RICE UNIVERSITY

Automatic and Interactive Parallelization
by
Kathryn S. McKinley

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Ken Kennedy
Noah Harding Professor, chair
Computer Science

Keith D. Cooper, Associate Professor
Computer Science

Don H. Johnson, Professor
Electrical and Computer Engineering

Danny C. Sorensen, Professor
Mathematical Sciences

Houston, Texas

March, 1994

Automatic and Interactive Parallelization
Kathryn S. McKinley

Abstract

The goal of this dissertation is to give programmers the ability to achieve high per-
formance by focusing on developing parallel algorithms, rather than on architecture-
specific details. The advantages of this approach also include program portability and
legibility. To achieve high performance, we provide automatic compilation techniques
that tailor parallel algorithms to shared-memory multiprocessors with local caches
and a common bus. In particular, the compiler maps complete applications onto the
specifics of a machine, exploiting both parallelism and memory.

To optimize complete applications, we develop novel, general algorithms to trans-
form loops that contain arbitrary conditional control flow. In addition, we provide new
interprocedural transformations which enable optimization across procedure bound-
aries. These techniques provide the basis for a robust automatic parallelizing algo-
rithm that is applicable to complete programs.

The algorithm for automatic parallel code generation takes into consideration the
interaction of parallelism and data locality, as well as the overhead of parallelism. The
algorithm is based on a simple cost model that accurately predicts cache line reuse
from multiple accesses to the same memory location and from consecutive accesses.
The optimizer uses this model to improve data locality. It also uses the model to
discover and introduce effective parallelism that complements the benefits of data
locality. The optimizer further improves the effectiveness of parallelism by seeking to
increase its granularity. Parallelism is introduced only when granularity is sufficient
to overcome its associated costs.

The algorithm for parallel code generation is shown to be efficient and several of its
component algorithms are proven optimal. The efficacy of the optimizer is illustrated
with experimental results. In most cases, it is very effective and either achieves or
improves the performance of hand-crafted parallel programs. When performance is
not satisfactory, we provide an interactive parallel programming tool which combines

compiler analysis and algorithms with human expertise.

Acknowledgments

Ken Kennedy provided me with the three most important elements of support in
graduate school: intellectual, political and financial. In addition, Ken, Keith Cooper
and Linda Torczon fostered a research atmosphere and working environment whose
benefits are untold. I would also like to recognize the other members of my committee,
Keith Cooper, Don Johnson and Danny Sorensen. Keith has been an endless source
of encouragement and wisdom throughout my graduate career. Don Johnson gave
me my first taste of research and hooked me for life.

[am fortunate that many of my fellow graduate students and friends supported my
research intellectually, emotionally and with implementations. I would especially like
to thank Chau-Wen Tseng, Marina Kalem, Mary Hall, Paul Havlak, Nat McIntosh,
Preston Briggs, Ben Chase and the entire compiler group.

I am extremely gratefully to my entire family. As always, my parents were a
constant source of love and encouragement. To my husband Scotty Strahan, I hope

I am the rock for you that you have been for me.

A little Madness in the Spring
Is wholesome even for the King. Emily Dickinson (1830-1886).

Contents

Abstract
Acknowledgments

List of Illustrations

Introduction
1.1 Automatic parallelization
1.2 Interactive parallelization

1.3 Overview e,

Technical Background
2.1 Dependence Analysis Lo
2.2 Interprocedural dependence analysis.

2.3 Augmented call grapho

Interactive Parallel Programming

3.1 Introduction

3.2 Work Model o

3.3 Transformations L
3.3.1 Reordering transformations
3.3.2 Dependence breaking transformations
3.3.3 Memory hierarchy transformations
3.3.4 Miscellaneous transformations

3.4 Transformation algorithms 0L
3.4.1 Loop interchange L.
3.4.2 Loop skewing
3.4.3 Loop distribution oo
344 Unrolland jam oo

3.5 Incremental analysis after edits

3.6 User and compiler interaction

i

11

S

3.7 Related work

3.8 DISCUSSION . . . o v o

Loop Transformations with Arbitrary Control Flow
4.1 Motivationo Lo
4.2 Loop distribution
4.2.1 Mechanicso
4.2.2 Restructuring o oo
4.2.3 Code generation Lo oL
4.3 Other transformations oL
4.3.1 Loop skewing
4.3.2 Loopreversal L
4.3.3 Loop permutation. oo oL
434 Stripmining oL
4.3.5 Privatization L oL
4.3.6 Scalar expansiono
4.3.7 Loop fusion
4.3.8 Loop peeling o
4.4 Related worko o
4.5 Discussion oL oo

Interprocedural Transformations

5.1 Introductiono

5.2 Technical background oo oo
5.2.1 Augmented call graph o000
5.2.2 Interprocedural section analysis

5.3 Support for interprocedural optimization L.
5.3.1 The ParaScope compilation system
5.3.2 Recompilation analysiso

5.4 Interprocedural transformation
5.4.1 Loop extractiono o
5.4.2 Loop embedding oL oL

5.5 Intraprocedural transformationso
5.5.1 Loop fusion

5.5.2 Loop permutation. oo

31
32

34
34
36
37
38
45
33
33
33
33
54
54
)
)
56
38
39

vi

5.6 Experimental results o oo 73
5.6.1 SpecTT T4
5.6.2 Ocean 75

5.7 Related work oo 76

5.8 DIscussion e e e 76

Optimizing for Parallelism and Data Locality 78

6.1 Introduction 78

6.2 Memory and language model o oL 80

6.3 Tradeoffs in optimization 81

6.4 Optimizing data locality 83
6.4.1 Sources of datareuseo 83
6.4.2 Simplifying assumptions 84
6.4.3 Loopcost 84
6.4.4 Referencegroups L oL 85
6.4.5 Loop cost algorithm oL 86
6.4.6 Imperfectly nested loops 88

6.5 Loop permutation oL 89
6.5.1 Memoryorder 89
6.5.2 Permuting to achieve memoryorder 90

6.6 Data locality experimental results 92
6.6.1 Matrix multiply oo 92
6.6.2 Stencil computations: Jacobi and SOR 93
6.6.3 FErlebacher o oo 95

6.7 Parallelism. o 98
6.7.1 Performance estimation L. 98
6.7.2 Introducing parallelism Lo 100
6.7.3 Stripminingo 101
6.7.4 Parallelization algorithm 102

6.8 Optimization algorithm o o 103

6.9 Experimental results o oo 104
6.9.1 Matrix multiply oo 104
6.92 Dmxpy. 105

6.10 Related worko 105

6.11 Discussion 106

7 An Automatic Parallel Code Generator

7.1 Introduction
7.2 Parallel code generationo
7.2.1 Driving code generation
7.2.2 Procedurecloning o
7.2.3 Loop-based optimization L.
7.3 Partitioning for loop distribution and loop fusion
7.3.1 Simple partition algorithm
7.3.2 Merging the solutions oL
7.3.3 Discussion Lo Lo
7.4 Loop fusion
7.5 Loop distribution oo

7.6 Integrating interprocedural transformations

7.6.1 Selecting the appropriate interprocedural transformation

7.6.2 Extensions to procedure cloning

T.7 Discussion

8 Experimental Results

8.1 Introduction
8.2 Methodology
8.2.1 Ask and ye shall receiveo

8.2.2 Original parallel versions and nearby sequential versions

8.2.3 Creating an automatically parallelized version
8.2.4 FExecution environmento L0
83 Results.
8.4 Parallel code generation statistics

8.5 DiIscussion

9 Conclusions

A Description of Test Suite Programs

A.1 Banded Linear Systems
A.2 BTN Unconstrained Optimization
A.3 Direct Search Method 0oL
A4 Erlebacher

Vil

108
108
109
109
112
113
115
117
121
121
122
123
124
125
125
126

127
127
128
128
128
129
130
131
133
134

135

A.5 Interior Point Method 140
A.6 Linpackd Benchmark o000 141
A.7T Multidirectional Search Method 141
A.8 1-D Seismic Inversion o 142
A9 Optimal Control 142
A.10 Two-Point Boundary Problems 142

Bibliography 144

3.1
3.2
3.3

4.1

5.1
5.2
3.3

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4

Illustrations

PED User Interface oo 15
Effect of loop skewing on dependences and iteration space 22
Effect of unroll and jam on iteration space 27
Control and data dependence graphs for distribution example 39
Sections and data access descriptors 65
Information flow for interprocedural transformations 67
Stages of preparing program versions for experiment 73
Memory and parallelism tradeoffs 82
Stencil computation: Jacobi o000 93
Stencil computation: Successive Over Relaxation (SOR) 94
Erlebacher: forward and backward sweeps in Z dimension 97
Parallel loop training set oL 100
Counter example for the greedy algorithm 116
Partition graph G, oL 117
Dividing G, . . .« . . o o 121
Fusing G5 & G, and merging the result 122

Chapter 1

Introduction

Many program transformations that introduce parallelism into sequential, scientific
Fortran programs have proven effective in improving performance on vector and
shared-memory multiprocessor hardware. For advanced parallel architectures, ob-
taining the best performance often requires the program to be modified for the par-
ticular features of the underlying architecture. Currently, users must modify their
programs for each architecture of interest to achieve high performance. Not only are
programmers required to understand architecture specific details, their programs are
usually not portable once they have been modified in this fashion. To address these

problems, this dissertation seeks to determine the following:

Does there exists a machine-independent parallel programming style from
which compilers can produce parallel programs with acceptable or excellent
performance on shared-memory multiprocessors with local caches and a
common bus?

Clearly, we are not attempting to solve the “dusty deck” problem, where a program
developed using a sequential algorithm is automatically transformed to a parallel
one. This problem is inherently more difficult because programs may need significant
technical expertise or algorithmic restructuring for good parallel performance. In fact,
this problem has not been solved even for uniprocessor vector machines [KKLW80b,
CDLS8].

A lesson to be learned from vectorization is that programmers rewrote their pro-
grams in a portable, vectorizable style based on feedback from vectorizing compilers
[CKKS89, Wol89¢]. Compilers were then able to take these programs and generate
machine-dependent vector code with excellent results. We are testing this same the-
sis for the harder problem of shared-memory parallel machines.

Vectorization achieves high performance by simply utilizing parallelism on a single
statement for a single loop level. On any architecture where parallelism exacts a
higher cost, larger regions of parallelism, i.e. higher granularity, must be discovered
and exploited to achieve high performance. Because successes in this arena were few,

we choose to explore parallel code generation for shared-memory multiprocessors with

local caches and a common bus. We believe the solution to this problem to be a first
step in compiling for more advanced parallel architectures.

We advocate that one machine independent program version be developed in a
sequential language, such as Fortran 77, the most widely used programming language
in the scientific community. Our compiler would then apply ambitious algorithms to

customize the program for a shared-memory multiprocessor.

1.1 Automatic parallelization

Previous automatic parallel code generation algorithms for shared-memory multi-
processors are, for the most part, ad hoc and have not yet established an accept-
able level of success. Although, many transformations and combinations of trans-
formations have been shown to parallelize interesting example loops, an effective
overall parallelization strategy for complete applications has not been forthcoming
[ABC*88, ACK87, KKLW80a, Wol89a, WLI0]. The automatic parallelization prob-
lem is very difficult for a variety of reasons.

One important reason is that the theoretical statement of seeking all possible
parallelism does not work well in practice. In practice, parallelism incurs overhead.
It this overhead is not taken into account, parallelization can degrade performance
rather than enhance it. Similarly, parallelism introduced without regard to its effect
on the performance of the memory subsystem can degrade performance. Another
reason parallelization is difficult to discover in complete applications is that it requires
precise array analysis in the presence of procedure calls. Until recently, this analysis
was not available [CK87b, HK90, HK91].

We have developed a new interprocedural approach for automatic parallel code
generation for complete applications. Two important components of this algorithm
are generalized and interprocedural transformations that attack the problems found

real programs.

1. Generalized transformations for loops containing conditional control flow. Much
previous work cannot apply parallelizing transformations when loops contain
conditional control flow. In this thesis, a broad selection of loop transformations
is extended to deal with conditional branches using the control dependence
representation. In particular, a new algorithm for performing loop distribution

is shown to be optimal for a legal partitioning of the statements into new loops.

2. Interprocedural transformations. We introduce two new interprocedural trans-
formations, loop embedding and loop extraction that expose loop nests to other
optimizations without incurring costs associated with procedure inlining. We
present a strategy for determining the benefits and safety of these two transfor-
mations when combined with other loop-based optimizations. The compound
transformations are judiciously applied when performance is expected to im-
prove. The recompilation system and analysis needed to perform and test these

optimizations is shown to be efficient.

These algorithms enable automatic parallelization of complete applications.

Three important factors in optimizing for parallel architectures are granularity,
parallelism and data locality. Parallelism is usually most effective when it achieves
the highest possible granularity, the amount of work per parallel task. The granularity
of parallelism must also be sufficient to overcome the overhead of parallelism, such as
processor synchronization costs. We only perform loops in parallel when performance
estimation determines there is enough granularity to improve execution time.

To address data locality, we present a simple cost model for determining cache
line reuse. It computes reuse due to accesses to consecutive memory locations on a
particular cache line and reuse due to multiple accesses to the same memory location
on a cache line. The cost model is used to order loops in a nest to improve data
locality and to discover and exploit parallelism. This optimization strategy produces
data locality at the innermost loops and parallelism at the outermost loop. Each
is placed where it is most likely to be effective. Experimental results validate this
approach. They indicate that the cost model is accurate and effective for driving
optimization, even for scalar machines.

This strategy provides the core of the optimizer. Algorithms for applying addi-
tional loop transformations are also described. In particular, a new, unified algorithm
for performing loop fusion and distribution is presented which achieves maximal gran-
ularity under certain constraints. Several component algorithms are shown to be
optimal. The optimization algorithms are based on theoretical and practical con-
siderations. All of the algorithms are incorporated into a cohesive interprocedural

parallel code generation algorithm.

1.2 Interactive parallelization

Unfortunately, automatic parallelization is unlikely to yield excellent parallel perfor-
mance in every case for a variety of reasons. For example, the algorithm may be
unsuitable for parallel execution. One difficulty which often arises is that important
constants and symbolics values are unknown at compile time. Therefore, in addition
to improved automatic parallelization via advanced compiler techniques, we combine
compiler strategies and human insight in an interactive parallel programming tool.
Our tool, the ParaScope Editor is intended to provide all the analysis and opti-
mization capabilities of the parallelizer in an intelligent editor. It provides a large
collection of parallelism enhancing transformations that have proven effective, such as
loop interchange, loop fusion and strip mining. It contains a user-assertion facility for
communication between the user and the compiler, as well as an advanced text and
structure editor for Fortran with functions such as searching and view filtering. In or-
der to make the ParaScope Editor (PED) truly interactive, updates after user changes
such as edits, transformations and assertions must be quick and precise. We describe
fast incremental algorithms for precise updates after user or compiler changes. They

are implemented in PED and have proven themselves efficient in practice [HHKT93].

1.3 Overview

In Chapter 2 we begin by describing the analysis required to perform effective pro-
gram parallelization. We then serve two purposes by discussing the ParaScope Editor
in Chapter 3. The first is a general description of interactive parallel programming
and the supporting implementation. However, we also introduce the loop-based trans-
formations which form a basis for parallel code generation. We detail several of the
transformation algorithms and present new incremental update algorithms for them.
These algorithms serve as an introduction to the analysis and representations neces-
sary to support automatic as well as interactive parallelization.

The next two chapters are devoted to new algorithms that make the parallelization
of complete applications viable throughout the rest of the dissertation. Chapters 6
and 7 then develop an integrated, automatic parallel code generation strategy. This
optimizer is tested experimentally to determine if it provides support for machine-
independent parallel programming.

The experiment compares a good hand-coded parallel program to one derived by

hand-simulating our automatic algorithm on a nearby sequential version. Therefore,

parallelism is known to exist and we measure the ability of our automatic techniques
to uncover this parallelism. The results of our experiment indicate that given a few
assertions, the automatically generated versions usually perform as well or better than
hand-coded versions. These results do not completely prove the thesis statement, but

provide very promising support for it.

Chapter 2

Technical Background

For the most part, this dissertation focuses on on exploiting existing analysis to
perform effective optimizing transformations. To understand these optimizations re-
quires knowledge of the tenents on which they are based. We therefore begin with an

overview of the analysis required for program parallelization and transformation.

2.1 Dependence Analysis

Dependences describe a partial order between statements that must be maintained to
preserve the meaning of a program with sequential semantics. A dependence between
statement S7 and 53, denoted 57653, indicates that 57, the source, must be executed
before Sy, the sink. There are two types of dependence: data dependence and control

dependence.

Data dependence

A data dependence, 51653, indicates that 57 and S5 read or write a common memory
location in a way that requires their execution order to be preserved [Ber66]. There

are four types of data dependence [Kuc78]:

True (flow) dependence

occurs when 57 writes a memory location that S later reads.

Anti dependence

occurs when 57 reads a memory location that S, later writes.

Output dependence

occurs when 57 writes a memory location that S, later writes.

Input dependence

occurs when S reads a memory location that S later reads.!

Input dependences do not restrict statement order.

Control dependence

Intuitively, a control dependence, S16.53, indicates that the execution of 57 directly
determines whether S; will be executed. The control flow graph G represents the
flow of execution in the program. The following formal definitions of control depen-

dence and the postdominance relation computed on Gy are taken from the literature

[FOWST, CFS90].

Definition 2.1 =z is postdominated by y in Gy if every path from z to

the exit node of Gy contains y.

Definition 2.2 Given two statements z, y € Gy, yis control dependent
on z if and only if:

1. 4 a non-null path p, + — y, such that y postdominates every node
between x and y on p, and

2. 1y does not postdominate z.

Based on these definitions, a control dependence graph G.; can be built with the
control dependence edges (z, y); where [is the label of the first edge on path z —
y. Additionally, if Gy is structured, rooted and acyclic, the resulting G.4 is a tree,
where structured has its usual meaning as originally formulated by Béhm and Jacopini
[BJ66]. If G is unstructured, rooted and acyclic, the resulting G.4 is a DAG [CFS90].

Loop-carried and loop-independent dependence

Because scientific Fortran programs spend most of their time executing loops [Knu71],
this thesis focuses on executing loops in parallel. Dependence analysis determines
which loops in the program may be run safely in parallel. A dependence between
iterations of a loop is called loop-carried and prevents the iterations of a loop from

being executed in parallel [AlI83, AK87]. Consider the following loop:

DOI=2N
S A(T) = ...
So .. = A(D)
Ss . = A(1-1)
ENDDO

The true dependence 5716955 is called loop-independent because it exists regardless
of the surrounding loops. Loop-independent dependences, whether data or control,

occur within a single iteration of a loop and do not inhibit a loop from running in

parallel. For example, if 5165, were the only dependence in the loop, the iterations
of this loop could be run in parallel, because statements executed on each iteration
only affect other statements in the same iteration and not in any other iterations.
However, loop-independent dependences do affect statement order within a loop iter-
ation. Interchanging statements 57 and S, violates the loop-independent dependence
and changes the meaning of the program.

By comparison, the true dependence 51655 is loop-carried because the source and
sink of the dependence occur on different iterations of the loop; S5 reads the memory
location that was written by S7 on the previous iteration. Loop-carried dependences
inhibit loop iterations from executing in parallel without explicit synchronization.
When there are nested loops, the level of any carried dependence is the outermost

loop on which it first arises [All83, AKS8T7].

Dependence testing

Determining the existence of data dependence between array references is more dif-
ficult than for scalars, because the subscript expressions must be considered. The
process of differentiating between two subscripted references in a loop nest is called
dependence testing [Ban88, Wol89b, GKT91]. To illustrate, consider the problem of
determining whether or not there exists a dependence from statement 57 to S in the
following loop nest:
DO iy = Iy, U,
DO iy = Ly, Us
DO iy = Ly, U,
S1 A(fi(ir, . yin)y ey fn(in, oo in)) = o

SZ IA(gl(Zl,,Zn),,gm(ll,,ln))
ENDDO

ENDDO
ENDDO

Let « and 3 be vectors of n integer indices within the ranges of the upper and lower
bounds of the n loops. There is a dependence from Sy to S5 if and only if there exist
«a and such that « is lexicographically less than or equal to and the following

system of dependence equations is satisfied:

fila) = g(B) Yk, 1 <k<m

Distance and direction vectors

Distance and direction vectors may be used to characterize data dependences by
their access pattern between loop iterations. If there exists a data dependence for
a=(ay,...,a,) and B = (b1,..., 3,), then the distance vector D = (Dy,...,D,) is
defined as 8 — a. The direction vector d = (d,...,d,) of the dependence is defined
by the equation:

< ifa; < G
di: = lfOéZ:ﬂZ
> if a; >

Dependence distances and directions are represented as a vector whose elements,
displayed left to right, represent the dependence from the outermost to the innermost
loop in the nest. By definition all distance and direction vectors are lexicographically

positive. We use

§=(61,....6,)

to represent a distance or direction vector, where 6; is the dependence distance or
direction for the loop at level :. For example, consider the following loop nest:
DOT=1N
DOJ=1,M
DOK=1,1
A(41, 3, K-1) = AL, J, K) + C
ENDDO

ENDDO
ENDDO

The distance and direction vectors for the true dependence between the definition and
use of array A are (1,0, —1) and (<, =, >), respectively. Since several different values
of @ and may satisfy the dependence equations, a set of distance and direction
vectors may be needed to completely describe the dependences arising between a pair
of array references.

Distance vectors, first used by Kuck and Muraoka [KMC72, Mur7l], specify
the number of loop iterations between two accesses to the same memory location.
Direction vectors, introduced by Wolfe [Wol82], summarize distance vectors and are
therefore less precise. However, there are situations where direction vectors may be

computed, but distance vectors cannot be.

10

Both may be used to calculate loop-carried dependences. Additionally, direction
vectors are sufficient to determine the safety and profitability of loop interchange
[AKS8T7, Wol82]. Distance vectors are often required by other transformations that ex-
ploit parallelism [Ban90b, KMT91a, Lam74, WL90, Wol86] and improve data locality

[CCK90, KMT91a, GJG87]. Data dependence also characterizes reuse of individual
memory locations [CCK90].

2.2 Interprocedural dependence analysis

The presence of procedure calls complicates the process of analyzing dependences.
Without interprocedural analysis worst case assumptions must be made in the pres-
ence of procedure calls. Conventional interprocedural analysis discovers constants,
aliasing, flow-insensitive side effects such as REF and MOD, and flow-sensitive side
effects such as USE and KILL [CCKT86, CKT86a]. However, parallelization is limited
because arrays are treated as monolithic objects, making it impossible to determine

whether two references to an array actually access the same memory location.

Array sections

To provide more precise analysis, array accesses can be summarized in terms of reg-
ular sections or data access descriptors that describe subsections of arrays such as
rows, columns and rectangles [BK89, CK87h, HK91]. Local symbolic analysis and
interprocedural constants are required to build accurate sections. Once constructed,
sections may be quickly intersected during interprocedural analysis and dependence
testing to determine whether dependences exist. This analysis is described in more
detail in Section 5.2.2.

2.3 Augmented call graph

The program representation for our work on whole program optimization requires
an augmented call graph to describe the calling relationship among procedures and
specify loop nests. For this purpose, the program’s call graph, which contains the
usual procedure nodes and call edges, is augmented to include loop nodes and nesting
edges. The loop nodes contain loop header information. If a procedure p contains a
loop [, there will be a nesting edge from the procedure node representing p to the

loop node representing [. If a loop [contains a call to a procedure p, there will be a

11

nesting edge from [to p. Any inner loops are also represented by loop nodes and are
children of their outer loop. The outermost loop of each routine is marked enclosing
if all the other statements in the procedure fall inside the loop. Each loop is also
marked as sequential or parallel. A loop with no loop-carried dependences (i.e all the

direction vectors contain “=" for the loop) is parallel and all others sequential.

12

Chapter 3

Interactive Parallel Programming

The ParaScope Editor is a new kind of exploratory parallel programming tool for
developing scientific Fortran programs. It is able to compensate in many cases for
the deficiencies of automatic parallelizers, by bringing user expertise and compiler
technology to bear on program parallelization. It assists the knowledgeable user by
displaying the results of sophisticated program analyses and by providing a set of
powerful interactive transformations. After an edit or parallelism-enhancing trans-
formation, the ParaScope Editor incrementally updates both the analyses and source
quickly. These fast updates are useful in both batch and automatic systems. This
chapter focuses on these abilities and introduces the transformations and the analysis

they require that are used throughout the thesis.

3.1 Introduction

The ParaScope Editor helps users interactively transform a sequential Fortran 77
program into a parallel program with explicit parallel constructs, such as those in
PCF Fortran [Lea90]. In alanguage like PCF Fortran, the principal mechanism for the
introduction of parallelism is the parallel loop, which specifies that its iterations may
be run in parallel according to any schedule. The fundamental problem introduced by
such languages is the possibility of nondeterministic execution. For example, consider
converting the following sequential loop into a parallel loop.

DO T =1, 100

A(INDEX(I)) = A(INDEX(I)) + 1

ENDDO
Dependence analysis conservatively assumes that INDEX(I) for a particular iteration
may equal INDEX(I) for a later iteration. Therefore, there may be a loop-carried de-
pendence on A and an automatic parallelizer would not execute this loop in parallel.
Unfortunately, a parallelizer is often forced to make conservative assumptions about
whether dependences exist. These assumptions may arise because of complex sub-
scripts (as above) or the use of unknown symbolics. As a result, automatic systems

miss loops that could be parallelized. For example, it may be that INDEX(I) is a

13

permutation, allowing the loop to be safely performed in parallel. This weakness has
led previous researchers to conclude that automatic systems, by themselves, are not
powerful enough to find all of the parallelism in a program.

However, the analysis performed by automatic systems can be extremely useful to
the programmer during the parallelization process. The ParaScope Editor (PED) is
based upon this observation. It is designed to support an interactive parallelization
process in which the user examines a particular loop and its dependences. To safely
parallelize a loop, the user must either determine that each dependence shown is
not valid (because of some overly conservative assumption made by the system),
or transform the loop to satisfy valid dependences. After each transformation, PED
reconstructs the dependence graph so that the user may determine the level of success
achieved and apply additional transformations if desired.

A tool with this much functionality is bound to be complex. PED incorporates
a complete source editor and supports dependence analysis, dependence display, and
a large variety of program transformations to enhance parallelism. We describe in
detail elsewhere the usage, user interface and motivation of the ParaScope Editor
[BKK*89, FKMW90, KMT91b]. We also cover elsewhere the types of analyses
and representations needed to support this tool and automatic parallelization (see
Section 2) [KMT91a]. In this chapter, we focus on efficient algorithms for incremen-
tal updates after a transformation or edit. All of these algorithms are implemented
in PED.

We begin with an overview of the existing work model and a description of the
transformation process. These descriptions include the mechanisms for communi-
cation between the user and PED, and an example PED session. The incremental
algorithms for determining safety and profitability, and for performing the update of
dependence information and source for four important transformations are also de-
tailed. The transformations are loop interchange, loop skewing, loop distribution,

and unroll and jam. We discuss related work and conclude.

3.2 Work Model

This thesis exploits loop-level parallelism, which comprises most of the usable paral-
lelism in scientific codes when synchronization costs are considered [CSY90]. In the
work model best supported by PED, the user first selects a loop for parallelization.
PED then displays all of its loop-carried data dependences. Other dependences, such

14

as control dependences, may also be displayed at the option of the user. The user may
sort, filter or mark the dependences. This mechanism allows users to mark as rejected
those dependences that are due to overly conservative dependence analysis, so that
the transformations will ignore them. If dependence testing is exact and proves a
dependence to exist, the dependence is pre-marked as proven. Otherwise, the depen-
dence is pre-marked as pending, signifying to the user that it may be the result of
overly-conservative analysis. Additionally, the user may mark pending dependences
as accepted, indicating that the dependence does in fact occur. A similar facility is
provided for variable classification [FKMWO90]. These provide users with a powerful
mechanism for experimenting with different parallelization strategies.

PED’s user interface is shown in Figure 3.1. The figure shows a black and white
screen dump of a color PED session. The program pane in the top half of the window
displays a loop from a parallel direct search program produced by Virginia Torczon.
The outer loop on line 29 is selected by clicking the mouse on the loop icon, the ‘*” in
the leftmost column. The selection causes the header and all the enclosed statements
to be a different color than the other text (in this black and white picture, it is not
detectable). Buttons across the top of the editing pane invoke various PED features,
such as transformations, program analysis, view filtering and editing.

In PED color is used to convey points of interest, focus or special meaning. The
dependence pane is in the middle pane of the window and shows dependences carried
by the selected loop. The output dependence on S(INDEX(I),J) is selected, which
causes it to be highlighted in the dependence pane. The dependence is also reflected
in the text pane by an arrow from the highlighted source reference to the highlighted
sink reference. In this example, the dependence has its source and sink at the same
reference, so only one reference is highlighted. If the end points of the dependence
span the width of the screen, one end point is brought into view. To view the other
end point the user need only select it in the dependence pane, and then PED will
bring it into view in the text pane. The labels across the top of the dependence pane
may be selected to sort by that characteristic. They may also be used in filter and
marking queries on dependences.

The variable display at the bottom of the PED window presents each variable
that participates in the loop. It also presents the classification of the variable if the
loop were run in parallel. The user interface for all three of these displays is unified,

requiring the user to learn only one simple paradigm.

Ficure 3.1:

PED User Interface

15

ParaScope Editor:

ped_demo/Supercomputing91/deno

file edit view search dependence variable transform
ource code
LI & do i =1, 168
28 ali) = ali} + 1
LI enddo
22 G
23 L mmmmmmmmmmmmmm e
24 T FED allows the user to interactively classify dependences
25
28 C index() is a pernutation array - elements have unique values
27 C Dependences on array 5 nay thus be safely deleted
28 G
¥ 27 doi=1,n
L) do j =1, n
31 SEICCEISEE- - * stindex(B), i) - s(index(i), j)
¥ 32 enddo ’
L) enddo
34
38 C FED provides intelligent transformations that determine
37 C the Tegality and profitability of performing the transformation
a8
[[
dependences
TYPE S0URCE EINK YECTOR LYWL ELOCK MK RERZOM
true s{index{i), s{index{@), (*,=) 1
true s(index{i), s{index{i}, (*,=) 1]
anti s(index(i), s{indexfiy, (*,=) 1
5 (B), (i), (%= 1
s (i), , (*0) 1 |

variahles
MAME OIM ELOCE OEF< USE» KIMD REAZOH
i - private
indey 1 shared m
n - private
5 2 shared]

16

3.3 Transformations

PED provides a variety of interactive, structured transformations that enhance or
expose parallelism in programs. If the user has made assertions about dependences
and variables, the transformations take these into account. These transformations are
applied according to a power steering paradigm: the user specifies the transformation
to be made, and the system provides advice and carries out the mechanical details.
The user is therefore relieved of the responsibility of making tedious and error prone
program changes.

PED evaluates each transformation invoked according to three criteria: applicabil-
ity, safety, and profitability. A transformation is applicable if it can be mechanically
performed. For example, loop interchange is inapplicable for a single loop. A trans-
formation is safe if it preserves the meaning of the original sequential program. Some
transformations are always safe, others require a specific dependence pattern. Finally,
PED classifies a transformation as profitable if it can determine that the transforma-
tion directly or indirectly improves the parallelism of the resulting program.

To perform a transformation, the user makes a program selection and invokes
the desired transformation. If the transformation is inapplicable, PED responds with
a diagnostic message. If the transformation is safe, PED advises the user as to its
profitability. For parameterized transformations, PED may also suggest a parameter
value. The user may then apply the transformation. For example, see loop skewing
and unroll and jam in Sections 3.4.2 and 3.4.4.

It the transformation is unsafe or unprofitable, PED responds with a warning
explaining the cause. In these cases, the user may decide to override the system advice
and apply the transformation anyway. For example, if a user decides to parallelize
a loop with loop-carried dependences, PED will warn the user of the dependences
but allow the loop to be made parallel. This override ability is extremely important
in an interactive tool, since it allows the user to apply knowledge unavailable to
the tool. The program’s abstract syntax tree (AST) and dependence information are
automatically updated after each transformation to reflect the transformed source.

PED supports a large set of transformations that have proven usetul for introduc-
ing, discovering, and exploiting parallelism. PED also supports transformations for
improving data locality. Each transformation is briefly introduced below. Many are
found in the literature [AC72, AK87, CCK90, KM90, KMT91b, KKLW84, Lov77,
Wol86]. In PED, their novel aspect is the analysis of their applicability, safety, prof-

17

itability and the incremental updates of source and dependence information. We

classify the transformations implemented in PED as follows.

Reordering Transformations

Loop Distribution Loop Interchange
Loop Skewing Loop Reversal
Loop Fusion Statement Interchange

Unroll and Jam

Dependence Breaking Transformations

Privatization Scalar Fxpansion
Array Renaming Loop Peeling
Loop Splitting Alignment

Memory Hierarchy Transformations
Strip Mining Scalar Replacement
Loop Unrolling

Miscellaneous Transformations
Sequential «» Parallel Loop Bounds Adjusting
Statement Addition Statement Deletion

3.3.1 Reordering transformations

Reordering transformations change the order in which statements are executed, either
within or across loop iterations. They are safe if all the dependences in the original
program are preserved. Reordering transformations are used to expose or enhance
loop-level parallelism. They are often performed in concert with other transformations
to structure computations in a way that allows useful parallelism to be introduced.

These may also be used to optimize data locality.

e Loop distribution partitions independent statements inside a loop into multi-
ple loops with identical headers. It is used to separate statements that may be
parallelized from those that must be executed sequentially [KM90, KMT91a,
Kuc78]. The partitioning of the statements is targeted to vector or parallel

hardware as specified by the user.

e Loop interchange interchanges the headers of two perfectly nested loops,

changing the order in which the iteration space is traversed. When loop in-

18

terchange is safe, it can be used to adjust the granularity of parallel loops

[AKS87, KMT91a, Wol89b).

e Loop skewing adjusts the iteration space of two perfectly nested loops by
shifting the work per iteration in order to expose parallelism. When possible,
PED computes and suggests the optimal skew degree. Loop skewing may be used

with loop interchange in PED to expose wavefront parallelism [KMT91a, Wol86].
e Loop reversal reverses the order of execution of loop iterations.

e Loop fusion can increase the granularity of parallel regions and promote reuse
by fusing two contiguous loops when dependences are not violated [ACT2,

KKP*81].
e Statement interchange interchanges two adjacent independent statements.

e Unroll and jam increases the potential candidates for scalar replacement and
pipelining by unrolling the body of an outer loop in a loop nest and fusing the
resulting inner loops [ACT2, CCK90, CCK88, KMT91a].

3.3.2 Dependence breaking transformations

Dependence breaking transformations are used to satisty specific dependences that
inhibit parallelism. They may introduce new storage to eliminate storage-related
anti or output dependences, or convert loop-carried dependences to loop-independent
dependences, often enabling the safe application of other transformations. If all the

dependences carried on a loop are eliminated, the loop may then be run in parallel.

e Privatization makes an array or scalar variable local to a parallel loop, elimi-

nating dependences on the variable between loop iterations.

e Scalar expansion transforms a scalar variable into a one-dimensional array.

It breaks output and anti dependences which may be inhibiting parallelism

[KKLW80a].

e Array renaming, also known as node splitting [KIKLW80a], is used to break
anti dependences by copying the source of an anti dependence into a newly
introduced temporary array and renaming the sink to the new array [AKST].
Loop distribution may then be used to separate the copying statement into a

separate loop, allowing both loops to be parallelized.

19

e Loop peeling peels off the first or last £ iterations of a loop as specified by
the user. It is useful for breaking dependences which arise on the first or last k
iterations of the loop [ACT2].

e Loop splitting, or index set splitting, separates the iteration space of one loop
into two loops, where the user specifies at which iteration to split. For exam-
ple, if DOT =1, 100 is split at 50, the following two loops result: DO1 =1, 50
and DO 1= 51, 100. Loop splitting is useful in breaking crossing dependences,
dependences that cross a specific iteration [AKS8T7].

e Alignment moves instances of statements from one iteration to another to

break loop-carried dependences [Cal87].

3.3.3 Memory hierarchy transformations

Memory optimizing transformations adjust a loop’s balance between computations
and memory accesses to make better use of the memory hierarchy and functional
pipelines. These transformations have proven to be extremely effective for both scalar

and parallel machines.

e Strip mining takes a loop with step size of 1, and changes the step size to a
new user specified step size greater than 1. A new inner loop is inserted which
iterates over the new step size. If the minimum distance of the dependences in
the loop is less than the step size, the resultant inner loop may be parallelized.
Used alone the order of the iterations is unchanged, but used in concert with

loop interchange the iteration space may be tiled [Wol89a] to utilize memory

bandwidth and cache more effectively [CK89].

e Scalar replacement takes array references with consistent dependences and
replaces them with scalar temporaries that may be allocated into registers
[CCK90]. It improves the performance of the program by reducing the number

of memory accesses required.

e Loop unrolling decreases loop overhead and increases potential candidates for
scalar replacement by unrolling the body of a loop [ACT72, KMT91a].

20

3.3.4 Miscellaneous transformations

Finally PED has a few miscellaneous transformations.

e Sequential «— Parallel converts a sequential DO loop into a parallel loop, and

vice versa.

e Loop bounds adjusting adjusts the upper and lower bounds of a loop by a

constant. It is used in preparation for loop fusion.
e Statement addition adds an assignment statement.

e Statement deletion deletes an assignment statement.

3.4 Transformation algorithms

The incremental update algorithms for the transformations serve a critical function;
they update the code and dependence information quickly and immediately, allowing
users to understand the changes, see the effects, and continue the transformation
process without reanalyzing the entire program. Although many of the algorithms for
applying these transformations have appeared elsewhere, our implementation gives
profitability advice and performs incremental updates of dependence information.
Rather than describe all these phases for each transformation, we have chosen to
examine only a few interesting transformations in detail. We discuss loop interchange,
loop skewing, loop distribution, and unroll and jam. The purpose, mechanics, and
safety of these transformations are presented, followed by their profitability estimates,

user advice, and incremental dependence update algorithms.

3.4.1 Loop interchange

Loop interchange has been used extensively in vectorizing and parallelizing compilers
to adjust the granularity of parallel loops and to expose parallelism [AK87, KKLW84,
Wol86]. PED interchanges pairs of adjacent loops. Loop permutations may be per-
formed as a series of pairwise interchanges. PED supports interchange of triangular
or skewed loops. It also interchanges hexagonal loops that result after skewed loops

are interchanged.

21

Safety

Loop interchange is safe it it does not reverse the order of execution of the source and
sink of any dependence. PED determines this by examining the direction vectors for
all dependences carried on the outer loop. If any dependence has a direction vector
of the form (<, >), interchange is unsafe. These dependences are called interchange
preventing. They are precomputed and recorded in a flag in the dependence edge.
Each dependence edge carried on the outer loop is examined. If any one of these has

the interchange preventing flag set, PED advises the user that interchange is unsafe.

Profitability

PED judges the profitability of loop interchange by calculating which of the loops
will be parallel after the interchange. A dependence carried on the outer loop will
move inward if it has a direction vector of the form (<,=). These dependences are
called interchange sensitive. They are also precomputed and stored in a flag on each
dependence edge. PED examines each dependence edge on the outer loop to determine
where it will be following interchange. It then checks for dependences carried on the
inner loop as well; they move outward following interchange. Depending on the
result, PED advises the user that neither, one, or both of the loops will be parallel

after interchange.

Update

Updates after loop interchange are very quick. Dependence edges on the interchanged
loops are moved directly to the appropriate loop level based on their interchange sen-
sitive flags. All the dependences in the loop nest then have the elements in their
direction vector corresponding to the interchanged loops swapped, e.g., (<,=) be-
comes (=, <). Finally, the interchange flags are recalculated for dependences in the

loop nest.

3.4.2 Loop skewing

Loop skewing is a transformation that changes the shape of the iteration space to
expose parallelism across a wavefront [IT88, Lam74, Mur7l, Wol86]. It can be ap-

plied in conjunction with loop interchange, strip mining, and loop reversal to obtain

22

FiGUure 3.2: Effect of loop skewing on
dependences and iteration space

so BESN

before skew after skew

effective loop-level parallelism in a loop nest [Ban90b, WL90, Wol89a]. All of these
transformations are supported in PED.

Loop skewing is applied to a pair of perfectly nested loops that both carry depen-
dences, even after loop interchange. Loop skewing adjusts the iteration space of these
loops by shifting the work per iteration, changing the shape of the iteration space
from a rectangle to a parallelogram, as illustrated in Figure 3.2. Skewing changes
dependence distances for the inner loop so that all dependences are carried on the
outer loop after loop interchange. The inner loop can then be safely parallelized.

Loop skewing of degree « is performed by adding « times the outer loop index
variable to the upper and lower bounds of the inner loop, followed by subtracting the
same amount from each occurrence of the inner loop index variable in the loop body.
In the example below, the loop nest on the right results when the J loop in the left
loop nest is skewed by degree 1 with respect to loop I.

DO 1= 1,100 DO 1= 1,100
DO J = 2, 100 DOJ =T1+2,1+ 100
A(LI) = A(I-1,0) + A(L,J-1) A(LI-D) = A(-1,J-1) + A(1J-1-1)
ENDDO ENDDO
ENDDO ENDDO

Figure 3.2 illustrates the iteration space for this example. For the original loop,
dependences with distance vectors (1,0) and (0,1) prevent either loop from being
safely parallelized. In the skewed loop, the distance vectors for dependences are
transformed to (1,1) and (0,1). There are no longer any dependences within each
column of the iteration space, so parallelism is exposed. However, to introduce the

parallelism on the I loop requires a loop interchange.

23

Safety

Loop skewing is always safe because it does not change the order in which array

memory locations are accessed. It only changes the shape of the iteration space.

Profitability

To determine if skewing is profitable, PED ascertains whether skewing will expose
parallelism that can be made explicit using loop interchange and suggests the min-
imum skew amount needed to do so. This analysis requires that all dependences

carried on the outer loop have precise distance vectors. Skewing is only profitable if:

1. 4 dependences on the inner loop, and

2. 3 at least one dependence on the outer loop with a distance vector (dy,d>),
where d; < 0.

The interchange preventing or interchange sensitive dependences in case (2) prevent
the application of loop interchange to move all dependences to the outer loop. If they
do not exist, at least one loop may already be safely parallelized, possibly by using
loop interchange. The purpose of loop skewing is to change the distance vector to
(dq,dy), where dy > 1. In terms of the iteration space, loop skewing is needed to
transform dependences that point down or downwards to the left into dependences
that point downwards to the right. Followed by loop interchange, these dependences
will remain on the outer loop, allowing the inner loop to be safely parallelized.

To compute the skew degree, we first consider the effect of loop skewing on each
dependence. When skewing the inner loop with respect to the outer loop by an
integer degree «, the original distance vector (dy,dz) becomes (dy, ady 4 d3). So for

any dependence where d, < 0, we want « such that ad; +dy > 1. To find the minimal

1= 4
oa = a

for each dependence, taking the maximum « for all the dependences; this is suggested

skew degree we compute

as the skew degree.

24

Update

Updates after loop skewing are also very fast. After skewing by degree «, the incre-
mental update algorithm changes the original distance vectors (dy, dz) for all depen-

dences in the nest to (di, ad; + dz), and then updates their interchange flags.

3.4.3 Loop distribution

Loop distribution separates independent statements inside a single loop into multiple
loops with identical headers [AK87, KKP*81]. It is used to expose partial parallelism
by separating statements which may be parallelized from those that must be executed
sequentially. It is a cornerstone of vectorization and parallelization.

In PED the user can specify whether distribution is for the purpose of vectorization
or parallelization. If the user specifies vectorization, then each statement is placed in
a separate loop when possible. If the user specifies parallelization, then statements
are grouped together into the fewest loops such that the most statements can be made
parallel and the original statement order is maintained. The user is presented with
a partition of the statements into new loops, as well as an indication of which loops

are parallelizable. The user may then apply or reject the distribution partition.

Safety

To maintain the meaning of the original loop, the partition must not put statements
that are involved in recurrences into different loops [KM90, KKP*81]. Recurrences
are calculated by finding strongly connected regions in the subgraph composed of
loop-independent dependences and dependences carried on the loop to be distributed.
Statements not involved in recurrences may be placed together or in separate loops,
but the order of the resulting loops must preserve all other data and control depen-
dences. PED always computes a partition which meets these criteria.

If there is control flow in the original loop, the partition may cause decisions that
occur in one loop to be used in a later loop. These decisions correspond to loop-
independent control dependences that cross between partitions. We use the method
described in Section 4.2 to insert new arrays, called execution variables, that record
these “crossing” decisions. Given a partition, this algorithm introduces the minimal
number of execution variables necessary to effect the partition, even for loops with

arbitrary control flow.

25

Profitability

Currently PED does not change the order of statements in the loop during parti-
tioning. This simplification improves the recognizability of the resulting program,
but may reduce the parallelism uncovered. In particular, statements that fall lexi-
cally between statements in a recurrence will be put into the same partition as the
recurrence. In addition, when the source of a dependence lexically follows the sink,
these statements will be placed in the same partition. A more flexible partitioning
algorithm that allows statements to be reordered is described in Section7.3.

When distributing for vectorization, statements not involved in recurrences are
placed in separate loops. When distributing for parallelization, they are partitioned
as follows. A statement is added to the preceding partition only if it does not cause
that partition to be sequentialized. Otherwise it begins a new partition. Consider

distributing the loop on the left for parallelization.

DOI=2N PARALLEL DOI=2 N
S A) = ... S AQ) = ...
Sy L= AI-1) ENDDO
ENDDO PARALLEL DOI=2 N
Ss = A(I-1)
ENDDO

This loop contains only the loop-carried true dependence S165;. Since there are
no recurrences, S; and Sy begin in separate partitions. S; is placed in a parallel
partition, then S5 is considered. The addition of S5 to the partition would instantiate
the loop-carried true dependence, causing the partition to be sequential. Therefore,
Sy is placed in a separate loop and both loops may be made parallel as seen on the

right above.

Update

Updates can be performed quickly on the existing dependence graph after loop dis-
tribution. Data and control dependences between statements in the same partition
remain unchanged. Data dependences between statements placed in separate parti-
tions are converted from loop-carried dependences into loop-independent dependences
(as in the above example).

Loop-independent control dependences that cross partitions are deleted and re-
placed as follows. First, loop-independent data dependences are introduced between

the definitions and uses of execution variables representing the crossing decision. A

26

control dependence is then inserted from the test on the execution variable to the
sink of the original control dependence. The update algorithm is explained more

thoroughly in Section 4.2.

3.4.4 Unroll and jam

Unroll and jam is a transformation that unrolls an outer loop in a loop nest, then jams
(or fuses) the resulting inner loops [ACT2, CCKS88]. Unroll and jam can be used to
convert dependences carried by the outer loop into loop independent dependences or
dependences carried by some inner loop. It brings two accesses to the same memory
location closer together and can significantly improve performance by enabling reuse
of either registers or cache. When applied in conjunction with scalar replacement on
scientific codes, unroll and jam has resulted in integer factor speedups, even for single
processors [CCK90]. Unroll and jam may also be applied to imperfectly nested loops
or loops with complex iteration spaces. Figure 3.3 shows an example iteration space
before and after unroll and jam of degree 1.

Before performing unroll and jam of degree o on a loop with step o, we may
need to use loop splitting to make the total number of iterations divisible by a + 1
by separating the first few iterations of the loop into a preloop. We then create «

additional copies of the loop body. All occurrences of the loop index variable in the
1" new loop body must be incremented by ol. The step of the loop is then increased

to o(a 4 1). Consider the following.

before: DOT1=1, 100

DO J =1, 100
C(I,J)=0.0
DO K =1, 100

CILJ)=CLJ) + AL K) *B(K, J)

ENDDO

ENDDO

ENDDO

after: DO TI=1,100,2
DO J =1, 100
C(I,J)=0.0
CI+1,J)=00
DO K =1, 100
C(1,J) = O,) + AL, K) * B(K, J)
CI+1,)=CI+1,J)+ AT+ 1, K)*B(K, J)
ENDDO
ENDDO
ENDDO

27

FiGUure 3.3: Effect of unroll and jam on iteration space

J — = J — =

T
4

oo =

— =

)
)
)

;1;

)|
i
)
(€

GO
0=

(
(
(

before unroll and jam after unroll and jam

In the above matrix multiply example, loop I is unrolled and jammed by one to bring
together references to B(K, J), resulting in the second loop nest. Unroll and jam may

also be performed on loop J to bring together references to A(I, K).

Safety

To determine safety, an alternative formulation of unroll and jam is used. Unroll and
jam is equivalent to strip mining the outer loop by the unroll degree, interchanging
the strip mined loop to the innermost position, and then completely unrolling the
strip mined loop. Since strip mining and loop unrolling are always safe, we only need
to determine whether we can safely interchange the strip mined loop to the innermost
position.

PED determines this requirement by searching for interchange preventing depen-
dences on the outer loop. Unroll and jam is unsafe if any dependence carried by the
outer loop has a direction vector of the form (<, >). Even if such a dependence is
found, unroll and jam is still safe if the unroll degree is less than the distance of the
dependence on the outer loop, since this dependence would remain carried by the
outer loop. PED will either warn the user that unroll and jam is unsafe, or provide a
range of safe unroll degrees.

Unroll and jam of imperfectly nested loops changes the execution order of the
imperfectly nested statements with respect to the rest of the loop body. Dependences
carried on the unrolled loop with distance less than or equal to the unroll degree

are converted into loop-independent dependences. If any of these dependences cross

28

between the imperfectly nested statements and the statements in the inner loop, they
inhibit unroll and jam. Specifically, the intervening statements cannot be moved and

prevent fusion of the inner loops.

Profitability

Balance describes the ratio between computation and memory access rates [CCK88].
Unroll and jam is profitable if it brings the balance of a loop closer to the balance
of the underlying machine. PED automatically calculates the optimal unroll and jam

degree for a loop nest, including loops with complex iteration spaces [CCK90].

Update

An algorithm for the incremental update of the dependence graph after unroll and
jam is described elsewhere [CCK90]. However, we chose a different strategy. Since no
global data-flow or symbolic information is changed by unroll and jam, PED rebuilds
the scalar dependence graph for the loop nest and refines it with dependence tests.

This update strategy proved much simpler to implement and is very quick in practice.

3.5 Incremental analysis after edits

Editing is fundamental for any program development tool because it is the most flex-
ible means of making program changes. The ParaScope Editor therefore provides
advanced editing features. When editing, the user has complete access to the func-
tionality of the hybrid text and structure editor underlying PED, including simple
text entry, template-based editing, search and replace functions, intelligent and cus-
tomizable view filters, and automatic syntax and type checking.

Rather than reanalyze immediately after each edit, PED waits for a reanalyze
command from the user. The user may thus avoid analyzing intermediate stages of
the program that may be illegal or simply uninteresting. The transformations, the
dependence display and the variable display are disabled during an editing session,
because they rely on dependence information that may be invalidated by the edits.
Once the user prompts PED, the dependence driver invokes syntax and type checking.
If errors are detected, the user is warned; otherwise, reanalysis proceeds.

Unfortunately, incremental dependence analysis after edits is a very difficult prob-
lem. Precise dependence analysis requires utilization of several different kinds of in-

formation. In order to calculate precise dependence information, PED may need to

29

incrementally update the control flow graph, control dependence graph, static single
assignment graph (ssA) [CFR*89], and call graphs, as well as recalculate scalar live
range, constant, symbolic, interprocedural, and dependence testing information.
Several algorithms for performing incremental analysis are found in the litera-
ture; for example, data-flow analysis [RP88, Zad84], interprocedural analysis [Bur90,
RC86], interprocedural recompilation analysis [BCKT90], as well as dependence anal-
ysis [R0s90]. However, few of these algorithms have been implemented and evaluated
in an interactive environment. Rather than tackle all these problems at once, we
chose a simple yet practical strategy for the current implementation of PED. First,
the scope of each program change is evaluated. Incremental analysis is applied only
when it may be profitable, otherwise batch dependence analysis is invoked. PED will

apply incremental dependence analysis when the following situations are detected:

No update needed

Many program edits fall into this category. It is trivial using a structure editor to
determine that changes to comments or whitespace do not require reanalysis. Other
more interesting cases include changes to arithmetic expressions that do not disturb
control flow or symbolic analysis. For instance, changing the assignment A(I) = B(I)

to A(I) = B(I) + 1 does not affect dependence information one whit.

Delete dependence edges

Removal of an array reference may be handled simply by deleting all edges involving
that reference.

Add dependence edges

Addition of an array reference may be handled by scanning the loop nest for occur-
rences of the same variable, performing dependence tests between the new reference

and any other references, and adding the necessary dependence edges.

Redo dependence testing

Changes to loop bounds or array subscript expressions require dependence testing to

be performed on all affected array variables.

30

Redo local symbolic analysis

Some types of program changes do not affect the scalar dependence graph, but may
require symbolic analysis to be reapplied. For instance, changing the assignment
J=J+1 to J=J+2, where J is an auxiliary induction variable, requires redoing symbolic

analysis and dependence testing.

Redo local dependence analysis

Changes such as the modification of control flow or variables involved in symbolic
analysis require significant updates best handled by redoing dependence analysis.
However, the nature of the change may allow the reanalysis to be limited to the
current loop nest or procedure. In these cases, the entire program does not need to

be reanalyzed.

3.6 User and compiler interaction

Once the programmer begins changing the source for the purpose of optimization,
version control begins to play an important role. Is the new version now machine
dependent, or is it a better machine independent version, or it is a bug fix? The
automation of version control is still an open question and in the current imple-
mentation, version control is left to the programmer. In order to facilitate a single
machine-independent program version we propose the following compiler-controlled
approach.

In this approach, the compiler would first perform automatic parallelization as a
source-to-source transformation producing a machine specific version. If the user is
satisfied with the program’s resulting performance, the user need not intervene at all.
If the user is unsatisfied, the compiler communicates to the user in the interactive
tool, in this case PED. The compiler would mark the loops in the original version
that it was unable to parallelize or parallelize well. It would also rank the loops
and subroutines by their effects on execution time using performance estimation or
run-time profiling. If the user wants to maintain portability, the onus shifts to the
user to make assertions and improvements in an architecture independent manner.
The user is assisted with the hints and functionality currently provided PED, such as

dependence display and transformations. In addition, users would be able to invoke

31

the compiler’s optimizing and parallelizing algorithms in PED to determine the effects

of their changes, providing almost an interactive compiler.

3.7 Related work

Several other research groups are also developing advanced parallel programming
tools. PED’s analysis and transformation capabilities compare favorably to automatic
parallelization systems such as Parafrase, PTRAN, and of course PFC. Our work on
interactive parallelization bears similarities to SIGMACS, PAT, and SUPERB.

PED has been greatly influenced by the Rice Parallel Fortran Converter (PFC),
which has focused on the problem of automatically vectorizing and parallelizing se-
quential Fortran [AK87]. PFC has a mature dependence analyzer which performs data
dependence analysis, control dependence analysis, interprocedural constant propaga-
tion [CCKT86], interprocedural side-effect analysis of scalars [CKT86a], and inter-
procedural array section analysis [CK87b, HK91]. PED expands on PFC’s analysis
and transformation capabilities and makes them available to the user in an interactive
environment. Because of its mature analysis and implementation, PFC is available
as a dependence information server for the ParaScope Editor. On demand, the infor-
mation provided by PFC is converted into the internal representations in ParaScope
Editor. This functionality enables the use of PFC’s more advanced analysis in PED.

Parafrase was the first automatic vectorizing compiler [KKLW84]. It supports pro-
gram analysis and performs a large number of program transformations to improve
parallelism. In Parafrase, program transformations are structured in phases and are
always applied where applicable. Batch analysis is performed after each transforma-
tion phase to update the dependence information for the entire program. Parafrase-2
adds scheduling and improved program analysis and transformations [PGH*90]. More
advanced interprocedural and symbolic analysis is planned [HP90]. Parafrase-2 uses
FAUST as a front end to provide interactive parallelization and graphical displays
[GGGJSSE].

PTRAN is also an automatic parallelizer with extensive program analysis. It com-
putes the SSA and program dependence graphs, and performs constant propagation
and interprocedural analysis [CFR*T89, FOWS87]. PTRAN introduces both task and
loop parallelism, but the only other program transformations are variable privatiza-

tion and loop distribution [ABC*87, Sar90].

32

SIGMACS, a programmable interactive parallelizer in the FAUST programming
environment, computes and displays call graphs, process graphs, and a statement
dependence graph [GGGJ88, SGI0]. In a process graph each node represents a task
or a process, which is a separate entity running in parallel. The call and process graphs
may be animated dynamically at run time. SIGMACS also performs several interactive
program transformations, and is planning on incorporating automatic updates of
dependence information.

PAT is also an interactive parallelization tool [SA88, SA89]. Its dependence analy-
sis 1s restricted to Fortran programs where only one write occurs to each variable in a
loop. In addition, PAT uses simple dependence tests that do not calculate general dis-
tance or direction vectors. Hence, it is incapable of applying loop level transtormations
such as loop interchange and skewing. However, PAT does support replication and
alignment, insertion and deletion of assignment statements, and loop parallelization
for a single loop. It can also insert synchronization to protect specific dependences.
PAT divides analysis into scalar and dependence phases, but does not perform sym-
bolic or interprocedural analysis. The incremental dependence update that follows
transformations is simplified due to its austere analysis [SAS90].

SUPERB interactively converts sequential programs into data parallel SPMD pro-
grams that can be executed on the SUPRENUM distributed memory multiprocessor
[ZBG88]. SUPERB provides a set of interactive program transformations, including
transformations that exploit data parallelism. The user specifies a data partitioning,
then node programs with the necessary send and receive operations are automati-
cally generated. Algorithms are also described for incremental update of use-def and

def-use chains following structured program transformations [KZBG88].

3.8 Discussion

The ParaScope Editor provides a complementary strategy to backup automatic par-
allelization. In an integrated approach that makes the compiler algorithms available,
as well as the individual transformations, the user may make assertions and see the
results in the automatically generated version. It also enables users to experiment
with different mixtures of transformations without reanalyzing the entire program
between transformations.

Our experience with the ParaScope Editor has shown that dependence analysis can

be used in an interactive tool with ample efficiency [HHK*93]. This efficiency is due

33

to fast yet precise dependence analysis algorithms, and a dependence representation
that makes it easy to find dependences and to reconstruct them after a change.
To our knowledge, PED is the first tool to offer general editing with dependence

reconstruction along with a substantial collection of useful program transformations.

34

Chapter 4

Loop Transformations with Arbitrary Control Flow

Previous code generation techniques and program transformations have known limi-
tation dealing with control flow. Many of these transformations are loop based and
are not applicable when there exists control flow such as branching within a loop or
exit branches out of a loop. Because most programs contain meaningful control flow
in loops, this limitation is a serious flaw. For truly effective parallel code generation,
this problem must be addressed.

In this chapter, we extend a broad selection of transformations from Section 3.3 to
deal with arbitrary control flow, thus allowing an integrated transformation system
for parallel code generation or interactive parallelization that is not inhibited by
control flow. Several transformations are inhibited by some type of control flow and
others are easily extended. For example, loop permutation is safe when branches are
internal and is inhibited by exit branches. Strip mining, on the other hand, is safe
regardless of the type of branching. Two particularly important transformations, loop
distribution and loop fusion require more sophisticated algorithms that leverage the
control dependence graph.

In the next section, we give a motivating example, an introduction to the problems
with previous work, a few definitions and our general approach. Due to its wide spread
use and the new and optimal results presented here, We begin with the algorithm
for loop distribution when loops contain arbitrary control flow. The following section
detail a variety of other transformations and includes loop skewing, loop reversal,
loop permutation, strip mining, privatization, scalar expansion, loop fusion and loop

peeling.

4.1 Motivation

To motivate our treatment of conditional control flow, we first consider loop distri-
bution. Loop distribution breaks up a single loop into two or more loops, each of
which iterates over a disjoint subset of the statements in the body of the original

loop. The usefulness of this transformation derives from its ability to convert a large

35

loop whose iterations cannot be run in parallel into multiple loops, many of which

can be parallelized. Consider the following code.

DOI=2N
A(I) = B(I) + C
D() = A(I-1)*E
ENDDO

If we wish to retain the original meaning of this code fragment, the iterations cannot
be run in parallel without explicit synchronization lest a value of A(I-1) is fetched be-
fore the previous iteration has a chance to store it. However, if the loop is distributed,

each of the resulting loops can be run in parallel.

DOALLI =2, N
A(l) = B(I) + C
ENDDO

DOALLT = 2, N
D() = A(I-1)*E
ENDDO

The presence of conditionals complicates distribution. Consider, for example the

following loop.

DOI=2N
IF (A(I) .EQ. 0) THEN
A(I) = B(I) + C
D() = A(I-1)*E
ENDIF
ENDDO

In order to place the first assignment in the first loop and the second assignment
in the second loop, the result of the IF statement must be known in both loops.
The 1F cannot be replicated in both loops, because the first assignment changes the
value of A. One solution to this problem is to convert all IF statements to conditional

assignment statements, as follows:

DOI=2 N
P(I) = A(I) .EQ. 0
IF (P(I)) A(I) = B(I) + C
IF (P(1)) D(I) = A(I-1)*E
ENDDO

The resulting loop can be distributed by considering only data dependence, because
the control dependence has been converted to a data dependence involving the logical

array P. This approach, called if-conversion [AKPW83, AlI83], has been used success-

36

fully in a variety of vectorization systems which incorporate several other transforma-
tions as well [AK87, SK86, KKLW84]. However, if-conversion has several drawbacks.
If vectorization or parallelization fails, it is not easy to reconstruct efficient branching
code. In addition, if-conversion may cause significant increases in the code space to
hold conditionals.

For these reasons, research in automatic parallelization has concentrated on an
alternative approach that uses control dependences to model control flow [FOWST,
ABC*87, ABC*88]. Our approach uses both data and control dependence graphs
(as were defined in Sections 2.1 and 2.1). For our purposes, it is useful to classify the
type of control flow in a loop nest and its correspondence in the control dependence
graph as either

1. internal branching or

2. exit branching.

Internal branching consists of conditional control flow that affects only the statements
executed on a particular iteration of the loop. These are loop-independent control
dependences. Exit branching is conditional control flow which terminates the exe-
cution of the loop. These are loop-carried control dependences. Internal branching
may utilize structured or unstructured constructs. Exit branching can only be formed
using unstructured control flow (GOTOs in Fortran).

Exit branches are inherently sequential because they give rise to loop carried de-
pendences. Although the main focus of this dissertation is the use of transformations
in a parallelizing environment, many of the transtormations below are also useful for
scalar compilation and data locality optimizations. Therefore, the extensions and lim-
itations necessary for both internal and exit branching are include in the discussion

below.

4.2 Loop distribution

Loop distribution is an integral part of transforming a sequential program into a
parallel one. It was introduced by Muraoka [Mur71] and is used extensively in par-
allelization, vectorization, and memory management. For loops with control flow,
previous methods for loop distribution have significant drawbacks. We present a new
algorithm for loop distribution in the presence of control flow modeled by a control
dependence graph. This algorithm is shown optimal in that it generates the minimum

number of new arrays and tests possible. We also present a code generation algorithm

37

that produces code for the resulting program without replicating statements or condi-
tions. These algorithms are very general and can be used in automatic or interactive
parallelization systems.

This section presents a method for performing loop distribution in the presence of
control flow based on control dependences. Control dependences may be used like data
dependences for determining the placement of statements in loops. However, when
there exists a control dependence between statements that crosses their new respective
loop bodies, correct code generation requires recording the results of evaluating the
predicate in a logical array and testing the logical array in the second loop.

Our approach is optimal in the sense that it introduces the fewest possible new
logical arrays and tests. In particular, it introduces one array for each conditional
node upon which some node in another loop in the distribution depends. We also
present an algorithm for generating code for the body of a loop after distribution.
The algorithms are very fast, both asymptotically and practically. This algorithm is
also described elsewhere [KM90]

4.2.1 Mechanics

Loop distribution may be separated into a three-stage process: (1) the statements
in the loop body are partitioned into groups to be placed in different output loops;
(2) the control and data dependence graphs are restructured to effect the new loop
organization and (3) an equivalent program is generated from the dependence graphs.
To perform loop distribution without changing the original meaning of the loop, the
placement of statements into new loops must preserve the data and control depen-
dences of the original. The method we present is designed to work on any partition
that is legal, i.e., any partition that preserves the control and data dependences.

A partition can preserve all dependences if and only if there exists no dependence
cycle spanning more than one output loop [KKP*81, AK87]. If there is a cycle
involving control and/or data dependences, it must be entirely contained within a

? This condition is both necessary and sufficient. Consider what

single partition.
must be done to generate code given a partitioning into loops: some linear order for
the loops must be chosen. If we treat each output loop as a single node and define

dependence between loops to be inherited in the natural way from control and data

2Loops with exit branches are an exception to this condition. The necessary extensions are discussed
at the end of Section 4.2.2.

38

dependences between statements, then the resulting graphs will be acyclic if and only
if each original recurrence is confined to a single loop. Since an acyclic graph can
always be ordered using topological sort and a cyclic graph can never be ordered, the
condition is established.

In the algorithms presented below the nodes in both the control and data depen-
dence graphs usually represent a single statement. Exceptions to the single statement
per node rule are inner loops and irreducible regions; all of their statements are rep-
resented with a single node.

Because our algorithm accepts any legal partition as input, it is as general as
possible. It can be used for vectorization, which seeks a partition of the finest possible
granularity, or for MIMD parallelization, which seeks the coarsest possible granularity
without sacrificing parallelism. We discuss a partitioning strategy in Section 7.3 for
shared-memory parallel code generation. In the discussion here, we assume a legal

partition is provided.

4.2.2 Restructuring

In the original program, control decisions are made and used in the same loop on the
same iteration, but a partition may specify that decisions that are made in one loop be
used in another. This problem is illustrated below by Example 4.1. Its corresponding

G.q and data dependence graph are shown in Figure 4.1.

EXAMPLE 4.1:

DOI=1,N
Sh IF (A(I) .GT. T) THEN
So A(M) =1
ELSE
S3 T=T+1
Sy F(I) = A(T)
Sk IF (B(I) .NE. 0) THEN
Se U =A(I) /B
ELSE
S7 U=AI)-U
Ss C(T) = Bd) + C(I)
ENDIF
ENDIF
Sy D(I) = D) + C(I)

ENDDO

39

FIGURE 4.1: Control and data dependence
graphs for distribution example

(b) Data Dependence

The data dependence graph in Figure 4.1(b) shows true dependences with solid
lines and anti dependences with dashed lines. Loop carried edges are labeled with le.
In this example, output dependences are redundant and are not included. Given the
data and control dependences in Figure 4.1, the statements may be placed in four
partitions: (57, Sz, S3), (S, S5), (S, S7), and (Ss, Sg). This particular partition is
chosen solely for exposition of the algorithm, and in Figure 4.1(a) it is superimposed
on Ggg such that each partition is enclosed by dashed lines.

Given this partition, some statements are no longer in the same loop with state-
ments upon which they are control dependent. For example, S is control dependent
on S, but Sy and Sy are not in the same partition. In Figure 4.1 the G.4 edges that
cross partitions represent decisions made in one loop, and used in a later loop. There
may be a chain of decisions on which a node n is control dependent, but given a legal
partition, all of n’s immediate predecessors and ancestors in G.4 are guaranteed either
to be in n’s partition, or in an earlier one. Therefore the execution of n may be deter-
mined solely from the execution of n’s predecessors. We introduce execution variables
to compute and store decisions that cross partitions in G.4 for both structured and

unstructured code.

40

Execution variables

Execution variables are only needed for branch nodes, because they correspond to
control decisions in the original program. Any node in G.4 that has a successor must
be a branch node, but only branch nodes with at least one successor in a different
partition are of interest here. For each branch in this restricted set, a unique execution
variable is created. Only one execution variable is created, regardless of the number
of successors or the number of different partitions to which the successors belong.
The execution variable is assigned the value of the test at the branch, capturing
the branch decision. Later this variable will be tested to determine control flow in
a subsequent partition. Hence, the creation of an execution variable will replace
control dependences between partitions with data dependences. Execution variables
are arrays, with one value for each iteration of the loop, because each iteration can
give rise to a different control decision. If desired, loop invariant decisions can be
detected [ACT2] and represented with scalar execution variables.

All previous techniques, whether they are G.; based or not, use Boolean logic
when introducing arrays to record branch decisions. These methods require either
testing and recording the path taken in previous loops or introducing additional
arrays. In Example 4.1 in the loop with statements (Sg, S7), either Sg, or Sz, or
neither may execute on a given iteration. Because there are three possibilities, the
correct decision cannot be made with a single Boolean variable. For example, if 5}
takes the true branch, then neither Sg nor S7 should execute. If just Ss5’s decision is
stored, then one of Sg or S7 will mistakenly be executed, because the branch recording
array for S5 must either be true or false, regardless of 5;’s decision.

Given this drawback, we have formulated execution variables to have three possible
values: true, false and T, which represents “undefined”. Every execution variable is
initialized to T at the beginning of the loop in which it will be assigned, indicating that
the branch has not yet been executed. Because of the existence of a “not executed”
value, the control dependent successors in different partitions need only test the value
of the execution variables for their immediate predecessors; they do not need to test
the entire path of their control dependence ancestors. This condition is true whether
the control flow is unstructured or structured. Execution variables completely capture

the control decision at a node, making them extremely powertul.

41

ALGORITHM 4.1: Execution variable and guard creation

InpUT: partitions, G.q, statement order
OuTPUT: modified G.; with execution variables
ALGORITHM:

for each partition, P
for each n € P, in order
if (3 an edge (n, 0); € G¢g, where o ¢ P)
insert “Ev, (1) = T” into P at top
let test be n’s branch condition
if (3 (n, m); where m € P)
. “EV,(I) = test”
replace n with { “IF (ng)n(l) .EQ. TRUE)”
else
replace n WITH “EV, (1) = test”
endif
for each P, # P containing a successor of n
(Build guards, and modify G.q)
for each [where 3 (n, p); with p € Py
create new statement V:

“IF (EV,(1) .EQ.)7,
add N to Py (Nis new and unique)
insert data dependences for EV,,
for each (n, ¢); where ¢ € Py
(Update control dependences)

delete (n, ¢); from G4
add (N, ¢)true t0 Geg

endfor
endfor
endfor
endif
endfor
endfor
Restructuring

The restructuring Algorithm 4.1 creates and inserts execution variables and guards,
given a distribution partition. It also updates the control and data dependence graphs
to reflect the changes it makes. The algorithm is applied in partition order and, within
a partition, in statement order over G.4 (statement order is the original lexical order).

The algorithm can be subdivided into three parts. First, execution variables for a

42

branch node n are created where needed. Next, guard expressions are inserted for any
nodes control dependent on n. Then the control and data dependences are updated,
reflecting the new guards and execution variables.

The need for an execution variable for n is determined by considering n’s imme-
diate successors. If there is an outgoing edge from n to a node that is not in n’s
partition, an execution variable is created. In Example 4.1, execution variables are
needed for S; and S5. The initialization of the execution variable is inserted at the
beginning of n’s partition, ensuring it will always be executed. Next, an assignment
of the execution variable to n’s test is inserted in node n. If n has successors in its
partition, its branch is changed to test the execution variable. Otherwise, its branch
is deleted.

For each partition P; that contains a successor of n, a guard on n’s execution
variable is built. Here the successors of n are also considered in statement order.
A guard is built for every distinct label from n into Pj. Each guard compares n’s
execution variable, EV,,(I), to the distinct label . All of n’s successors in G4 in Py on
label [are severed from n and connected to the newly created corresponding guard.
Our examples have only two labels, true and false, but any number of branch targets
can be handled.

Consider Example 4.1. S5 has successors in two partitions, (56, S7) and (Ss, S9).
The successors in (Sg, S7) are on different branches. Sg is on the true branch, so the
guard expression created is “EVs(I) .EQ. TRUE.” S7 is on the false branch, so its
guard expression is “EV5(1) .EQ. FALSE.” The old edges (5, 6) and (5, 7) are deleted
from G4, and new edges attaching 6 and 7 to their corresponding guards are created.
Similarly a guard is created for and connected to Ss.

The following simple optimization is included in the algorithm and examples but,
for clarity, does not appear in the statement of the algorithm. Determining whether
the initialization of an execution variable is necessary can be accomplished when an
execution variable is created for a node n. If n is not control dependent on any
other node, i.e., a root in the control dependence graph, then there is no need for
initialization to be inserted. During guard creation for the successors of this node,
the execution variable is known to have a value other than T. Therefore, if control
flow is structured, only one guard is needed for each successor partition instead of for
each label.

After restructuring is applied, each partition has a correct G.4, a correct data

dependence graph, and possibly some new statements (execution variable assignments

43

and guards). At this point the code for the distribution partition can be generated.
We use a simple code generation algorithm, which is described in Section 4.2.3. Given
the distribution in Figure 4.1 for Example 4.1, restructuring and code generation

results in the following code.

DOI=1,N
EV,(I) = A(I) .GT. T
Sh IF (EV,(T) .EQ TRUE) THEN
So A(M) =1
ELSE
S3 T=T+1
ENDIF
ENDDO
DOI=1,N
EVs(I) =T
IF (EV,(I) .EQ. FALSE) THEN
Sy F(I) = A(T)
Sk EVs(I) = B(I) .EQ. 0
ENDIF
ENDDO
DOI=1,N
Se IF (EVs(I) .EQ. TRUE) U = A(T) / B(I)
S7 ELSE IF (EV5(I) .EQ. FALSE) U = A(I) - U
ENDDO
DOI=1,N
Sg IF (EVs(I) .EQ. FALSE) C(I) = B(I) + C(I)
Sy D(I) = D) + C(I)
ENDDO

The advantages of three-valued logic are illustrated by the concise guards for Ss
and S7. As shown in Section 4.2.2, EV5(1) must be explicitly tested for true or false,
because if 57 evaluated to true, then EV5(1) will be T and neither Sg nor S7 should
execute. Not only do we avoid testing EVy(T) here, if Sy and S5 were in Sy’s partition,
there would be no need to store S;’s decision at all, even though Sg are S7 indirectly

dependent on 57 and S remains in a different loop.

Optimality

Given a distribution, this section proves that our algorithm creates the minimal num-
ber of execution variables needed to track control decisions affecting statement ex-
ecution in other loops. It also establishes that the algorithm produces the minimal
number of guards on the values of an execution variable required to correctly execute
the distributed code. Therefore, our algorithm is optimal for a given distribution

partition.

44

Lemma 4.1 Each execution variable represents a unique decision that

must be communicated between two loops.

Proof. An execution variable is created only when a decision in one partition directly
affects the execution of a statement in another partition, as specified by G.;. The
definition of G.4 guarantees that no decision node subsumes another, and therefore
any decisions represented by execution variables are unique. O

The restructuring algorithm creates the minimal number of guards on the values
of an execution variable required to correctly determine execution. Let

p = the number of distinct partitions, P, and

m = the number of distinct branch labels, [,
that contain successors of node n. There are at most k tests on the value of an
execution variable EV,,, where
P m
k= ZZ(ZJ - PZ)

=1 7=1

k is the sum of distinct labels into every distinct partition, and is bounded by the

number of n’s successors that are in separate partitions F;.

Theorem 4.1 The number of guards that test an execution variable is

the minimum required to preserve correctness for the given distribution.

Proof. By contradiction. If there exists a version of the distribution with fewer guards,
then guards would be produced that were either unnecessary or redundant. If there
were unnecessary guards, then Lemma 4.1 would be violated. If there were redundant
guards, then there would be multiple guards for nodes in the same partition with the
same label. However, the algorithm produces at most one guard per label used in a

partition. O

Exit branches

Because exit branches determine the number of iterations that are executed for an
entire loop, they are somewhat sequential in nature. It is possible to perform distribu-
tion on such loops in a limited form by placing all exit branches in the first partition.
Of course any other statements involved in recurrences with these statements must
also be in the first partition. This forces the number of iterations to be completely

determined by the first loop. If there are any statements left, any legal partitioning

45

of them may be performed. The control dependences for each of the subsequent par-
titions can be satisfied with execution variables as described above. However, during
code generation their loop bounds must be adjusted. If an exit branch was taken,
any statements preceding it in the original loop must execute the same number of
times as the first loop, later statements must execute one less time than the first loop.
Otherwise, when no exit branch is taken, all loops must execute the same number of

times as the first loop.

4.2.3 Code generation

To review, there are three phases to distribution in the presence of control flow. The
first step determines a partitioning based on data and control dependences. The
second step inserts execution variables and guards to effect the partition and updates
the control and data dependences. The third step is code generation.

In step two the only changes to the data dependence graph are the addition of
edges that connect the definitions of execution variables to their uses. A G4 is
built for each new loop during this phase. In each new loop’s G4 there are no control
dependences between guards. However, there may be relationships between execution
variables that can be exploited during code generation.

Now we consider code generation for unstructured or structured control flow with-
out exit branches (Section 4.2.2 outlines the extensions for exit branches). Because
the data and control dependence graphs, as well as the program statements are cor-
rect on entry to the code generation phase, a variety of code generation algorithms
could be used. For example, any of the code generation algorithms based on the
program dependence graph could be used in conjunction with the above algorithm
[FM85, FMS88, CFS90, BB89]. The very simple code generation scheme described
here has been is implemented in the ParaScope Editor [KMT91a).

When transformations are applied in an interactive environment, it is important
to retain as much similarity to the original program as possible. The programmer can
more easily recognize and understand transformed code when it resembles the original.
For this reason, although partitioning may cause statements to change order, the
original statement order and control structure within a partition is maintained. If the
original loop is structured, the resulting code will be structured. If the original loop
was unstructured and difficult to understand, so most likely will be the distributed

loop.

46

To maintain the original statement ordering, an ordering number is computed and
stored in order[n]. All the nodes in G.4 are numbered relative to their original lexical
order, from one to the number of nodes. All of the execution variable initialization
nodes are numbered zero, so they will always be generated before any other node
in their partition. The newly created guard nodes have an order number and a
relative number, rel[n]. Their order numbers are the number of the node whose
execution variable appears in the guard expression. Their relative numbers, rel[n],
are the number of the guard’s lowest numbered successor. Both of these numbers
can be computed when the guard is created. To simplify the discussion, branches
are assumed to have only two label values, true and false, but the algorithm may be
easily extended for multi-valued branches.

The rest of our discussion is divided into three parts. First relabeling, which
corrects and renames statement labels, is described. The code generation discussion

is separated into one section for structured and one for unstructured code.

Label renaming

A distribution partition may specify that the destination of a GOTO, that is, a labeled
statement, be in a different loop from the GOTO. Replication and label renaming of
GOTOs of this type must be performed to compensate for this after restructuring and
before code generation. Renaming is easily accomplished by replacing the destination
of a GOTO that is no longer in the same loop with an existing label or a new label, Ip,,
which may require a CONTINUE. The new destination has the same relative ordering
as the original label. Often this will be the last statement in the partition. Reuse of

labels is done whenever possible.

EXAMPLE 4.2:

DOI=1,N
S IF (pl) GOTO 4
Sy
Ss GOTO 5
IF (p4) GOTO 6

47

Consider Example 4.2 with a distribution partition (S, Sa, S3, Sg) and (54, Ss).
The destination of S1’s GOTO, Sy, is not in the same partition as Sy, therefore the
GOTO’s label must be renamed. In this case, the new destination of S1’s jump must
not interfere with the execution of Ss. To determine the destination and new label,
the statement number of the original labeled statement (in this case 4) is compared
to each statement in the partition following S in order. When a statement number
greater than the original is found (Ss in our example), its label is used or a new one
is created for it. Any empty jumps are deleted. A straightforward relabeling of the
first partition in Example 4.2 after restructuring results in the following.

DOT=1N

EVy[I] = pl
S IF (EV,[1] .EQ. TRUE) GOTO 6
S

6 S
ENDDO

Structured code generation

When G4 is a tree, code generation is relatively simple [FM85, FMS88, BB89]. This
discussion emphasizes properly selecting and inserting the appropriate control struc-
tures for newly created guards. Other G.; code generation algorithms must select
and create control structures for all branches. Because we use the original control
structures for all but the newly created guards, only they are of interest here. When
the guards are created, they are identified by setting guard [n] to true. For all other
nodes, guard [n] evaluates to false. With structured control flow the only two control
structures that need be inserted when generating guards are IF-THEN and IF-THEN-
ELSE.

Our algorithm for code generation from structured or unstructured code appears
in Figure 4.2. It considers each partition and its nodes based on their order number,
from lowest to highest. If a node n is not a guard node, it is generated with its
original control structure followed by any descendants using depth-first recursion on
G.q. Given a tree G.4, and that all control dependences are satisfied, the ancestors
of a node n in G, must be generated before n is. If the node is a guard node,
the control structure for it must be selected and created. This work is done in the

procedure genguard.

48

ALGORITHM 4.2: Code generation after distribution

Codegen(n)
InpUT: n is a statement node
Geq, ordered partitions, order[n], rel[n],
guard[n], goto[n]
OutrpuUT: The distributed loops
ALGORITHM:

for each partition, P
gen (DO) (The original loop header)
while (3 n € P)
choose n with smallest order[n] and
if goto[n] and not only predecessor,
with greatest rel[n], otherwise smallest rel[n]
done = false
delete n from P
if (guard[n])
genguard (n)
else
gen (n)
gensuccessors (n, all) (all matches any branch label)
endif
endwhile
endfor

gensuccessors (n,)
INnpUT: n is a statement node
[is a label
ALGORITHM:
while (done = false and 3 (n, m); € G.q and P)
choose m with smallest order[m]
if (3 (p, m) where p # n)
(In structured code m has one predecessor and this will never occur)
done = true
else
delete (m) from P
gen (m)
gensuccessors (m, all)
endif

endwhile

49

ALGORITHM 4.2
Continued

genguard (n)

INnpUT: n is a statement node
ALGORITHM:
(Generate unstructured code)
if (3 (p, rel[n]) p # n and pstill € P)
let L be the statement label of node rel[n]
gen (IF n GOTO L)

(Generate structured constructs)

(The original conditional was structured)
else if (3 (n, q)irye and (n, 7)ys415 Where order[q] < order[r])
gen (IF n THEN)
gensuccessors (n, true)
gen (ELSE)
gensuccessors (7, false)
gen (ENDIF)

(The original conditional was structured)
else if (3 o where order[o] = order[n])
(n chosen s.t. rel[n] < rel[o])
gen (IF n THEN)
gensuccessors (n, true)
delete o from P
gen (ELSE IF 0 THEN)
gensuccessors (o, true)
gen (ENDIF)

(The original could be unstructured or structured)
else

gen (IF n THEN)

gensuccessors (n, true)

gen (ENDIF)
endif

end

30

If the guard node has true and false branches, an IF-THEN-ELSE is generated, where
the conditional is the guard expression. For each successor on the true branch, it and
its descendants are generated recursively, in order. The false successors are generated
similarly under the ELSE. If there are two guards with the same order number, they
are ordered by their relative number, and an IF-THEN-ELSE-IF-THEN is generated.
The first guard expression becomes the first conditional, and its successors and their
descendants are generated in the corresponding THEN. The second guard expression
conditions the ELSE-IF-THEN, and is followed by its descendants. Otherwise the guard
is the only node with this order number, and an IF-THEN is generated for the guard
and its descendants.

In Example 4.3 the control dependence graph is a long narrow tree. After applying
the above algorithms to this loop, the code below results. The first loop shows the
dead branch optimization. The second loop illustrates that it is possible to generate
correct code without adding control dependences between guards. More efficient code
could be generated by noticing in the second loop nest if EV¢[I] is true then neither
EV3[1] or EV5[1] can be true, and similarly if EV3[1] is true then EVs[I] cannot be true.

This code would not have fewer tests, but would be more efficient and have a different

structure.
ExXAMPLE 4.3:
DOI=1,N
Sy IF (p1) THEN
S
ELSE
Sy IF (p3) THEN
Sy
ELSE
Sy IF (p5) THEN
Se
ELSE
Sy
ENDIF
ENDIF
ENDIF

51

DOI=1,N
EVs[l] =T
EVs[]] =T
Sy EVy[l] = pl
IF (EV,[I] .EQ. FALSE) THEN
53 EV3[I] = p3
IF (EV3[l] .EQ. FALSE) THEN
55 EV5[I] = p5
F (EV5[l] .EQ. FALSE) THEN
S7
ENDIF
ENDIF
ENDIF
ENDDO
DOI=1,N

IF (EV;[I] .EQ. TRUE) S
IF (EV3[l] .EQ. TRUE) S,
IF (EV;[l] .EQ. TRUE) S
ENDDO

Unstructured code generation

We can avoid the usual problems when generating code with a DAG G4 for unstruc-
tured control flow by using the original structure and computing some additional
information about the origin of the new guards. This information can be computed
during code generation, or when the guards are created. If a guard is the only pre-
decessor of its successors, the ordering and structure selection for structured control
flow can be used. For guards that have successors with multiple predecessors, GOTO’s
are generated.

The key insight is that, although a node can be control dependent on many nodes,
only one of these dependences may be from a structured construct. Observe that in a
connected subpart of G.4, when guards are created from GOTOs outside the partition
into the subpart, the guards with the highest order numbers will be generated first.
One or two GOTOs may result. When a GOTO will result in a guarded GOTO and a
structured construct, care is taken to generate the GOTO first. In this case the node
with larger relative number between the two guards will be selected, and a GOTO for
it is generated.

The recursive generation of successors and their descendants must choose the
lowest numbered successor to generate first. In structured code this is guaranteed

to be the true branch, but with an IF-GOTO the false branch is lower. In structured

52

code, the generation of successors is immediately preceded by their one and only
predecessor. In unstructured code, to ensure all control dependences are satisfied,
the recursion must cease if a node has other predecessors that have not yet been
generated. When there are multiple GOTO’s this situation may arise.

Returning to Example 4.2 and applying code generation results in the code below.

DOT=1,N

EVy[l] = pl
s, IF (EV,[1] .EQ. TRUE) GOTO 6

S

6 Se

ENDDO

DOT=1,N
IF (EV,[I] .EQ. FALSE) GOTO 5
IF (EV, .EQ TRUE) THEN

S IF (p4) GOTO P,
5 Ss

Py CONTINUE
ENDDO

Notice that when the second partition is generated the GOTO is generated first.
The guards for Sy and S5 have the same order number, i.e. 1, but because S; was a
GOTO, the jump to S5 is generated first. Then S4’s guard, Sy, and S5 are generated.
Here and in Example 4.4 there are jumps into structured constructs. Although these
jumps are non-standard Fortran, some compilers accept them and regardless can be
implemented with GOTO’s.

Finally, consider Example 4.4 with a distribution partition (57, S3) and (S5, Sy,

S5, S¢) where nodes are control dependent on more than one predecessor.

EXAMPLE 4.4: -

Distribution restructuring, label renaming, and code generation performed on the

above results in the following code.

33

DOI=1,N
EVo[l] =T
Sy EV.[I] = pl
IF (EV,[I] .EQ. TRUE) GOTO P,
Sy EV,[I] = p2
P, CONTINUE
ENDDO
DOI=1,N

IF (EV,[I] .EQ. TRUE) GOTO 5
IF (EV,[l] .EQ. TRUE) THEN
S3
Sy
ELSE IF (EV,[l] .EQ. FALSE) THEN

4.3 Other transformations

We now describe the extensions and algorithms for a selection of other loop transfor-

mations.

4.3.1 Loop skewing

Loop skewing is always safe, regardless of the type of control flow, because it does
not change the order in which array memory locations are accessed. It only changes

the shape of the iteration space (see Section 3.4.2).

4.3.2 Loop reversal

Loop reversal reverses the order of loop iterations. In the absence of control flow, it is
safe if there are no loop-carried data dependences. This safety test is easily extended
to handle control dependences. If the control dependences are loop-independent (i.e.
they are completely internal to the loop nest), then they do not inhibit loop reversal.

However, if they are loop-carried (i.e. exit branches) then loop reversal is not safe.

4.3.3 Loop permutation

Because loop permutations may be performed as a series of pair-wise interchanges, the

rest of this discussion is simplified by focusing on loop interchange. Loop interchange

o4

is safe if it does not reverse the order of execution of the source and sink of any data
dependence. By examining the direction vectors for all dependences carried on the
outer loop, one may determine if there exists any data dependence with a direction
vector of the form (< >) which would be reversed by loop interchange. These data
dependences are called interchange-preventing.

First consider nested loops containing internal branching. The tests for loop per-
mutation are only concerned with preserving the original flow of values and although
internal branching affects this flow, data dependence fully characterizes it. Therefore,
the existing safety test suffices for this case.

An exit branch completely out of a nest inhibits permutation of any loops in the
nest. Such permutation might result in executing too many iterations of some loops
and too few of others. In a more restrictive setting where the exit branch is only out
of a inner subset of the nest, permutation on the outer subset may be possible. A
simple way to understand this effect is to think of it as a direction vector. Consider
exit branches out of the & inner loops of a perfect loop nest of depth n to have a
control dependence direction vector (=1 =5 ... #,_j ... *,_1 %,). The direction vector
indicates that loop levels (n— k) to n may not be moved, but that levels 1 to (n—k—1)

are free to be permuted.

4.3.4 Strip mining

Because strip mining does not change the loop body or the iteration space, no ad-
ditional mechanisms are needed when the loop body contains any type of control

flow.

4.3.5 Privatization

Any variable can be made private to a loop if it is defined and used only within
the loop and it is always defined before it is used. To determine if these conditions
hold for scalar variables requires general data-flow information. When testing these
conditions for arrays, data-flow and dependence information are required. General
data-flow analysis is sophisticated enough to determine these conditions for scalars

in loops containing control flow [CF87].

)

4.3.6 Scalar expansion

In vectorization, scalar expansion is often preferable to privatization. However, it is
not clear in many cases which of the two is preferred. Scalar expansion has similar,
but slightly less restrictive constraints than scalar privatization. Scalar expansion
also requires that the variable be defined before it is used on all iterations of the loop,

but it may still be live outside of the loop. Consider the following example of scalar

expansion.
DOI=1N becomes DOI=1N
T =... TAT) = ...
...=T = TA(I)
ENDD ENDDO
T = TA(N)
..=T
=T

Notice that the value stored on the last iteration of the loop, TA(N), must be stored
into the scalar T . If there is no use of T outside the loop this is not necessary.?
Again, data-flow analysis is able to determine these conditions in the loop and if the

last value is always stored back, live analysis of T is unnecessary.

4.3.7 Loop fusion

Loop fusion places the bodies of two adjacent loops with the same number of iterations
into a single loop [AC72]. Fusion is safe for two loops [; and I; if it does not result
in values flowing from statements originally in /3 back into statements originally in [y
and vice versa. The simple test for safety performs dependence testing on the loop
bodies as if they were in a single loop. Each forward dependence originally between [y
and [y is tested. Fusion is unsafe if any dependences are reversed, becoming backward
loop-carried dependences in the fused loop.

It either loop contains internal branching, then the same test for safety is correct
because the control dependences have the same effect in the fused code as in the

original.

3Privatization could also utilize a store back, allowing it to be applicable even when loop definitions
reach outside the loop.

56

Exit branches

Fusion is unsafe if there are exits out of the first loop which bypass execution of the
second, so that the second loop header is control dependent upon the exit branches.
The control dependences indicate that every exit test must execute before any of the
statements in the second loop may be determined to execute.

If there are no exit branches out of the first loop and there is an exit branch in the
second loop, it is possible to fuse correctly by restructuring the fused loops based on
control dependence. The test for safety in this case need only determine if the data
dependences prevent fusion. The restructuring step needs to replicate the control
dependences for the second loop in the fused loop. Consider Example 4.5 and its
corresponding control dependence graph.

Notice that the exit branches in the second loop result in a cyclic control dependence
on the header. To maintain this control dependence structure for the statements in the
second loop an execution variable EV is inserted and the code is slightly restructured.

A scalar execution variable EV records which exit branch, it any, is taken. Outside
the loop, it is initialized to T, which means that no exit branch has been taken. In
the fused loop, the execution variable is assigned the label of the branch at the point
an exit branch would be taken. The exit branch, GOTO label, is replaced with a
GOTO to the end of the loop (10 CONTINUE in our example). The restructuring is
completed by mimicking the original control dependence structure on the Do. An IF
statement is inserted which dominates the execution of all the statements originating
in the second nest. The test for the IF is false when an exit branch was taken on a

previous iteration.

4.3.8 Loop peeling

Peeling takes the statements in one or more iterations of a loop, executes them outside
of the loop, and adjusts the loop bounds accordingly. Peeling may be performed on
the first or last iteration. A slightly more general form of peeling, index set splitting,
places a number of peeled iterations in a pre-loop or a post-loop. The considerations
that arise from all of these are basically equivalent, so consider peeling the first

iteration of a loop as seen below.

DO 1 = b, ub, ss becomes SL(1b)
SLT) DO 1T = Ib + ss, ub, ss
ENDDO SL(I)
ENDDO

57

EXAMPLE 4.5: Fusion

DOI=1,N becomes EV=T
S DOI=1,N
SQ Sl
ENDDO S
DOI=1,N IF (EV .EQ. T) THEN
S3 S3
54 54
Sx IF (test5) GOTO exl IF (test5) THEN
Se IF (test6) GOTO ex2 EV = exl
ENDDO GOTO 10
SLg ENDIF
- IF (test6) THEN
exl SLg EV = ex2
ex? SL10 GOTO 10
ENDIF
10 CONTINUE
ENDDO
IF (EV .NE. T) GOTO EV
SLg
ex SLg
cxr SL10

Control dependence graph
(J

©9) ©9)
) ® ONONO
()

Peeling the first iteration replicates every statement in the loop, where every occur-

rence of the induction variable is replaced with the loop’s lower bound. The new loop
lower bound is the step size plus the original.

Peeling is always legal for loops with or without control flow because it does
not change the order of statement execution. However, because peeling replicates
statements, some care must be taken when labeled statements due to branching are

present. For each peeled statement that is labeled, a new unused label must replace

38

it. All references to that label in the peeled statements must also be changed to
reflect the new label. Of course, the destinations of exit branches should remain as

they were.

4.4 Related work

One approach taken in automatic vectorizers when loops contain conditional control
flow is to convert control dependences into data dependences using a technique called
if-conversion [All83, AKPWR83]. If-conversion is theoretically appealing because it
allows for a unified treatment of data dependence without control dependences, and
has been used successfully in a number of vectorization systems [KKLW84, SK86].
However, it has several drawbacks.

In its original form, if-conversion is intractable and may introduce an exponential
number of new logical arrays to record control flow decisions. Unfortunately, even
when applied in more limited circumstances, it results in substantial increases in code
space used for holding the results of conditionals. In addition, after if-conversion has
been performed, it is not easy to reconstruct the original program, or even efficient
branching code, if vectorization fails. Another concern is that the transformed code no
longer resembles the original. Even though many other transformation have this prob-
lem to some degree, if-conversion typically obliterates the original program. These
drawbacks are exacerbated in an interactive environment and are significant enough
that other solutions have been sought.

An alternative approach when control flow is present uses explicit control and data
dependences. In his dissertation, Towle develops techniques for vectorizing programs
with control flow using loop distribution, scalar expansion, and replication using
data and control dependence information [Tow76]. However, his definition of control
dependence embeds, but does not extract the essential control relationship between
two statements, that is if the execution of one statement directly determines the
execution of another.

Control dependence as formulated by Ferrante, Ottenstein, and Warren is clean,
complete, and extracts this essential relationship [FOWS8T7]. They include control and
data dependences in the program dependence graph, PDG, and our approach uses the
same basis. Their paper also discusses several optimizing transformations performed

on the PDG: node splitting, code motion, loop fusion, and loop peeling. However,

39

their algorithms are applicable only for structured control flow. Neither Towle or
Ferrante et al. present loop distribution.

Ferrante, Mace, and Simons present related algorithms whose goals are to avoid
replication and branch variables when possible [FM85, FMS88]. Their code generation
algorithms convert parallel programs into sequential ones, and like ours, are based on
G.g. They discuss three transformations that restructure control flow: loop fusion,
dead code elimination, and branch deletion.

Callahan and Kalem present two methods for generating loop distributions in the
presence of control flow [CK87a]. The first, which works for structured or unstruc-
tured control flow, replicates the control flow of the original loop in each of the new
loops by using Gy. Branch variables are inserted to record decisions made in one loop
and used in other loops. An additional pass then trims the new loops of any empty
control flow. Dietz uses a very similar approach [Die88]. These approaches have some
of the same drawbacks of if-conversion, i.e. the proliferation of unnecessary guards.

Callahan and Kalem’s second method, which works only for structured control
flow, uses Gy, G.4, and Boolean execution variables. Their execution variables indi-
cate if a particular node in Gy is reached and they are created for edges in G.4 that
cross between partitions. Their execution variables are assigned true at the successor
indicating the successor will execute, rather than assigning the decision made at the
predecessor. Also, one execution variable may be needed for every successor in the
descendant partition. Because their code generation algorithm is based on Gy, rather
than G4, the proof of how an execution variable is used is much more difficult and
is not given. Towle [Tow76] and Baxter and Bauer [BB89] use similar approaches for
inserting conditional arrays.

The Stardent compiler distributes loops with structured control flow by keeping
groups of statements with the same control flow constraints together [Al190]. For
example, all the statements in the true branch of a block IF must stay together, so
only the outer level of IF nests can be considered. This limits effectiveness of distri-
bution because partitions are artificially made larger, possibly by grouping parallel

statements with sequential ones.

4.5 Discussion

In summary, although much attention has been paid to modeling and understanding

control flow in other work, a general formulation of parallelism enhancing transfor-

60

mations with arbitrary control flow was not available until now. Using control and
data dependences, we have presented new and generalized versions of many important
loop transformations. In particular, the algorithm for loop distribution was shown

optimal and represents a significant improvement over previous algorithms.

I myself have never been able to find out precisely what feminism is; I only know that

people call me a feminist whenever I express sentiments that differentiate me from a
doormat. Rebecca West, 1913.

61

Chapter 5

Interprocedural Transformations

Striving for a large granularity of parallelism has a natural consequence; the compiler
must look for parallelism in regions of the program that span multiple procedures.
This kind of optimization is called whole program or interprocedural analysis and
transformation. This chapter presents a new approach that enables compiler opti-
mization of procedure calls and loop nests containing procedure calls. We introduce
two interprocedural transformations, loop extraction and loop embedding, that move
loops across procedure boundaries, exposing them to loop nest optimizations. We also
describe the efficient support of these transformations using the interprocedural com-
pilation system in the ParaScope parallel programming environment. These transfor-

mations are shown effective in practice on existing applications programs.

5.1 Introduction

To expose parallelism and computation for parallel architectures, the compiler must
consider a statement in light of its surrounding context. Loops provide a proven source
of both context and parallelism. Loops with significant amounts of computation are
prime candidates for compilers seeking to make effective utilization of the available
resources. Good software engineering practices encourage modularity as a way to
manage program computation and complexity, and increasingly, programmers are
using a modular programming style. Therefore, it is natural to expect that programs
will contain many procedure calls and procedure calls in loops, and to ensure high
performance compilers will need to optimize them.

Unfortunately, most conventional compilation systems abandon parallelizing op-
timizations on loops containing procedure calls. Two existing compilation technolo-
gies are used to overcome this problem: interprocedural analysis and interprocedural

transformation.

1. Interprocedural analysis applies data-flow analysis techniques across proce-
dure boundaries to enhance the effectiveness of dependence testing. Regular

section analysis is a sophisticated form of interprocedural analysis which makes

62

it possible to parallelize loops with calls (see Section 2.3). It determines if
the side effects to arrays as a result of each call are limited to nonintersecting
subarrays on different loop iterations [CK87h, HK90].

2. Interprocedural transformation is the process of moving code across pro-
cedure boundaries, either as an optimization or to enable other optimizations.
The most common form of interprocedural transformation is procedure inlining.
Inlining substitutes the body of a called procedure for the procedure call and

optimizes it as a part of the calling procedure [ACT2].

Even though regular section analysis and inlining are frequently successful at en-
abling optimization, each of these methods has its limitations [HK90, LY88a, Hus82].
Compilation time and space considerations require that regular section analysis sum-
marize array side effects. In general, summary analysis for loop parallelization is
less precise than the analysis of inlined code. On the other hand, inlining can yield
an increase in code size which may disastrously increase compile time and seriously
inhibit separate compilation [CHT91, RG89]. Furthermore, inlining may cause a loss
of precision in dependence analysis due to the complexity of subscripts that result
from array parameter reshapes. For example, when the dimension size of a formal
array parameter is also passed as a parameter, translating references of the formal to
the actual can introduce multiplications of unknown symbolic values into subscript
expressions. This situation occurs when inlining is used on the SPEC Benchmark
program matrix300 [BCHT90].

In this chapter, a hybrid approach is developed that overcomes some of these
limitations. We introduce a pair of new interprocedural transformations: loop embed-
ding, which pushes a loop header into a procedure called within the loop, and loop
extraction, which extracts the outermost loop from a procedure body into the calling
procedure. However, because there is a cost for interprocedural transformations, our
strategy applies them only when performance benefits are expected to result.

The performance benefit of these transformations comes from using the exposed
loops in high-payoft intraprocedural loop optimizations. Any intraprocedural trans-
formations that requires loop nests may be applicable on those provided by loop
embedding and extraction. Additionally, testing the safety and profitability of some
of the loop transformations across procedure boundaries requires no extension to

the tests discussed in Chapters 3 and 4. Extensions are needed for transformations

63

that require dependence distance information such as loop permutation. The intra-
procedural optimizations which are extended in this chapter are loop fusion and loop
permutation. These results easily generalize for other transformations such as loop
skewing [Wol86] and unroll and jam [CCKS8S].

As a motivating example, consider the Fortran code in Example 5.1(a). The J
loop in subroutine S may safely be made parallel, but the outer I loop in subroutine
P may not be. However, the amount of computation in the J loop is small relative
to the I loop and may not be sufficient to make parallelization profitable. If the I
loop is embedded into subroutine S as shown in (b), the inner and outer loops may be
interchanged as shown in (c). The resulting parallel outer J loop now contains plenty
of computation. As an added benefit, procedure call overhead has been reduced.

Loop embedding and loop extraction provide many of the optimization opportu-
nities of inlining without its significant costs. Code growth of individual procedures
is nominal, so compilation time is not seriously affected. Overall program growth
is also moderate because multiple callers may invoke the same optimized procedure
body. In addition, the compilation dependences among procedures are reduced since
the compiler controls the small amount of code movement across procedures and can
easily determine if an editing change of one procedure invalidates other procedures.

Our approach to interprocedural optimization is fundamentally different from pre-

vious research in that the application of interprocedural transformations is restricted

EXAMPLE 5.1: Loop embedding

SUBROUTINE P SUBROUTINE P SUBROUTINE P
REAL A(N,N) REAL A(N,N) REAL A(N,N)
INTEGER 1
DO1=1,100
CALL S(A,I) CALL S(A) CALL S(A)
ENDDO
SUBROUTINE S(FI) SUBROUTINE S(F) SUBROUTINE S(F)
REAL F(N,N) REAL F(N,N) REAL F(N,N)
INTEGER 1,J INTEGER LJ INTEGER 1,J
PARALLEL DOJ =1,20 DOI=1, 100 PARALLEL DO J = 1, 20
F(JI) = F(JI-1) + 9 PARALLEL DOJ =1,20 DOI=1, 100
ENDDO F(JI) = F(JI-1) + 9 F(JI) = F(JI-1) + 9
ENDDO ENDDO
ENDDO ENDPARDO

(a) before transformation (b) loop embedding (c) loop interchange

64

to cases where it is expected to be profitable. This strategy, called goal-directed inter-
procedural optimization, avoids the costs of interprocedural optimization when it does
not enable other performance enhancing optimizations [BCHT90]. Interprocedural
transformations are applied as dictated by a code generation algorithm that explores
possible transformations, selecting a choice that introduces parallelism and exploits
data locality.

The code generator is part of an interprocedural compilation system that efficiently
supports interprocedural analysis and optimization by retaining separate compilation
of procedures. We first explored this type of system using a simple, performance
estimation based parallel code generation algorithm [HKT91]. This chapter provides
a more general framework and that is integrated into a more sophisticated paral-
lelization algorithm discussed in Chapter 7. We also present experimental results to

illustrate the efficacy of these transformations on application programs.

5.2 Technical background
5.2.1 Augmented call graph

The program representation for interprocedural transformations requires an aug-
mented call graph (G,.) which describes the calling relationships among procedures
and loop nests. The details of the G,. are presented in Section 2.3. Figure 5.1(a)
shows an abbreviated version of the augmented call graph G,. for the program from

Example 5.1, where the solid line is a call edge and the dashed lines are nesting edges.

5.2.2 Interprocedural section analysis

A regular section describes the side effects to the substructures of an array. Sections
represent a restricted set of the most commonly occurring array access patterns;
single elements, rows, columns, grids and their higher dimensional analogs. This
restriction on the shapes assists in making the implementation efficient [HK90]. The
representation of the dimensions of a particular array variable may take one of three

forms:

1. an invocation invariant expression, representing a single element,
2. a range consisting of a lower bound, an upper bound and a step size, or

3. the special element L. signifying that all of this dimension may be affected.

65

FIGURE 5.1: Sections and data access descriptors

Mod: :"‘I"D Mod: " T~
A[1:20; 1] A[J=1,20;]
(a) Gae (b) Sections (c) DAD

P
d) A[1:20; I-1] A[J=1,20; I-1]
v
S

Sections are separated into modified and referenced sets. The sections for Example 5.1
are shown in Figure 5.1(b).

By using sections, the problem of locating dependences on procedure calls is sim-
plified to the problem of finding dependences on ordinary statements. The modified
and referenced subsections for the call appear to the dependence analyzer like the
left- and right-hand sides of an assignment, respectively. For single-element subsec-
tions, dependence testing is the same as it would be for any other variable access.
For subsections that contain one or more dimensions with ranges, the dependence
analyzer simulates DO loops for each of the range dimensions, with the lower bound,
upper bound and step size of the loop corresponding to those of the range.

Regular sections enable dependence analysis to determine if loops containing calls
are parallel and are sufficient to determine the safety of intraprocedural transforma-
tions on a loop nest containing calls. However, a more precise version of sections is
needed to determine the safety of intraprocedural transformations which involve loops
in different procedures before loop embedding or extraction places them in the same
procedure. These are similar to data access descriptors or DADs and they provide
detailed information about references and how the loops in a called procedure access
t [BK89]. Our version of DADs are a little more precise because we have the loop
header information in G,., but for the purposes of this discussion DADs evoke the

appropriate meaning.

66

A DAD identifies the section of an array accessed and the order of that access
in terms of each enclosing loop’s index expression. It also indicates the relative
ordering of the accesses. We consider DADs as annotations of sections. In addition,
the sections are marked as exact or inexact for the purposes of dependence testing
used in determining the safety of intraprocedural transformations in the caller. The
regular section information is sufficient to test dependence on loops containing calls.
To test dependence on the loops in the call at the call site demands that the DAD
be exact in the following sense. An exact reference or modified section must be be
described in terms of a constant or any surrounding loops. It must also meet one of
the following criteria either (1) it is not the result of a merge, or (2) if it is the result
of a merge, either the merge was between accesses where they overlap exactly and
completely or the accesses are completely disjoint. Figure 5.1(c) illustrates the DAD

annotations for the program in Example 5.1.

5.3 Support for interprocedural optimization

In this section, we present the compilation system of the ParaScope Programming
Environment [CCH*88, CKT86a]. This system was designed for the efficient support
of interprocedural analysis and optimization. The tools in ParaScope cooperate to
enable the compilation system to perform interprocedural analysis without direct
examination of source code. This information is then used in code generation to make
decisions about interprocedural optimizations. The code generator only examines the
dependence graph for the procedure currently being compiled, not the graph for the
entire program. In addition, ParaScope employs recompilation analysis after program
changes to minimize program reanalysis [CKT86b]. This system was original intended
for scalar compilation. This section extend the ParaScope system to support parallel

code generation.

5.3.1 The ParaScope compilation system

Interprocedural analysis in the ParaScope compilation system consists of two principal
phases. The first takes place prior to compilation. At the end of each editing session,
the immediate interprocedural effects of a procedure are determined and stored. For
example, this information includes the array sections of global variables and call-by-
reference formal parameters that are locally modified or referenced in the procedure.

The procedure’s calling interface is also determined in this phase. It includes descrip-

67

FIGURE 5.2: Information flow for interprocedural transformations

Augmente

Call Graph

RSD
Analysis

Code

(Generation

/]fpe—nm
RSDs wy Marked || Loops

Dependence Graphs
w/RSDs & Slices

tions of the calls and loops in the procedure and their relative positions. In this way,
the information needed from each module of source code is available at all times and
need not be derived on every compilation.

Interprocedural optimization is orchestrated by the program compiler, a tool that
manages and provides information about the whole program [CKT86a, Hal91]. The
program compiler first builds the augmented call graph described in Section 2.3.
The program compiler then traverses the augmented call graph, performing inter-
procedural analysis, and subsequently, code generation. Conceptually, program com-
pilation consists of three principal phases: (1) interprocedural analysis, (2) depen-

dence analysis, and (3) planning and code generation.

Interprocedural analysis

The program compiler calculates interprocedural information over the augmented
call graph. First, the information collected during editing is recovered from the
database and associated with the appropriate nodes and edges in the call graph.
This information is then propagated in a top-down or bottom-up pass over the nodes
in the call graph, depending on the interprocedural problem. Section analysis is
performed at this time. Interprocedural constant propagation and symbolic analysis
are also performed, as these greatly increase the precision of subsequent dependence

analysis.

Dependence analysis

Interprocedural information is then made available to dependence analysis, which

is performed separately for each procedure. Dependence analysis yields dependence

63

edges that are placed in the dependence graph. If the source or sink of a dependence is
a call site, a section annotates it. The section may more accurately describe the por-
tion of the array involved in the dependence. Dependence analysis also distinguishes
parallel loops in the augmented call graph. Dependence analysis is separated from
code generation for an important reason; it provides the code generator knowledge

about each procedure without reexamining its source or dependence graph.

Planning and code generation

The final phase of the program compiler determines where interprocedural optimiza-
tion is estimated to be profitable. Planning is important to interprocedural optimiza-
tion since unnecessary transformations may lead to significant compile-time costs
without any execution-time benefit. To determine the safety of transformations, the
dependence graph and sections are sufficient.

The relationship among the compilation phases is depicted in Figure 5.2. Fach
step adds annotations to the call graph that are used by the next phase. Following
program transformation, each procedure is separately compiled. Interprocedural in-
formation for a procedure is provided to the compiler to enhance intraprocedural

optimization.

Procedure cloning

Procedures optimized with loop embedding or extraction may have multiple callers,
and an optimization valid for one caller may not be valid for another. To avoid code
growth, multiple callers should share the same version of the optimized procedure
whenever possible. This technique of generating multiple copies of a procedure and

tailoring the copies to their calling environments is called procedure cloning [CKT86a,

CHK92].

5.3.2 Recompilation analysis

A unique part of the ParaScope compilation system is its recompilation analysis,
which avoids unnecessary recompilation after program edits. Recompilation anal-
ysis tests that interprocedural facts used to optimize a procedure have not been
invalidated by editing changes [CKT86b, BC86, BCKT90]. To extend recompila-
tion analysis for interprocedural transformations, a few additions are needed. When

an interprocedural transformation is performed, a description of the interprocedural

69

transformations annotates the nodes and edges in the augmented call graph. On
subsequent compilations, this information indicates to the program compiler that the
same tests used initially to determine the safety of the transformations should be
reapplied.

To determine if interprocedural transformations are still safe, the new and old
sections are first compared, in most cases avoiding examination of the dependence
graph. As a result, dependence analysis is only applied to procedures where it is
no longer valid, allowing separate compilation to be preserved. The recompilation
process after interprocedural transformations have been applied is described in more

detail elsewhere [Hal91].

5.4 Interprocedural transformation

Loop extraction and loop embedding expose the loop structure to optimization with-
out incurring the costs of inlining. Just as inlining is always safe, these transforma-
tions are always safe. The mechanics of performing the movement of a loop header is
detailed below. If moving additional statements is desired, it may be performed with

the techniques developed for inlining.

5.4.1 Loop extraction

Loop extraction moves a loop that encloses the body of its procedure p outward into
one of its callers. This optimization may be thought of as partial inlining. The new
version of p no longer contains the loop. The caller now contains a new loop header
surrounding the call to p. The index variable of the loop, originally a local in p,
becomes a formal parameter and is passed at the call. The calling procedure creates
a new variable to serve as the loop index, avoiding name conflicts. It is always safe
to extract an outer enclosing loop from a procedure. Example 5.2(a) contains a loop
with two calls to procedure S and (b) contains the result after loop extraction. Note
that (b) has an additional variable declaration for the loop index J in P. It is included
in the actual parameter list for S. The J loops may now be fused and interchanged to

improve performance, as in Example 5.2(c).

5.4.2 Loop embedding

Loop embedding moves a loop that contains a procedure call into the called procedure

and is the dual of loop extraction. The new version of the called procedure requires a

70

EXAMPLE 5.2:

SUBROUTINE P(A) SUBROUTINE P(A) SUBROUTINE P(A)
REAL A(N,N), B(N,N) REAL A(N,N), B(N,N) REAL A(N,N), B(N,N)
INTEGER 1 INTEGER I,J INTEGER 1,J
DO1=1,3
DOI=1,3 DO J =1, 100 DO J =1, 100
CALL S(AT) CALL S(A,LY) DOT=1,3
CALL S(B,I) ENDDO CALL S(A,LY)
ENDDO DO J =1, 100 CALL S(B,1J)
CALL S(B,1,J) ENDDO
ENDDO ENDDO
ENDDO
SUBROUTINE S(F,I) SUBROUTINE S(F,I,J) SUBROUTINE S(F,I,J)
REAL F(N,N) REAL F(N,N) REAL F(N,N)
INTEGER 1,J INTEGER I,J INTEGER 1,J
DO J = 1,100
F(II) = F,I) + 9 F(JI) = F(I,0) + 9 F(J,I) = F(I,1) + 9
ENDDO
(a) before transformation (b) loop extraction (¢) loop fusion & interchange

new local variable for the loop’s index variable. If a name conflict exists, a new name
for the loop’s index variable must be created. This transformation is illustrated in
Example 5.1.

If the index variable of the loop to be embedded appears in an actual parameter
at the call site, this parameter is no longer correctly defined. To remedy this problem,
the formal parameters in the call that depend on it must be assigned and computed
in the newly embedded loop. In the simplest case, an index variable i is passed to a
formal f. Here, f should be assigned i on every iteration of the embedded loop, prior
to the rest of the loop body.

If an actual is an array reference whose subscript expression contains the loop
index variable, the actual passed at the call becomes simply the array name. In the
called procedure, the original subscript expression for each dimension of the actual
is added to the subscript expression for the corresponding dimension of the formal
at each reference to the formal. If the array parameter is reshaped across the call,
this translation is more complicated. The array formal is replaced by a new array
with the same shape as the actual. The references to the variable are translated by
linearizing the formal’s subscript expressions and then converting to the dimensions

of the new array [BC86]. Finally, the subscript expressions for each dimension of the

71

actual are added to those for the translated reference. This method is also the one

that is used in our implementation of inlining.

Dependence updates

Because our code generator only applies loop extraction and loop embedding after
safety and profitability are ensured, an update of local dependence information may
not be necessary. However, if further optimization is desired, updating the dependence
information is straightforward. The dependence information just moves and translates

with the loop which is moving.

Embedding versus Extraction

There are several factors which affect the choice between embedding or extraction
during the optimization process. All things being equal, embedding loops needed for
optimizations into the called procedure is preferable because it reduces procedure call
overhead. However, if several loops originating from different call sites are needed to
perform an optimization, extraction is required (as illustrated in Example 5.2). If an
optimization uses a loop in the call and more than one loop of the caller, then loop
extraction is also preferred. On the other hand, if the optimization involves the inner
loop of the caller and more than one loop in the called procedure, loop embedding
is preferred. The other option for these and other more complex circumstances is to

perform loop embedding or extraction multiple times to adjoin the necessary loops.

5.5 Intraprocedural transformations

The following two sections discuss how to test for the safety of intraprocedural trans-
formations across procedure boundaries. The tests are needed when the requisite
loops are not in the same procedure, but may be placed together via embedding or

extraction.

5.5.1 Loop fusion

When several procedure calls appear contiguously or loops and calls are adjacent,
it may be possible to extract the outer loop from the called procedure(s). Once
loops are exposed, fusion and other optimizations may be performed as illustrated by

Example 5.2. In the algorithm checkFusion, we consider fusion of {sy,s2}, where s;

72

is either a call or a loop. Loop fusion is restricted in this setting in that there may
not be any intervening statements between s; and ss.

The test for fusion between two loops, [; and [, requires the inspection of the
dependence source and sink variable references in /; and /. If one or more of the
loops is inside a call, the variable references are represented instead as the modified
and referenced sections for the call. The section and its DAD correspond to the
loops being considered for fusion and are tested identically to variable references (see
Section 5.2.2). Unfortunately, while variable references are always exact, a section
is not. If a section for a particular array is not exact and a potential dependence
exists between the loop nests, fusion is conservatively assumed to be unsafe. (There
exists a potential dependence if an array is referenced in both nests and at least one
is a write.) A more precise test could be performed by inspecting the dependence
graphs for each called procedure. In practice, the more precise test may be no more

successful and could introduce significant overhead.

5.5.2 Loop permutation

Loop permutation of a loop nest rearranges the loop headers, changing the order in
which the iteration space is traversed. As with fusion, the distance/direction vectors

for the loops in the caller being considered in the permutation must be computable

ALGORITHM 5.1: Interprocedural fusion test

checkFusion (sy,s2)

INPUT: (s1,52), where s; is a call or a loop and sy is adjacent to sg
OUTPUT: returns true if fusion is safe
ALGORITHM:

let Iy = the loop header of s
let I3 = the loop header of s
if the number of iterations of {; differ from {4
return false
for each forward dependence (sre,, sinks,)
if sre,, or sink,, is not exact
return false
if (sres,, sinks,) becomes backward loop-carried
return false
endfor
return true

73

at the call. Again, the sections involved in dependences must be exact or the test
conservatively assumes the transformation to be unsafe. Conversely, in the call the
distance/direction vectors for surrounding loops could be made available when the
call is being optimized. This option is less appealing because other optimizations are
inhibited in the caller. Regardless, if there are loops in either the caller or the called
routine that do not carry any dependences, the augmented call graph reflects it and

many permutations can be shown safe without additional dependence testing.

5.6 Experimental results

This section presents significant performance improvements due to interprocedural
transformation on two scientific programs, spec77 and ocean, taken from the Perfect
Benchmarks [CKPK90]. To locate opportunities for transformations, we browsed
the dependences in the program using the ParaScope Editor [BKK*89, KMT9]1a,
KMT91b]. Using other ParaScope tools, we determined which procedures in the
program contained procedure calls. We examined the procedures containing calls,
looking for interesting call structures. We located adjacent calls, loops adjacent to
calls, and loops containing calls which could be optimized; the entire application
was not parallelized. The original and optimized programs were executed on a 20-
processor Sequent Symmetry S81. Since the optimizations used differed slightly for

each program, they are described separately.

FIGURE 5.3: Stages of preparing program versions for experiment

Directives on Original
inner loops

IPinfo

spec’7 Block

Directives on
outer loops [Ptrans

Transform

74

5.6.1 Spec77

Spec77 contains 3278 non-comment lines and is a fluid dynamics weather simulation
that uses Fast Fourier Transforms and rapid elliptic problem solvers. In spec77, loops
containing calls were common. Overall, transformations were applied to 19 such
loops. Embedding and interchange were applied to 8 loops which contained calls to a
single procedure. The remaining 11 loops, which contained multiple procedure calls,
were optimized using extraction, fusion and interchange. These loops were found in
procedures del/, gloop and gwater.

For the 19 transformed loops, performance was measured among three possibil-
ities: (1) no parallelization of loops containing procedure calls, (2) parallelization
using interprocedural information, and (3) interprocedural information and transfor-
mations. To obtain these versions, the steps illustrated in Figure 5.3 were performed.

The Original version contains directives to parallelize the loops in the leaf pro-
cedures that are invoked by the 19 loops of interest. The IPinfo version parallelizes
the 19 loops containing calls. For the IPtrans version, we performed interprocedural
transformation followed by outer loop parallelization. The parallel loops in each ver-
sion were also strip mined to allow multiple consecutive iterations to execute on the
same processor without synchronization. The compiler default is to schedule each

iteration of a parallel loop separately, incurring additional overhead.

processors = 7 processors = 19
time in optimized time in optimized
portion speed-up portion speed-up
Original 81.9s 5.7 45.8s 10.1
IPinfo 80.0s 5.8 48.0s 9.7
IPtrans 80.6s 5.8 36.4s 12.7

The results reported above are the best execution time in seconds for the optimized
portions of each version. The speedups are compared against the execution time in
the optimized portion of the program on a single processor, which was 463.7s. This
portion accounted for more than 21 percent of the total sequential execution time.
With seven processors, the results are similar for all three versions, since each pro-
gram version provided adequate parallelism and granularity for seven processors. On
19 processors, IPinfo was slower than the original program because the parallel outer
loops had insufficient parallelism — only 7 to 12 iterations. The parallel inner loops of

Original were better matched to the number of processors because they had at least

75

31 iterations. The interprocedural transformation version IPtrans demonstrated the
best performance, a speedup of 12.7, because it combined the amount of parallelism
in Original with increased granularity. The interprocedural transformations resulted
in a 21 percent improvement in execution time over Original in the optimized portion.
Parallelizing just these 19 loops resulted in a speedup for the entire program of about

1.25 on 19 processors and 1.23 on 7 processors.

5.6.2 Ocean

Ocean has 1902 non-comment lines and is a 2-D fluid dynamics ocean simulation that
uses Fast Fourier Transforms. There were 31 places in the main routine of ocean
where we extracted and fused interprocedurally adjacent loops. They were divided
almost evenly between adjacent calls and loops adjacent to calls. In all 15 cases
where a loop was adjacent to a call, the loop was 2-dimensional, while the loop in the
called procedure was 1-dimensional. Prior to fusion, we coalesced the 2-dimensional
loop into a 1-dimensional loop by linearizing the subscript expressions of its array
references. The resulting fused loops consisted of between 2 and 4 parallel loops from
the original program, thus increasing the granularity of parallelism.

To measure performance improvements due to interprocedural transformation, we
performed steps similar to those in Figure 5.3. Directives forced the parallelization
and blocking of the individual loops in the Original version, and the fused loops in
IPtrans. The execution times were measured for the entire program and just the

optimized portion. The optimized execution times are shown below.

processors = 19

time in optimized
portion speed-up
Original 116.6s 5.5
IPtrans 79.3s 8.1

The speedups are relative to the time in the optimized portion of the sequential version
of the program, which was 645.9 seconds. The optimized code accounted for about
5 percent of total program execution time. For the whole program, the parallelized
versions achieve a speedup of about 1.06 over the sequential execution time.

Note that IPtrans achieved a 32 percent improvement over Original in the opti-
mized portion. This improvement resulted from increasing the granularity of parallel

loops and reducing the amount of synchronization. It is also possible that fusion

76

reduced the cost of memory accesses. Often the fused loops were iterating over the
same elements of an array. These 31 groups of loops were not the only opportunities
for interprocedural fusion; there were many other cases where fusion was safe, but the
number of iterations were not identical. Using a more sophisticated fusion algorithm

might result in even better execution time improvements.

5.7 Related work

While the idea of interprocedural optimization is not new, previous work on inter-
procedural optimization for parallelization has limited its consideration to inline sub-
stitution [AJ90, CHTI91, Hus82] and interprocedural analysis of array side effects
[BK89, BC86, CK87h, HK90, HHL90a, HHL90b, L.Y88a, LY88b, TIF86]. The vari-
ous approaches to array side-effect analysis must make a tradeoff between precision
and efficiency. Section analysis used here loses precision because it only represents a
selection of array substructures, and it merges sections for all references to a variable
into a single section. However, these properties make it efficient enough to be widely
used by code generation. In addition, experiments with regular section analysis on the
Linpack library demonstrated a 33 percent reduction in parallelism-inhibiting depen-
dences, allowing 31 loops containing calls to be parallelized [HK90]. Comparing these
numbers against published results of more precise techniques, there was no benefit to

be gained by the increased precision of the other techniques [LY88a, LY88b, TIF86].

5.8 Discussion

The usefulness of this approach has been illustrated on the Perfect Benchmark pro-
grams spec?77 and ocean. Taken as a whole, the results indicate that providing free-
dom to the code generator becomes more important as the number of processors
increase. Effectively utilizing more processors requires more parallelism in the code.
This behavior was particularly evident in spec77, where the benefits of interprocedural
transformation were increased with the number of processors.

Although it may be argued that scientific programs structured in a modular fash-
ion are rare in practice, we believe that this is an artifact of the inability of previ-
ous compilers to perform interprocedural optimizations of the kind described here.
Increasing numbers of scientific programmers are using a modular programming style
and cannot afford to pay a performance penalty. By providing compiler support

to efficiently optimize procedures containing calls, we encourage the use of modular

77

programming, which, in turn, will make these transformations applicable on a wider
range of programs. These techniques enable a desirable programming style which
uses procedures that can be effectively parallelized.

This chapter and the previous one provide algorithmic support for applying trans-
formations to entire applications. In particular, program optimization is enabled for
loops containing control flow and is not inhibited when loop nests span procedure
boundaries. We now turn to the proper application of these transformations to effect

excellent parallel performance.

78

Chapter 6

Optimizing for Parallelism and Data Locality

Previous research has used program transformation to introduce parallelism and to
exploit data locality. Unfortunately, these two objectives have usually been consid-
ered independently. This chapter explores the tradeoffs between effectively utilizing
parallelism and memory hierarchy on shared-memory multiprocessors. We present a
simple, but surprisingly accurate, memory model to determine cache line reuse from
both multiple accesses to the same memory location and from consecutive memory
access. The model is used in memory optimizing and loop parallelization algorithms
that effectively exploit data locality and parallelism in concert. We demonstrate the
efficacy of this approach with very encouraging experimental results. This algorithm

forms the core of our parallel code generation strategy.

6.1 Introduction

Transformations to exploit parallelism and to improve data locality are two of the
most valuable compiler techniques in use today. Independently, each of these opti-
mizations has been shown to result in dramatic improvements. This chapter seeks to
combine the benefits of both by using a simple memory model to drive optimizations
for data locality and parallelism. By unifying the treatment of these optimizations,
we are able to place loops with data reuse on inner loops and to introduce parallelism
for outer loops. Our strategy produces data locality at the innermost loops, where it
is most likely to be exploited by the hardware and places parallelism at the outermost
loop, where it is most effective. If these two goals conflict, we present an algorithm
that usually reaps the benefits of both.

Optimizing data locality is necessarily both architecture and language dependent.
However, the reuse of memory locations and the consecutive access of adjacent mem-
ory locations form the foundation of most memory hierarchy optimizations. Reuse
of a particular memory reference for arrays can be discovered using data-dependence
analysis. However, reuse of consecutive accesses, often called unit stride access, is a
significant source of reuse that can easily be determined when the storage order of

arrays and the cache line size is known. In this chapter we introduce a simple model

79

for estimating the cost, in memory references, of executing a given loop nest. The
principal advantage of this model over previous models is that it takes into account
cache reuse due to consecutive accesses to the same cache line. We show how this
model can be used to exploit data locality at multiple levels via loop permutation.
Our algorithm first uses the memory model to find a loop organization that ex-
ploits data locality. It then seeks to parallelize the outermost loop or a parallel loop
that can be positioned outermost. Given sufficient iterations, it then strip mines the
loop into two loops, such that one loop is used to achieve locality and the other is

used to introduce parallelism.

Matrix multiply example

As an example of this process, consider the ubiquitous matrix multiply.

DOJ=1,N
DOK=1,N
DOI=1,N
C(1,J) = C(1,J) + A(LK) * B(K,J)

Assuming arrays are stored such that columns of the arrays are in consecutive memory
locations, i.e. column-major order, this loop organization exploits data locality in
the following manner. The consecutive access on the inner I loop to C(I,J) and A(I,K)
provide an opportunity for cache line reuse when the cache line size is greater than
1. There is also a loop-invariant reuse of B(K,J) on the I loop. Additionally, the J
and the I loops can be parallel. However, if the number of processors, P, is less than
the number of iterations of either loop, it is not profitable to utilize both levels of
parallelism at once due to additional scheduling overhead. A better execution time
would result by maximizing the granularity of one level of the parallelism and then
matching it to the machine. If N = P, selecting J to be executed in parallel preserves
data locality and introduces a single level of parallelism with maximum granularity.
PARALLEL DO J =1, N
DOK =1,N

DOI=1N
C(1,J) = C(LJ) + A(LK) * B(K,J)

However, if the number of loop iterations is greater than the number of processors,
N > P, it is often useful to combine independent iterations into a single parallel task

to achieve granularity that matches the machine. The parallel loop is strip mined by

80

the number of processors where the strip size is SS = [N/P |. We call the J loop the
strip and the JJ loop, which walks between strips, the iterator.
PARALLEL DO JJ = 1, N, SS
DO J = JJ, MIN(JJ + SS - 1, N)
DOK=1,N

DOI=1N
C(1,J) = C(LJ) + A(LK) * B(K,J)

The parallel JJ loop carves up the data space nicely, but if each processor’s cache is
still not large enough to contain all of array A, tiling the loop nest further improves
performance by providing reuse of A. Tiling combines strip mining and loop inter-
change to promote reuse across a loop nest [I'T88, Wol89a]. For matrix multiply, the
loop nest may be tiled by strip mining the K loop by TS and then interchanging it
with J.
PARALLEL DO JJ = 1, N, SS
DO KK = 1, N, TS
DO J = JJ, MIN(JJ + SS - 1, N)
DO K = KK, MIN(KK + B - 1, N)

DOI=1N
C(1,J) = C(LJ) + A(LK) * B(K,J)

Here, TS is selected based on the cache size. This organization moves the reuse of

A(L:N,KK:KK+TS-1) on the J loop closer together in time, making it more likely to still

be in cache. This optimization approach may be divided into three phases:

1. optimizing to improve data locality,
2. finding and positioning a parallel loop, and

3. performing low-level memory optimizations such as tiling for cache and placing

references in registers [LRW91, CCK90].

This chapter focuses on the first two phases. We advocate the first two phases be

followed by a low-level memory optimizing phase, but do not address it here.

6.2 Memory and language model

Because we are evaluating reuse, we require some knowledge of the memory hierarchy.
However, because our model is very simple, only minimal knowledge of the cache is
required; the compiler must know the cache line size (¢ls). The size, set associativity,

and replacement policy of the cache are not important here. In addition, we assume a

81

write-back cache and ignore non-unique write references. If the cache is write-through,
these writes should be included.

In addition, we only concern ourselves with memory accesses caused by array
references, since they dominate memory access in scientific Fortran codes. We also
assume that arrays are stored in column-major order, where unit stride accesses in
the first array dimension translate into contiguous memory accesses. Qur results are

also valid for row-major arrays such as those found in C with only minor changes.

6.3 Tradeoffs in optimization

This section illustrates with an experiment the influence of memory reuse and par-
allelism granularity on speed-up. As expected, it indicates the best performance is
possible only when both are utilized effectively in concert. It also shows that when
both cannot be achieved at once, there are situations where favoring one or the other
results in the best execution time. Neither always dominates. To illustrate, we phrase

the following question.

Given enough computation to make parallelism profitable, what is the effect
of reuse and how should it affect the optimization strategqy?

Figure 6.1 presents the results of executing different parallel versions of the following
loop nest on 18 processors of a Sequent Symmetry S81 with 20 processors, with
increasing amounts of total work.
DOJ=1,N
DOT=1,M

DOH=1L
C(L, J) = C(L, J) + A1, J) + B(1L, J)

The total amount of work is increased by varying the upper bounds N and M from
2 to the number of processors (P = 18). We consider positioning T or J as the outer
parallel loop in the nest. In Figure 6.1, the best version of this loop nest has an outer
parallel J loop with 18 iterations (N = 18) and total work is increased by varying M
from 2 to 18. Fach of the 18 processors accesses distinct columns of each array. This
organization exploits cache line reuse on each processor and results in linearly-scalable
speed-up.

When the J loop is outermost and the number of parallel iterations of is varied

from 2 to 18 along with P and the I loop contains 18 iterations, the total amount of

82

best (J out,N=18,M=2:18)

gran (J out,N=2:18,M=18)

speed-up

g — Mmem (I out,M=18,N=2:18)

worst (I out,M=2:18,N=18)

total work

FIGURE 6.1: Memory and parallelism tradeoffs

work increases, but the work per processor remains the same. This organization is
illustrated by the gran line. In this case, the speed-up scales by the number of parallel
iterations, but cache line reuse is still facilitated on each processor.

If instead the Iloop is made outermost and parallel, then processors must compete
for the cache line which contains C(1,J) in order to write it. This competition is called
false sharing. In addition, multiple processors require cache lines containing A(1,J)
and B(LJ), increasing network contention and total memory utilization. When the
number of parallel iterations of the I loop as outermost varies from 2 to 18 along with
P and the J loop contains 18 iterations, the worst line indicates the performance. If
the number of parallel iterations of I is held at 18 while the J loop is varied from 2 to
18, the mem line results.

Compare the pair of lines best and mem. The factor of two difference is due to the
benefit of cache line reuse in best, and the limitations of false sharing and increased
bus and memory utilization in mem. The same comparison holds for the gran and
worst lines. These results indicate that the parallelizing algorithm must recognize
reuse and false sharing to be effective.

Now compare the pair of crossing lines gran and mem. These computations differ

only by an interchange. An optimization strategy that only used loop interchange

83

would be forced to pick between the two. To obtain the best performance for this
example, the J loop would be outermost when N > 8, otherwise the I loop should be
outermost. In addition, this “crossover” point would need to be determined for each
computation, a daunting task. Our approach instead combines loop interchange and
strip mining in a parallelization strategy that minimizes false sharing and exploits

data reuse.

6.4 Optimizing data locality

In this section we describe two sources of data reuse, then we incorporate both in
a simple yet realistic cost model. In subsequent sections, this cost model is used to

guide optimizations for improving data locality and exploiting parallelism.

6.4.1 Sources of data reuse

We first consider the two major sources of data reuse.

e multiple accesses to the same memory location

e accesses to consecutive memory locations (i.e. stride 1 or unit stride access)
Multiple accesses to the same memory location may arise from either a single array
reference or multiple array references. These accesses are loop-independent if they
occur in the same loop iteration, and are loop-carried if they occur on different loop
iterations. Wolf and Lam call this temporal reuse [WLI1]. The most obvious source of
temporal reuse is from loop-invariant references. For instance, consider the reference
to A(J) in the following loop nest. It is invariant with respect to the I loop, and is
reused by each iteration.

DOJ=1N

DOT=1N
S=S+A(J) + B(I) + C(J,I)

A second source of data reuse is caused by multiple accesses to consecutive memory
locations. For instance, each cache line is reused multiple times on the inner I loop
for B(I) in the above example. Wolf and Lam call this spatial reuse [WL91]. The
actual amount of reuse is dependent on the size of B(I) relative to the cache line size
and the pattern of intervening references. For the rest of this chapter, we assume
for simplicity that the cache line size is expressed as a multiple of the number of

array elements. For reasonably large computations, references such as C(J,I) do not

84

provide any reuse on the I loop, because the desired cache lines have been flushed by
intervening memory accesses.

Previous researchers have studied techniques for improving locality of accesses
for registers, cache, and pages [AST9, CCK90, WL91, GJG88]. We concentrate on
improving the locality of accesses for cache; i.e. we attempt to increases the locality
of access to the same cache line. Empirical results show that improving spatial reuse
can be significantly more effective than techniques that consider temporal reuse alone
[KMT92]. In addition, consecutive memory access results in reuse at all levels of the

memory hierarchy except for registers.

6.4.2 Simplifying assumptions

To simplify analysis we make two assumptions. First, our loop cost function assumes
that reuse occurs only across iterations of the innermost loop. This assumption
decreases precision but greatly simplifies analysis, since it allows the number of cache
line accesses to be calculated independent of the permutation of all outer loops. This
assumption is accurate if the inner loop contains a sufficiently large number of memory
accesses to completely flush the cache after executing all of its iterations. We show
later that our optimizations to improve locality can select a desirable permutation of
outer loops even with this restriction.

Cache interference refers to the situation where two memory locations are mapped
to the same cache line, eliminating an opportunity to exploit reuse for one of the
references. Our second assumption is that cache interferences occur rarely for small
numbers of inner loop iterations, compared to the total number of distinct cache lines
accessed in those iterations. In other words, we expect very few interferences for each
cache line being reused, since the cache line is only needed for a small number of
consecutive inner loop iterations. Lam ef al. show that this assumption may not hold
if cache lines must remain live for longer periods of time. Considerable interference

may take place when loops are tiled to increase reuse across outer loops [LRW91].

6.4.3 Loop cost

Given these assumptions, we present a loop cost function LoopCost based on our
memory model. Its goal is to estimate the total number of cache lines accessed when
a candidate loop [is positioned as the innermost loop. The result is used to guide loop

permutation to improve data locality. The estimate is computed in two steps. First,

89

references that will access the same cache line in the same or different iterations of
the [loop are combined using RefGroup. Second, the number of cache lines accessed

by all groups is calculated using LoopCost.

6.4.4 Reference groups

The goal of the RefGroup algorithm is to partition variable references in the program
text into reference groups such that all references in a group access the same memory
locations, and consequently the same cache line. Wolf and Lam call these groups
equivalence classes exhibiting group-temporal reuse. The partition process is particu-
larly simple here because we only consider reuse for each loop when it is positioned
innermost.

Two references are in the same reference group for loop [if they actually access

some common memory location (data dependence § exists between them), and the

ALGORITHM 6.1: Determine reference groups

RefGroup (Refs, DG, 1)
InpuT:
Refs = {Ref ... Ref,} references
DG = {(Ref; gRefj>, ...} the dependence graph

[= candidate innermost loop

OvuTpPUT:
{RefGroupy ... RefGroup,,} reference groups for [

ALGORITHM:
m=0
while Refs # () do
m=m+1
RefGroup,, = {r}, where r € Refs
Refs = Refs — {r}
for each (r & +') or (' §) € DG s.t. ' € Refs
if (6; is a constant d) & (é; is the only
nonzero entry in §)
RefGroup,, = RefGroup,, + {r'}
Refs = Refs — {r'}
endif
endfor
endwhile

86

reuse occurs on [if it is positioned as the innermost loop. The common accesses then
occur on either the same iteration of | (6 = 0) or across d iterations of [(6; = d).

More formally we define RefGroup as follows.

Definition 6.1 Two references Ref; and Ref, belong to the same ref-
erence group with respect to loop [if and only if:
1. 3 ReflgRef2 , and
2. 8is a loop-independent dependence, or
01, the entry in § corresponding to loop [, is a constant d (d may be

zero) and all other entries are zero.

Jacobi example

For instance, consider the following Jacobi iteration example.

DO I =2N-1
DO J = 2N-1
A(JI) = 0.2% (B(J,I) + B(J-1,1) + B(J,I-1)
+ B(J+1,1) 4+ B(J,I4+1))

Data dependences connect all references to B. The reference groups for the I loop are:
{A(ID}, {BI,D),BJI-1),B(J,I+1)},
{BJ-1,D}, {BAI+1D)}.
The reference groups for the J loop are:
{A(ID}, {BI,D),BJ-1,1),BJ+1,1)},
{BUI-1)}, {BUI+1)}.
RefGroup is shown in Algorithm 6.1. Its efficiency may be improved by pruning

all identical array references, since they access the same memory location on each

iteration and always fall in the same reference group.

6.4.5 Loop cost algorithm

After the number of reference groups for loop [is computed with RefGroup, the
algorithm RefCost is applied to estimate the total number of cache lines that would
accessed by each reference group if [were the innermost loop. Once again, the task

is simplified because we only consider reuse between iterations of /.

87

RefCost works by considering one array reference Ref from each reference group;
these representative references are classified as loop-invariant, consecutive, or non-
consecutive with respect to loop [. Loop-invariant array references have subscripts
that do not vary with [; they require only one cache line for all iterations of [.*
Consecutive array accesses vary with [only in the first subscript dimension. They
access a new cache line every cls iterations, resulting in ¢rip/cls cache line accesses,
assuming [performs trip iterations. Fewer cache lines are reused for nonunit strides.
Non-consecutive array accesses vary with [in some other subscript dimension; they
access a different cache line each iteration, yielding a total of trep cache line accesses.

Once RefCost is computed, the algorithm LoopCost calculates the total number
of cache lines accessed by all references when [is the innermost loop. It simply
sums RefCost for all reference groups, then multiplies the result by the trip counts
of all the remaining loops. This calculation will underestimate the number of cache
lines accessed on the inner loop, if the distance of the dependences for a particular
RefGroup set are greater than cls. Also, slight underestimates occurs because the
exact alignment of arrays in memory is not known until run-time. LoopCost will
overestimate the number of cache lines, if there is additional reuse across an outer
loop.

LoopCost is expressed more formally in Algorithm 6.2 for the following loop nest

containing one array reference from each reference group RefGroup, ... RefGroup,,:

do il = lbl,Ubl,Sl

do iz = le,UbQ,SQ

do 1, = b, ub,, s,

Refl(fl(ilv .- '7in)7 cee 7fj(i17 .- 7ln))

Refm(gl(il, ceey Zn), . ,gk(il, .. ,Zn))
Note that LoopCost can be used to calculate cache line accesses even for array refer-

ences with complex subscript expressions. For instance, it determines that A(I+J+N)

results in consecutive memory accesses with respect to both the T and J loops.

*Of course, loop-invariant references should eventually be put in registers.

88

ALGORITHM 6.2: Determine inner loop cost
LoopCost (L, R, cls)
INnPUT: L=A{l,...,1,} aloop nest with headers b, ub, s
R ={Ref,,..., Ref,,} representatives from each reference group
trip; = (ubl — b+ 81)/81
cls = the cache line size,
appear(f) = the set of index variables that appears in
the subscript expression f
coeff(i;, f) = the coefficient of the index variable ¢; in the subscript f
(it may be zero)
OuTPUT:
LoopCost(l) = number of cache lines accessed with [as innermost loop

ALGORITHM:

LoopCost(! Z (RefCost (Ref i (fi(in, oo yin)y ooy fi(00, 000 0p))) * H triph)

k=1 hl
RefCost(Ref;,) =

1 if (i & appear(f1)) N ... A (4 & appear(f;)) loop invariant
tripg;/cls if (i) € appear(fr1)) A (Jeoeff(is, fi)|= 1) A(]s)| =1) A unit stride

.

(i & appear(f2)) A ... A (4 & appear(f;))

trip otherwise no reuse

6.4.6 Imperfectly nested loops

Because of their simplicity, both RefGroup and LoopCost can also be applied to
imperfectly nested loops. Consider the following example, where the first definition

of A(J) is imperfectly nested:

DO J =1, 100
A(J) =0
DOT =1, 100
Ad) = A() + ...

RefGroup would place all references to A(J) in the same reference group. When we
apply RefCost to calculate the number of cache lines accessed by a reference group, we
need to select the most deeply nested member of the group. LoopCost then multiplies
the result by the trip counts of all the loops that actually enclose the reference.

89

6.5 Loop permutation

The previous section presents our cost model for evaluating the data locality of a
given loop structure with respect to cache. In this section we show how the cost
model guides loop permutation to restructure a loop nest for better data locality.

A naive optimization algorithm would simply generate all legal loop permuta-
tions and select the permutation that yields the best estimated data locality using
LoopCost. Unfortunately, generating all possible loop permutations takes time that
is exponential in the number of loops and can be expensive in practice. It becomes
increasingly unappealing when transformations such as strip mining introduce even
larger search spaces.

Instead of testing all possible permutations, we show how our cost model allows

us to design an algorithm to directly compute a preferred loop permutation.

6.5.1 Memory order

The locality evaluating function LoopCost does not calculate data reuse on outer
loops; however, we can still restructure programs to exploit outer loop reuse. The key
insight is that if loop [causes more reuse than loop I” when both are considered as
innermost loops, [will also promote more reuse than !’ when both loops are placed
at the same outer loop position.

LoopCost can thus be considered to be a measure of the reuse carried by a
loop. This allows us to select a desired permutation of loops called memory or-
der that yields the best estimated data locality. We simply rank each loop [us-
ing LoopCost, ordering the loops from outermost to innermost (/;.../,) such that

LoopCost(l;_1) > LoopCost(l;).

Memory order algorithm

The algorithm MemoryOrder is defined as follows. It computes LoopCost for each
loop, sorts the loops in order of decreasing cache line accesses (i.e. increasing reuse),

and returns this loop permutation.

Example

As an example, recall matrix multiply. We compute memory order with ¢ls = 4.

The reference groups for matrix multiply put the two references to C(1,J) in the same

90

group on all the loops and A(1,K) and B(K,J) are placed in separate groups. LoopCost

computes the relative reuse on each of the loops as seen below.

LoopCost as innermost

references J K I
C(L,J) n * n? Lxn? | 1/4nx*n?
A(LK) 1 n? n*n? | 1/4nxn?
B(K,J) n*n? | 1/4n*n? 1% n?

totals | 2n3 +n? | 5/4n> + n? | 1/2n + n?

The algorithm MemoryOrder uses these costs to compute a preferred loop ordering

of (J, K, I), from outermost to innermost. The same result is obtained by previous

researchers [AK84, WILI1].

6.5.2 Permuting to achieve memory order

We must now decide whether the desired memory order is legal. If it is not, we must
select some legal loop permutation close to memory order. To determine whether a
loop permutation is legal is straightforward. We permute the entries in the distance
or direction vector for every true, anti, and output dependence to reflect the desired
loop permutation. The loop permutation is illegal if and only if the first nonzero entry
of some vector is negative, indicating that the execution order of a data dependence
has been reversed [AK84, Ban90a, Ban90b, WL90].

In many cases, the loop permutation calculated by MemoryOrder is legal and we
are finished. However, if the desired memory order is prevented by data dependences,
we use a simple heuristic for calculating a legal loop permutation near memory order.
The algorithm for determining this organization takes maz (D, n?) time in the worst-
case where n is the depth of the nest and D is the number of dependences, a definite
improvement over considering all legal permutations, which is exponential in n. The
algorithm is guaranteed to find a legal permutation with the desired inner loop, if one

exists.

Permutation algorithm

Given a memory ordering {i,,,%s,,--,%,,} of the loops {¢1,12,...,2,} where i,, has

the least reuse and i, has the most, we can test if it is a legal permutation directly

91

ALGORITHM 6.3: Determine the closest
permutation to memory order

NearbyPermutation (O, DV, L)

InpuT:
O =iy, l2,...,1,}, the original loop ordering
DY = set of original legal direction vectors for [,
L =Ais,l0yy---»1s,) ,a permutation of O
OuTPUT:

P a nearby permutation of O

ALGORITHM:
P=0; k=0; m=n
while £ # ()
forj=1,m
[= l]‘ €L
if direction vectors for {py,...,pg, [} are legal
P=Ap1,--spx, 1}
L=L-{l}; k=k+1; m=m-—1
break for
endif
endfor
endwhile

by performing the equivalent permutation on the elements of the direction vectors.
If the result is a legal set of direction vectors, the loops are permuted accordingly.

Otherwise, we attempt to achieve a “nearby” permutation with the algorithm
NearbyPermutation. The algorithm builds up a legal permutation in P by first testing
to see if the loop 7,, is legal in the outermost position. If it is legal, it is added to P
and removed from L. If it is not legal, the next loop in £ is tested. Once a loop [is
positioned, the process is repeated starting from the beginning of £ — {/} until £ is
empty. The following theorem holds for the NearbyPermutation algorithm.

Theorem 6.1 If there exists a legal permutation where o, is the inner-
most loop, then NearbyPermutation will find a permutation where o, is

innermost.

The proof by contradiction of the theorem proceeds as follows. Given an original set
of legal direction vectors, each step of the “for” is guaranteed to find a loop which

results in a legal direction vector, otherwise the original was not legal [AK84, Ban90a].

92

In addition, if any loop oy through o, 1 may be legally positioned prior to o, it will
be.

This characteristic is important because most data reuse occurs on the innermost
loop and is due to spatial reuse, so positioning the inner loop correctly will yield the

best data locality.

6.6 Data locality experimental results

We tested the algorithm for optimizing data locality independently and report some

of these results here.

6.6.1 Matrix multiply

We executed all possible loop permutations of matrix multiply for 3 problem sizes,
150 x 150, 300 x 300 and 512 x 512, on a variety of uniprocessors to determine the
accuracy of the MemoryOrderin predicting the best loop permutations. In Table 6.1,
the permutations are ordered from the most desirable to the least based on the ranking
computed by MemoryOrder. On all the processors, memory order JKI produced the
best results in all but two cases. On all the processors but the Sequent, the entire
ranking generally served to accurately predict relative performance. These results
illustrate that LoopCost is effective in predicting relative reuse on outer loops as well
as inner loops.

TABLE 6.1: Matrix Multiply (in seconds)

Loop Permutation
Processor JKI | KJI [JIK | UK | KIJ | IKJ
150 x 150
Sequent Weitek [26.0 | 27.1 | 31.1 | 30.7 | 28.4 | 26.9
Sun Sparc2 2.33 | 2.25 | 3.20 | 3.16 | 2.81 | 2.79
Intel i860 116 | 1.7 | 1.23 | 1.18 | 3.50 | 3.42
IBM RS6000 | 0.42 | 0.46 | 0.36 | 0.38 | 1.08 | 1.08
300 x 300
Sun Sparc2 183 17.8 [26.1 | 25.2 [24.9 | 27.1
Intel i860 9.7 |10.2 | 21.7 | 21.8 | 59.1 | 58.9
IBM RS6000 | 3.37 | 3.47 | 125 | 12.5 | 56.4 | 56.5
512 x 512
Sun Sparc2 91.0 | 93.6 | 223 | 240 | 277 | 336
Intel i860 60.2 | 46.7 | 143 | 156 | 292 | 292
IBM RS6000 | 16.7 | 17.0 | 183 | 186 | 399 | 399

The disparity in execution times between permutations became greater as the

processor speed increased. On the individual processors, execution times varied by

93

significant factors of up to 3.69 on the Sparc2, 6.25 on the 1860, and a dramatic 23.89
on the RS6000. These results indicate that data locality should be the overwhelming

force driving scalar compilers today.

6.6.2 Stencil computations: Jacobi and SOR

Stencil computations such as Jacobi and SOR are finite difference techniques fre-
quently used to solve partial difference equations [BHMS91]. Jacobi runs completely
in parallel, while SOR causes a computational wavefront to sweep diagonally through
the array. Both kernels were written using 500 x 500 2D arrays. We created and
measured the execution time of the following program versions: (all of the actual

programs appear in Figures 6.2 and 6.3).

Memory Order: Loops are ordered according to the algorithm MemoryOrder. Both
temporal and spatial reuse are exploited. Neither program required the algo-
rithm NearbyPermutation.

Poor Order: Loops are permuted in exactly the opposite manner as memory order.
It is provided merely to show the worst-case performance if data locality is not
taken into account.

FIGURE 6.2: Stencil computation: Jacobi

Memory Order
DOTI=2N-1
DO J =2N-1
A(JT) = 0.2+%(B(J,I) + B(J-1,I) + B(J,I-1) + B(J+1,I) + B(J,I+1))
Poor Order
DO J = 2,N-1
DOI=2N-1
A(JT) = 0.2+%(B(J,I) + B(J-1,I) + B(J,I-1) + B(J+1,I) + B(J,I+1))
1D Tiles
DO JJ = 2,N-1, TILE
DOI=2N-1
DO J = JI,MIN(JJ+TILE-1,N-1)
A(J,D) = 0.2%(B(J,I) + B(J-1,I) + B(J,I-1) + B(J+1,I) + B(J,I+1))
2D Tiles
DO II = 2,N-1,TILE
DO JJ = 2,N-1,TILE
DO T = II,MIN(IT4+TILE-1,N-1)
DO J = JI,MIN(JJ+TILE-1,N-1)
A(JD) = 0.2%(B(J,I) + B(J-1,1) + B(J,I-1) + B(J+1,I) + B(J,I+1))

94

1D and 2D Tiles: The loops are first placed in memory order, then one or both
loops are tiled in order to exploit reuse on the outer loop. This version shows
that tiling can degrade performance if insufficient reuse exists on outer loops.

Memory order can be easily computed for both kernels. Temporal reuse is identical
for both loops, since each results in the same number of reference groups (four for
Jacobi, three for SOR). The J loop has much lower LoopCost, since all reference
groups yield consecutive accesses when J is considered as the candidate innermost
loop. In comparison, all references result in non-consecutive accesses with I innermost.
Spatial reuse from consecutive accesses thus dominates when considering the proper
loop permutation for good data locality.

The execution times measured for these program versions appear in Tables 6.2 and
6.3. Permuting loops to achieve memory order for these two kernels shows impressive
improvements compared to their poorly ordered counterparts. The speedups for both
programs range from a factor of 1.3 to 8.4. The RS6000 is especially sensitive to
consecutive accesses; for Jacobi, its performance increased by a factor of 8.4 in memory

order.

FIGURE 6.3: Stencil computation:
Successive Over Relaxation (SOR)

Memory Order

DOTI=2N-1
DO J =2N-1
AJD = 0.2«(A(J,D) + A(J-1,1) + A(J,I-1) + A(J+11) + A(J,T+1))
Poor Order
DO J = 2,N-1
DOI=2N-1
AJD = 02%(AJD) + A(J-1,1) + A(JI-1) + A(J+11) + A(J,I+1))
1D Tiles
DO JJ = 2,N-1, TILE
DOI=2N-1
DO J = JI,MIN(JJ+TILE-1,N-1)
AJD = 02«(AJD) + AJ-1.1) + A(J,I-1) + A(J+11) + A(J,T+1))
2D Tiles

DO II = 2N-1, TILE
DO JJ = 2,N-1, TILE
DO I = IL,MIN(II4+TILE-1,N-1)
DO J = JJ,MIN(JJ+TILE-1,N-1)
A(J-LT) = 0.2¢(A(J-LT) + A(J-I-11) + A(J-1I-1)
+ A(J-I+LI) + A(J-LI+1))

95

Empirical results show that neither Jacobi nor SOR possess sufficient reuse at
outer loops to justify tiling; spatial reuse is the most important factor for these
stencil computations. In fact, tiling degrades performance. The tiled versions of each

kernel begin to recover only as tile sizes become quite large.

TABLE 6.2: Performance of Jacobi (in seconds)

1D Tiles 2D Tiles
Processor Memory | Poor | 4 16 32 | 4x4 | 16x16 | 32x32
Sun Sparc2 0.37 0.75 1048 { 0.40 | 0.39 | 0.47 | 0.40 0.38
Intel 1860 0.12 0.48 1 0.30 | 0.16 | 0.14 | 0.23 | 0.14 0.13

IBM RS6000 0.09 0.76 1 0.26 | 0.13 | 0.11 | 0.12 | 0.09 0.09

TABLE 6.3: Performance of SOR (in seconds)

1D Tiles 2D Tiles
Processor Memory | Poor | 4 16 32 | 4x4 | 16x16 | 32x32
Sun Sparc2 0.31 0.41 | 041 [0.33 | 0.32 | 0.39 | 0.33 0.32
Intel 1860 0.20 0.57 | 0.37 1 0.24 | 0.21 | 0.27 | 0.21 0.21

IBM RS6000 0.13 0.41 | 0.22 1 0.16 | 0.14 | 0.15 | 0.13 0.13

6.6.3 Erlebacher

Erlebacher is a small benchmark program written by Thomas Eidson of ICASE that
performs Alternating-Direction-Implicit (ADI) integration. It performs vectorized
tridiagonal solves in each dimension, resulting in computation wavefronts across all
three dimensions. Our results are for the forward and backward sweeps in Z dimension.

The program versions we used are as follows.

Vector Order: All sequential loops (those carrying dependences) are placed out-
ermost. Inner loops may all be executed in parallel. Within the parallel and
sequential loop nests, each is ordered for data locality.

Parallel Order: All parallel loops are placed outermost. Inner loops are sequential
and carry dependences corresponding to reuse. Within each group, loops are
ordered for data locality. This is the loop permutation selected by optimiza-
tions that attempt to exploit temporal reuse without considering spatial reuse
(consecutive accesses).

96

Memory Order: The loops are ordered according to descending LoopCost. As we
have shown, both temporal and spatial reuse are considered when choosing
memory order. All of the loop nests in Erlebacher were fully permutable, none
required the algorithm NearbyPermutation.

Hand-coded: The loops are ordered according to the original source as provided by
Thomas Eidson.

In addition, for each loop strategy we also have fused and separate versions of the

program.

Alone: All the statements remain in the same nest as originally written, resulting in
single statement loop nests.

Fuse: Each single statement loop nest is first permuted into the desired loop order.
We then fuse all adjacent loop nests where legal. This version demonstrates the
effects of exploiting reuse through loop fusion.

Figure 6.4 demonstrates vector, parallel, memory order and hand-coded versions for
two of the loop nests found in the solution stage for the Z dimension. For this example,
parallel order exploits the temporal reuse represented by dependences carried on the
K loop. However as seen in Table 6.4, it results in the worst performance because it
eliminates consecutive accesses for the references to array F.

Both vector and memory order place I as the innermost loop, resulting in cache
line reuse for references to array F. However, memory order also selects the middle
loop that yields the most reuse. In the first loop nest the J loop is preferred because
both A(K) and B(K) become loop-invariant references, overcoming the savings derived

for the K loop from putting F(I,J,K) and F(I,J,K-1) in the same reference group.

TABLE 6.4: Performance of Erlebacher (in seconds)

Vector Order || Parallel Order || Memory Order || Hand

Processor Alone | Fuse || Alone | Fuse || Alone | Fuse Coded
Motorola 68020 336 338 47 348 338 340 41
Intel 1386 20.5 | 20.6 20.2 20.1 19.9 19.8 20.1

Sequent Weitek | 8.74 | 8.61 8.90 8.49 8.26 7.96 8.14
Sun Sparc? 1.09 | 1.07 .842 682 813 672 .806
Intel 1860 705 | 696 .660 .631 548 518 HAT
IBM RS6000 493 | 480 459 A41 400 383 .390

97

FIGURE 6.4: Erlebacher: forward and
backward sweeps in Z dimension

{ Vector Order (outer loops sequential/inner loops parallel) }
DO K=N-2,1-1
DO J=1,N
DO I=1,N
F(LI,K)=(F(LJ,K)-A(K)*F(LJ,K-1))*B(K)
DO K=N-2,1-1
DO J=1,N
DO I=1,N
F(LJ,K) = F(LJ,K) - C(K)*F(L,J,K+1) - E(K)*F(LJ,N)

{ Parallel Order (outer loops parallel/inner loops sequential) }
DO J=1N
DO I=1,N
DO K=N-2,1-1
F(LI,K)=(F(LJ,K)-A(K)*F(LJ,K-1))*B(K)
DO J=1,N
DO I=1,N
DO K=N-2,1-1
F(LJ,K) = F(LJ,K) - C(K)*F(L,J,K+1) - E(K)*F(LJ,N)

{ Memory Order (in order of decreasing LoopCost) }
DO K=N-2,1-1
DO J=1,N
DO I=1,N
F(LI,K)=(F(LJ,K)-A(K)*F(LJ,K-1))*B(K)
DO J=1,N
DO K=N-1,2,-1
DO I=1,N
F(LJ,K) = F(LJ,K) - C(K)*F(L,J,K+1) -E(K)*F(LJ,N)

{ Hand-coded }
DO K=N-2,1-1
DO J=1,N
DO I=1,N
F(LI,K)=(F(LJ,K)-A(K)*F(LJ,K-1))*B(K)
DO J=1,N
DO K=N-2,1-1
DO I=1,N
F(LJ,K) = F(LJ,K) - C(K)*F(L,J,K+1) - E(K)*F(LJ,N)

98

In comparison, in the second loop nest K is the preferred middle loop. By com-
bining F(1,J,K) and F(I,J,K+1) in the same reference group and making F(I,J,N) a loop-
invariant reference, the K loop provides more savings than the J loop can by making
both A(K) and B(K) loop-invariant. This results in approximately a 5-10% improve-
ment for the 1860, showing that simply selecting the correct innermost loop is not
enough sufficient to yield the maximum data locality.

Our results show that data locality grows in importance with processor speeds.
Loop fusion provides additional improvements in execution time, but selecting the

correct loop permutation for good data locality again yields the greatest benefit.

6.7 Parallelism

In the following two subsections, parallelism is evaluated and exploited. We first
present a performance estimator that evaluates the potential benefit of parallelism. A
parallel code generation strategy then uses performance estimation and the cost model
developed in the previous section with other transformations to combine effective

parallelism and memory order, making tradeoffs as necessary.

6.7.1 Performance estimation

This section uses performance estimation to quantify the effects of parallelism on
execution time. Our performance estimator predicts the cost of parallel and sequential
performance using a loop model and a training set approach.

The goal of our performance estimator is to assist in code generation for both
shared and distributed memory multiprocessors [BFKK92, KMM91]. Modeling the
target machines at an architectural level would require calculating an analytical model
for each supported architecture. Instead our performance estimator uses a training
set to characterize each architecture in a machine-independent fashion. A training
set 1s a group of kernel computations that are compiled, executed and timed on
each target machine. They measure the cost of operations such as multiplication,
branching, intrinsics, and loop overhead. These costs are then made available to the
performance estimator via a table of data. Note, the training sets for the performance
estimator only measure access times to data in registers or the closest cache.

Of particular interest is the estimation of parallel loops. Given sufficient par-

allel granularity, using all available processors results in the best execution time.

99

Estimating the cost in this circumstance may be modeled by determining the follow-

ing.
c¢; = cost of starting parallel execution
¢y = cost of forking and synchronizing
a parallel process
P = number of processors
b = number of iterations of the parallel loop
t(B) = cost of the loop body

If the loop bounds are unknown, a guess is used that is based on the declared dimen-
sion of the arrays accessed in the loop. With these parameters the performance of a

parallel loop with sufficient work may be estimated by:
b
s P — | t(B) .
e+ [

However, if the amount of work is not sufficient, parallel loop execution is more
difficult to model. Instead of an equation, a table is used to indicate the appropriate
number of processors for the best performance. The model and the table are generated
using a training set.

The sample training set for determining parallel loop overhead begins by varying
the total amount of work. For each unit of work, the number of processors is varied
from 1 to the total available. The number of processors which minimize the execution
time of this work is selected. The result of a training run for parallel loops on the
Sequent 581 appears in Figure 6.5.

This particular training run repeatedly performed a single scalar operation that
executed for approximately 10 microseconds, which represents one unit of work in
Figure 6.5. FEach of the contour lines indicates a particular execution time. The
single line cutting across the contour lines represents the minimum execution time for
executing a particular work load and the appropriate number of processors. When
total work is below 250 a table determines the appropriate number of processors and
approximate execution time. Once the total work is over about 250, the parallel loop
model is used. The estimator provides a single cost function for evaluating loops that

chooses between the techniques based on total work and number of loop iterations.

Estimate(l, how) returns (7,np) where
[1s a loop with body B

how indicates whether [may be run in parallel

100

Interpolated contours in microseconds

processors
A Y |

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

o 50 100 150 200 250 300 350 400 450 500

total work

FIGURE 6.5: Parallel loop training set

This function returns a tuple (7, np) with an estimate 7 which is the minimal execution
time and the number of processors np necessary to obtain the estimate, based on
whether the loop is parallel. Note, if the loop is sequential or it is not profitable to

run it in parallel, the sequential running time and np = 1 are returned.

6.7.2 Introducing parallelism

The key to introducing parallelism is to maintain memory order during parallelization
by using strip mining and loop shifting (loop shifting moves an inner loop outward
across one or more loops). Strip mining performs two functions in parallelization. (1)
It preserves cache line reuse in parallel execution. Without strip mining, consecutive
iterations may be scheduled on different processors, denying cache line reuse. (2)
Because strip mining results in two loops, the parallel iterator loop may be shifted
outward to maximize granularity while the sequential strip remains in place providing
the data locality introduced using memory order. To illustrate this point, consider

the subroutine dmxpy from Linpackd written in memory order [DBMS79].

DO J = JMIN, N2
DOI=1, NI
Y(I) = Y(I) + X(J) * M(1,3)

101

The J loop is not parallel. The I loop can be parallel. Both contain reuse. A
simple parallelization that maximizes granularity would interchange the two loops and
make the I loop parallel without strip mining. Unfortunately with this organization,
the parallel loop may be scheduled such that consecutive iterations are assigned to
different processors causing false sharing of Y and eliminating cache line reuse for
consecutive accesses to X and M. In addition, cache lines containing the same array
elements would be required at multiple processors, increasing total memory and bus
utilization.

We instead strip mine a parallel loop by strip size SS =[N1/P] to provide reuse on
the strip and parallelize the resultant iterator. If the parallel loop is outermost, as in
matrix multiply, parallelization is complete. If not, we use loop shifting to move the
parallel iterator to its outermost legal position, maximizing its granularity. Applying
this strategy to dmxpy, we begin with the memory ordered loop nest. The T loop
is the only parallel loop and it contains reuse. Therefore, it is strip mined. The
parallel iterator is not outermost, but it is legally shifted to the outermost position.
The compiler shifts the loop, resulting in maximum granularity and data locality as
illustrated below.

PARALLEL DO I = 1, N1, SS

DO J = JMIN, N2

DO II = I, MIN(I + SS - 1, N1)
Y(IT) = Y(II) 4+ X(J) * M(IL,J)

6.7.3 Strip mining

If a loop is selected to be performed in parallel, it is strip mined if it contains any
reuse. Given sufficient iterations, strip mining exploits data locality and parallelism
by using [N/P| as the strip size where N is the number of iterations. Assuming

cls < P, the iteration space is sufficiently large it P < N. If
P<N<elsxP,

strip mining by [N/P] is less than the ¢ls and may result in false sharing. However,
the granularity of the parallel loop does match P and some reuse will occur. In this
case, we still strip mine by [N/P]. However, if N < P, strip mining may provide reuse
but at the cost of drastically reducing the granularity of parallelism. This tradeoff is

very machine specific. We choose not to strip mine when N < P.

102

When memory order is computed, the loops are marked to indicate if they contain
any reuse. If there is reuse, the strip mining algorithm uses the above equations to
select a strip size that maximizes granularity and reuse. If there is no reuse, the
strip mining algorithm does not perform strip mining, giving more flexibility to the

scheduler.

6.7.4 Parallelization algorithm

For memory ordered loop nests that are not parallel on the outermost loop, the
Parallelization algorithm uses loop shifting to introduce parallelism. It uses loop
shifting, rather than a general loop permutation algorithm, in order to minimize the
effect of parallelization on data locality. It performs strip mining when the loop
contains reuse before shifting for the same reason. In the worst case, it is O(n?) time.

Algorithm 6.4 introduces parallelism into memory order. It begins by testing

whether the outermost loop is parallel. In the first iteration of the “for £” (j = k = 1),

ALGORITHM 6.4: Introduce parallelism

Parallelization (L)
INnpUT: L ={oy,...,0,} alegal permutation

OurputT: 7 a parallelizing transformation

ALGORITHM:
T=0
forj=1,n
for k=j,n
if oy legal at position j & parallel
7 = { StripMine(oy),
shift iterator to j, parallelize it }
return 7
elseif o}, legal at j & o; becomes parallel
7T = {StripMine(oy), shift k iterator to j,
StripMine(new o;41),
parallelize the j+1 iterator }
endif
endfor
if 7 # 0 return 7

endfor

103

the first “if” tests if the outermost loop is parallel. Trivially, a shift of loop o; to
position j is always legal.

If the loop is parallel, it is strip mined and parallelized and the algorithm returns.
If the loop is not parallel, a legal shift of an inner loop to position j which is parallel
at position j is sought. If a parallel loop is found that can be shifted outermost to
J, 1t is strip mined, parallelized and shifted and the algorithm returns. Otherwise, a
shift to position 7 may cause the next inner loop, i.e. the loop originally positioned
at 7, to be parallel. This situation is determined in the “elseif.” Because it is more
desirable to parallelize a loop at position j than at j + 1, all other shifts to position j
are considered before this parallelization is returned at the completion of the “for £.”

In Algorithm 6.4 Parallelize does not detect when strip mining results in a strip size
of less than ¢ls or strip mining is not performed due to insufficient parallel iterations.
As we saw in Section 6.3 these conditions are unavoidable in some cases and the best
possible performance is gained even when they hold. However, we extend Parallelize
as follows to seek a better parallelization for which neither condition holds.

It StripMine returns with a strip size of less than ¢ls or does not strip mine due to
insufficient parallel iterations, then the number of parallel iterations PI and the size
of the strip SS are recorded and the “for k” loop continues instead of returning. If the
“for k7 finds a parallelization where neither condition holds, it returns. Otherwise,
at the completion of the “for k” it selects the parallelization with the largest pair
(P, SS).

6.8 Optimization algorithm

The optimization driver for exploiting data reuse and introducing parallelism appears
in Algorithm 6.5. It combines the component algorithms described in the previous
sections and is also O(n?) time.

It first calls MemoryOrder to optimize data locality via loop permutation. It then
determines whether the loop contains sufficient computation to pursue parallelism.
If it does, the memory ordered loop nest is provided to the algorithm Parallelize. If
needed, Parallelize uses strip mining and loop shifting to introduce loop level paral-
lelism.

The search space in Parallelize is constrained to meet our goal of perturbing the

memory order as little as possible. If parallelism is not discovered and would be

104

ALGORITHM 6.5: Optimizing for parallelism and data locality

SimpleOptimizer (L)
INpPUT: L=Al,....l.}

OvuTpuT: 7 an optimization of £

ALGORITHM:
O = MemoryOrder(L)
np = Estimate (O, parallel)
if np > 1 (parallelism is profitable)
7 = Parallelize(O)
endif
perform { O, 7 }

profitable, other optimization strategies that consider all loop permutations, loop
skewing [WL90], or loop distribution (see Chapter 7) should be explored.

6.9 Experimental results

The overall parallelization strategy was also tested by applying it by hand to two ker-

nels. The results of these experiments and those for data locality are very promising.

6.9.1 Matrix multiply

The speed-ups of a parallel tiled matrix multiply on 7 and 19 processors of a Sequent
Symmetry S81 for arrays of size 150 x 150 and 300 x 300 are presented in Table 6.5.
We ran a sequential version with the loops in memory order JKI, a sequential tiled
version, and the identically tiled parallel version. The parallel version is tiled by 4
and is the same version presented in Section 6.1. Besides tiling, no other low-level
memory optimizations were used. The speed-ups were basically linear for both matrix

sizes when comparing the two tiled versions.

TABLE 6.5: Speed-ups for Parallel Matrix Multiply

speed-up of parallel JKI tiled

19 processors 7 processors
over over over over
sequential JKI | sequential JKI tiled | sequential JKI | sequential JKI tiled
150x150 20.5 18.8 7.5 6.8
300x300 20.1 18.7 7.5 7.0

105

6.9.2 Dmxpy

The subroutine dmxpy from Linpack was optimized using these algorithms as illus-
trated in Section 6.7.2. In scientific programs, there are many instances of this type
of doubly-nested loop which iterates over vectors and/or matrices, where only one
loop is parallel and it is best ordered at the innermost position. These loops may
be an artifact of a vectorizable programming style. They appear frequently in the
Perfect benchmarks [CKPK90], the Level 2 BLAS [DCHHS8S8], and the Livermore
loops [McM86].

Table 6.6 illustrates the performance benefits with the organization of dmxpy
generated by our algorithm on matrices of size 200 x 200 on 19 processors. For
comparison, the performance when the I strip is not returned to its best memory

position and a parallel inner I loop were also measured.

TABLE 6.6: Dmxpy on 19 processors

loop organization
I loop parallel

[Jimw|rirJ | JiI

speed-up over sequential JI | 16.4 13.8 2.9

6.10 Related work

Our work bears the most similarity to research by Wolf and Lam [WL91]. They
develop an algorithm that estimates all temporal and spatial reuse for a given loop
permutation, including reuse on outer loops. This reuse is represented as a localized
vector space. Vector spaces representing reuse for individual and multiple references
are combined to discover all loops £ carrying some reuse. They then exhaustively
evaluate all legal loop permutations where some subset of £ is in the innermost
position, and select the one with the best estimated locality.

Wolt and Lam’s algorithm for selecting a loop permutation is potentially more
precise and powerful than the one presented here. It directly calculates reuse across
outer loops and can suggest loop skewing and reversal to achieve reuse; however, how
often these transformations are needed is yet to be determined. Skewing in particular
is undesirable because it reduces spatial reuse.

Gannon et al. also formulate the dependence testing problem to give reuse and

volumetric information about array references [GJG88]. This information is then

106

used to tile and interchange the loop nests for cache, after which parallelism is in-
serted at the outermost possible position. They do not consider how the parallelism
affects the volumetric information nor if interchange would improve the granularity
of parallelism.

Porterfield presents a formula that approximates the number of cache lines ac-
cessed for a loop nest, but it is restricted to a cache line size of one and loops with
uniform dependences [Por89]. Ferrante et al. present a more general formula that
also approximates the number of cache lines accessed and is applicable across a wider
range of loops [FST91]. However, they first compute an estimate for every array ref-
erence and then combine them, trying not to do dependence testing. Like Wolf and
Lam, they exhaustively search for a loop permutation with the lowest estimated cost.

Many algorithms have been proposed in the literature for introducing parallelism
into programs. Callahan et al. use the metric of minimizing barrier synchroniza-
tion points via loop distribution, fusion and interchange for introducing parallelism
[ACKS8T7, Cal87]. Wolf and Lam [WL90] introduce all possible parallelism via the uni-
modular transformations: loop interchange, skewing, and reversal. Neither of these
techniques try to map the parallelism to a machine, or try take into account data
locality, nor is any loop bound information considered. Banerjee also considers intro-
ducing parallelism via unimodular transformations, but only for doubly nested loops
[Ban90b]. Banerjee does however consider loop bound information.

Because we accept some imprecision, our algorithms are simpler and may be ap-
plied to computations that have not been fully characterized in Wolf and Lam’s uni-
modular framework. For instance, we can support imperfectly nested loops, multiple
loop nests, and imprecise data dependences. We believe that this approximation is a
very reasonable one, especially in view of the fact that we intend to use a scalar cache
tiling method as a final step in the code generation process [CCK90]. In addition,
the algorithms presented here are O(n?) time in the worst case, where n is the depth
of the loop nest, and are a considerable improvement over work which compares all

legal permutations and then picks the best, taking exponential time. Our approach
has appeared elsewhere [KM92].

6.11 Discussion

We have addressed the problem of choosing the best loop ordering in a nest of loops for

exploiting data locality and for generating parallel code for shared-memory multipro-

107

cessors. As our experimental results bear out, the key issue in loop order selection is
achieving effective use of the memory hierarchy, especially cache lines. Our approach
improves data locality, provides the highest granularity of parallelism, and properly
positions loops for low-level memory optimizing transformations. When possible, the
benefits of parallelism and data locality are therefore both exploited.

The next chapter incorporates this algorithm into a more general, interprocedural

approach for generating parallel code.

108

Chapter 7

An Automatic Parallel Code Generator

In this chapter, we present a parallel code generation algorithm for shared-memory
multiprocessors. We use the results of Chapters 4 and 5 to design an interprocedural
algorithm for complete application programs. The key parallelization component
is the algorithm for improving data locality and introducing parallelism developed
Chapter 6. This chapter presents a new technique that performs loop fusion to
enhance granularity. When necessary, partial parallelism is exploited using loop dis-
tribution. A general, unified treatment of fusion and distribution for loop nests is
described and shown optimal under certain constraints. The result is a cohesive loop-
based, interprocedural parallelization algorithm which builds on extends the work in

previous chapters.

7.1 Introduction

The goal of the optimization algorithm presented in this chapter is to introduce
parallelism in a way that minimizes execution time over the entire program. The
major components used by the parallelizer to discover and exploit parallelism and

data locality are as follows.

1. Loop-based intraprocedural transformations
e loop permutation
e strip mining
e loop fusion

e loop distribution

2. Interprocedural transformations
e loop embedding
e loop extraction
e procedure inlining

e procedure cloning

3. Performance estimation

109

The purpose of this work is to improve execution time by exploiting and discover-
ing parallelism and improving data locality. Exploiting parallelism takes three forms:
(1) assuring sufficient granularity to make parallelism profitable, (2) maximizing gran-
ularity, making each parallel task as large as possible, and (3) matching the number
of parallel iterations to the machine. Assuring sufficient granularity and matching
it to the machine is dependent on the architecture. Most previous research focuses
on discovering parallelism and/or maximizing its granularity without regard to data
locality [Cal87, WL90, ABC*87].

Our approach addresses all of these concerns. The key component is the combi-
nation of loop interchange and strip mining developed in Chapter 6 which considers
all these factors. Sufficient granularity is assured using performance estimation (see
Section 6.7.1). In this chapter, we present a loop fusion algorithm to further in-
crease granularity. In addition, we use loop distribution to discover parallelism when
necessary. A unified treatment of fusion and distribution shows the problems to be
identical. This algorithm is shown to be optimal for a restricted problem scope.

This chapter uses the extensions developed in Chapter 5 to design an algorithm
that considers loop-based transformations even in the presence of procedure calls.
The loop-based transformations determine which, if any, interprocedural transfor-
mations are necessary. The interprocedural transformations are called enablers and
are applied using goal-directed interprocedural optimization [BCHT90]. The inter-
procedural transformations are applied only when they are expected to improve ex-
ecution time; ¢.e. the interprocedural transformations are required to perform a

loop-based parallelization of a loop nest that spans procedures.

7.2 Parallel code generation
7.2.1 Driving code generation

The driver for optimizing a program appears in Algorithm 7.1. The algorithm Driver
optimizes routines and loops in reverse postorder using the augmented call graph
Gy, guaranteeing that a procedure or loop is optimized only when the context of its
calling procedures and outer loops is known. This formulation is general enough for
performing many whole program optimizations on programs without recursion, for
which G, is a DAG. It is used here to introduce a single level of high-granularity par-
allelism and exploit the memory hierarchy. We illustrate this algorithm by optimizing

the following example.

110

ExXaMPLE 7.1:

PROCEDURE C edges € Gge:
CALL S (C, S) — call edge
DOI=1,N (C, T) — loop edge
CALL S (I, S) — call edge
ENDDO (S, J) — loop edge
PROCEDURE S
DOJ=1,N
ENDDO

Driver begins with C and marks it visited. It then tests if all of procedure C’s
predecessors have been optimized. Let’s assume none of them have. Driver then tries
to recursively optimize each of C’s successors in the “forall.” The first successor is
the call to S. However, all of S’s predecessors have not been visited so it proceeds
to the next successor, the 1 loop, whose predecessors have all been visited. Driver
then optimizes the T loop in step (3) of the algorithm using Optimize to specify a
loop-based parallelization. Let’s assume Optimize simply parallelizes the T loop. The
procedure Transform applies this parallelization and marks all the descendants of the
I loop (S and J) as optimized. Note, the descendants are not marked visited.

Driver continues to seek optimization candidates for the descendants of the I loop
to ensure that all paths to a procedure are optimized if possible. Driveris called again
on procedure S, this time all of S’s predecessors have been visited. It checks to see if
all the predecessors of S have been optimized as well as visited. Of S’s predecessors,
C and the T loop, only the I loop has been optimized. Therefore, there is a calling
sequence to S that does not contain parallelism and S should be and is considered
for optimization. The only successor of S is the J loop and it is optimized next using
Optimize. If a parallelization is specified, it is performed. There are no more edges

or unvisited nodes, consequently the algorithm terminates.

Discussion

This section details more formally the Driver algorithm. Driver is initially called on
the program’s root node, and each node in the G, is initialized to be unvisited and
unoptimized. The G, is traversed in reverse postorder, such that a node n is only

visited once all its predecessors are visited. Note, that only procedure nodes may have

111

ALGORITHM 7.1: Driver for parallel code generation

Driver (n)
INPUT: n is a node in the G,
ALGORITHM:
if any predecessor of n is not visited return
mark n visited
if n is a procedure and all predecessors of n are marked optimized return
forall m where 3 edge (n,m) in topological order

(1) if m is a procedure
Driver (m)
(2) if (m is wisited) and (3 (m,s) € Gqe such that s is optimized)
7 = Fusion(sy,...,sk)
Transform(n, {s1,...,st},7)
endif
(3) else

if m is an outer loop of procedure n
let £ include the entire looping structure rooted at m
7 = Optimize(L)
Transform(n,m,7)
endif
Driver (m)
endif

endforall

more than one immediate predecessor. If n is a procedure and all its predecessors
are marked as optimized, then parallelism has been introduced in each calling context
and the procedure does not need to be optimized for additional parallelism.

Loop nests are optimized as a whole when the outermost loop of the nest is
encountered in step (3) of the algorithm. If m is the outermost loop of a nesting
structure £ at step (3), £ is constructed and optimization is performed on it. If
optimization is successful, the transformation is applied and all the affected nodes are
marked as optimized by the subroutine Transform which appears in Algorithm 7.2.
However, the algorithm continues to recurse over all successors of a node regardless
of node type until all nodes have been visited, or all the callers of a procedure have
been optimized, or the loop or procedure itself has been optimized.

At step (2), if m is a procedure and m is visited, optimization has just been

performed on all the loops and calls it contains. If any of these successors of m are

112

optimized, they are now considered for fusion. This feature allows fusion of loops that
are not enclosed by an outer loop. Fusion of loops that are enclosed by an outer loop
and all other loop-based transformations are determined by the Optimize algorithm.

For example, consider a procedure P containing two adjacent loops, [; and [;. The
procedure P is visited followed by [; and /5. Both are determined to be parallel and
are marked as optimized. Then Fusion (l1,l3) is considered to maximize granularity
and to reduce synchronization and loop overhead.

In order to simplify the discussion, this version of Driver does not perform any
interprocedural transformations. The parallelizer is extended in Section 7.6 to per-
form these interprocedural transformations. This version of the parallelizer does and

must perform procedure cloning for correctness.

7.2.2 Procedure cloning

Procedure cloning is required when optimizations along distinct call paths want to
use different versions of the same procedure [CKT86a, CHK92]. In our algorithm,
this situation only occurs when a procedure is called more than once.

Consider again Example 7.1. Procedure S may be called once directly and once
from inside the I loop. The second call to S is parallelized by making the T loop
parallel and the first call by making the J loop parallel. In this case, two versions
of S are needed. The original sequential version of S is required for the parallel 1
loop. Another version, called the clone, is needed in which to specity the J loop be
performed in parallel.

To determine if cloning is necessary, the parallelizer keeps track of whether or not
parallelism has been introduced in callers using the Walk&MarkG,. algorithm. The
subroutine Transform in Algorithm 7.2 determines if a clone is necessary.

Remember, only nodes whose predecessors have all been visited, where at least
one is unoptimized, are candidates for optimization in Parallelization. If Optimize
returns a parallelizing transformation for a candidate, Transform is called to apply it
to the appropriate procedure n. If none of n’s predecessors are optimized, a clone is
unnecessary and the transformation is performed directly on the procedure n. If any
of n’s predecessors are marked optimized, then a clone is need on which to apply the
current optimizing transformation. If a clone already exists, then other loop nests
in the procedure have been optimized and the new optimization is also applied to

this existing clone. Otherwise a clone is created, and the optimization is applied to

113

ALGORITHM 7.2: Applying transformations and cloning

Transform (n,L,7T)
INPUT: n is a procedure node in the G,
L is a set of loops in n
7T a transformation to perform on L
ALGORITHM:
if 7 = () return
if 4 a predecessor of n marked optimized
if 4 n.one create a clone of procedure n, ngone
Apply (neone. T)
else
Apply (n,7)
endif
forall [€ £ Walk&MarkG,.(/)

Walk&MarkG,. (n)
INPUT: n is a node in the G,
ALGORITHM:
if n marked optimized return
mark n optimized
forall m where 3 edge (n,m) in topological order
Walk&MarkG,.(m)

endforall

the cloned procedure. Only two versions of any procedure are required using this

simplified algorithm.

7.2.3 Loop-based optimization

The procedure Optimize in Algorithm 7.3 determines an optimizing transformation
to parallelize an arbitrary loop nest £ = {l,...,1,}. L describes a loop nesting
structure rooted at [; that may contain constructs such as imperfectly nested loops,
procedure calls, and control flow. The loop-level transformations Optimize considers
are loop permutation, strip mining, loop fusion, and loop distribution.

Optimize first calls Order& Parallelize which performs loop permutation and strip
mining using the algorithms developed in Chapter 6 for improving data locality and
exploiting parallelism. Order& Parallelize begins by improving data locality using
MemoryOrder. Given sufficient granularity, it then inserts parallelism into the resul-

tant nest using the algorithm Parallelize. MemoryOrder and Parallelize are defined

114

ALGORITHM 7.3: Optimizing a loop nest

Optimize (L)

INnpUT: L=A{l,....1,}, aloop nest
OurpuT: 7 a parallelizing transformation
ALGORITHM:

(1) 7 = Order&Parallelize (L)
if (T #0) return 7
(2) BD = BreakDependences (L)
if BD # 0
7 = Order&Parallelize (BD(L))
if (7 # 0) return {7,BD}
endif

(3) 7 = Distribution(BD(L))
return {7, 8D}

Order&Parallelize (L)

INnpUT: L=A{l,....1,}, aloop nest
OurpuT: 7 a parallelizing transformation
ALGORITHM:

O = MemoryOrder(L)
np = Estimate (O(L), parallel)
if np = 1 (parallelism is not profitable) return O
7 = Parallelize(O(L))
if 7 # 0 (parallelism found)
F = Fusion (7(0O(L)))
return { 0,7, F }
endif

return ()

in Chapter 6. If Order&Parallelize has been successful at introducing parallelism
at some level, fusion of loops in the resultant nest is considered. This algorithm is
discussed in detail below.

If step (1) is unsuccessful, step (2) attempts to satisfy as many dependences as
possible with BreakDependences. The literature includes a collection of transforma-
tions that are used to satisfy specific dependences that inhibit parallelism. They in-
clude loop peeling, scalar expansion [KIKLW80a], array renaming [AK87, KKLW80al],
alignment and replication [Cal87], and loop splitting [AKS8T7].

These transformations may introduce new storage to eliminate storage-related

anti or output dependences, or convert loop-carried dependences to loop-independent

115

dependences, often enabling the safe application of other transformations. If all the
dependences carried on a loop are eliminated, the loop may then be run in parallel. If
BreakDependences has some success, Order& Parallelize is called again on the result.
If neither step (2) or (3) is successful, loop distribution to introduce partial parallelism
is considered, as discussed in the next section.

The Optimize algorithm is able to introduce parallelism into loops which contain
procedure calls and unstructured control flow. This important ability stems from the

analysis and transformations described in Chapters 4 and 5.

7.3 Partitioning for loop distribution and loop fusion

In this section, we present a new algorithm which maximizes parallelism and mini-
mizes the number of loops. It unifies the treatment of loop distribution and fusion.
This solution is shown optimal for a single loop under certain constraints.

Loop distribution is safe if the partition of statements into new loops preserves
all of the original dependences (see Section 4.2). Dependences are preserved if any
statements involved in a dependence recurrence are placed in the same loop. The
dependences between the partitions then form an directed acyclic graph that can
always be ordered using topological sort [AK87, KKP*81].

By first choosing a safe partition of the loops with the finest possible granular-
ity and then fusing partitions back together larger partitions may be formed. This
transforms the loop distribution to one of loop fusion, a problem thought to be very
hard. In fact, Goldberg and Paige prove a nearby fusion problem NP-Hard, but their
result is not applicable here [GP84]. The algorithm we present is linear.

In the loop fusion problem for parallelism, the partitions begin as separate loops
that are either parallel or sequential and may or may not be legally fused together.
In loop distribution, it is always legal to fuse the loops back together and run the
original loop sequentially. We would like to utilize all the parallelism and have the
fewest loops. Callahan refers to these criteria as mazimal parallelism with minimum
barrier synchronization [Cal87].

The loop distribution and loop fusion problem is a graph partitioning problem on
a directed acyclic graph (DAG). Each node in the graph represents a sequential or
parallel loop containing a set of statements. There are data dependence edges, some
of which are fusion preventing. Fusion preventing edges exist between nodes that

cannot be fused together without changing the loop’s semantics. Fusion preventing

116

edges also exist between parallel nodes that, when fused, force the resultant loop to
be sequential. We seek to minimize the number of partitions (loops), subject to the
constraint that a particular partition contains only one type of node; i.e., undirected
fusion preventing edges are implicit between sequential and parallel nodes. A more

formal description follows.

Partitioning problem:

Goal: group parallel loops together and sequential loops together such
that parallelism is maximized while minimizing the number of partitions.

Given a DAG with:
nodes parallel & sequential loops
edges data dependence edges some of which are
fusion preventing edges
Rules:

1. cannot fuse two nodes with a fusion preventing edge between them
2. cannot change relative ordering of two nodes connected by an edge
3. cannot fuse sequential and parallel nodes

Callahan presents a greedy algorithm for a closely related problem that omits rule 3
[Cal87, ACKS8T7]. His work also tries to partition a graph into minimal sets, but his
model of parallelism includes loop-level and fork-join task parallelism. For example,
consider the example graph in Figure 7.1.

Callahan’s greedy algorithm partitions this graph into {P;,$;} and {P2}, and
places a barrier synchronization between the partitions. S; and Py run in parallel with
each other, and the iterations of P; may be performed in parallel. Py is performed
in parallel once they both complete. Callahan’s formulation of the loop distribution
problem ignores the node type, enabling the greedy algorithm to provably minimize
the number of loops and maximize parallelism for a single level-level [Cal87, ACKS87].

Our model of parallelism differs in that it only considers loop-level parallelism. If

FIGURE 7.1: Counter example for the greedy algorithm

117

parallel the cost of loop overhead is higher than the cost of barrier synchronization,
our model will be an improvement.

Consider using the greedy algorithm for the loop distribution and loop fusion
problem restricted to loop-level parallelism. In the example in Figure 7.1, the loops
Sy and Py are of different node types and cannot be placed in the same partition,
therefore one of Py or S; must be selected. If Sy is selected first, the greedy partition
is {S1}, {P1,Po}. If Py is selected first, the greedy partition is {P1}, {S1}, {P2}. The
greedy algorithm is foiled because it cannot determine which node to select first.
Note, if the graph consists of just sequential nodes or just parallel nodes, then this
is equivalent to Callahan’s problem formulation. Therefore, the greedy algorithm is
optimal in the number of loop nests created when the nodes are only of one type.

Our algorithm is based on this observation.

7.3.1 Simple partition algorithm

Our solution divides the problem into two parts, a sequential graph and a parallel
graph. The greedy algorithm then minimizes the number of partitions for each of
the graphs and maximizes parallelism in the parallel graph. Because parallel nodes
and sequential nodes cannot be placed in the same partition without violating the
maximum parallelization constraint, merging the solutions will result in a partitioning
that maximizes parallelism and minimizes the number of loops. The remainder of this
section describes how to correctly and efficiently construct the separate graphs and

merge the reduced, partitioned solutions back together.

FiGUure 7.2: Partition graph G,

118

Correctness of problem division

To separate the problem into two parts, the essential relationships in the original
graph G, must be preserved in the two component graphs, the sequential graph G
and the parallel graph G, without introducing unnecessary constraints. First, all
the ordering edges between two nodes of the same type must be preserved in the
component graphs. In addition, (¢, may represent relationships that prevent nodes of
the same type from being in the same partition, but that do not have an edge between
them. Consider GG, in Figure 7.2. Although an edge does not directly connect S; and
Se, they may not be fused together without including P4. This fusion would violate
the maximal parallelism constraint. These transitive, fusion preventing relationships
are required between two nodes of the same type, that are connected by a path of
nodes of a different type. No other edges are required. G also contains edges from
G/, that connect sequential nodes (likewise for G,).

The simplest way to preserve all the fusion preventing relationships in GG, in the
component graphs is to compute a modified transitive closure on G, before pulling
them apart. A fusion preventing edge are added between two sequential nodes that
cannot be placed in the same partition because there exists a path between them
that contains at least one parallel node. Similarly, a fusion preventing edge is added
between two parallel nodes connected by a path containing a sequential node. We
now show how to divide G, and compute the necessary transitive fusion preventing
edges in linear time.

Computing a transitive closure on a DAG is O(N * F) time and space where N
is the number of nodes in (¢, and FE is the number of edges [AHU74]. Of course,
transitive closure introduces additional edges that are unnecessary. Applying this
algorithm to the graph in Figure 7.2, would result in the following fusion preventing
edges: (S1,56), (S2,9), (S1,S8), (S2,Ss), (P4,P7). The two of edges, (S1,5s) and (S2,Ss),
are redundant because of the original ordering edge (Ss,Ss) and the two other fusion

preventing edges (S1,S¢), (S2,56)-

Efficient problem division

Using the following definition, we can determine the minimal number of fusion pre-
venting edges needed between parallel nodes to preserve correctness. Similarly, the

minimal number of edges between sequential nodes can be determined.

119

ALGORITHM 7.4: Add transitive fusion
preventing edges to partition graph

FindParallelTFPedges (n)
InpuT: n € (G, a node in the original graph
OvutrpuT: Gy partition graph with transitive fusion preventing edges
ALGORITHM:
if any predecessor of n is not visited return
mark n visited (reverse postorder walk)
if n €Snodes
Paths(n) = U Paths(t)
(t:n)€Go
else
Paths(n) = n
forall (¢,n) € G, s.t. t €Snodes
forall pnode; € Paths(t)
addFusionPreventingEdge (pnode;, n)
endforall
endforall
endif
forall (n,m) € G, FindParallelTFPedges(m)

Definition 7.1 Two parallel nodes, pnode; and pnode;, require a tran-
sitive fusion preventing edge in their component graph if and only if:
VY path, = apathpnode; — snodet — pnode; € G,
1. 3 n € path, s.t n # pnode; and n # pnode; and
2.V n € path,, n € Snodes
where Snodes is the set of sequential nodes and Pnodes is the set of
parallel nodes in the original graph G,.

Intuitively, there must exists a path between two parallel nodes, with at least one
node on the path and and no parallel nodes are on the path.

Based on this definition, FindParallelTFPedges in Algorithm 7.4 computes the
necessary transitive fusion preventing edges that must be inserted between parallel
nodes. The corresponding algorithm FindSequentialF'T'Pedges is specified similarly.
FindParalle]TF'Pedges formulates this problem like a data-flow problem, accept that
solutions along the edges are different depending on the types of nodes an edge con-
nects.

FindParalle]TF'Pedges recursively walks the nodes in reverse postorder, such that

a node is never visited until all its predecessors have been visited. For a node n, it

120

computes a set of parallel nodes Paths(n), such that pnode € Paths(n) if there exists
a path from pnode to n that contains sequential nodes and does not contain parallel
nodes. Paths(n) for a sequential node is the union of all n’s predecessors Paths.
Paths(n) for a parallel node is itself, n.

It n is a sequential node, no fusion preventing edges need be added. If n is a
parallel node, fusion preventing edges are added from each member of Paths(t) to n,
where is a sequential node and a predecessor of n.

Performing FindParallelTFPedges and FindSequential TFPedges results in a par-
tition graph G that includes all the necessary transitive relationships between parallel
nodes, and those between sequential nodes. This graph can now easily be separated
by placing all the parallel nodes and all the edges between parallel nodes in one
graph G, and all the sequential nodes and edges between them in G. Algorithm 7.5
provides the specifics.

If this algorithm is applied to the example in Figure 7.2 the transitive graph and
the component graphs that result appear in Figure 7.3. The fusion preventing edges it
adds are (S1,S6), (S2,96), (P4,P7). Callahan’s greedy algorithm may now be applied to
the component graphs to obtain a minimal solution for each. The minimal solution for

the example places S; and Sy in the same partition, Sg and Sg in the same partition, P3

ALGORITHM 7.5: Place sequential and
parallel nodes into separate graphs

PullApart (n)
InpuT: n € Gy a node in partition graph with transitive fusion preventing edges
OutpuT: (), partition graph for parallel nodes
G5 partition graph for sequential nodes
ALGORITHM:
mark n visited
if n € Shodes
add n to G,
forall (n,m) s.t. m € Snodes add (n,m) to G
else n € Pnodes
add n to G,
forall (n,m) s.t. m € Pnodes add (n,m) to G,
endif
forall (n,m) s.t. m unvisited PullApart (m)

121

and P4 in the same partition, and P; and Ps in the same partition. This partitioning
is illustrated in Figure 7.4 for G5 and G,,.

7.3.2 Merging the solutions

Merging the separate solutions is a straightforward mapping of the edges in G, to
the nodes in Gy and G, to form a merged graph G,,. The merged graph is formed
by placing all the edges and nodes in Gy and G, into G, and then adding all the
edges in (G, where one endpoint is in G and and the other is in G,. Because the
construction of GG and GG, assures they are both DAGs and G, is a DAG, G, will be
a DAG. Therefore, it can be topologically sorted into a linear ordering. In Figure 7.4,

the merged graph G, and a linear ordering for our example is presented.

7.3.3 Discussion

The driver for partitioning appears in Algorithm 7.6. It first inserts the required
fusion preventing edges. The problem is then divided into two parts and the greedy
algorithm performed on each. The resulting solutions are minimal for each part.
These solutions are then merged back together to form one overall solution that
produces the minimal number of loops achievable without sacrificing parallelism.
These algorithms all take O(N 4 E') time and space, making them practical for use
in a compiler. This algorithmic approach may be applied to other graph partitioning

FiGure 7.3: Dividing G,

Gt Gp

Yoo ofolofc
@Q@@ gee
ofo

122

problems as well. The separation of concerns lends itself to other problems that need
to sort or partition items of different types while maintaining transitive relationships.
In addition, the structure of the algorithm enables different algorithms to be used for
partitioning or sorting the component graphs.

The following two sections briefly describe how to use the partitioning algorithm

to perform loop fusion and loop distribution.

7.4 Loop fusion

In Algorithm 7.1 Driver, candidates for loop fusion are discovered at step (2). The
candidate nests have been optimized and may be parallel or sequential loops. In
addition, candidates for loop fusion are discovered in Algorithm 7.3 Order& Parallelize.
Both algorithms need to fuse nests that do not have a common outer loop and may
fuse loops that do have a common outer loop. Therefore, fusion of outer distinct
loops is attempted first. Fusion is then considered for any candidates created by the
outer fusion as well as for candidates present in the original loop structure.

Fusion is always considered last because it may interfere with loop permutation.
Permutation is multiplicative and is therefore usually more effective than fusion, which
is additive, for creating a larger granularity of parallelism. However, fusion does
increase granularity and reduce loop overhead. Fusion also has both good and bad
consequences on cache line and register reuse. The merged references may increase
data reuse due to completely intersecting references. It may also thwart reuse by

causing the data for a single iteration to overflow cache.

FiGUre 7.4: Fusing G, & G, and merging the result
G,

v

{S1,82},{S6,88},{P3,P4},{P5,P7}

123

ALGORITHM 7.6: Partition Algorithm

Partition (G,)
INpUT: Gy = (N, F)
N = parallel and sequential loops
FE = data dependence & fusion preventing edges
OurputT: 7 a parallelizing transformation
ALGORITHM:
forall n € GG, mark n unvisited
while (3 n € G, marked unvisited) and (n has no predecessors)
FindParallelTFPedges (n)
endwhile
forall n € GG, mark n unvisited
while (3 n € G, marked unvisited) and (n has no predecessors)
FindSequential TFPedges (n)
endwhile

forall n € GG; mark n unvisited

while (3 n € Gy marked unvisited) and (7 has no predecessors)
PullApart(n)

endwhile

Greedy (G,)

Greedy (G)

Merge (G, G5, Gy)

7.5 Loop distribution

In Algorithm 7.3 Optimize, loop distribution is considered at step (3) to introduce
parallelism when other techniques have failed. Loop distribution seeks parallelism
by separating independent parallel and sequential statements in L. If the loop nest
contains only a single loop, the partitioning algorithm can be applied to the finest
division of the statements in the loop. Although the partitioning algorithm yields
maximal theoretical parallelism, it may not be profitable to perform all of the resul-
tant loops in parallel. In this case, all unprofitable parallel loops should be marked
sequential and the partitioning algorithm should be applied again.

If there are multiple nests, loop distribution begins by finding the finest division
of statements at the outermost loop level. If Order& Parallelize can parallelize any
of these, then the partitioning algorithm is applied to increase their granularity. For

divided loop nests that Orderd& Parallelize cannot parallelize, the outer loop is specified

124

as sequential and this algorithm is applied recursively to the inner nest of loops.

Otherwise, the nest is performed sequentially.

7.6 Integrating interprocedural transformations

We now consider integrating the interprocedural loop embedding, loop extraction and
procedure inlining to Algorithm 7.1 Driver, the driver for parallel code generation.
In Chapter 5 we developed additional testing mechanisms in the caller for optimizing
nesting structures that cross procedure boundaries. Potential loop and call sequences
that may benefit from embedding or extraction are adjacent procedure calls, loops
adjacent to calls, and loop nests containing calls. Another candidate for embedding
and extraction is a looping structure that contains an outermost loop that encloses
the body of the called procedure. For example, two adjacent procedure calls may
both contain parallel enclosing loops. If these loops may be fused legally and prof-
itably, fusing them is accomplished by first performing loop extraction on both of
the procedures. A candidate for procedure inlining in this setting contains loops, but
does not contain an enclosing loop.

Candidates for interprocedural optimization are discovered in traversal of the aug-
mented call graph at steps (2) and (3) in Algorithm 7.1. At step (2), independent
loops and procedures have been optimized and they are now considered for fusion.
As illustrated in Section 5.5, the fusion algorithm is capable of testing and deter-
mining fusion of candidate loops and calls. Therefore, no additional mechanisms are
required in this case. If a fusion is specified here, loop extraction is the appropriate
interprocedural transformation to enable it.

In step (3), a loop structure rooted at m is created. If no attempt at inter-
procedural transformation is desired, or if there are no calls within the loop struc-
ture, m consists of just the loops in the current procedure. Even if no interprocedural
transformations are considered, loops containing calls will still be parallelized when
profitable. Remember that when interprocedural transformations are considered, they
are still only applied if necessary to enable a parallelism enhancing transformation.

It we wish to consider only loop embedding and extraction, then the loop structure
for any calls in m that contain enclosing loops is exposed to optimization by including
the enclosing loops in £ and ignoring the call site (£ is the loop structure on which
Optimize is called). The extensions for array sections described in Chapter 5 place

annotations at the call and loops for the accessed arrays, allowing them to be treated

125

as normal array references. By using the annotations, the optimization routine is thus
permitted to optimize across procedure boundaries when and if necessary. Similarly,
if procedure inlining is a desired option, the entire loop structure in a call can be
considered at the caller via this method.

Optimize does not specify explicitly the interprocedural transformations that are
required to perform the optimizing transformation 7 that it returns. The inter-
procedural transformations are instead implicit in 7 given the original program’s

looping structure.

7.6.1 Selecting the appropriate interprocedural transformation

To apply the set of transformations specified by 7, the loops involved may need to
be placed in the same routine. In particular, if 7 specifies a transformation across
a procedure boundary, an interprocedural transformation is required. For example,
if 7 involves imperfect nesting structures in the caller or the called procedure, then
procedure inlining is required to perform 7.

If the nesting structures involved in 7 are perfect in the caller® or are perfect
enclosing loops in the called procedure, one of loop embedding or loop extraction is
preferred. They are preferable because they do not have the other potential costs of
inlining. For example, if there is only one call and its loops are involved in 7, then
embedding the loop into the called procedure is selected because it reduces procedure
call overhead and it does not have inlining’s other effects. Additionally, it 7 specifies
a distribution which results in a single call in a nest, embedding is performed here as
well. Otherwise, if there is more than one call involved, extraction is required to place
the loops from all the involved calls in the same procedure. Fusion, permutation, etc.

may then be performed in the caller.

7.6.2 Extensions to procedure cloning

Interprocedural transformations may induce additional cloning. Remember that given
a single level of parallelism, a procedure may be performed sequentially in one calling
sequence and in parallel in another. For example, if a procedure is sequential it may
be called in a parallel loop or a sequential one. It is correct in either setting. If the

caller requires some of its called procedure loops to be parallel, a sequential version

°In this case, the perfect loop may contain only calls and no other statements.

126

minus the extracted loops is needed. Clones are needed if a procedure is called in
more than one parallelization setting that require different versions of the procedure.
We reuse clones when settings are identical and create them when required. The four

potential versions of a procedure are

e a sequential version (only one is required),

e a sequential version that has loops extracted from it (as many versions as dif-
ferent numbers of loops that are extracted for parallelizing distinct callers are
required),

e a parallel version (only one is required), and

e a parallel version that has loops embedded into it (as many versions as callers
who embed different loops or different numbers of loops are required).

7.7 Discussion

This chapter has presented a general interprocedural algorithm for determining and
performing loop-based parallelization. It builds on and extends the algorithms and
techniques developed in previous chapters. This algorithm has a few drawbacks; it
considers neither multiple levels of parallelism nor important transformations such
as loop skewing, loop reversal, and alignment. However, the framework is general
enough to support the addition of these types of transformations. The algorithm
does perform loop permutation, strip mining, loop fusion, loop parallelization, loop
distribution and interprocedural transformations. As we show in Chapter 8, it is very

effective in practice.

127

Chapter 8

Experimental Results

In this chapter we describe an experiment to test the efficacy of the parallel code
generation algorithm developed in the previous 5 chapters. A collection of programs
hand-coded for parallel machines were obtained for this experiment. From these
parallel programs two additional versions were obtained, a nearby sequential version,
and an automatically parallelized version. The automatically parallelized version was
obtained from the nearby sequential version via the parallel code generation algorithm
from Chapter 7. Using these program versions we measure the ability of automatic
compiler techniques to uncover parallelism that is available in the program. Based
on the results of this experiment, we are guardedly optimistic. In many cases, the
analysis and algorithms presented in this thesis relieve the programmer of the burden

of explicit parallel programming for a variety of shared-memory parallel machines.

8.1 Introduction

A lesson to be learned from vectorization is that programmers rewrote their pro-
grams in a vectorizable style based on feedback from their vectorizing compilers
[CKKS89, Wol89¢]. Compilers were then able to take these programs and generate
machine-dependent vector code with excellent results. We are testing this same thesis
for shared-memory parallel machines. The experiment described below considers the
automatic parallelization of sequential program versions where parallelism is known
to exist. By measuring the ability of our automatic techniques to uncover this par-
allelism, we are also testing whether a machine-independent parallel programming
style exists. This style would allow compilers to perform machine-specific optimiza-
tion with excellent results.

We designed the following experiment to measure the efficacy of our automatic
parallel code generator. A variety of programs written for parallel machines were
assembled. Each of these programs was transformed into a nearby sequential version.
For each program, a sequential nearby version was easily created by eliminating all
the compiler directives. In all the programs, this process resulted in an appropriate

machine-independent sequential program version.

128

On the nearby sequential version, we then simulated by hand our parallel code
generation algorithm using the advanced analysis and transformations provided by
PFC and the ParaScope Editor PED. We ran and compared all three versions on a
Sequent Symmetry S81 with 20 processors. We measured execution times for each
version for the entire application, for the portions the user was better able to paral-

lelize, and for the portions our algorithm was better able to parallelize.

8.2 Methodology
8.2.1 Ask and ye shall receive

We solicited programs from scientists at Argonne National Laboratory and from users
of the Sequent and Intel iPSC/860 at Rice. The applications programs that were vol-
unteered had been written to run on the following parallel machines: the Sequent
Symmetry S81 with 20 processors, the Alliant FX/8 with 16 processors, and the Intel
iPSC/860 with 32 processors. The authors are numerical scientists at Rice University,
Argonne National Laboratory, I[CASE (Institute for Computer Applications in Science
and Engineering), George Mason University, Princeton University and the University
of Tennessee. All are associated with the Center for Research on Parallel Computation.

The problems inherent to any program test set also arise here. In particular,
it may be that only well structured codes were volunteered. Maybe the authors
of poorly structured ones were too embarrassed to expose their codes to a critical
eye. Fortunately, this furthers our arguments for a modular machine-independent
programming style, rather than frustrating us during the experiments. By collecting
programs rather than writing them ourselves we avoided the pitfall of writing a test
suite to match the abilities of our techniques. No screening process was performed;
we used all the programs that were submitted. Table 8.1 contains the name, the
abbreviation we use to refer to it, the total number of lines, and the authors of the

nine programs in the test suite. They are described in more detail in Appendix A.

8.2.2 Original parallel versions and nearby sequential versions

For each of the programs that were written for the Sequent, this version became
the original parallel version. For the programs written for other architectures, any
parallelization directives were modified to reflect the equivalent Sequent directives.

The nearby sequential versions of each program was created by simply deleting all

129

TABLE 8.1: Program Test Suite

Abbreviation | Program lines | authors

Interior Interior Point Method 6153 | Guangye Li & Irv Lustig
Direct Direct Search Methods 1212 | Virginia Torczon
Multi Multidirectional Search Methods | 2357 | Virginia Torczon
Erlebacher ADI Integration 1341 | Thomas Fidson
Seismic 1-D Seismic Inversion 1712 | Michael Lewis
BTN BTN Unconstrained Optimization | 3080 | Stephen Nash
Banded Banded Linear Systems 1834 | Stephen Wright
ODE Two-Point Boundary Problems 3962 | Stephen Wright
Control Optimal Control 2348 | Stephen Wright
Linpackd Linpackd benchmark 772 | Jack Dongarra

the parallel directives. In Erlebacher, the parallelism was not made explicit. Here, a

naive parallelization of outer loops was performed to create the parallel version.

8.2.3 Creating an automatically parallelized version

To create an automatically parallelized program, the nearby sequential program was
first imported into the ParaScope Programming Environment [CCH*83, HHK'93].
As a result of importing the program, each procedure in the program was placed
in a separate module. Also, a program composition was automatically created that
describes the entire program and the call graph was built. At this stage the Program
Composition Editor flagged modules that were incorrect. PED then revealed a few
minor semantic errors which were corrected. For example, in one program a procedure
with many parameters had used the same name twice. Program analysis was also
performed automatically.

However, to overcome gaps in the current implemantation of program analysis,
we used the Program Composition Editor to import dependence information from
PFC.PFC is the Rice system for automatic vectorization (see Section 3.7) [AKS87].
PFC’s analysis is more mature and includes important features not yet implemented
in PED. It performs advanced dependence tests which include symbolics dependence
tests and it computes interprocedural constants, interprocedural symbolics and inter-
procedural mod and ref information for simple array sections [GKT91, HK90, HK91].
PFC produces a file of dependence information that is converted into PED’s internal

representations.

130

In PED we used the call graph, program analysis and the transformations that PED
provides, to meticulously apply Driver (the parallelization algorithm from Chapter 7)
to each of the programs by hand. As we discussed in Section 3.3, the implementation
of transformation algorithms in PED includes the correctness tests, but does not assist
in choosing when or how to apply them. The application of the transtormations was
completely driven by the Driver algorithm. To perform Driver, the augmented call
graph G,. was easily derived from the call graph. The transformations were attempted
as specified by the algorithm, and applied only when PED assured their correctness.

Optimization diaries were kept for each program.

8.2.4 Execution environment

For our experiments we used a 20 processor Sequent Symmetry S81 that was pro-
vided by the Center for Research on Parallel Computation at Rice University under
NSF Cooperative Agreement # CDA8619893. We selected the Sequent for several
reasons. The Sequent has a simple parallel architecture which does not include vector
hardware, allowing our experiments to focus solely upon medium grain parallelism.
Each processor has its own 64Kbyte two-way set-associative cache and the cache line
size 1s 4 words. In addition the Sequent has a very flexible compiler that allows
the program to completely specify parallelism and does not introduce all available
parallelism [Ost89]. These features gave our algorithms complete control over the
parallelization process.

To introduce parallelism into the programs, we used the parallel loop compiler
directives suggested by the Sequent’s user manual [Ost89]. To compile and run all
the program versions, we used the version 2.1 of Sequent’s Fortran ATS compiler
for multiprocessing with optimization at its highest level (03). An additional option
instructed the compiler to use the Weitek 1167 floating-point accelerator. In a few
programs, compiler bugs prevented the highest level of optimization and use of the
Weitek chip at the same time. In these programs, the Weitek 1167 floating-point
accelerator was used and optimization was suppressed.

We measured execution times for each program version for the entire application,
for the portions the user was better able to parallelize, and for the portions our algo-
rithm was better able to parallelize. In programs where the original parallel version
and the automatically parallelized versions do not differ, there were no differing por-

tions. For example, if a loop is optimized the same way in both parallel versions,

131

the individual execution time for that loop is not distinguished. However, if the au-
tomatic version parallelized a loop and the original did not, the execution time for
that loop is measured in all versions. Execution times for the differing optimized
portions were measured using the microsecond clock, getusclk. The elapsed times for

the entire applications were measured in seconds using secnds.

8.3 Results

In Table 8.2, we present the speed-up results for the different parallel programs over
their sequential counterparts. The results are divided up into three categories with

two versions each. The two versions are:

1. hand — the original user hand-coded parallel version

2. auto — the automatically parallelized version

the three categories are:

1. Entire Application — measures the speed-up over the entire application. It also
indicates the percent change between the hand-coded and automatic versions.

2. Degradations — measures the speed-up in regions where the hand-coded version
exploited more parallelism than the automatic version.

3. Improvements — measures the speed-up in regions where the automatically
parallelized version exploited more parallelism than the original version.

In Table 8.2, a blank entry means that no program or program subpart fell in that
category. For example, Linpackd did not have an original parallel program version,
therefore all the hand-coded slots are left blank. In some cases, differences arose
between versions in inner loops. When this situation occurred, the performance of
the outer enclosing loop was measured in order to disrupt the execution as little
as possible. The speed-ups of these optimized versions are actually under reported.
All these programs were complete applications, which read or computed initial data,
computed, and printed results. Therefore, linear speed-ups on the entire application
were not expected and did not occur.

As can be seen in the percent change column for the entire application category,
except for one program, all the automatically generated programs performed the same
as the hand-coded parallel version or improved on it. In three programs, Interior,
BTN and Multi, the users found more parallelism than our automatic techniques. In

Interior these degradations did not have much effect on the overall application. If we

132

TABLE 8.2: Speed-ups over sequential versions

Entire Application | Degradations | Improvements
Name hand | auto A hand | auto | hand | auto
Seismic 9.1 | 12.3 35% 3.0 7.9
Erlebacher | 13.2 | 14.2 7% 13.8 15.0
BTN 3.2 4.1 28% | -6.1 1.0 2.0 3.9
Interior 6.9 6.9 0% 6.9 5.2 6.9 10.4
Direct 24| 2.4 0%
ODE 3.4 | 34 0%
Controlf 3.8 3.8 0%
Banded? = | 1.0 * * 1.0 * *
Multi 5.3 1.0 | -530% | 15.1 1.0
Linpackd 9.2 NA 16.5

19 processor Sequent
* @ result not obtainable
T : 8 processors

look at the table containing the execution times, Table 8.3, it is apparent that both
the degradations and improvements only effected a small part of the overall execution
time.

In BTN and Multi the user found parallelism by using critical sections in loops
which we were unable to analyze properly. In BTN, this parallelism was actually over-
whelmed by the overhead of the critical section, resulting in improved performance
when executed sequentially. In Multi, the parallelism was sufficient to ameliorate
the overhead of the critical section, resulting in improved performance for the hand-
coded version. In the Banded program, the automatic techniques were unsuccessful
in finding any parallelism. The reasons for this failure are discussed in Appendix A.
Other than these programs, our algorithms either improved performance over the
hand coded version or performed equally as well as the hand coded version.

When we consider the improvements category, when our algorithms chose a dif-
ferent optimization strategy from the user, they were always an improvement. This

improvement was a least a factor of 1.9 and at best a factor of 4.9.

133

TABLE 8.3: Execution Times in seconds

Application Degradations Improvements
seq hand auto | seq hand | auto | seq hand | auto
Seismic 155.97 | 17.05 | 12.59 21.14 | 7.14 | 2.69
Erlebacher 88.22 6.67 6.20 87.83 | 6.36 | 5.86
BTN 44.01 | 13.93 | 10.73| 0.14 | 0.85| 0.14 | 13.97 | 7.045 | 3.57

Interior 1044.16 | 151.16 | 151.53 | 24.12 | 3.47 | 4.64 | 19.50 | 2.00 | 1.87
Direct 151.28 | 63.65 | 63.65

ODE 41.96 | 12.22 | 12.22
Control 17.44 4.61 4.61
Banded * * *
Multi 87.60 | 16.32 | 87.60
Linpackd 547.59 59.43 517.87 31.43

* 1 result not obtainable

8.4 Parallel code generation statistics
Transformations

Besides loop parallelization, the most effective and most often applied code trans-
formation was loop permutation to improve data locality. Outer loop parallelization
was also enabled frequently by the memory ordering. In some cases, the loops needed
to be strip mined such that memory reuse and parallelization were compatible. For
example, loop permutation and strip mining were needed in Linpackd and Erlebacher.
In this experiment, all of the transformation portions of the automatic parallelization
algorithm were exercised except for loop distribution and loop embedding. The per-
formance estimator also was used in several instances to inhibit parallelization. An
example of these decisions was found in the program ODE. Of particular interest in
the program Seismic were opportunities to perform interprocedural loop extraction

and loop fusion which resulted in excellent improvements.

Analysis

The analysis provided by PFC was accurate and for the most part bug free. Some
analysis beyond the current implementation was needed to parallelize these programs.
Regular section analysis proved to be a very important feature of the current system,

but a few improvements are needed. Flow-sensitive summary information about array

134

accesses 1s need to determine array kills. There were at least two programs that
would have benefited from this analysis. In one of these an array could have been
made private. Currently, PFC performs symbolic analysis when the symbolic term
is a constant. The analysis also needs to perform a more general and sophisticated
symbolic test when the symbolic term is unknown and loop invariant. This feature
would allow it to better deal with linearized arrays. However, a better solution
to this problem, is to reward nicely structured multidimensional array references
with excellent performance. Programmers will then have an incentive to program

multidimensionally.

Assertions

Five of the programs in this test suite used index arrays that were permutations of
the index set [McK90]. Several were monotonic non-decreasing with a well defined
with a pattern. In three programs, automatic parallelization would not have been
possible with out using an assertion and the testing techniques developed in our
earlier research [McK90]. The other two used them in a way that did not interfere

with parallelization.

8.5 Discussion

Our results are very promising. They are a clear indication that a clean, modular
parallel programming style in Fortran 77 is suitable for portable parallel programming

of shared-memory machines given sufficient compiler technology.

135

Chapter 9

Conclusions

In this research, we undertook to prove an ambitious thesis:

Automatic compiler techniques can produce parallel programs with accept-
able or excellent performance on shared-memory multiprocessors.

In this chapter, we summarize what was achieved in pursuit of supporting the thesis.
Both the successes and limitations are presented. In addition, the implications of this
work for programmers, other architectures, and future work are described.

Due to the limited success of other researchers attacking this problem [EB91,
SHI1, Sar90], we were not confident when we began that acceptable performance
would result from automatic techniques. Therefore, we concentrated much effort on
designing and implementing PED. During this process, we developed fast incremen-
tal update algorithms for many transformations. These algorithms are useful in both
interactive and batch systems because of their speed and precision. Implementing
and designing PED also provided insight into the analysis and transformations and a
testbed for experimenting with different automatic techniques. Indeed, PED is prov-
ing to be a valuable platform for compiling for other parallel architectures as well
[HKK*T91, DKMC92, HK92], illustrating the usefulness of this type of tool for devel-
oping compilers for new types of architectures. At the same time however, we pursued
more advanced and general compiler techniques for shared-memory multiprocessors.

We first focused on generalizing existing compiler methods to handle conditional
control flow in loops and loop nests that span procedure calls. We developed tech-
niques for loop transformations such as loop fusion when loops contain arbitrary
control flow. In particular, the algorithm for performing a given loop distribution in
the presence of arbitrary control flow is proven optimal.

We also introduce a new approach which enables optimization across procedure
call boundaries without paying the penalties of procedure inlining. Two new trans-
formations, loop embedding and loop extraction, move loops across call boundaries
making them available to loop-level optimizations. These transformations are ap-

plied judiciously using a goal-directed optimization strategy; the transformations are

136

only applied when they enable performance enhancing optimizations. These inter-
procedural transformations and the transformations for loops containing conditional
control flow provide a general platform for automatic parallelization algorithms for
entire applications.

The most significant contribution of this thesis and the core of automatic paral-
lelization is the algorithm that combines introducing parallelism and improving data
locality. The algorithm for improving data locality is based on a simple cost model
that accurately predicts cache line reuse from multiple accesses to the same memory
location and from consecutive memory access. This algorithm is shown effective for
uniprocessors as well. Given sufficient granularity, parallelism is then introduced.
The algorithm which combines parallelism and data locality uses the cost model to
introduce parallelism that complements data locality. This algorithm forms the core
of the parallelizing compiler and is shown conclusively to be very effective in practice,
illustrating the necessity for considering data locality during parallelization.

The automatic parallelizing compiler further enhances the granularity of paral-
lelism using loop fusion. Also when necessary, the compiler achieves partial paral-
lelism using loop distribution. The loop distribution and loop fusion problems are
shown to be duals. A general algorithm for both determines maximal partial paral-
lelism with the minimum number of loops for a collection of candidate sequential and
parallel loops. This formulation is shown to maximize parallelism.

Assuming a few assertions that describe index arrays and the range of scalar
values, the complete parallel code generation algorithm is then shown effective in
practice via experimental results. This result illustrates very promising support of
the thesis for shared-memory machines with a local cache and a common bus.

In collecting the test suite, we solicited programs from researchers and then used
all the programs we received in our experiment. These programs were carefully hand-
coded for good parallel performance and many are currently the best known parallel
algorithms. The fact that we were able to improve carefully hand-coded programs
designed to exploit parallelism indicates that the details of parallel execution are
better left to the compiler.

Many of the parallel loops in the test suite contained procedure calls and control
flow. The modular program style that programmers are using to manage complexity
proves the need for the generalized parallelization techniques developed in the the-
sis. In addition, the improvements gained over the hand-coded programs are mostly

due to the component algorithm for optimizing data locality in concert with paral-

137

lelism. Although, loop fusion did prove useful in several programs. We believe our
experimental results provide strong evidence for the effectiveness of this approach.
With this method, the programmer is permitted to pay more attention to the cor-
rectness of a calculation and less to the explicit loop structure required to achieve
high performance.

In the test-suite, the vast majority of loops that programmers specified as parallel
were able to be detected as parallel by analysis. Most that were not contained un-
ordered critical sections. Programs that use synchronization in order to perform loops
in parallel, such as “doacross” style parallelism and critical regions are not handled by
our approach [Cyt86, Sub90, HKT92]. However, these loops are an important source
of parallelism that should be addressed.

We have not considered the more challenging issues which arise on shared-memory
machines with non-uniform access time such as the TC2000 Butterfly. Nor have we
considered distributed memory architectures such as the Intel Hypercube. However,
other research has shown that many of the same solutions prove effective on both
shared-memory and distributed-memory machines [L.S90]. For example, the data
locality algorithm will be used in a compiler to improve distributed memory perfor-
mance [HKT92]. Compiling for these architectures is more difficult, but we believe
future work will show our techniques to be applicable and that they will serve as a

stepping stone in compilation for these machines.

This is not the end. It is not even the beginning of the end. But it is, perhaps, the
end of the beginning. Winston Churchill, 10 Nov 1942, after the Battle of Egypt.

138

Appendix A

Description of Test Suite Programs

Although most of the programs we used are from algorithms that are being used in
research and have been published in the literature, they do not come from a single test
suite. Therefore, we briefly describe each below. Except for Linpackd all the programs
were written to run on a parallel machine. We were unable to obtain a parallel version
of the Linpackd benchmark, but included it anyway because of its importance in
the numerical community and its well known algorithms. In the Implementation
details section for each program, we briefly describe the creation of the different
program versions. We also indicate any assumptions or changes that were made to
the programs to improve parallelization. As expected, the current analysis was lacking
in a few cases. Whenever analysis was required beyond the current implementation,
it is noted. Otherwise, all the parallelism detection and transformations were based

on the current analysis. The programs are ordered alphabetically.

A.1 Banded Linear Systems

This program is a partitioned Gaussian elimination algorithm with partial pivoting
[Wri9la]. The system is assumed to be nonsingular. Hence, the submatrices in the
chosen partitioning may be rank-deficient and this makes the algorithm more complex
than those which have been proposed for diagonally dominant and symmetric positive-
definite systems. It is suitable for multiprocessors with small to moderate numbers

of processors. It was written by Stephen Wright at Argonne National Laboratory.

Implementation details

The hand-coded parallel version was written for an Alliant FX/8 using Alliant com-
piler directives. This version was used for the sequential version. The parallelism
consisted of three parallel loops containing a single procedure call each. Using the
Sequent directives on those loops does not work. In attempting the automatic par-
allelization, analysis was complicated by index variables used to perform array lin-
earization based on the program input. With index array assertions and advanced

symbolic propagation to differentiate linearized subscripts, dependence analysis will

139

be able to determine independence. However, the program also used offsets into a
row at a call site and then subscripted it with negative indices. This practice is not
legal Fortran and will thwart even advanced dependence analysis. It is most likely be

the bug responsible for the failure of hand-coded and automatic versions.

A.2 BTN Unconstrained Optimization

This program solves unconstrained nonlinear optimization problems based on a block
truncated-Newton method [NS91, NS92]. It was written by Stephen Nash and Ariela
Sofer at George Mason University. Truncated-Newton methods obtain the search
direction by approximately solving the Newton equations via some iterative method.
The method used here is a block version of the Lanczos method, which is numerically

stable for non-convex problems. This program also uses a parallel derivative checker.

Implementation details

This program was written for execution on the Sequent and therefore required no
modifications for parallel execution. The sequential version was easily created by
eliminating directives. There were two interesting parallel loops that used a critical
section to update a shared variable. Using our analysis and the automatic parallel
code generator we were unable to parallelize these loops for this and other reasons.
However, as can be seen in the results section, the critical section formed a bottleneck

and actually degraded performance beyond that of the sequential performance.

A.3 Direct Search Method

This program is a derivative-free parallel algorithm for the nonlinear unconstrained
optimization problem [DT91]. It was written by Virginia Torczon at Rice University.
It searches based on the previous function values, where the function is continuous on a
compact level set. A special feature of the algorithm embodied in this parallel program
is that it is easily modified to to take advantage of any number of processors and to
adapt to any ratio of communication cost to function evaluation cost. The parallelism

in this version scales with the problem size, but not the number of processors.

140

Implementation details

This program was written for execution on the Sequent and therefore required no
modifications for parallel execution. The sequential version was easily created by
eliminating directives.

To automatically parallelize this program required an assertion that an index array
used to subscript the data is a permutation array. The four parallel loops could then
be identified as such by our tools. Without this assertion, no parallelism could be
detected. With the assertion, the critical four loops could be identified as parallel.

The algorithm this program embodies is fully scalable, even though it is not re-
flected in the results shown earlier. The results are limited because problem size
was constrained to 10 to fit on the Sequent. The theoretical speed-up was therefore
limited to 10. In addition, the function evaluations available for this study were very
small which allowed the overhead of the parallel constructs to become a factor, further

degrading performance.

A.4 Erlebacher

Erlebacher is a tri-diagonal solver for the calculation of derivatives written by Thomas

Eidson at ICASE, NASA-Langley.

Implementation details

The hand-coded version of Erlebacher provided to us was a sequential version intended
for an Intel Hypercube target. We used this as the nearby sequential version and hand
performed parallelization on this version. To create the user parallelized version, we

performed a naive parallelization of outermost parallel loops.

A.5 Interior Point Method

This program implements a primal-Dual predictor-corrector interior point method to
solve multicommodity flow problems [LL1.92]. It was written by Guangye Li at Rice
University and Irv Lustig at Princeton. This problem is a well known application
of linear programming. The block structure of the constraint matrix is exploited via
parallel computation. The bundling constraints require the Cholesky factorization
of a dense matrix, where a method that exploits parallelism for the dense Cholesky

factorization is used.

141

Implementation details

This program was written for execution on the Sequent and therefore required no
modifications for parallel execution. The sequential version was easily created by
eliminating directives. During the automatic parallelization process, two points of
interest were encountered. The first was a small bug, where a parameter was declared
twice in a subroutine header that was pointed out by the type checker. The other
was that debugging [/0O was still present in a procedure called by a parallel loop. Dr.

Li indicated the I/O was for development purposes and could be ignored.

A.6 Linpackd Benchmark

The Linpackd benchmark is a representative set of linear algebra routines that are
widely used by scientists and engineers to perform numerical operations on matrices
[DBMST79]. We used a 200 x200 matrix size for our experiment. This program was

written by Jack Dongarra, at the University of Tennessee.

Modifications or assertions

This program was originally a sequential version. From this version, we derived the
automatically parallelized version. We performed dead code elimination by hand us-

ing constant propagation to delete some special case code for nonunit stride accesses.

A.7 Multidirectional Search Method

The parallel multidirectional search method is a more powerful and general version
of the direct search method described above [DT91]. It differs in that the parallelism
available in the algorithm is proportional to both the size of the problem and the size
of the search space. The search space is based on the number of processors. This
algorithm does not just enhance a sequential algorithm, it provides a more ambitious

and effective search strategy based on the number of processors and is fully scalable.

Implementation details

This program contained a single parallel loop. Within the loop the programmer used

an unordered critical section to test for convergence. This construct could not be

142

analyzed with existing techniques and caused parallelization to fail. More advanced

techniques are needed to analyze this programming style.

A.8 1-D Seismic Inversion

This program checks the adjointness of two routines which apply a linear operator
DW and its adjoint DWx. DW and DWx come from 1-D seismic inversion for oil
exploration. The operator DW is the derivative of the incoherency or differential
semblance with respect to the background sound velocity. This program was written

by Michael Lewis at Rice University.

Implementation details

This program was written for execution on the Sequent and therefore required no
modifications for parallel execution. The sequential version was easily created by
eliminating directives. The automatically parallelized version of this program em-

ployed interprocedural loop fusion to improve performance.

A.9 Optimal Control

This program computed solutions for linear-quadratic optimal control problems that
arise from Newton’s method or two-metric gradient projection methods to nonlinear
problems [Wri91b]. It is a decomposition of the domain of the problem and is related

to multiple shooting methods for two-point boundary value problems.

Implementation details

This code was written for an Alliant FX/8 using Alliant compiler directives. This
version worked as the sequential version. Using the Sequent parallel loop directives
allowed the original parallel version to be obtained. In order to automatically par-
allelize these loops, array kill analysis and one user assertion about the value of a

symbolic were required.

A.10 Two-Point Boundary Problems

This program uses finite differences to solve two-point boundary value Bodes [Wri92].

It was written by Stephen Wright at Argonne National Laboratory. It uses a struc-

143

tured orthogonal factorization technique to solve the system in an effective, stable

and parallel manner.

Implementation details

This code was written for an Alliant FX/8 using Alliant compiler directives. This
version worked perfectly as the sequential version. The parallelism consisted of three
parallel loops containing a single procedure call each. Using the Sequent parallel
loop directives allowed the original parallel version to be obtained. In order to auto-
matically parallelize these loops, array kill analysis and better symbolic dependence
testing are needed than currently exist inPFC. The symbolic analysis was needed to
analyze array linearizations. However, both are well within the scope of an advanced

dependence analyzer.

[ABC*87]

[ABC*88]

[ACT2]

[ACKS7]

[AHUTA]

[AJ90]

[AKS4]

[AKST]

[AKPWS83]

144

Bibliography

F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview
of the PTRAN analysis system for multiprocessing. In Proceedings of
the First International Conference on Supercomputing. Springer-Verlag,

Athens, Greece, June 1987.
F. Allen, M. Burke, P. Charles, J. Ferrante, W. Hsieh, and V. Sarkar.

A framework for detecting useful parallelism. In Proceedings of the Sec-
ond International Conference on Supercomputing, St. Malo, France, July

1988.

F. Allen and J. Cocke. A catalogue of optimizing transformations. In
J. Rustin, editor, Design and Optimization of Compilers. Prentice-Hall,
1972.

J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition
of scientific programs for parallel execution. In Proceedings of the Four-
teenth Annual ACM Symposium on the Principles of Programming Lan-
guages, Munich, Germany, January 1987.

A. V. Aho, J. E. Hopcroft, and J. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

R. Allen and S. Johnson. Compiling C for vectorization, parallelization,
and inline expansion. In Proceedings of the SIGPLAN "90 Conference
on Program Language Design and Implementation, Atlanta, GA, June

1990.

J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings
of the SIGPLAN 84 Symposium on Compiler Construction, Montreal,
Canada, June 1984.

J. R. Allen and K. Kennedy. Automatic translation of Fortran programs
to vector form. ACM Transactions on Programming Languages and

Systems, 9(4):491-542, October 1987.

J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion

of control dependence to data dependence. In Conference Record of

[A183]

[A1190]
[ASTO]

[Ban88]

[Ban90a]

[Ban90b)]

[BBS9]

[BCS6]

[BCHT0]

[BCKT90]

[Ber66]

[BFKK92]

145

the Tenth Annual ACM Symposium on the Principles of Programming
Languages, Austin, TX, January 1983.

J. R. Allen. Dependence Analysis for Subscripted Variables and Its Ap-
plication to Program Transformations. PhD thesis, Dept. of Computer
Science, Rice University, April 1983.

J. R. Allen. Private communication, February 1990.

W. Abu-Sufah. [Improving the Performance of Virtual Memory Com-
puters. PhD thesis, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, 1979.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Aca-
demic Publishers, Boston, MA, 1988.

U. Banerjee. A theory of loop permutations. In D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel Comput-
ing. The MIT Press, 1990.

U. Banerjee. Unimodular transformations of double loops. In Advances
in Languages and Compilers for Parallel Computing, Irvine, CA, August
1990. The MIT Press.

W. Baxter and H. R. Bauer, III. The program dependence graph and
vectorization. In Proceedings of the Sizteenth Annual ACM Symposium
on the Principles of Programming Languages, Austin, TX, January 1989.

M. Burke and R. Cytron. Interprocedural dependence analysis and par-
allelization. In Proceedings of the SIGPLAN 86 Symposium on Compiler
Construction, Palo Alto, CA, June 1986.

P. Briggs, K. Cooper, M. W. Hall, and L. Torczon. Goal-directed inter-
procedural optimization. Technical Report TR90-147, Dept. of Com-
puter Science, Rice University, December 1990.

M. Burke, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural
optimization: Eliminating unnecessary recompilation. Technical Report
TR90-126, Dept. of Computer Science, Rice University, July 1990.

A. J. Bernstein. Analysis of programs for parallel processing. [IEEFE
Transactions on FElectronic Computers, 15(5):757-763, October 1966.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static perfor-
mance estimator in the Fortran D programming system. In J. Saltz and

[BHMS91]

[BJ66]

[BK8Y]

[BKK*89]

[Bur90]

[Cal87]

[COH*8S]

[COKSS)]

[CCK90]

[COKTS6]

146

P. Mehrotra, editors, Languages, Compilers, and Run-Time Environ-
ments for Distributed Memory Machines. North-Holland, Amsterdam,
The Netherlands, 1992.

M. Bromley, S. Heller, T. McNerney, and G. Steele, Jr. Fortran at ten
gigaflops: The Connection Machine convolution compiler. In Proceed-
ings of the SIGPLAN 91 Conference on Program Language Design and
Implementation, Toronto, Canada, June 1991.

C. Bohm and G. Jacopini. Flow diagrams, turing machines, and lan-
guages with only two formation rules. Communications of the ACM,

19(5), May 1966.

V. Balasundaram and K. Kennedy. A technique for summarizing data
access and its use in parallelism enhancing transformations. In Proceed-
ings of the SIGPLAN 89 Conference on Program Language Design and
Implementation, Portland, OR, June 1989.

V. Balasundaram, K. Kennedy, U. Kremer, K. S. MCKinley, and
J. Subhlok. The ParaScope Editor: An interactive parallel program-

ming tool. In Proceedings of Supercomputing ‘89, Reno, NV, November
1989.

M. Burke. An interval-based approach to exhaustive and incremental
interprocedural data-flow analysis. ACM Transactions on Programming

Languages and Systems, 12(3):341-395, July 1990.

D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis,
Dept. of Computer Science, Rice University, March 1987.

D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Torczon. Para-
Scope: A parallel programming environment. [International Journal of
Supercomputing Applications, 2(4):84-99, Winter 1988.

D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and im-
proving balance for pipelined machines. Journal of Parallel and Dis-

tributed Computing, 5(4):334-358, August 1988.

D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for
subscripted variables. In Proceedings of the SIGPLAN 90 Conference
on Program Language Design and Implementation, White Plains, NY,
June 1990.

D. Callahan, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural
constant propagation. In Proceedings of the SIGPLAN 86 Symposium
on Compiler Construction, Palo Alto, CA, June 1986.

[CDLSS]

[CF8T]

[CFR*89]

[CFS90]

[CHK92]

[CHTO1]

[CK8Ta]

[CKS87b]

[CKS9]

[CKK89]

[CKPK90]

147

D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test
suite and results. In Proceedings of Supercomputing 88, Orlando, FL,
November 1988.

R. Cytron and J. Ferrante. What’s in a name? or the value of renaming
for parallelism detection and storage allocation. In Proceedings of the
1987 International Conference on Parallel Processing, St. Charles, 1L,
August 1987.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. An
efficient method of computing static single assignment form. In Pro-
ceedings of the Sizteenth Annual ACM Symposium on the Principles of
Programming Languages, Austin, TX, January 1989.

R. Cytron, J. Ferrante, and V. Sarkar. Experiences using control depen-
dence in PTRAN. In D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing. The MIT Press, 1990.

K. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Proceed-
ings of the 1992 IEEFE International Conference on Computer Language,
Oakland, CA, April 1992.

K. Cooper, M. W. Hall, and L. Torczon. An experiment with inline
substitution. Software—Practice and Fxperience, 21(6):581-601, June
1991.

D. Callahan and M. Kalem. Control dependences. Supercomputer Soft-
ware Newsletter 15, Dept. of Computer Science, Rice University, October

1987.

D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a
parallel programming environment. In Proceedings of the First Interna-
tional Conference on Supercomputing. Springer-Verlag, Athens, Greece,

June 1987.

S. Carr and K. Kennedy. Blocking linear algebra codes for memory
hierarchies. In Proceedings of the Fourth SIAM Conference on Parallel
Processing for Scientific Computing, Chicago, IL, December 1989.

D. Callahan, K. Kennedy, and U. Kremer. A dynamic study of vector-
ization in PFC. Technical Report TR89-97, Dept. of Computer Science,
Rice University, July 1989.

G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer per-
formance evaluation and the Perfect benchmarks. In Proceedings of the

[CKT86a]

[CKTS6b]

[CSY90]

[Cyt86]

[DBMST9)]

[DCHHSS]

[Die8s]

[DKMC92]

[DTY1]

[EBY1]

[FKMWO0]

148

1990 ACM International Conference on Supercomputing, Amsterdam,
The Netherlands, June 1990.

K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural
analysis and optimization in the IR programming environment. ACM
Transactions on Programming Languages and Systems, 8(4):491-523,
October 1986.

K. Cooper, K. Kennedy, and L. Torczon. Interprocedural optimization:
Eliminating unnecessary recompilation. In Proceedings of the SIGPLAN
86 Symposium on Compiler Construction, Palo Alto, CA, June 1986.

D. Chen, H. Su, and P. Yew. The impact of synchronization and gran-
ularity on parallel systems. In Proceedings of the 17th International
Symposium on Computer Architecture, Seattle, WA, May 1990.

R. Cytron. Doacross: Beyond vectorization for multiprocessors. In
Proceedings of the 1986 International Conference on Parallel Processing,
St. Charles, 1L, August 1986.

J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK User’s
Guide. STAM Publications, Philadelphia, PA, 1979.

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended
set of Fortran basic linear algebra subprograms. ACM Transactions on

Mathematical Software, 14(1):1-17, March 1988.

H. Dietz. Finding large-grain parallelism in loops with serial control de-
pendences. Proceedings of the 1988 International Conference on Parallel
Processing, August 1988.

E. Darnell, K. Kennedy, and J. Mellor-Crummey. Automatic software
cache coherence through vectorization. In Proceedings of the 1992 ACM
International Conference on Supercomputing, Washington, DC, July
1992.

J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel ma-

chines. SIAM Journal of Optimization, 1(4):448-474, November 1991.

R. Eigenmann and W. Blume. An effectiveness study of parallelizing
compiler techniques. In Proceedings of the 1991 International Conference

on Parallel Processing, St. Charles, 1L, August 1991.

K. Fletcher, K. Kennedy, K. S. MCKinley, and S. Warren. The Para-
Scope Editor: User interface goals. Technical Report TR90-113, Dept.
of Computer Science, Rice University, May 1990.

[FMS5]

[FMS8S]

[FOWST]

[FST91]

[GGGISS]

(GIGST]

[GIGSS]

[GKTO1]

[GP84]

[Hal91]

[HHK 93]

149

J. Ferrante and M. Mace. On linearizing parallel code. In Conference
Record of the Twelfth Annual ACM Symposium on the Principles of
Programming Languages, New Orleans, LA, January 1985.

J. Ferrante, M. Mace, and B. Simons. Generating sequential code from
parallel code. In Proceedings of the Second International Conference on
Supercomputing, St. Malo, France, July 1988.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming

Languages and Systems, 9(3):319-349, July 1987.

J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhanc-
ing cache effectiveness. In U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel Comput-
ing, Fourth International Workshop, Santa Clara, CA, August 1991.
Springer-Verlag.

V. Guarna, D. Gannon, Y. Gaur, and D. Jablonowski. Faust: An envi-
ronment for programming parallel scientific applications. In Proceedings
of Supercomputing ‘88, Orlando, FL, November 1988.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local
memory management by global program transformations. In Proceed-
ings of the First International Conference on Supercomputing. Springer-

Verlag, Athens, Greece, June 1987.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local
memory management by global program transformation. Journal of

Parallel and Distributed Computing, 5(5):587-616, October 1988.

G. Goff, K. Kennedy, and C. Tseng. Practical dependence testing. In
Proceedings of the SIGPLAN 91 Conference on Program Language De-

sign and Implementation, Toronto, Canada, June 1991.

A. Goldberg and R. Paige. Stream processing. In Conference Record of
the 1984 ACM Symposium on Lisp and Functional Programming, pages
228-234, August 1984.

M. W. Hall. Managing Interprocedural Optimization. PhD thesis, Dept.
of Computer Science, Rice University, April 1991.

M. W. Hall, T. Harvey, K. Kennedy, N. McIntosh, K. S. MCKinley, J. D.
Oldham, M. Paleczny, and G. Roth. Experiences using the ParaScope
Editor: an interactive parallel programming tool. In Proceedings of the

[HHLI0a]

[HHLIOD]

[HK90]

[HK91]

[HK92]

[HKK*+91]

[HKTO1]

[HKT92]

[HP90]

150

Fourth ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, San Diego, CA, May 1993.

L. Huelsbergen, D. Hahn, and J. Larus. Fxact dependence analysis
using data access descriptors. In Proceedings of the 1990 International

Conference on Parallel Processing, St. Charles, 1L, August 1990.

L. Huelsbergen, D. Hahn, and J. Larus. Fxact dependence analysis
using data access descriptors. Technical Report 945, Dept. of Computer
Science, University of Wisconsin at Madison, July 1990.

P. Havlak and K. Kennedy. Experience with interprocedural analysis of
array side effects. In Proceedings of Supercomputing 90, New York, NY,
November 1990.

P. Havlak and K. Kennedy. An implementation of interprocedural
bounded regular section analysis. IEEFE Transactions on Parallel and

Distributed Systems, 2(3):350-360, July 1991.

R. v. Hanxleden and K. Kennedy. Relaxing SIMD control flow con-
straints using loop transformations. In Proceedings of the SIGPLAN
92 Conference on Program Language Design and Implementation, San

Francisco, CA, June 1992.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An
overview of the Fortran D programming system. In U. Banerjee, D. Gel-
ernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for
Parallel Computing, Fourth International Workshop, Santa Clara, CA,
August 1991. Springer-Verlag.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for
Fortran D on MIMD distributed-memory machines. In Proceedings of
Supercomputing 91, Albuquerque, NM, November 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler op-
timizations for Fortran D on MIMD distributed-memory machines. In
Proceedings of the 1992 ACM International Conference on Supercom-
puting, Washington, DC, July 1992.

M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis
for high-performance parallelizing compilers. In Advances in Languages
and Compilers for Parallel Computing, Irvine, CA, August 1990. The
MIT Press.

[Hus82]

[ITS8]

[KKLW80a]

[KKLWS80b]

[KKLW84]

[KKP+81]

[KM90]

[KM92]

[KMCT72]

[KMMO1]

151

C. A. Huson. An inline subroutine expander for Parafrase. Master’s
thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, 1982.

F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the
Fifteenth Annual ACM Symposium on the Principles of Programming
Languages, San Diego, CA, January 1988.

D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. Analysis and transfor-
mation of programs for parallel computation. In Proceedings of COMP-
SAC 80, the 4th International Computer Software and Applications Con-
ference, pages 709-715, Chicago, IL, October 1980.

D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. The structure of
an advanced retargetable vectorizer. In Proceedings of COMPSAC 80,
the 4th International Computer Software and Applications Conference,
pages 709-715, Chicago, IL, October 1980.

D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. The structure of an
advanced retargetable vectorizer. In Supercomputers: Design and Ap-
plications, pages 163-178. IEEE Computer Society Press, Silver Spring,
MD, 1984.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence
graphs and compiler optimizations. In Conference Record of the Eighth
Annual ACM Symposium on the Principles of Programming Languages,
Williamsburg, VA, January 1981.

K. Kennedy and K. S. M¢Kinley. Loop distribution with arbitrary con-
trol flow. In Proceedings of Supercomputing 90, New York, NY, Novem-
ber 1990.

K. Kennedy and K. S. M¢Kinley. Optimizing for parallelism and data
locality. In Proceedings of the 1992 ACM International Conference on
Supercomputing, Washington, DC, July 1992.

D. Kuck, Y. Muraoka, and S. Chen. On the number of operations si-
multaneously executable in Fortran-like programs and their resulting
speedup. [EEE Transactions on Computers, C-21(12):1293-1310, De-
cember 1972.

K. Kennedy, N. McIntosh, and K. S. MC¢Kinley. Static performance es-
timation in a parallelizing compiler. Technical Report TR91-174, Dept.
of Computer Science, Rice University, December 1991.

[KMT91a]

[KMT91b]

[KMT92]

[KnuTl]

[Kuc78]

[KZBGSS]

[LamT74]

[Lea90]

[LLY2]

[LovTT]

[LRWOL1]

[L.S90]

152

K. Kennedy, K. S. M¢Kinley, and C. Tseng. Analysis and transformation
in the ParaScope Editor. In Proceedings of the 1991 ACM International
Conference on Supercomputing, Cologne, Germany, June 1991.

K. Kennedy, K. 5. M¢Kinley, and C. Tseng. Interactive parallel pro-
gramming using the ParaScope Editor. IEEE Transactions on Parallel
and Distributed Systems, 2(3):329-341, July 1991.

K. Kennedy, K. S. M¢Kinley, and C. Tseng. Improving data locality.
Technical Report TR92-179, Dept. of Computer Science, Rice University,
March 1992.

D. Knuth. An empirical study of FORTRAN programs. Software—
Practice and Experience, 1:105-133, 1971.

D. Kuck. The Structure of Computers and Computations, Volume 1.
John Wiley and Sons, New York, NY, 1978.

U. Kremer, H. Zima, H.-J. Bast, and M. Gerndt. Advanced tools and
techniques for automatic parallelization. Parallel Computing, 7:387-393,
1988.

L. Lamport. The parallel execution of DO loops. Communications of

the ACM, 17(2):83-93, February 1974.

B. Leasure, editor. PCF Fortran: Language Definition, version 3.1. The
Parallel Computing Forum, Champaign, 1L, August 1990.

I. J. Lustig and G. Li. An implementation of a parallel primal-dual
interior point method for multicommondity flow problems. Technical

Report CRPC-TR92194, Center for Research on Parallel Computation,
Rice University, January 1992.

D. Loveman. Program improvement by source-to-source transforma-

tions. Journal of the ACM, 17(2):121-145, January 1977.

M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and op-
timizations of blocked algorithms. In Proceedings of the Fourth Interna-

tional Conference on Architectural Support for Programming Languages
and Operating Systems, Santa Clara, CA, April 1991.

C. Lin and L. Snyder. A comparison of programming models for shared
memory multiprocessors. In Proceedings of the 1990 International Con-
ference on Parallel Processing, St. Charles, IL, August 1990.

[LYS8a]

[LYSSb]

[McK90]

[McMS6]

[Mur71]

[NS91]

[NS92]

[Ost89]

[PGH*90]

[Por89]

[RCS6]

153

7. Li and P. Yew. Efficient interprocedural analysis for program restruc-
turing for parallel programs. In Proceedings of the ACM SIGPLAN Sym-
posium on Parallel Programming: FExperience with Applications, Lan-

guages, and Systems (PPEALS), New Haven, CT, July 1988.

Z. Li and P. Yew. Interprocedural analysis and program restructuring
for parallel programs. Technical Report 720, Center for Supercomputing
Research and Development, University of [llinois at Urbana-Champaign,
January 1988.

K. S. McKinley. Dependence analysis of arrays subscripted by index
arrays. Technical Report TR91-162, Dept. of Computer Science, Rice
University, December 1990.

F. McMahon. The Livermore Fortran Kernels: A computer test of the
numerical performance range. Technical Report UCRL-53745, Lawrence
Livermore National Laboratory, 1986.

Y. Muraoka. Parallelism Fxposure and Exploitation in Programs. PhD
thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, February 1971. Report No. 71-424.

S. G. Nash and A. Sofer. A general-purpose parallel algorithm for un-
constrained optimization. STAM Journal of Optimization, 1(4):530-547,
November 1991.

S. G. Nash and A. Sofer. BTN: software for parallel unconstrained
optimization. ACM TOMS, 1992. to appear.

A. Osterhaug, editor. Guide to Parallel Programming on Sequent Com-
puter Systems. Sequent Technical Publications, San Diego, CA, 1989.

C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and
D. Schouten. The structure of Parafrase-2: An advanced parallelizing
compiler for C and Fortran. In D. Gelernter, A. Nicolau, and D. Padua,

editors, Languages and Compilers for Parallel Computing. The MIT
Press, 1990.

A. Porterfield. Software Methods for Improvement of Cache Perfor-
mance. PhD thesis, Dept. of Computer Science, Rice University, May
1989.

B. Ryder and M. Carroll. An incremental algorithm for software analysis.
In Proceedings of the Second ACM SIGSOFT/SIGPLAN Software Fn-
gineering Symposium on Practical Software Development Environments,

Palo Alto, CA, December 1986.

[RGSY]

[Ros90]

[RPSS]

[SASS]

[SAS9]

[Sar90]

[SAS90]

[SGOO]

[SHO1]

[SKS6]

[Sub90]

154

S. Richardson and M. Ganapathi. Interprocedural optimization: Ex-
perimental results. Software—Practice and Fxperience, 19(2), February

1989.

C. Rosene. [Incremental Dependence Analysis. PhD thesis, Dept. of
Computer Science, Rice University, March 1990.

B. Ryder and M. Paull. Incremental data flow analysis algorithms. ACM
Transactions on Programming Languages and Systems, 10(1):1-50, Jan-
uary 1988.

K. Smith and W. Appelbe. PAT - an interactive Fortran parallelizing
assistant tool. In Proceedings of the 1988 International Conference on

Parallel Processing, St. Charles, 1L, August 1988.

K. S. Smith and W. Appelbe. An interactive conversion of sequential
to multitasking Fortran. In Proceedings of the 1989 ACM International
Conference on Supercomputing, Crete, Greece, June 1989.

V. Sarkar. PTRAN — the IBM parallel translation system. In Proceed-
ings of the International Workshop on Compilers for Parallel Comput-
ers, Paris, France, December 1990. To appear as a chapter in Parallel
Functional Programming Languages and Compilers, editor B. Szyman-

ski, ACM Press, 1991.

K. Smith, W. Appelbe, and K. Stirewalt. Incremental dependence analy-
sis for interactive parallelization. In Proceedings of the 1990 ACM Inter-
national Conference on Supercomputing, Amsterdam, The Netherlands,

June 1990.

B. Shei and D. Gannon. SIGMACS: A programmable programming en-
vironment. In Advances in Languages and Compilers for Parallel Com-

puting, Irvine, CA, August 1990. The MIT Press.

J. Singh and J. Hennessy. An empirical investigation of the effective-
ness of and limitations of automatic parallelization. In Proceedings of
the International Symposium on Shared Memory Multiprocessors, Tokyo,
Japan, April 1991.

R. G. Scarborough and H. G. Kolsky. A vectorizing Fortran compiler.
IBM Journal of Research and Development, 30(2):163-171, March 1986.

J. Subhlok. Analysis of Synchronization in a Parallel Programming En-
vironment. PhD thesis, Dept. of Computer Science, Rice University,

August 1990.

[TIFS6]

[Tow76]

[WL9O]

[WL91]

[Wol82]

[Wolg6]

[Wol89a]

[Wol89b]

[Wol89¢]

[Wri9la]

[Wri91b]

[Wri92]

[Zad84]

155

R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of CALL
statements. In Proceedings of the SIGPLAN 86 Symposium on Compiler
Construction, Palo Alto, CA, June 1986.

R. A. Towle. Control and Data Dependence for Program Transformation.
PhD thesis, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, March 1976.

M. E. Wolt and M. Lam. Maximizing parallelism via loop transforma-
tions. In Proceedings of the Third Workshop on Languages and Compil-
ers for Parallel Computing, Irvine, CA, August 1990.

M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Pro-
ceedings of the SIGPLAN ’91 Conference on Program Language Design

and Implementation, Toronto, Canada, June 1991.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis,
Dept. of Computer Science, University of lllinois at Urbana-Champaign,
October 1982.

M. J. Wolfe. Loop skewing: The wavefront method revisited. Interna-
tional Journal of Parallel Programming, 15(4):279-293, August 1986.

M. J. Wolfe. More iteration space tiling. In Proceedings of Supercom-
puting ‘89, Reno, NV, November 1989.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT
Press, Cambridge, MA, 1989.

M. J. Wolfe. Semi-automatic domain decomposition. In Proceedings of
the Jth Conference on Hypercube Concurrent Computers and Applica-
tions, Monterey, CA, March 1989.

S. J. Wright. Parallel algorithms for banded linear systems. SIAM
Journal of Secientific and Statistical Computation, 12(4):824-842, July
1991.

S. J. Wright. Partitioned dynamic programming for optimal control.

SIAM Journal of Optimization, 1(4):620-642, November 1991.

S. J. Wright. Stable parallel algorithms for two-point boundary value
problems. SIAM Journal of Scientific and Statistical Computation, 1992.
to appear.

F. Zadeck. Incremental data flow analysis in a structured program editor.
In Proceedings of the SIGPLAN 84 Symposium on Compiler Construc-
tion, Montreal, Canada, June 1984.

156

[ZBGS8S] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-
automatic MIMD/SIMD parallelization. Parallel Computing, 6:1-18,
1988.

