 shows the footprint graph for the
getNeighbors method of Graph. The top node represents the
outgoing edges of n, the lower node represents the incoming edges

Type Variable-to-Lock Paths
es, es.src, es.dst, ns, ns.Src,

Graph
ns.dst, ns.5rc.dst, ns.dst.src

Node Var(Node), irc, Ez, $rc.dst, dst.src
Edge Var(Edge), src, dst

Weight gi, <e_d‘src, ed.dst
Set<Node> cont, cont.m, confrmg:,
cont.&c.dst7 cont.dst.src
GSet gcont
GBag<E> [

Table 3. Variable-to-Lock paths for the running example. Var(T)
denotes an arbitrary variable to an object of type T.

of n. Both are connected to some neighbor of n. The node on the
right represents the returned set containing the neighbors of n. We
use this graph to obtain paths expressing that getNeighbors has
the effect of locking the immediate neighborhood of n.

We define the function VarToLock : TName — 2V7™ associat-
ing a set of variable-to-lock paths with each program type.

We create a set of variable-to-lock paths for every type node
from all footprint graphs as follows. For each footprint graph, we
take all the acyclic non-empty paths from a node labeled by a
method parameter (including this and the return parameter ret)
to any node labeled by locks. We associate these paths with the
type node corresponding to the type of the parameter. We denote
the set of variable-to-lock paths of type T" by VarToLock(T').

Table 3 shows the variable-to-lock paths that we get for the
running example. These paths enable us to express Inv1 and Inv2.

We combine the sets of paths defined earlier to obtain the set of
abstraction paths:

AbsPaths < U Forward(t) U Forward(VarToLock(t)) .

teTName

Here, expressions of the form Var (T) appearing in VarToLock(t)
are substituted by the set of paths {z € Var | z is of type T'}.

3.5 Putting it All Together

Our overall static analysis consists of the following stages:

Preprocessing We use a lightweight purity analysis [33] to detect
objects that do not require concurrency control and fields that
are never used inside the parallel loop, e.g., the initSrc and
initDst fields of Weight. The remainder of the analysis does
not consider path expressions in @locks containing unused
fields and sets the opt flags of read-only objects to NONE.

Shape Analysis We execute a forward shape analysis using hier-
archy summarization abstraction and TVLA-generated abstract
transformers. The fixpoint is a set of bounded shape graphs at
every program location.

Finding Redundant Locks We use abstract operations in TVLA
to conservatively check whether every shape graph at a program
location represents stores that lock all objects defined by a
@locks specification of a method executing at that location. If
so, we set the opt argument of that method call to UNDO (if it
was not already set to NONE).

Finding Failsafe Points We perform a backward BFS traversal
over the CFG (control flow graph) to find earliest program lo-
cations where all following method calls are labeled by NONE
or UNDO (meaning they do not acquire locks). These program
locations are the program failsafe points, We set the optimiza-

Predicates Meaning
Abstraction Predicates
{z(v) | © € Var} x references v
{BackwardReach|z,p](v) | Backward-reachability
x € Var,p € AbsPaths} predicates

Table 4. Predicates for backward-reachability abstraction.

tion argument of all method calls dominated by failsafe points
to NONE.

3.6 Backward Reachability Abstraction

A common abstraction idiom for shape abstraction uses coloring,
which records a set of unary (object-)predicates with every object
in the store. These predicates are used to partition the set of objects
into equivalence classes. Examples are Canonical Abstraction [32],
Boolean heaps [28], Indexed predicate abstraction [20], and gener-
alized typestates [21].

These abstractions typically employ backward reachability
predicates that use paths in the heap to relate objects to vari-
ables. For example, most TVLA-based analyses and analyses using
Boolean heaps distinguish between disjoint data structure regions
(e.g., list segments and sub-trees) by using transitive reachabil-
ity from pointer variables. Indexed predicate abstraction [20] uses
predicates that assert that cache clients are contained in one of two
lists (sharer_list and invalidate_list). Lam et al. [21] use
set containment predicates as the generalized typestate of an object.

We call such abstractions bottom-up, since they record proper-
ties of objects deep in the heap with respect to (shallow) root ob-
jects. These abstractions achieve high precision as they express ev-
ery Boolean combination of intersection and union of objects satis-
fying the unary predicates. However, the size of an abstracted store
can be exponential in the number of predicates, which might lead to
state space explosion in cases where objects satisfy many different
subsets of predicates.

We define backward reachability abstraction by using the set of
abstraction paths presented earlier to define backward reachability
predicates. For a pointer variable x and an abstraction path p, we
define a unary predicate expressing the fact that v is a locked object
reachable from x by the path p:

BackwardReach[z,p)(v) = v € [Locks]” N [z.p]° .

We obtain a backward reachability abstraction S[P***] from
the predicates shown in Table 4. BRA is strictly more precise than
HSA. However, it can be very expensive — the number of abstract
nodes in a shape graph obtained by 3[P?*] can be exponential
in the number of backward-reachability predicates. State space
explosion manifests when stores create overlaps between different
interacting sets (set fields), which is often the case in our programs.
Applying B[P?*] to the store in Figure 6, will conflate all objects
not locked and not referenced by a program variable. Compared to
Figure 7, Edge objects 2 and 3, for example, will remain needlessly
distinguished. Situations such as iterating over the neighbors of a
node, exploring multiple neighborhoods simultaneously or sharing
objects between multiple collections at the same time, cause the
number of useless distinctions to increase.

3.7 Producing Non-Cautiousness Counterexamples

When the code of a parallel loop body is not cautious, our analysis
can sometimes provide a counterexample to demonstrate the viola-
tion of the cautious property at appropriate program points. To find
such counterexamples, we assume the small scope conjecture [14],
which says that counterexamples usually manifest in small graphs.

F ItNghbrs

es | ed ed |

Figure 11. A counterexample at location L5 for the non-cautious
implementation of BVK.

A graph with three nodes and two edges is sufficient to pro-
vide us with a counterexample for the case of BVK, as shown in
Figure 11. The region of the graph where the violation happens is
highlighted. This is the smallest counterexample found by our anal-
ysis, taking about 300 seconds to produce.

3.8 Limitations

We recognize the following limitations of our analysis.

Bounded-depth hierarchy. As discussed at the beginning of this
section, we assume a class of stores where a finite-depth hierarchy
property exists. This allows us to ensure a bound on the number
of hierarchy summarization paths used to define our abstraction.
This precludes us from handling benchmarks where data structures
such as lists and trees are explicitly manipulated (and cannot be
abstracted away by a @rep specification). Generalizing our analysis
to handle recursive data structures may be done by considering
abstraction paths with regular expressions over the pointer fields
of the data structure.

Temporary violation of invariants. Our abstraction is geared to
infer invariants of the form Yo.R(0) = p(o) where R(o) ex-
presses a heap region (by abstraction paths) and p(o) is a property
we wish to summarize for the objects in the region R(o) (the is-
locked property in our analysis). When the property p is temporar-
ily violated for the objects in R(0) and then restored, our analysis
is not able to restore the invariant. For example, assume an invari-
ant Vo.R(o) = p(o) holds at program point 1. Then a point 2
a single object in R(0), referenced by a pointer variable x, is made
to have —p(0) and at point 3 it is removed from R(o). In order to
regain the invariant Yo.R(0) = p(o) at point 3, we may need
to refine our abstraction in order to express an invariant such as
Vo.(R(0) A —x(0)) = p(0).

4. Experimental Evaluation

The shape analysis described in Section 3 was implemented in
TVLA, and used to optimize four benchmarks from the Lonestar
suite [15]. These benchmarks were chosen because they exhibit
very diverse behavior. We describe them below.

e BVK: Boruvka’s MST algorithm. This benchmark adds and
removes nodes and edges from a graph.

e DMR: Delaunay mesh refinement. This benchmark uses itera-
tive refinement to produce a quality mesh. In each iteration, a
neighborhood of a bad triangle, called the cavity of that trian-
gle, is removed from the mesh and replaced with new triangles.
DMR uses a large number of collections with intricate patterns
of data sharing, so it is a “stress test” for the analysis.

SP: Survey propagation, a heuristic SAT solver. Most iterations
only update node labels, but once in a while, an iteration re-
moves a node (corresponding to a “frozen variable” [2]) and its
incident edges.

IR Graph Set Field

Prog. Size Calls Calls Acc. Optimal
BVK 340 17/20 4/4 23/23 v
DMR 1,168 26/30 30/30 164/164 v
SP 925 32/34 16/16 123/123 v
PFP 479 6/8 3/3 28/28 v

Table 5. Program characteristics and static analysis results. x/y measures
Optimized/Total.

Total Avg. # Abs. Avg. # SGs Time

Analysis SGs Nodes CFG Location (sec)

BVK

HSA 13,594 9 6.25 6

BRA 412,862 15 250 3,406
DMR

HSA 35,763 13 6.46 16

BRA 1,043,116 20 268 14,909

SP

HSA 25,421 13 6.26 12

BRA 394,765 21 158 12,446
PFP

HSA 17,692 10 6.96 7

BRA 71,800 17 45 972

Table 6. HSA, BRA performance statistics.(SG: Shape Graph)

e PFP: Preflow-push maxflow algorithm [5]. This algorithm only
updates labels of nodes and edges, and does not modify the
graph structure.

4.1 Static Analysis Evaluation

Table 5 reports the results of static analysis of our benchmarks.
We measure the size of benchmarks by the number of intermedi-
ate language (Jimple) instructions in the client program, excluding
the code implementing the data structures accompanied by a spec-
ification. Columns 3 to 5 show the number of static optimization
opportunities that our analysis enables. Galois protects application-
specific objects (e.g., the cavity in DMR) using a variant of object-
based STM, which can also benefit from our optimizations. Col-
umn 5 refers to those objects. In all cases, our analysis was precise
enough to identify the maximum number of sites that were eligible
for optimization, and it discovered the minimal set of latest failsafe
points. The optimal result that we compare against was determined
manually. Since our analysis is sound, we need to consider only
the relatively few calls where the analysis does not suggest conflict
detection or rollback logging optimizations.

4.1.1 Comparing Analyses: HSA vs. BRA

In Table 6, we compare our analysis using hierarchy summarization
abstraction (HSA), with an analysis using backward reachability
abstraction (BRA). The first column reports the total number of
shape graphs (SG) explored by the analysis, which is a measure for
the amount of work performed. We also report the average size of
a shape graph, the average number of SG’s per CFG location (our
analysis uses roughly 1.43 CFG locations for a Jimple instruction)
at the fixed point, and the running time of the analysis.

As expected, HSA generates a constant number of SG’s at each
program location, whereas in BRA the number of SG’s increases
as the benchmarks become more complex (from 45 SG’s for PFP
to 268 for DMR). The benefits of HSA are more striking as the
complexity of the benchmark increases. For PFP, BRA generates

roughly 6 times more SG’s than HSA, per CFG location. For DMR,
in which the number of collections increases, BRA produces 41
times more structures. Additionally, we observe that in BRA we
have more refined and, consequently, larger SG’s. For all bench-
marks the average SG size in BRA is roughly 1.6 times larger than
in HSA. These facts lead to a significant state space explosion,
which translates to increased work performed by BRA (for DMR
we see a 29-fold increase in the number of generated SG’s), and to
increased running times. Thus, HSA is as precise as BRA but more
efficient.

4.2 Experimental Evaluation of Optimizations

This section provides detailed performance results for each bench-
mark. To evaluate the performance gains obtained by different lev-
els of sophistication of the analysis, we considered the following
variants for each benchmark.

e Ol: Baseline version: accesses within parallel loops to all ob-
jects are protected.

e O2: Iteration-private objects are not protected.
e 03: O2+ dominated shared objects are not protected.

e 04: O3+ duplicate lock acquisitions and unnecessary undo op-
erations are eliminated.

Even in the baseline version, we do not protect object accesses
made outside of parallel loops since the analysis required to enable
this is trivial. At level O2, iteration-private objects are identified
and accesses to them are not protected; this optimization by itself
can be accomplished by a combination of flow-insensitive points-to
and escape analysis. Optimization levels O3 and O4 target shared
data; for these levels, a shape analysis similar to ours is necessary.

We performed our experiments using the Galois runtime system
and a Sun Fire X2270 Nehalem server running Ubuntu Linux
version 8.04. The system contains two quad-core 2.93 GHz Intel
Xeon processors, which share 24 GB of main memory. We used
the Sun HotSpot 64-bit server JVM, version 1.6.0. Each variant was
executed nine times in the same instance of the JVM. We drop the
first two iterations to account for the overheads of JIT compilation,
and report results for the run with the median running time.

Because of the don’t-care non-determinism of unordered-set it-
erators, different executions of the same benchmark/input combi-
nation may perform different numbers of iterations. Since our opti-
mizations focus on reducing the overhead of each iteration and not
on controlling the total number of iterations, we focus on a perfor-
mance metric called throughput, which is the number of committed
iterations per millisecond. For completeness, we also present other
measurements such as the total running time, the number of com-
mitted iterations, the abort ratio, etc. Table 7 shows detailed results
for all benchmarks.

4.2.1 Boruvka’s Algorithm

We do not provide results for level O2, since the number of iteration
private objects is insignificant. The number of committed iterations
is exactly the same across all thread counts (this is a natural prop-
erty of the algorithm since each committed iteration adds one edge
to the MST). The analysis is successful in reducing the number of
locks per iteration, and it correctly infers that the operator imple-
mentation is cautious.

The Boruvka algorithm takes roughly 141 seconds to run if
we use 1 thread and optimization level O1, and 75 seconds if we
use 8 threads and optimization level O4. At optimization level
04, no undo’s are logged and the number of acquired locks in
each iteration is substantially reduced. However, overall speedup is
limited by the high abort ratio (for example, for 8 threads, the abort
ratio is between 68% and 75% for all levels of optimization). The

abort ratio decreases as the optimization level increases because
if the time to execute an iteration is reduced, the iteration holds
its locks for a smaller amount of time, reducing the likelihood of
conflicts. This high abort ratio is intrinsic to the algorithm. The
MST is built bottom-up, so towards the end of the execution, only
the top few levels of the tree remain to be built and there is not
much parallel work.

A Non-Cautious Boruvka Implementation. As we discussed in
Section 2, removing the call to getNeighbors at L3 results in non-
cautious iterations. Our analysis successfully infers that the failsafe
point along this program path moves from L3 to L5. The only
difference in the inferred method flags is in L4, where the call to
removeEdge requires the UNDO flag instead of NONE. This example
shows the utility of our analysis for optimizing programs in which
the operator implementation is not cautious.

4.2.2 Delaunay Mesh Refinement

The number of committed iterations for this application is fairly
stable across thread counts and optimization levels. Lock acquisi-
tions drop dramatically in going from O2 to O3. The analysis de-
duces correctly that the operator implementation is cautious, which
is why the number of undo’s per iteration drops to zero at optimiza-
tion level O4 (the number of undo’s per iteration is stable in going
from O2 to O3 because the re-triangulated cavity is constructed in
private storage and then stored into the shared graph). The abort
ratio is very small even for 8 threads.

The reductions in the average number of acquired locks and
logged undo’s per iteration are reflected directly in the running
time. DMR takes 171 sec. to run if we use 1 thread and optimiza-
tion level O1, and only 5 sec. if we use 8 threads and optimization
level O4. This is roughly a factor of 34 improvement in the running
time, of which a factor of roughly 8 comes from optimizations and
a scaling factor of roughly 4 comes from increasing the number of
threads. Since the number of committed iterations is fairly stable
across all optimization levels and thread counts, the same improve-
ment factors can also be seen in throughput.

4.2.3 Survey Propagation

The number of committed iterations is fairly stable for this bench-
mark. The analysis is successful in reducing the number of locks
per iteration. The number of undo’s per iteration is fairly small even
at optimization level O1 because the graph is mutated only when a
variable is frozen, which happens in very few iterations. The anal-
ysis correctly infers that the operator implementation is cautious.

The SP algorithm takes roughly 180 seconds to run if we use
1 thread and optimization level O1, and 9 seconds if we use 8
threads and optimization level O4. Most of this benefit comes
from the optimizations; at optimization level O4, we observe a
speedup of roughly 1.6 on 8 threads. We see a 5.5X improvement
in throughput for 8 threads when the optimization level goes from
Ol to 04, and by 19% from O3 to O4.

4.2.4 Preflow-push Maximal Flow

A distinctive characteristic of PFP is its schedule sensitivity - be-
cause of don’t-care non-determinism, different schedules can per-
form very different amounts of work. This can be seen in the 8-
thread numbers: at optimization level O4, the program executes
twice as many iterations on 8 threads as it does on a single thread.
The number of undos per iteration is O for O3, since the graph struc-
ture is not mutated by the algorithm.

The preflow-push algorithm takes roughly 104 seconds to run
if we use 1 thread and optimization level O1, and the best paral-
lel time is 6.6 seconds if we use 4 threads and optimization level
O4. This is a 16-fold improvement, of which roughly 6-fold im-

Th BVK DMR SP PFP
) O1 [03 | o4 01 [02 T O3] o4 O1 [02 | 03 | o4 O1 | 02 [03 | o4
Lock Acquisitions/Iteration
1 885 637 64 1,429 | 1,269 97 28 99 98 49 6 109 111 44 8
2 1,114 799 93 1,429 | 1,269 97 28 99 99 50 6 109 111 44 8
4 1,270 896 118 1,429 | 1,269 97 28 99 100 50 6 109 111 44 8
8 1,512 | 1,020 153 1,430 | 1,268 97 28 100 100 50 6 110 111 45 9
Undos/Iteration
1 40.69 | 40.77 0.00 27.77 8.45 8.45 | 0.00 4.82 4.82 0.00 0.00 5.85 293 0.00 0.00
2 4742 | 4730 | 0.00 27.77 8.45 8.44 | 0.00 4.85 4.85 =~ 0.00 | 0.00 5.85 2.93 0.00 0.00
4 4746 | 47.72 | 0.00 27.77 8.45 8.44 | 0.00 4.86 4.94 ~ 0.00 | 0.00 5.85 2.94 0.00 0.00
8 46.61 | 47.25 0.00 27.79 8.44 8.45 | 0.00 4.90 4.89 ~ 0.00 | 0.00 5.92 2.95 0.00 0.00
Committed Iterations (Millions)
1 1.60 1.60 1.60 1.62 1.62 1.62 | 1.62 21.61 | 21.52 21.49 21.71 8.62 8.34 8.41 8.41
2 1.60 1.60 1.60 1.61 1.62 1.62 | 1.62 21.52 | 22.15 22.25 21.70 8.48 8.41 8.39 8.38
4 1.60 1.60 1.60 1.62 1.62 1.62 | 1.62 21.75 | 21.68 23.84 23.15 9.33 8.52 8.50 9.25
8 1.60 1.60 1.60 1.61 1.62 1.62 | 1.62 21.85 | 23.79 24.24 25.12 9.80 | 11.23 | 13.54 | 16.39
Abort Ratio %
1 0.00 0.00 0.00 0.00 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00
2 42.50 | 40.28 | 36.99 0.00 0.01 0.00 | 0.01 0.97 0.95 1.04 1.23 0.13 0.14 0.11 0.11
4 61.52 | 58.57 | 55.18 0.03 0.02 | 0.01 | 0.02 3.51 3.60 3.50 3.45 0.61 0.35 0.38 0.87
8 75.70 | 71.25 | 68.57 0.05 0.04 | 0.02 | 0.03 8.39 8.62 11.54 7.19 1.02 | 3.08 5.04 3.83
Running Time (sec)
1 141 107 81 171 132 24 22 180 176 24 14 104 94 22 18
2 155 109 81 93 77 14 12 109 110 24 17 75 69 13 10
4 190 102 77 49 39 8 7 65 58 14 11 114 103 7.3 6.6
8 219 98 75 28 22 5 5 42 42 10 9 108 108 7.7 9.4
Throughput (Iterations/ms)

1 11.38 | 15.01 | 19.65 9 12 68 75 120 122 893 1,533 83 89 389 463
2 1034 | 1471 | 19.72 17 21 118 131 198 201 934 1,274 113 122 659 798
4 8.41 15.62 | 20.87 33 41 212 | 234 333 371 1,729 2,074 82 83 1,167 | 1,402
8 7.31 16.38 | 21.40 57 73 323 347 515 573 2,404 2,868 91 104 1,762 | 1,739

Table 7. Performance metrics. BVK input is a random graph of 800,000 nodes and 5-10 neighbors per node. DMR input is a random mesh with 549,998
total triangles, 261,100 bad. SP input is a 3-SAT formula with 1,000 variables and 4, 200 clauses. PFP input is a random graph of 262, 144 nodes and

capacities in the range [0, 10000].

provement comes from the optimizations, and an improvement of
roughly 3-fold comes from exploiting parallelism.

4.2.5 Summary of Results

Our analysis eliminates all costs related to rollback logging for our
benchmarks, and reduces the number of lock acquisitions by a fac-
tor ranging from 10x to 50X, depending on the application and
the number of threads. These improvements translate to a notice-
able improvement (ranging from 2X up to 12x) in the running
time, which is consistent across different thread counts, and robust
against pathologies of speculation (e.g. high abort ratio).

5. Related Work

Prior work on shape analysis has focused mostly on analyzing data
structure implementations to infer heap structure. In contrast, we
use data structure specifications to abstract away data structure
representations, and we focus on unstructured graphs.

The Jahob system [19] verifies that a data structure implemen-
tation meets its specification, and it uses the abstract state to sim-
plify the verification of data structure clients. Our analysis assumes
that a given specification is correct. Checking that the implementa-
tion and specification of the method semantics match and that the
@locks specification ensures that only commutating methods can
execute concurrently is an interesting challenge.

Maron et al. [24] use specialized predicates to model sharing
patterns between objects stored in data structures, and use this
information to statically parallelize benchmarks from the JOlden
suite and SPECjvm98 benchmarks. Our benchmarks operate on
unstructured graphs and are not amenable to static parallelization.

We exploit the fact that our execution model is speculative to
avoid tracking correlations between different data structures, which
increases the cost of the analysis considerably.

In the current Galois system, the optimizations described here
are performed manually [26]. Our shape analysis automates these
optimizations, reducing the burden on the programmer and ensur-
ing correctness of optimized code. Failsafe points extend the no-
tion of cautious operators. Our running example shows that non-
cautious code too can be optimized by turning conflict detection
and rollback logging off for a subset of the calls, obtaining perfor-
mance improvement similar to the cautious version. Additionally,
in [26] the system optimizes locking only after the failsafe point
in contrast to our analysis, which optimizes locking regardless of
whether an operator is cautious.

Prabhu et al. [29] use value speculation to probabilistically
reduce the critical path length in ordered algorithms. Their static
analysis focuses mainly on array programs. Value speculation is
orthogonal to our approach, and the benchmarks discussed in this
paper do not benefit from value speculation. Furthermore, our heap
abstractions are very different because we need to handle complex
ADTs such as unstructured graphs.

Harris et al. [10], Adl-Tabatabai et al. [1], and Dragojevic
et al. [6] use compiler optimizations to reduce the overheads of
transactional memory. They also handle immutable, and transac-
tion local objects. Additionally, they describe extending traditional
compiler optimizations such as common subexpression elimination
(CSE) to reduce the overheads of logging. Although CSE helps to
reduce repeated logging for a single object, its effectiveness for our
benchmarks is limited by the extensive use of collections. Their

approaches cannot capture global properties such as failsafe points.
Other optimizations they propose are complementary to ours.

McCloskey et al. [25], Hicks et al. [13], and Cherem et al. [4]
describe analyses that infer locks for atomic sections. These tech-
niques are overly conservative for our benchmarks since they would
always infer that an iteration might touch the whole graph.

Acknowledgments

We would like to thank the anonymous referees, Noam Rinetzky,
and Josh Berdine for their helpful comments.

References

[1] A. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and
T. Shpeisman. Compiler and runtime support for efficient software
transactional memory. In PLDI. ACM, 2006.

[2] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation:
An algorithm for satisfiability. Random Structures and Algorithms,
27(2):201-226, 2005.

[3] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Footprint
analysis: A shape analysis that discovers preconditions. In SAS, 2007.

[4] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic
sections. In PLDI. ACM, 2008.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, editors. Introduction
to Algorithms. MIT Press, 2001.

[6] A. Dragojevic, Y. Ni, and A. Adl-Tabatabai. Optimizing transactions
for captured memory. In SPAA, 2009.

[7]1 D. Eppstein. Spanning trees and spanners, pages 425-461. Elsevier,
1999.

[8] I Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for
concurrent objects. In ESOP, 2009.

[9] T. Harris and K. Fraser. Language support for lightweight transactions.

In OOPSLA ’03, 2003.

[10] T. L. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. In PLDI. ACM, 2006.

[11] M. Herlihy and E. Koskinen. Transactional boosting: a methodology
for highly-concurrent transactional objects. In PPOPP. ACM, 2008.

[12] M. Herlihy and J. Eliot B. Moss. Transactional memory: architectural
support for lock-free data structures. In ISCA, 1993.

[13] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic
sections. In TRANSACT, June 2006.

[14] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, 2006.

[15] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali. Lonestar: A
suite of parallel irregular programs. In ISPASS, 2009.

[16] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter,
K. Bala, and L. P. Chew. Scheduling strategies for optimistic parallel
execution of irregular programs. In SPAA 08, 2008.

[17] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and

L. P. Chew. Optimistic parallelism requires abstractions. In PLDI.
ACM, 2007.

[18] V. Kuncak and M. C. Rinard. Decision procedures for set-valued
fields. Electr. Notes Theor. Comput. Sci., 131, 2005.

[19] V. Kuncak and M. C. Rinard. An overview of the jahob analysis
system: project goals and current status. In /PDPS, 2006.

[20] S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed
predicates. ACM Trans. Comput. Log., 9(1), 2007.

[21] P. Lam, V. Kuncak, and M. C. Rinard. Generalized typestate checking
using set interfaces and pluggable analyses. SIGPLAN Notices, 39(3),
2004.

[22] T. Lev-Ami and M. Sagiv. TVLA: A framework for implementing
static analyses. In SAS, 2000.

[23] R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. Partially disjunc-
tive heap abstraction. In SAS, 2004.

[24] M. Marron, D. Stefanovic, D. Kapur, and M. V. Hermenegildo. Identi-
fication of heap-carried data dependence via explicit store heap mod-
els. In LCPC, pages 94-108, 2008.

[25] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchro-
nization inference for atomic sections. In POPL. ACM, 2006.

[26] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan,
M. Kulkarni, M. Burtscher, and K. Pingali. Structure-driven optimiza-
tions for amorphous data-parallel programs. In PPOPP. ACM, 2010.

[27] K. Pingali, M. Kulkarni, D. Nguyen, M. Burtscher, M. Mendez-Lojo,
D. Prountzos, X. Sui, and Z. Zhong. Amorphous data-parallelism in
irregular algorithms. regular tech report TR-09-05, The University of
Texas at Austin, 2009.

[28] A. Podelski and T. Wies. Boolean heaps. In SAS, 2005.

[29] P. Prabhu, G. Ramalingam, and K. Vaswani. Safe programmable
speculative parallelism. In PLDI, 2010.

[30] D. Prountzos, R. Manevich, K. Pingali, and K. S. McKinley. A shape
analysis for optimizing parallel graph programs. Technical Report
TR-10-27, UT Austin, http://userweb.cs.utexas.edu/users/
dprountz/UTCS-TR-10-27.pdf, Jul 2010.

[31] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-
time parallelization of loops with privatization and reduction paral-
lelization. IEEE Trans. Parallel Distrib. Syst., 10(2):160-180, 1999.

[32] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 24(3), 2002.

[33] A. Salcianu and M. C. Rinard. Purity and side effect analysis for java
programs. In VMCAI, 2005.

[34] K. Zee, V. Kuncak, and M. Rinard. Full functional verification of
linked data structures. In PPOPP. ACM, 2008.

http://userweb.cs.utexas.edu/users/dprountz/UTCS-TR-10-27.pdf
http://userweb.cs.utexas.edu/users/dprountz/UTCS-TR-10-27.pdf

	Introduction
	Overview
	Boruvka's MST algorithm
	Speculative Execution in Galois
	Data Structure Specifications
	Optimization Opportunities
	Optimizing the Running Example by Static Analysis

	A Shape Analysis for Graph Programs
	A Class of Programs and Stores
	Canonical Abstraction and Partial Join
	Hierarchy Summarization Abstraction
	Predicate Discovery
	Discovering Paths in Method Footprints

	Putting it All Together
	Backward Reachability Abstraction
	Producing Non-Cautiousness Counterexamples
	Limitations

	Experimental Evaluation
	Static Analysis Evaluation
	Comparing Analyses: HSA vs. BRA

	Experimental Evaluation of Optimizations
	Boruvka's Algorithm
	Delaunay Mesh Refinement
	Survey Propagation
	Preflow-push Maximal Flow
	Summary of Results

	Related Work

