
Computer Performance Microscopy with SHIM

Xi Yang‡ Stephen M. Blackburn‡ Kathryn S. McKinley∗
‡Australian National University ∗Microsoft Research

{xi.yang, steve.blackburn}@anu.edu.au mckinley@microsoft.com

Abstract

Developers and architects spend a lot of time trying to un-
derstand and eliminate performance problems. Unfortunately,
the root causes of many problems occur at a fine granular-
ity that existing continuous profiling and direct measurement
approaches cannot observe. This paper presents the design
and implementation of SHIM, a continuous profiler that sam-
ples at resolutions as fine as 15 cycles; three to five orders
of magnitude finer than current continuous profilers. SHIM’s
fine-grain measurements reveal new behaviors, such as vari-
ations in instructions per cycle (IPC) within the execution
of a single function. A SHIM observer thread executes and
samples autonomously on unutilized hardware. To sample,
it reads hardware performance counters and memory loca-
tions that store software state. SHIM improves its accuracy
by automatically detecting and discarding samples affected
by measurement skew. We measure SHIM’s observer effects
and show how to analyze them. When on a separate core,
SHIM can continuously observe one software signal with a 2%
overhead at a ~1200 cycle resolution. At an overhead of 61%,
SHIM samples one software signal on the same core with SMT
at a ~15 cycle resolution. Modest hardware changes could
significantly reduce overheads and add greater analytical ca-
pability to SHIM. We vary prefetching and DVFS policies in
case studies that show the diagnostic power of fine-grain IPC
and memory bandwidth results. By repurposing existing hard-
ware, we deliver a practical tool for fine-grain performance
microscopy for developers and architects.

1. Introduction
Understanding the complex interactions of software and hard-
ware remains a daunting challenge. Developers currently use
two main approaches: direct measurement and sample-based
continuous profiling. They pose hypotheses and configure
these tools to instrument software events and read hardware
performance counters. Next they attempt to understand and im-
prove programs by correlating code with performance events,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’15, June 13-17, 2015, Portland, OR USA
ACM 978-1-4503-3402-0/15/06.
http://dx.doi.org/10.1145/2749469.2750401

e.g., code to bandwidth consumption, low Instructions Per Cy-
cle (IPC) to branch behavior, and loops to data cache misses.
State-of-the-art continuous profiling tools, such as Intel VTune
and Linux perf, take an interrupt and then sample hardware
performance counter events [16, 18]. The possibility of over-
whelming the kernel’s capacity to service interrupts places
practical limits on their maximum resolution [19]. Conse-
quently, their default sample rate is 1 KHz and their maximum
sample rate is 100 KHz, giving profile resolutions of around
30 K to 3 M cycles on a modern core.

Unfortunately, sampling at a period of 30 K cycles misses
high frequency events. Statistical analysis sometimes miti-
gates this problem, for example, when a single small portion
of the code dominates performance. However, even for simple
rate-based measures such as IPC, infrequent samples are inad-
equate because they report the mean of the period, obscuring
meaningful fine-grain variations such as those due to small but
ubiquitous code fragments, as we show in Section 2.

Consequently, developers must currently resort to mi-
crobenchmarks, simulation, or direct measurement to examine
these effects. However, microbenchmarks miss interactions
with the application context. Simulation is costly and hard to
make accurate with respect to real hardware. Industry builds
proprietary hardware to examine performance events at fine
granularities at great expense and thus such results are scarce.

The alternative approach directly measures code by adding
instrumentation automatically or by hand [12, 13, 18, 34]. For
instance, developers may insert instrumentation that directly
reads hardware performance counters. Software profilers such
as PiPA and CAB instrument code automatically to record
events such as path profiles. A consuming profiler thread
analyzes the buffer offline or online, sampling or reading it
exhaustively. In principal, developers may perform direct mea-
surement and fine-grain analysis with these tools [2]. How-
ever, inserting code and the ~30 cycles it takes to read a single
hardware performance counter both induce observer effects.
Observer effects are inherent to code instrumentation and are
a function of the number of measurements—the finer the gran-
ularity and the greater the coverage, the more observer effect.
In summary, no current solution delivers accurate continuous
profiling of hardware and software events with low observer
effects at resolutions of 10s, 100s, or even 1000s of cycles.

This paper introduces a new high resolution approach to per-
formance analysis and implements it in a tool called SHIM.1

SHIM efficiently observes events in a separate thread by ex-
1A shim is a small piece of material that fills a space between two things

to support, level, or adjust them.

1

ploiting unutilized hardware on a different core or on the same
core using Simultaneous Multithreading (SMT) hardware. A
SHIM observer thread executes simultaneously with the appli-
cation thread it observes, but in a separate hardware context.
Signals We view time-varying software and hardware events
as signals. A SHIM observer thread reads hardware perfor-
mance counters and memory locations that store software
signals (e.g., method and loop identifiers). A compiler or other
tool configures software signals and communicates memory
locations to SHIM. SHIM treats software and hardware data
uniformly by reading (sampling) memory locations and per-
formance counters together at very high frequencies, e.g., 10s
to 1000s of cycles. The observer thread logs and aggregates
signals. Further online or offline analysis acts on this data.
Measurement fidelity and observer effects The fidelity of
continuous sampling is subject to at least three threats: (i)
skew in measurement of rate metrics, (ii) observer effects, and
(iii) low sample rates. SHIM reduces these effects.

To improve the fidelity of rate metrics, we introduce double-
time error correction (DTE), which automatically identifies
and discards noisy samples by taking redundant timing mea-
surements. DTE separately measures the period between the
start of two consecutive samples and the period between the
end of the samples. If the periods differ, the measurement was
perturbed and DTE discards it. By only using timing consis-
tency, DTE correctly discards samples of rate measurements
that seem obviously wrong (e.g., IPC values of > 10), without
explicitly testing the sample itself.

A minimal SHIM configuration that only reads hardware
performance counters or software signals inherent to the code
does not instrument the application, so has no direct observer
effect. SHIM induces secondary effects by contending for
hardware resources with the application. This effect is largest
when SHIM shares a single core with the application using
Simultaneous Multithreading (SMT) and contends for instruc-
tion decoding resources, local caches, etc. We find that the
SHIM observer thread offers a constant load, which does not
obscure application behavior and makes it possible to rea-
son about SHIM’s effect on application measurements. When
SHIM executes on a separate core, it interferes much less, but
it still induces effects, such as cache coherence traffic when
it reads a memory location in the application’s local cache.
This effect is a function of sampling and memory mutation
rates. SHIM does not address observer effects due to invasive
instrumentation, such as path profiles.

Randomization of sample periods is essential to avoiding
bias [3, 21]. We show high frequency samples are subject to
many perturbations and their sample periods vary widely.

We measure a variety of configurations and show that SHIM
delivers continuous profiles with a rich level of detail at very
high sample rates. On one hand, SHIM delivers ~15 cycle
resolution profiling of one software signal in memory on the
same core with SMT at a 61% overhead. Placing these results
in context, popular Java profilers, which add instrumentation

to applications, incur typical overheads from 10% to 200%
at 100 Hz [21], with sample periods six orders of magnitude
longer than SHIM. Because SHIM offers a constant load on
SMT, SHIM observes application signals with reasonable ac-
curacy despite its overhead. To fully validate SHIM’s fine-
grain accuracy would require ground truth from proprietary
hardware-specific manufacturer tools, not available to us.

On a separate core, SHIM delivers ~1200 cycle resolution
when profiling the same software signal with just 2% overhead.
Case Studies The possibility of high fidelity, high frequency
continuous profiling invites hardware innovations such as ultra
low latency control of dynamic voltage and frequency scaling
(DVFS) and prefetching to tune policies to fine-grained pro-
gram phases. We analyze the ILP and bandwidth effects of
DVFS and turning off and on prefetching on two examples of
performance-sensitive code, showing that fine-grain policies
have the potential to improve efficiency.
Hardware to improve accuracy and capabilities Modest
hardware changes could significantly reduce SHIM’s observer
effects, improve its capabilities, and make it a powerful tool
for architects as well as developers. When SHIM shares SMT
execution resources, a thread priority mechanism, such as
in MIPS and IBM’s Power series [9, 26], would reduce its
observer effect. Executing SHIM with low priority could
limit the SHIM thread to a single issue slot and only issue
instructions from it when the application thread has no ready
instruction. When SHIM executes on a separate core, a no-
caching read, such as on ARM hardware [29], would reduce
observer effects when sampling memory locations. A no
caching read simply transfers the value without invoking the
cache coherence protocol. On a heterogeneous architecture,
the simplicity of the SHIM observer thread is highly amenable
to a small, low power core which would reduce its impact. If
hardware were to expose all performance counters to other
cores, such as in IBM’s Blue Gene/Q systems [5], SHIM could
capture all events while executing on a separate core. We
show that SHIM in this configuration would incur essentially
no overhead and experience very few observer effects.
By repurposing existing hardware, SHIM reports for the first
time fine-grain continuous sampling of hardware and software
events for performance microscopy. We leave to future work
how to translate fine-grain profiling into concrete software
and hardware improvements, and make SHIM publicly avail-
able [32] to encourage this line of research and development.

2. Motivation
This section motivates fine-grain profiling by comparing
coarse-grain and fine-grain sampling for hot methods, instruc-
tions per cycle (IPC), and IPC for hot methods.
Identifying hotspots Figure 1(a) lists the 100 most fre-
quently executed (hot) methods of the Java application lusearch
for three sampling rates, ranging from ∼500 cycles to ∼50 K
cycles to ∼5 M cycles. The medium and low frequency data
are subsamples of the high frequency data. These results

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

F
ra

c
ti
o

n
 o

f
s
a

m
p

le
s

Method ID

520 cycles (avg IPC 1.13)
50 K cycles (avg IPC 1.14)
4997 K cycles (avg IPC 1.14)

(a) Hot methods

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5
 1 1.5

 2 2.5
 3 3.5

F
ra

c
ti
o

n
 o

f
s
a

m
p

le
s

IPC

476 cycles (avg IPC 1.10)
45 K cycles (avg IPC 1.11)
4515 K cycles (avg IPC 1.11)

(b) Instructions Per Cycle (IPC)

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90

A
v
e

ra
g

e
 I

P
C

Method ID

520 cycles (avg IPC 1.13 std 0.34)
50 K cycles (avg IPC 1.14 std 0.22)
4997 K cycles, (avg IPC 1.14 std 0.05)

(c) IPC of hot methods

Figure 1: The impact of sample rate on lusearch. (a) Varying the sample rates identifies similar hot methods. The green curve is
the cumulative frequency distribution of samples at high frequency. Medium (red) and low (blue) frequency sampling cumulative
frequency histograms are permuted to align with the green. (b) Sample rate significantly affects measures such as IPC. (c)
Sample rate significantly affects IPC of hot methods. Each bar shows average IPC for a given hot method at one of three sample
rates.

support the conventional wisdom that sample rate is not a sig-
nificant limitation when identifying hot methods. The green
curve is the cumulative frequency distribution of the number
of samples taken for the hottest 100 methods when sampling
at the highest frequency. The leftmost point of the green curve
indicates that the most heavily sampled method accounts for
36% of all samples, while the rightmost point of the curve
reveals that the 100 most sampled methods account for 97%
of all samples. The blue and red bars are the cumulative fre-
quency histograms for medium and low frequency sampling
respectively, reordered to align with the green high frequency
curve. A gap appears in the blue and red histograms whenever
a method in the green hottest 100 does not appear in their top
100 method histogram. The red histogram is noisy because
many methods attract only two samples. However, the blue
histogram is very well sampled, with the least sampled method
attracting 142 samples. Most bars fall below the green line,
indicating that they are relatively under sampled at lower fre-
quencies, although a few are over sampled. While sample rate
does not greatly affect which methods fall in the top 50 hottest
methods, Mytkowicz et al. [21] show that randomization of
samples is important to accurately identifying hot methods.

Revealing high frequency behavior On the other hand, Fig-
ures 1(b) and 1(c) show that sampling at lower frequencies
masks key information for metrics that vary at high frequen-
cies, using IPC as the example. Figure 1(b) presents IPC for
retired instructions. We measure cycles and instructions re-
tired since the last sample to calculate IPC. The figure shows
the cumulative frequency distribution for IPC over all samples.
The green curve shows that when the sample rate is higher,
SHIM observes a wider range of IPCs. About 10% of samples
observe IPCs of less than 0.93 and 10% observe IPCs of over
1.45, with IPC values as low as 0.04 and as high as 3.5. By
contrast, when the sample period grows, observed IPCs fall
in a very narrow band between 1.0 and 1.3, with most at 1.11.
As the sample period grows, each observation asymptotically

approaches the mean for the program.
Figure 1(c) illustrates a second source of error due to coarse-

grain sampling of rate-based metrics. In Figure 1(c), we cal-
culate IPC, attribute it to the executing method, and then plot
the average for each of the hottest 100 methods. Lowest fre-
quency sampling (red) suggests that IPC is very uniform, at
around 1.14, whereas high frequency sampling (green) shows
large variations in average IPC among methods, from 0.04
(#4), to 2.39 (#59). The lower IPC variation at lower sam-
ple rates is largely due to the fact that IPC is measured over
a period. As that period grows, the IPC reflects an average
over an increasingly large part of the running program. This
period is typically much larger than the method to which it is
attributed. When the period is orders of magnitude longer than
the method’s execution, sampling loses an enormous amount
of information, quantified by the standard deviations at the top
of Figure 1(c). This problem occurs whenever a rate-based
measure is determined by the period of the sample.

Direct measurement avoids this problem [2, 12, 18, 25], but
requires instrumenting the begin and end of each method in
this example. When just a few methods are instrumented, this
method can work well, but when many methods are instru-
mented, methods are highly recursive, or methods execute
only for a few hundred cycles, taking measurements (the ob-
server effect) will dominate, obscuring the context in which
the method executes.

3. Design and Implementation
Viewing time varying events as signals motivates our design.
A SHIM observer thread executes continuously in a separate
hardware context, observing events from an application thread
executing on neighbor hardware. The observer samples hard-
ware and software signals at extremely high frequencies, log-
ging or analyzing samples depending on the configuration.
SHIM samples signals that the hardware automatically gener-
ates in performance counters and memory locations that the
application intensionally generates in software. SHIM consists

3

of three subsystems: a coordinator, a sampling system, and a
software signal generating system.
Signals SHIM observes signals from either hardware or soft-
ware for three kinds of events: tags, counters, and rates. An
event tag is an arbitrary value, such as a method identifier, pro-
gram counter, or stack pointer. An event counter increments
a value each time the event occurs. Our various analyses
detect counter overflow. Hardware counters include all per-
formance events supported by the processor, including cycles,
instructions retired, cache misses, prefetches, and branches
taken. Software similarly may count some events, such as
allocations, method invocations, and loop iterations. Software
signals may be implicit in the code already (e.g., a method
identifier or parameter on the stack) or a tool may explicitly
add them. For example, the compiler may insert path profiling
code. SHIM computes rates by reading a given counter X
and the clock, C, at the start and end of a sample period and
then computing the change in X over change in C for that
period. Section 4 describes how SHIM correctly reports rates
by detecting and eliminating noise in this process.
Coordinator The coordinator configures the hardware and
software signals, sampling frequency, analysis, and the ob-
server thread(s) and the location(s) on a different core on a
Chip Multiprocessor (CMP) or the same core with Simul-
taneous Multithreading (SMT) as the application thread(s).
The coordinator configures hardware performance counters
by invoking the appropriate OS system calls. It invokes the
software signal generation system to determine memory ad-
dresses of software signals. The coordinator communicates
the type (counter or tag) of each signal, hardware performance
counters, and memory locations for software signals to the
observer thread. The coordinator binds each SHIM observer
thread to a single hardware context. For each observer thread,
we assign a paired neighbor hardware context for application
thread(s). The coordinator executes one or more application
threads on this paired neighbor. The coordinator starts the ap-
plication and observer execution. We add to the OS a software
signal that identifies application threads, such that SHIM can
differentiate multiple threads executing on its paired neigh-
bor, attributing each sample correctly. SHIM thus observes
multithreaded applications that time-share cores.
Sampling system The SHIM observer thread implements the
sampling system. It observes some number of hardware and
software signals at a given sampling rate, as configured by the
coordinator. The sampling system observes hardware signals
by reading performance counters and the software signals
by reading memory locations. The coordinator initializes
the sampling system by creating a buffer for samples. The
observer thread reads the values of the performance counters
and software addresses in a busy loop and writes them in this
buffer, as shown in Figure 2.

We divide the observer into two parts, one for counters
(lines 4 to 9) and another for tags (lines 13 to 16). Soft-
ware or hardware may generate counters, rates, or tag signals.

1 void shimObserver() {
2 while(1) {
3 index = 0;
4 buf[index++] = rdtscp(); // counters start marker
5 foreach counter (counters){ // hardware or software counter
6 rdtscp(); //serializing instruction
7 buf[index++] = rdpmc(counter) or read_signal(counter);
8 }
9 buf[index++] = rdtscp(); // counters end marker

10 // which application thread is executing the paired neighbor?
11 pid_and_ttid = *pidsignal;
12 buf[index++] = pid_and_ttid;
13 if (tags){
14 foreach tag (tags) // hardware or software tag
15 buf[index++] = rdpmc(tag) or read_signal(tag);
16 }
17 // online analysis here, if any
18 }
19 }

Figure 2: SHIM observer loop.

Recording counters and rates requires high fidelity in-order
measurements. We use the rdtscp() instruction, which returns
the number of cycles since it has been reset. It forces a syn-
chronization point, such that no read or write may issue out of
order with it. It requires about 20 cycles to execute.

Each time SHIM takes one or more counter samples, it
first stores the current clock (line 4 in Figure 2). It then
synchronously reads every counter event from either hardware
performance counters or a software specified memory location
and then stores the clock again (line 9). We can measure rates
by comparing values read at one period to those read at the
previous one. The difference in the clock tells us the period
precisely. If the time to read the counters (lines 4 to 9) varies
from period to period, the validity of the rate calculation may
be jeopardized. As we explain in Section 4, we can precisely
quantify such variation and filter out affected measurements.
Because it is correct to sample any tag value within the period,
we do not read tags synchronously (lines 13 to 16).

The simple observer in Figure 2 stores samples in a buffer.
Realistic observers will use bounded buffers which are peri-
odically consumed or written to disk, or they may perform
lightweight online analysis such as incrementing a histogram
counter. Although we do not explore it in this paper, a feed-
back directed optimizer could process and act on such data.
Signal system The signal system generates software signals
and selects hardware and software signals.

For hardware signals, we choose and configure hardware
performance counter events. These configurations depend on
the analysis and on which core the observer executes. For
example, when observing the number of cycles the application
thread executes, we only need the elapsed cycles event counter,
when all hardware threads execute at the same frequency. To
measure how many instructions the application executes, we
need two counters on a two-way SMT processors to derive
what happens on the neighbor thread. One counter counts
instructions retired by the whole core and another one counts
instructions retired by the SHIM thread. The difference is due
to the application thread.

For software signals, we record the address where the appli-

4

cation writes the software signal. Applications and runtimes
already generate many interesting software signals automati-
cally. For example, consider recording the memory allocation
throughput to correlate it with cache misses. Many runtimes
use bump pointers which are a software signal reflecting mem-
ory allocation. As we explain in Section 6.1, some JVMs also
naturally produce a signal that reflects execution state at a
15-150 cycle resolution. Of course if the address of a software
signal changes, it needs to be communicated to SHIM. Note
that updating a memory address after say, every garbage col-
lection, will be less intrusive than instrumenting every write
of this address for frequently written variables.

For software signals that require instrumentation, we modify
the Jikes RVM compiler. For each signal, the program simply
writes the value in the same memory address repeatedly. We
experiment below with method and loop identifier signals and
show that even though they occur frequently, they incur very
low overheads on CMP. Because software signals write the
same location, they exhibit good locality. Furthermore, most
modern architectures use write-back polices, which coalesce
and buffer writes, executing them in very few cycles.

Adding the instrumentation for software signals for highly
mutating values in the SHIM framework incurs less observer
effect than the direct measurement approach, which both mu-
tates the value and then typically writes it to a distinct buffer
location, rather than overwriting a single memory location.

This same software instrumentation mechanism may com-
municate hardware register state that is only architecturally
visible to the application thread, e.g., the program counter and
stack pointer could be written to memory as a software signal,
but we leave that exploration to future work.

4. Observation Fidelity
This section examines SHIM’s observer effects and shows how
SHIM manages them to improve its accuracy. This section
describes and illustrates SHIM’s (i) double-time error correc-
tion (DTE) of samples of rate metrics; (ii) sample period
randomization; and (iii) some of its observer effects.

4.1. Sampling Correction for Rate Metrics
Many performance events are rate-based. For example, IPC
relates retired instructions and clock ticks with respect to a
time interval. The two major considerations for rate metrics
are: (1) attributing a rate to one tag in the interval from possi-
bly many tags for discrete semantic events, and (2) ensuring
fidelity of the measure in the face of noise and timing skew.
Attribution of Tags to Sample Periods Although tags, such
as method identifiers, occur at discrete moments in time,
counting metrics are calculated with respect to a period (e.g.,
Ctn −Ctn−1 in Figure 3 explained below). SHIM reads each tag
signal once during a sample period, and then attributes it to
counters in that same period. Tags correspond to the correct
period, but not to any particular point within that period. SHIM
reads all hardware and software tags immediately after it has
completed reading each counter value (i.e., after tn−1 + ε ′).

tn-1

tn-1+ε'

tn

tn+ε

tidle

tmmt

tmmt

Cstn-1

Cetn-1+ε'

Cstn

Cetn+ε

Figure 3: Four clock readings ensure fidelity of rate measure-
ments. Grey regions depict two measurements, tmmt

n and tmmt
n−1 ,

in which SHIM reads all counters. The sample period is, Cs

(red) to Ce (blue). If the ratio of red and blue periods is one,
then tmmt

n = tmmt
n−1 and SHIM does not induce noise. DTE dis-

cards noisy measurements of rate metrics based on this ratio.

Rate Metrics Rates depend on four measurements. For ex-
ample, IPC requires two instructions retired (IR) and two
clock (C) measurements: IRtn − IRtn−1/Ctn −Ctn−1 , ostensibly
at times tn and tn−1. Since hardware can not read both simulta-
neously, SHIM takes each measurement at a slightly different
time, tn and tn +ε , resulting in: IRtn+ε − IRtn−1+ε ′/Ctn−Ctn−1 ,
at times tn, tn + ε , tn−1, and tn−1 + ε ′. Figure 3 shows two
overlapping intervals in red and blue. For accurate rate-based
measurements, we must bound the skew between the intervals
[tn, tn−1] and [tn + ε, tn−1 + ε ′].

The time to take the measurements, tmmt plus the time
spent idle, t idle defines the sample period. Variance in t idle

is not problematic, in fact, it helps remove bias. The inter-
vals [tn, tn−1] and [tn + ε, tn−1 + ε ′] both cover a single t idle, so
variation in t idle cannot introduce skew between [tn, tn−1] and
[tn+ε, tn−1+ε ′]. On the other hand, the intervals [tn, tn−1] and
[tn + ε, tn−1 + ε ′] encompass two measurement periods, tmmt

n
and tmmt

n−1 of the exact same measurements, so variation in either
measurement period introduces skew. When the sample rate is
high t idle becomes small, and variation in tmmt may dominate.
Variation in tmmt will thus be exposed as t idle approaches tmmt

and can introduce skew, which as we show next undermines
the fidelity of rate-based measures.
DTE Filtering of Rate Metrics We introduce double-time
error correction (DTE) to correct skew in rate metrics. DTE
takes the two clock measures, Cs and Ce for each measurement
period tm, one at the start, and one at the end (lines 4 and 9 of
Figure 2). The rate-based measure Ce

tn+ε−Ce
tn−1+ε ′/Cs

tn−Cs
tn−1

precisely identifies measurement skew.
Note that CPC=Ce

tn+ε −Ce
tn−1+ε ′/Cs

tn −Cs
tn−1

and will be 1.0
when the two clock readings are not distorted. Since they mea-
sure the same idle period, if CPC=1 the time to take the two
distinct measurements tmmt is the same. DTE uses this mea-
sure to identify statistically significant variation in tmmt and dis-
cards affected samples. DTE therefore automatically discards

5

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01
 0.1

 1 10 100
 1000

F
ra

c
ti
o

n
 o

f
s
a

m
p

le
s
 (

lo
g

 s
c
a

le
)

Events per cycle (log scale)

IPC (avg. 1.09)
CPC (avg. 0.99)

(a) Unfiltered IPC and CPC distortions, e.g.,
IPC> 4 on a 4-way superscalar processor.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.5
 1 1.5

 2 2.5
 3 3.5

F
ra

c
ti
o

n
 o

f
s
a

m
p

le
s
 (

lo
g

 s
c
a

le
)

Events per cycle

IPC (avg. 1.12)
CPC (avg. 1.00)

(b) DTE correction with±1% CPC error eliminates
all distorted IPC values.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o

n
 o

f
g

o
o

d
 s

a
m

p
le

s

Sample period (K cycles)

(c) Fraction of good samples with±1% CPC
error as a function of sampling frequency.

Figure 4: DTE filtering on SMT keeps samples for which ground truth CPC is 1.±0.01, eliminating impossible IPC values. At
small sample periods, DTE discards over half the samples. At sample periods >2000, DTE discards 10% or fewer samples.

noisy samples with significant variations in ε and ε ′ since they
cannot correctly compute rate metrics. Figures 4(a) and (b)
show the effect of DTE. (Section 5 describes methodology.)
The graphs plot on log scales IPC in green and cycles-per-
cycles (CPC) in orange. CPC=1 is ground truth. Figure 4(a)
shows that before filtering values are clearly distorted—CPC
is as high as 175 and IPC is 37 on a 4-way superscalar pro-
cessor. Figure 4(b) shows IPC samples after DTE discards all
samples with CPC values outside a ±1% error margin. DTE
filtering transforms CPC to an impulse at 1.0 (by design) and
eliminates all IPC values greater than 4 (which we assume are
wrong). All these wrong rates were introduced by sampling
skew, which DTE detects and eliminates.

Figure 4(c) shows the fraction of good samples with DTE.
At the highest frequency, DTE discards over 50% of samples,
but at periods of ≥2500, 90% or more of samples are valid.

4.2. Randomizing Sample Periods
Prior work shows regular sample intervals in performance pro-
filing, compared to random intervals, introduces observation
bias [3, 21]. Figure 5 plots SHIM’s variation in sample period
and gap on a log/log scale for SMT. We plot lusearch, but the
results are similar for the other DaCapo benchmarks. The
figure plots the frequency distribution histogram of sample
periods (Cs

tn −Cs
tn−1

) in green and the gap between samples
in red. Figure 5 shows that there is enormous variation in
sample period and the gap. The most common sample period,
~500 cycles, reflects only one percent of samples, and the gap
between samples ranges from ~350 to ~49,000 cycles. Both
SMT and CMP show a wide degree of variation, although
different. This result gives us confidence that the hardware
is naturally inducing large amounts of randomness in SHIM’s
sampling, and thus SHIM avoids the sampling bias problem
due to regular intervals.

4.3. Other Observer Effects
The sampling thread has observer effects because it executes
instructions, competing and sharing hardware resources with
the application. Many of SHIM’s effects depend on how many
and often SHIM samples memory locations and counters, and

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.1
 1 10 100

F
ra

c
ti
o

n
 o

f
s
a

m
p

le
s

K cycles (logscale)

gap between samples (avg 1.16 K)
sample period (avg. 0.51 K)

Figure 5: SHIM has large variation in sample period and be-
tween samples with DTE filtering. The green curve shows
variation in the period of good samples. The red curve shows
variation in the period between consecutive good samples.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.5
 1 1.5

 2 2.5

F
ra

c
ti
o

n
 o

f
s
a

m
p

le
s

IPC

Core IPC
App IPC
SHIM IPC

Figure 6: SHIM SMT observer effect on IPC for 476 cycle sam-
ple period with lusearch. The green curve shows lusearch IPC,
red shows SHIM’s IPC, and blue shows IPC for the whole core.

the hardware configuration (SMT or CMP). Section 6 system-
atically quantifies many of these effects.

This section examines the behavior of the sampling thread
itself to determine whether we can reason about it more di-
rectly. Figure 6 plots the SMT effect of SHIM on IPC, on a
log scale. The blue curve shows IPC for the whole core while
the red curve shows the IPC just for SHIM. The IPC of the
SHIM thread is extremely stable. The underlying data reveals
that when operating with a 476 cycle period, 67% of all SHIM
samples are attributed to IPCs of 0.48 to 0.51 and 99% to IPCs

6

of 0.54 to 0.43. By contrast, the IPC of the workload is broadly
spread. The uniformity of SHIM’s time-varying effect on the
core’s resources makes it easier to factor out SHIM’s contri-
bution to whole core measurements by simply subtracting its
private counter value. For each hardware metric, developers
can plot SHIM, the total, and the difference to reason about
observer effects.
Summary SHIM corrects skewed samples of rates, random-
izes sample periods, and offers a constant instruction execu-
tion observer effect on SMT. These features reduce, especially
when compared to interrupt-driven and direct measurement
profiling, but do not eliminate, observer effects.

5. Methodology
The evaluation in this paper uses the following methodologies.
Software implementation We implement SHIM in Jikes
RVM [1], release 3.1.3 + hg r10718, a Java-in-Java high perfor-
mance Virtual Machine. We implement all of the functionality
described in Section 3 by adding coordinator functionality, by
modifying the VM scheduler, and by inserting signals with
the compiler and VM. All measurements follow Blackburn et
al.’s best practices for Java performance analysis [7]. We use
the default generational Immix collector [6] with a heap size
of six times the minimum for each benchmark and a 32 MB
fixed size nursery to limit full heap collections to focus on ap-
plication code in this paper. We measure an optimized version
of the code using replay compilation. Jikes RVM does not
have an interpreter: it uses a baseline compiler to JIT code
upon first execution and then recompiles at higher levels of
optimization when a cost model predicts the optimized code
will amortize compilation cost in the future [4]. We record the
best performing optimization plan, replay it, execute the re-
sulting code once to warm up caches, then we iterate and only
report measurements from this third iteration. We run each
experiment 20 times and report the 95% confidence interval.
Benchmarks We draw benchmarks from DaCapo [7],
SPECjvm98 [27], and pjbb2005 [8] (a fixed workload version
of SPECjbb2005 [28] with 8 warehouses and 10,000 transac-
tions per warehouse.) The DaCapo and pjbb2005 benchmarks
are non-trivial real-world open source Java programs under
active development [7]. In Sections 4 and 7, we use lusearch, a
search application from the industrial-strength Lucene frame-
work. The lusearch benchmark behaves similar to commercial
web search engines [14]. We confirmed that profiling findings
for lusearch generalize to other DaCapo benchmarks.
Hardware & OS We use a 3.4 GHz Intel i7-4700 Haswell
processor [15] with 4 Chip Multiprocessor (CMP) cores, each
with 2 way Simultaneous Multithreading (SMT) for 8 hard-
ware contexts; Turbo Boost maximum frequency is 3.9 Ghz,
84 W TDP; 8 GB memory, 8 MB shared L3, four 256 KB
shared L2s, and four private 32 KB L1 data caches, 32 KB L1
instruction caches, and 1.5 K µop caches for each core.

We use Linux kernel version 3.17.0 with the perf subsystem
to access the hardware performance counters. We add to

Linux a software signal that identifies threads, allowing thread
switches to be identified by SHIM on SMT.

6. Evaluation
This section evaluates the strengths, limitations, and overheads
of a variety of SHIM configurations and sampling rates. We
start with simple, but realistic profiling scenarios, and build up
more sophisticated ones that correlate software and hardware
events. (1) We first compare SHIM sampling a highly mutating
software signal that stores loop and method identifiers in a
single memory location on the same core in an SMT context
and on a different CMP core. Both exhibit high overheads at
very fine (<30 cycle) resolutions due to execution resource
competition on SMT (~60%) and caching effects on CMP
(~100%). However, CMP overheads are negligible for coarser
(~1200 cycle) resolutions. (2) When SHIM computes IPC, a
rate metric, on SMT with hardware performance counters (the
relevant counters are not accessible on another CMP core),
high frequency sampling overheads are 47%, similar to sam-
pling a software signal on SMT. (3) We then configure SHIM
to correlate method and loop identifiers with IPC on SMT and
show that the overheads remain similar. (4) Finally, we show
that if hardware vendors made local performance counters
visible to the other cores, SHIM overhead on CMP for corre-
lating IPC with a highly mutating software signal would drop
to essentially nothing at a resolution of ~1200 cycles.

6.1. Observing Software Signals
This section evaluates SHIM overheads in configurations on
the same core in an SMT hardware context and on a separate
core in a CMP hardware context when it samples a software
signal by simply reading a memory location. Comparing these
configurations shows the effects of sharing execution resources
with SMT versus inducing cache traffic with CMP. We control
sample rate and contention by idling the SHIM thread.
Method and loop identifiers We repurpose yield points to
identify methods and loops as a fine-grain software signal.
JVMs use yield points to synchronize threads for activities
such as garbage collection and locking. The compiler injects
yield points into every method prologue, epilogue, and loop
back edge. A very efficient yield point implementation per-
forms a single write to a guard page [17]. When the VM needs
to synchronize threads, it protects the guard page, causing
all threads to yield as they fault on their next write to the
protected page. Jikes RVM implements yield points with an
explicit test rather than a guard page, so for this experiment
we simply add to each yield point a write of its method or loop
identifier, adding an average of 1% execution time overhead.
We measure yield point frequency and find that the average
period ranges from 14 (jython) to 140 (avrora) cycles. The
evaluation uses as the baseline a JVM configuration with the
additional store, but without SHIM. SHIM increments a bucket
in a method and loop identifier a histogram. We pre-size
this histogram based on an earlier profile execution. These
changes produce a low cost, high frequency software signal

7

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

compress

jess
db javac

mpegaudio

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch

pjbb2005

pmd
sunflow

xalan
mean

geomean

N
o
rm

a
liz

e
d
 t
o
 w

it
h
o
u
t
S

H
IM sample period (30 cycles) sample period (1213 cycles) sample period (178 K cycles)

(a) SHIM CMP overheads are ~100% at a 300 cycle period, but drop at a 1213 cycle sample period to only 2%.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

compress

jess
db javac

mpegaudio

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch

pjbb2005

pmd
sunflow

xalan
mean

geomean

N
o
rm

a
liz

e
d
 t
o
 w

it
h
o
u
t
S

H
IM sample period (15 cycles) sample period (1505 cycles) sample period (184 K cycles)

(b) SHIM SMT overheads range from 61% to 26%.

Figure 7: SHIM observing on SMT and CMP method and loop identifiers—a highly mutating software signal

that identifies fine-grain execution state.
Overheads Figures 7(a) and (b) show SHIM sampling yield
points with three sampling periods from 15 cycles to 184 K
cycles on CMP and SMT hardware. A period of 184 K cycles
(18.5 KHz) approximates the sample rate of tools such as
VTune and Linux perf (1-100 KHz). We throttle SHIM to
slow its sampling rate using nop instructions or by calling
clock_nanosleep(), depending on the rate. The error bars on
these and other figures report 95% confidence interval.

The green bars in Figure 7(a) show SHIM in a CMP config-
uration sampling a memory location as fast as it can, resulting
in an average sample period of 30 cycles over all the bench-
marks, incurring an overhead of around 100%. This sampling
frequency imposes a high overhead on applications because
each application frequently writes the yield point value, which
dirties the line. Every time SHIM’s observer thread reads it,
the subsequent write by the application must invalidate the line
in the observer’s cache. This invalidation stalls the application
frequently at high sample rates. Section 6.2 examines this
effect in more detail. Decreasing the sample period to ~1200
cycles reduces these invalidations sufficiently to eliminate
most of the performance overhead.

The cost of observing software signals would be substan-
tially reduced by a special read instruction that returns the
value without installing the line in the local cache and where
the cache coherence protocol is modified to ignore the read,
as implemented in some ARM processors [29].

Figure 7(b) shows the cost of observing a single software
signal on the same core with SMT as a function of sampling
rate. On the same core, SHIM can sample memory locations at
a higher rate compared to sampling from another core (every
15 vs 30 cycles). The rate on SMT compared to CMP is faster

because SHIM on SMT is not limited by cache coherence
traffic, only by competition for execution resources. Note that
restricting the observer thread to fewer CPU resources, for
example one issue slot, using priorities (such as those on MIPS
and the IBM Power series [9, 26]) or some other mechanism,
could significantly reduce this overhead.

Comparing the two, note that because the memory location
mutates frequently, it is cheaper to sample on SMT than CMP
at the highest sampling rates, but SMT is still relatively ex-
pensive for a ~15 cycle period, at 61%. However, with sample
periods as low as ~1500 cycles, SMT overheads remain high,
whereas CMP sampling overhead drops to a negligible amount.
The next section studies these effects in more detail.
6.2. Software Signal Breakdown Analysis
Software signal overhead has two components: (1) application
instrumentation, and (2) the SHIM observer thread compet-
ing either for the cache line on a separate CMP core or for
hardware resources on the same SMT core.

We use the microbenchmark in Figure 8 to understand how
the rates of producing software signals and consuming them
impacts overheads. The producer on the left generates events
by writing into one memory location. The write to the local
variable dummy forces the machine to make the write to flag
architecturally visible. On the right, the consumer reads the
flag memory location and increments a counter.

The inner for loops control producer and consumer rates,
which we adjust by varying the number of rdtscp instructions.
In Figure 9(a), the blue line (increasing p-wait) shows the
consumer observing as fast as it can, while the producer slows
its rate of event production on the x-axis. Conversely, the
red line shows the producer writing as fast as possible, while
the consumer slows its rate of consumption on the x-axis.

8

1 extern int flag;
2 void producer() {
3 int dummy;
4 for(j=0; j<100000; j++){
5 for (i=0; i < p_wait; i++){
6 rdtsc();
7 }
8 write flag;
9 // force visibility of

10 // write to flag
11 write dummy;
12 } }

(a) Producer

1 extern int flag;
2 extern int counter;
3

4 void consumer() {
5 while(1){
6 for(i=0; i< c_wait; i++){
7 rdtsc();
8 }
9 read flag;

10 counter++;
11 }
12 }

(b) Consumer

Figure 8: Microbenchmarks explore software overheads.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

10 20 30 40 50 60 70 80 90 100

s
lo

w
d
o
w

n

loop times

inc p_wait (c_wait 0)

inc c_wait (p_wait 10)

(a) Overheads as a function of pro-
ducer and consumer rates.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10 20 30 40 50 60 70 80 90 100

tr
a
n
s
 (

K
)

loop times

inc c_wait

(b) Producer generated write-
invalidations as a function of
consumer sampling rate.

Figure 9: CMP overheads. Write-invalidates induce observer
effects and overheads. Increasing the producer or consumer
periods drop the overheads to < 5%.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

10 20 30 40 50 60 70 80 90 100

s
lo

w
d
o
w

n

loop times

inc p_wait (c_wait 0)

inc c_wait (p_wait 10)

(a) Producer is degraded by high
consumption rate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

10 20 30 40 50 60 70 80 90 100
 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

lo
o
p
 p

e
ri
o
d
 (

K
 c

y
c
le

s
)

o
v
e
rh

e
a
d
 (

K
 c

y
c
le

s
)

p_wait (c_wait 0)

producer only
producer and consumer

overhead

(b) Sharing resources uniformly in-
curs overhead on SMT.

Figure 10: SMT overheads. SMT observer effects are highest
as a function of producer, but then relatively constant at ~10%.

Except when both operate at their highest rate, both rates
impact overhead similarly. Figure 9(b) reports the number of
write-invalidations as a function of consumer (read) sample
rate when the producer writes most frequently. More samples
induce more invalidations. With highest frequency production
and consumption rates, write-invalidation traffic dominates
overhead, inducing observer effects. Increasing the sampling
or production period drops overheads to less than 5%.

Figure 10 shows the same experiment on SMT hardware
where overhead is dominated by the consumer. The more
often the consumer reads the tag, the more it interferes with
the producer. When the consumer is sampling as fast as it can,
and the producer is writing at a high rate (the blue line in Fig-
ure 10(a)), they compete for execution resources. Figure 10(b)
shows that the consumer adds a relatively constant number of
cycles as function of sampling rate, and thus observer effects
come mostly from competition for execution resources.

6.3. Observing Hardware Signals
Figure 11 illustrates the overheads of SHIM observing IPC, a
rate-based hardware signal, on SMT at three sample rates. IPC
cannot be evaluated on CMP because the instructions retired
performance counter is not visible to other cores. In this ex-
periment, SHIM reads two retired instruction counters (one for
the core, one for SHIM itself), reads the cycle counter, com-
putes application IPC and CPC, performs DTE, and builds
an IPC histogram with 500 buckets for IPC values from 0
to 4. Because SHIM consumes execution resources, it incurs
overhead of around 47% at sample periods of ~400 and ~1900
cycles. Sampling every 185 K cycles incurs a penalty of 6.3%.
Although overhead is relatively high, because we discard per-
turbed samples and the SHIM observer thread offers a constant
load, we believe that the signals are not obscured (recall the
analysis in Section 4.3 and of Figure 6). Hardware manufac-
turers could validate our results with ground truth using their
proprietary hardware measurement tools.

6.4. Correlating Hardware and Software Signals
This experiment measures overheads when we configure SHIM
to correlate method and loop identifiers with IPC and with
data cache misses. These are practical configurations that will
help developers identify poorly performing low IPC loops and
methods, and whether cache misses are responsible. Because
SHIM needs two performance counters to correctly compute
rate metrics, the cache miss configuration consumes five hard-
ware performance counters.

Figure 12 compares SHIM sampling as fast as it can when it
samples method and loop identifiers and IPC, with sampling
them plus cache misses. Adding another performance counter
makes SHIM sample more slowly (729 versus 495 cycles)
because it must read both core and SHIM counters and it is
limited by the 30 to 40 cycle latency of reading each counter
and executing a rdtscp instruction. However, slowing SHIM
to gather more hardware information incurs less overhead be-
cause it stalls more often, inducing fewer observer effects on
the application. Section 7 shows two detailed case studies on
critical methods using similar configurations that reveal how
this fine-grain information generates hardware and software in-
sights that prior work cannot and that suggest future directions
for optimizations and mechanisms.

6.5. Negligible Overhead Fine-Grain Profiling
This section shows that if all profiling work could be per-
formed on the separate CMP core, overheads and observer
effects would be extremely low. Figure 13 shows SHIM read-
ing three hardware performance counters on a separate CMP
core, sampling as fast as it can, which results in a period of
~300 cycles on average. We use three counters because this
is the minimum required to compute a rate. The time to read
one performance counter ranges from 30 to 40 cycles, limiting
the sample rate. SHIM executes the reads in sequence with the
synchronous rdtscp() instruction (line 6 of Figure 2), because
all reads must be performed in order to correctly correlate and

9

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

compress

jess
db javac

mpegaudio

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch

pjbb2005

pmd
sunflow

xalan
mean

geomean

N
o
rm

a
liz

e
d
 t
o
 w

it
h
o
u
t
S

H
IM sample period (404 cycles) sample period (1902 cycles) sample period (185 K cycles)

Figure 11: SHIM on SMT observing IPC as a function of sample rate. Overheads range from 47% to 19%.

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

compress

jess
db javac

mpegaudio

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch

pjbb2005

pmd
sunflow

xalan
mean

geomean

N
o
rm

a
liz

e
d
 t
o
 w

it
h
o
u
t
S

H
IM IPC sample period (495 cycles) IPC + L1D misses sample period (729 cycles)

Figure 12: SHIM on SMT correlating method and loop identifiers with IPC and cache misses.

 0

 0.2

 0.4

 0.6

 0.8

 1

compress

jess
db javac

mpegaudio

mtrt
jack

antlr
avrora

bloat
eclipse

fop hsqldb
jython

luindex

lusearch

pjbb2005

pmd
sunflow

xalan
mean

geomean

N
o
rm

a
liz

e
d
 t
o
 w

it
h
o
u
t
S

H
IM

sample period (303 cycles)

Figure 13: The overhead of SHIM is essentially zero when observing IPC from a remote core.

count events. This analysis shows that SHIM can operate at
a high sample rate with no statistically significant overhead
when reading hardware signals from another core. This result
motivates increasing the visibility of core-private hardware
performance counters to other cores.

7. Case Studies
This section shows examples of the diagnostic power of fine-
grain program observations and compares it to the average
results (reported in the top of each figure in this section) that
previous tools must report for these same metrics because their
sampling period is much longer.

We consider two phases of performance-critical garbage
collection in Jikes RVM. We first examine the response of the
two phases when using DVFS to change the frequency from
3.4 to 0.8 GHz. Then we examine their response to turning on
and off the hardware prefetcher. We instrument the collector
with software signals that identify the phases. SHIM reads the
software and hardware signals to compute IPC and memory
bandwidth and attributes them to the appropriate phase.

We choose two phases on the critical path of garbage collec-
tion: (1) stack scanning (stacks), where the collector walks the
stacks of each executing thread, identifying all references and

placing them in a buffer for later processing, and (2) global
scanning (globals), where the collector walks a large table that
contains all global (static) variables, identifies references and
places each reference in a buffer. Superficially, the phases are
similar: the collector walks large pieces of contiguous memory
identifying and buffering references which it processes in a
later phase. In the case of globals, a single contiguous byte
map straightforwardly identifies the location of each reference.
Global scanning performs a simple linear scan of the map.
On the other hand, stack scanning requires unwinding each
stack one frame at a time and dereferencing a context-specific
stack map for every frame to find the references within it. This
highly irregular behavior leads to poor locality.

In a modern generational garbage collector, these phases
can dominate the critical path of frequent ‘nursery’ collec-
tions, particularly in the frequent case where object survival
is low. Therefore, VM developers are concerned with their
performance. The good and poor locality of these two phases
also serves as a pedagogical convenience for our analysis of
DVFS and prefetching.

7.1. DVFS of Garbage Collection Phases
This section evaluates IPC and memory bandwidth at two
clock speeds: 3.4 GHz (default) and 0.8 GHz on the Haswell

10

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.5
 1 1.5

 2

F
ra

c
ti
o
n
 o

f
s
a
m

p
le

s

IPC

3.4 GHz (avg IPC 0.59)
0.8 GHz (avg IPC 0.83)

(a) IPC frequency distribution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5
 1 1.5

 2

D
R

A
M

 r
e
q
u
e
s
ts

 p
e
r

1
0
0
 c

y
c
le

s

IPC

3.4 GHz (avg requests 0.91)
0.8 GHz (avg requests 1.09)

(b) Average memory bandwidth relative to IPC

Figure 14: DVFS effect at 3.4 and 0.8 GHz on IPC and memory
bandwidth for stacks (poor locality).

processor. Figure 14 plots IPC and memory bandwidth for
the stack phase (poor locality) and Figure 15 plots the global
phase (good locality). Figure 14(a) plots the distribution of
sampled IPC values at 3.4 GHz (purple) and 0.8 GHz (orange).
The slower clock improves the IPC from 0.59 to 0.83, which is
unsurprising for a memory-bound workload because memory
accesses are relatively lower latency at lower clock rates. The
purple line shows a large spike where many samples observe
an IPC of ~0.10 at 3.4 GHz. This spike disappears when
at 0.8 GHz (orange line), instead the IPC distribution is quite
uniform. However, the slower clock speed has almost no affect
on the distribution of samples above 1.3, which presumably
reflect program points that are not memory bound.

Figure 14(b) shows the difference in memory bandwidth
consumption between the two clock rates on the stacks phase.
The histograms bucket samples according to IPC (x-axis) and
for each bucket plots the average number of memory requests
per 100 cycles for 3.4 GHz (purple) and 0.8GHz (orange). The
lower clock rate increases memory bandwidth by 20% from
0.91 to 1.09 memory requests per 100 cycles. When IPC is
low, the memory bandwidth increases by a factor of two from
about 1.4 requests per 100 cycles to about 3.

The memory-bound stack phase may benefit from a DVFS-
reduced clock rate because the relatively more effective use
of memory bandwidth leads to a 40% improvement in IPC.
This fine-grained analysis also shows that the phase is not
homogenous, and many samples show little response to DVFS.

Figure 15(a) plots the distribution of sampled IPC values
for the globals phase (good locality) at 3.4 GHz (purple) and

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6

F
ra

c
ti
o
n
 o

f
s
a
m

p
le

s

IPC

3.4 GHz (avg IPC 1.48)
0.8 GHz (avg IPC 1.43)

(a) IPC frequency distribution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6

D
R

A
M

 r
e
q
u
e
s
ts

 p
e
r

1
0
0
 c

y
c
le

s

IPC

3.4 GHz (avg requests 0.21)
0.8 GHz (avg requests 0.23)

(b) Average memory bandwidth relative to IPC

Figure 15: DVFS effect at 3.4 and 0.8 GHz on IPC and memory
bandwidth for globals (good locality).

0.8 GHz (orange). The graph shows a strikingly more focussed
and homogenous distribution than the stacks phase. Interest-
ingly, we see a counter-intuitive IPC reduction for the lower
clock speed. Figure 15(b) shows that there is no clear change
in memory bandwidth. The data to the left of Figure 15(b)
is very noisy, but this noise is due to a paucity of samples—
95% of all DRAM requests are due to samples with IPCs
greater than 1.2. A slightly lower IPC at a slower clock is non-
intuitive, but we hypothesized that the hardware prefetcher
was responsible and examine this hypothesis next.

Before we continue, note that fine-grain sampling reveals
the unique behavior of global scanning in the context of the
entire garbage collection, which is memory bound on average
and thus more resembles stack scanning. As the granularity
of sampling increases it will tend toward the average for the
whole of garbage collection, obscuring the distinct behavior
of globals and stacks. Even if the two behaviors were equally
representative of garbage collection, coarse-grain sampling
may still miss the drop in IPC, because the magnitude of the
response to DVFS is so much higher for the stacks.

7.2. Hardware Prefetching of Garbage Collection Phases
This section compares the effect of enabling and disabling the
hardware prefetcher on IPC and memory bandwidth on the two
phases. Figure 16 plots the stacks (poor locality). Figure 16(a)
plots the distribution of sampled IPC values with (purple) and
without (orange) prefetching. The differences are modest;
on average turning off the prefetcher reduces IPC from 0.60
to 0.57; a 5% reduction. On the other hand, Figure 16(b)
shows a more substantial reduction in memory bandwidth,

11

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6
 1.8

 2

F
ra

c
ti
o
n
 o

f
s
a
m

p
le

s

IPC

On (avg IPC 0.60)
Off (avg IPC 0.57)

(a) IPC frequency distribution

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6
 1.8

 2

D
R

A
M

 r
e
q
u
e
s
ts

 p
e
r

1
0
0
 c

y
c
le

s

IPC

On (avg requests 0.91)
Off (avg requests 0.68)

(b) Average memory bandwidth relative to IPC

Figure 16: Prefetching effect (on/off) on IPC and memory band-
width for stacks (poor locality).

from 0.91 requests per 100 cycles to 0.68; a 25% reduction.
Together these graphs suggest that the hardware prefetcher
is not effective at compensating for poor locality since the
reduction in memory traffic outstrips the IPC decrease by a

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6

F
ra

c
ti
o
n
 o

f
s
a
m

p
le

s

IPC

On (avg IPC 1.48)
Off (avg IPC 1.15)

(a) IPC frequency distribution

 0

 1

 2

 3

 4

 5

 6

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6

D
R

A
M

 r
e
q
u
e
s
ts

 p
e
r

1
0
0
 c

y
c
le

s

IPC

On (avg requests 0.21)
Off (avg requests 0.22)

(b) Memory bandwidth relative to IPC

Figure 17: Prefetching effect (on/off) on IPC and memory band-
width for globals (good locality).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.2
 0.4

 0.6
 0.8

 1 1.2
 1.4

 1.6

F
ra

c
ti
o
n
 o

f
s
a
m

p
le

s

IPC

3.4 GHz (avg IPC 1.15)
0.8 GHz (avg IPC 1.29)

Figure 18: DVFS effect on IPC for globals with prefetching off.

factor of 5.
Figure 17 considers the hardware prefetcher and the glob-

als phase (good locality). Figure 17(a) shows a very clear
reduction in IPC when the prefetcher is disabled, from 1.48 to
1.15. Figure 17(b) shows that unlike the stack roots phase, the
average memory bandwidth is unaffected (values less than 1.2
IPC with prefetching on contribute only 5% of traffic and are
noisy due to a paucity of samples).

In the stack phase (poor locality), the prefetcher is not effec-
tive and it consumes additional memory bandwidth compared
to not prefetching at all, reshaping the data in the caches, and
to no effect. Whereas the prefetcher for the globals (good spa-
tial locality) is so accurate that it not only delivers the correct
data in a timely fashion, it actually reduces memory bandwidth.
These results suggest that if hardware vendors provide low
latency ways to adjust DVFS and prefetching, a dynamic opti-
mization could improve efficiency and perhaps performance
by adjusting DVFS and prefetching at a fine granularity.

Figure 18 reconsiders the effect of DVFS on globals, this
time with prefetching disabled. We find that IPC increases
from 1.15 to 1.29, matching intuition and confirming our hy-
pothesis (compare to Figure 15(a)).

Figure 19 plots time line series for IPC and memory band-
width. These figures further illustrate the different IPC be-
haviors of the two phases and that memory bandwidth con-
sumption is highly correlated with low IPC, explaining their
behaviors. Note that simply examining the averages in these
results that coarse-grain tools would produce does not lend
itself to these insights.

8. Related Work
Four themes in profiling and performance analysis are most
related to our work: profilers that sample application behav-
ior using interrupts, software profilers, direct measurement,
simulators and emulators, and feedback-directed optimization.
Interrupt-Based Sampling Interrupt-based samplers have
proved invaluable at helping systems builders and applica-
tion writers by performing low overhead sampling, identifying
software hotspots, and attributing performance pathologies to
code locations. DCPI [3] is the progenitor of today’s profil-
ing tools such as VTune, OProfile, Linux perf, and top-down
analysis [16, 18, 24, 30, 33]. These systems use interrupts
to sample system state and build a profile of software/hard-

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50

IP
C

timeline samples (avg period 932 cycles)

stacks
globals

(a) IPC for 50 consecutive samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45 50
 0

 5

 10

 15

 20

 25

 30

IP
C

timeline samples (avg period 932 cycles)

IPC
memory bandwidth

(b) stacks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 55 60 65 70 75 80 85 90 95 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

IP
C

timeline samples (avg period 932 cycles)

IPC
memory bandwidth

(c) globals

Figure 19: Strong correlation between IPC and memory bandwidth revealed in time line series for stacks and globals.

ware interactions. DCPI introduced random sample intervals
to avoid the sampling bias suffered by prior timer-based sys-
tems [3]. Elapsed time or a count of hardware events may
define the sample period. Nowak and Bitzes [23] overview
and thoroughly evaluate Linux perf on contemporary hard-
ware. New hardware and software support, such as Yasin’s
top-down analysis [33], PEBS, and Processor Tracing [30]
add rich information about the hardware and software context
at each sample, but are still limited by sample rate.

Because the OS services interrupts on critical code paths
within the kernel, interrupt driven systems must throttle their
sample rate to avoid system lockup [3, 16, 19]. The depen-
dence on interrupts limits these tools’ ability to resolve per-
formance behavior to events visible at sampling periods of
around 30 K cycles. In contrast, SHIM exploits unutilized hard-
ware contexts to continuously monitor performance, instead of
using interrupts, and thus operates at resolutions as fine as 15
cycles. At a period of around 1 K cycles, many configurations
have very low overhead. SHIM avoids sample bias as a result
of its natural variation in sample period.
Direct Measurement Directly reading hardware perfor-
mance counters is also a widely used approach [2, 12, 13,
18, 25, 34]. Unfortunately perturbing the code with perfor-
mance counter reads that take ~30 to 40 cycles each induces
observer effects–shorter periods increase coverage, but in-
crease observer effects. In contrast, SHIM reads hardware
counters without perturbing the application code itself.
Software Profilers Software profiling tools such as PiPA
and CAB insert code into applications that records software
events of interest in a buffer, such as paths and method identi-
fiers, for online or offline processing [13, 34]. They however
did not correlate hardware and software events, although their
frameworks could support it. Ammons et al. [2] combine path
profiling with hardware events, but suffer substantial perfor-
mance overheads. SHIM profiles software events at very low
overhead, either by injecting code that emits software signals,
or by observing existing software signals. Software profil-
ers such as PiPA and CAB can produce complete traces or
samples. Sampling profilers such as SHIM cannot guarantee
a complete trace, so are unsuitable when completeness is a
requirement. Mytkowicz et al. show that despite the problem
being identified a decade earlier [3], many software profilers

using interrupt-driven timers still suffer bias [21].

Simulators and Emulators Simulators and emulators pro-
file software at instruction and even cycle resolution.
Shade [10], Valgrind [22], and PIN [20, 31] are examples
of popular tools that use binary re-writing and/or interpre-
tation to instrument and profile application code. Although
they profile at an instruction level and emulate unimplemented
hardware features, these tools are heavyweight. Instead of
measuring hardware performance counters, they instrument
code and emulate hardware. They are therefore unsuitable for
correlating fine-grain hardware and software events.

Feedback-Directed Optimization Feedback-directed opti-
mization is an essential element of systems that dynamically
compile, including managed language runtimes and dynamic
code translation software such as Transmeta’s code morphing
software [11]. These systems use periodic sampling to identify
and then target hot code for aggressive dynamic optimization.
SHIM provides a high resolution, low overhead profiling mech-
anism that lends itself to feedback directed optimization.

9. Conclusion
Performance analysis is a critical part of computer system
design and use. To optimize systems, we need tools that
observe hardware and software events at granularities that
can reveal their behavior. This paper presents the design and
implementation of SHIM, the first fine-grain profiling tool.
SHIM repurposes existing hardware to execute a profiling
thread that simply reads performance counters and memory
locations and then logs or aggregates them. We show that
configurations of SHIM offer a range of overheads, sampling
frequencies, and observer effects. We show how to correct
for noise and control for some observer effects. We propose
modest hardware changes that would further reduce SHIM’s
overheads and observer effects. We present case studies that
demonstrate how this performance microscope delivers a new
level of analysis and potential optimizations.

Acknowledgements This work is supported in part by NSF
SHF-0910818 and ARC DP140103878 grants. We thank
Karin Strauss, Luis Ceze, Todd Mytkowicz, Konrad Lai, Andi
Kleen, and our ISCA reviewers for interesting discussions.

13

References
[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico,

A. Cocchi, P. Cheng, J. Dolby, S. J. Fink, D. Grove,
M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss,
T. Ngo, V. Sarkar, and M. Trapp. The Jikes RVM Project:
Building an open source research community. IBM Sys-
tem Journal, 44(2):399–418, 2005.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hard-
ware performance counters with flow and context sen-
sitive profiling. In ACM Conference on Programming
Language Design and Implementation (PLDI), pages
85–96, 1997. URL http://doi.acm.org/10.1145/

258915.258924.

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevo-
orde, C. A. Waldspurger, and W. E. Weihl. Continuous
profiling: Where have all the cycles gone? ACM Trans-
actions on Computer Systems (TOCS), 15(4):357–390,
Nov. 1997.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and
P. Sweeney. Adaptive optimization in the Jalapeño JVM.
In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
47–65, Minneapolis, MN, Oct. 2000.

[5] R. Bertran, Y. Sugawara, H. M. Jacobson, A. Buyuk-
tosunoglu, and P. Bose. Application-level power and
performance characterization and optimization on IBM
Blue Gene/Q systems. IBM Journal of Research
and Development, 57(1/2):4:1–4:17, Jan 2013. ISSN
0018-8646. URL http://dx.doi.org/10.1147/

JRD.2012.2227580.

[6] S. M. Blackburn and K. S. McKinley. Immix: A mark-
region garbage collector with space efficiency, fast col-
lection, and mutator locality. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI),
pages 22–32, Tuscon, AZ, June 2008.

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wie-
dermann. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 83–89, Portland, OR, Oct.
2006.

[8] S. M. Blackburn, M. Hirzel, R. Garner, and D. Ste-
fanović. pjbb2005: The pseudojbb benchmark, 2006.
URL http://users.cecs.anu.edu.au/~steveb/

research/research-infrastructure/pjbb2005.

[9] C. Boneti, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu,
C.-Y. Cher, and M. Valero. Software-controlled priority
characterization of POWER5 processor. In ACM/IEEE
International Symposium on Computer Architecture
(ISCA), pages 415–426, 2008.

[10] B. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, pages 128–137, 1994. URL http://doi.acm.

org/10.1145/183018.183032.

[11] J. C. Dehnert, B. K. Grant, J. P. Banning, R. John-
son, T. Kistler, A. Klaiber, and J. Mattson. The Trans-
meta Code MorphingT M software: Using speculation,
recovery, and adaptive retranslation to address real-life
challenges. In ACM/IEEE International Symposium on
Code Generation and Optimization (CGO), pages 15–24,
2003.

[12] J. Demme and S. Sethumadhavan. Rapid identification
of architectural bottlenecks via precise event counting.
In IEEE/ACM Annual International Symposium on Com-
puter Architecture, pages 353–364, 2011. URL http:

//doi.acm.org/10.1145/2000064.2000107.

[13] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKin-
ley. A concurrent dynamic analysis framework for multi-
core hardware. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 155–174, 2009.

[14] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini,
and K. S. McKinley. Few-to-many: Incremental paral-
lelism for reducing tail latency in interactive services.
In ACM International Conference on Architectural Sup-
port for Programming Languages and Operation Sys-
tems (ASPLOS), pages 161–175, 2015. URL http:

//doi.acm.org/10.1145/2694344.2694384.

[15] Intel. Intel Core i7-4770 processor, 8m
cache, 3.90 GHz, 2013. URL http:

//ark.intel.com/products/75122/

Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_

90-GHz.

[16] Intel. VTune Amplifier, accessed 11/2014, 2014.
URL https://software.intel.com/en-us/

intel-vtune-amplifier-xe/details.

[17] Y. Lin, S. M. Blackburn, A. L. Hosking, M. Norish, and
K. Wang. Stop and Go: Understanding Yieldpoint Behav-
ior. In Proceedings of the 14th International Symposium
on Memory Management, ISMM’15, Portland, OR, June
14, 2015. ACM, 2015.

14

[18] Linux. Linux kernel profiling with perf, accessed
11/2014, 2014. URL https://perf.wiki.kernel.

org/index.php/Tutorial\#Event-based_

sampling_overview.

[19] Linux. Perf core.c perf_duration_warn, accessed
11/2014, 2014. URL http://lxr.free-electrons.

com/source/kernel/events/core.c#L229.

[20] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G.
Lowney, S. Wallace, V. J. Reddi, and K. M. Hazelwood.
PIN: Building customized program analysis tools with
dynamic instrumentation. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI),
pages 190–200, 2005.

[21] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Evaluating the accuracy of Java profilers. In
ACM Conference on Programming Language Design and
Implementation (PLDI), pages 187–197, 2010.

[22] N. Nethercote and J. Seward. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In
ACM Conference on Programming Language Design
and Implementation (PLDI), pages 89–100, San Diego,
CA, 2007.

[23] A. Nowak and G. Bitzes. The overhead of profiling
using PMU hardware counters, July 2014. URL http:

//dx.doi.org/10.5281/zenodo.10800.

[24] OProfile. OProfile, accessed 11/2014, 2014. URL http:

//oprofile.sourceforge.net.

[25] M. Pettersson. Linux Intel/x86 performance counters,
2003. URL http://user.it.uu.se/mikpe/linux/

perfctr/.

[26] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic
job scheduling with priorities for a simultaneous multi-
threading processor. In ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems, pages 66–76, 2002.

[27] SPECjvm98 Documentation. Standard Performance
Evaluation Corporation, release 1.03 edition, March
1999.

[28] SPEC. SPECjbb2005 (Java Server Benchmark), Release
1.07. Standard Performance Evaluation Corporation,
2006. URL http://www.spec.org/jbb2005.

[29] A. Stevens. Introduction to AMBA 4 ACET M and
big.LITTLET M Processing Technology, July 2013.

[30] B. Strong, Sr. Debug and Fine-grain Profiling with Intel
Processor Trace. In Intel IDF14, San Francisco, Mar.
2014.

[31] S. Wallace and K. Hazelwood. SuperPin: Paralleliz-
ing dynamic instrumentation for real-time performance.
In International Symposium on Code Generation and
Optimization, pages 209–220, 2007.

[32] X. Yang, S. M. Blackburn, and K. S. McKinley. SHIM
open source implementation, June 2015. URL https:

//github.com/ShimProfiler/SHIM.

[33] A. Yasin. A top-down method for performance analysis
and counters architecture. In IEEE Performance Analysis
of Systems and Software (ISPASS), pages 35–44, March
2014.

[34] Q. Zhao, I. Cutcutache, and W.-F. Wong. PiPA: Pipelined
profiling and analysis on multi-core systems. In Interna-
tional Symposium on Code Generation and Optimization,
pages 185–194, Boston, MA, 2008.

15

