
RICE UNIVERSITYAutomatic and Interactive ParallelizationbyKathryn S. McKinleyA Thesis Submittedin Partial Fulfillment of theRequirements for the DegreeDoctor of PhilosophyApproved, Thesis Committee:Ken KennedyNoah Harding Professor, chairComputer ScienceKeith D. Cooper, Associate ProfessorComputer ScienceDon H. Johnson, ProfessorElectrical and Computer EngineeringDanny C. Sorensen, ProfessorMathematical SciencesHouston, TexasMarch, 1994

Automatic and Interactive ParallelizationKathryn S. McKinleyAbstractThe goal of this dissertation is to give programmers the ability to achieve high per-formance by focusing on developing parallel algorithms, rather than on architecture-speci�c details. The advantages of this approach also include program portability andlegibility. To achieve high performance, we provide automatic compilation techniquesthat tailor parallel algorithms to shared-memory multiprocessors with local cachesand a common bus. In particular, the compiler maps complete applications onto thespeci�cs of a machine, exploiting both parallelism and memory.To optimize complete applications, we develop novel, general algorithms to trans-form loops that contain arbitrary conditional control
ow. In addition, we provide newinterprocedural transformations which enable optimization across procedure bound-aries. These techniques provide the basis for a robust automatic parallelizing algo-rithm that is applicable to complete programs.The algorithm for automatic parallel code generation takes into consideration theinteraction of parallelism and data locality, as well as the overhead of parallelism. Thealgorithm is based on a simple cost model that accurately predicts cache line reusefrom multiple accesses to the same memory location and from consecutive accesses.The optimizer uses this model to improve data locality. It also uses the model todiscover and introduce e�ective parallelism that complements the bene�ts of datalocality. The optimizer further improves the e�ectiveness of parallelism by seeking toincrease its granularity. Parallelism is introduced only when granularity is su�cientto overcome its associated costs.The algorithm for parallel code generation is shown to be e�cient and several of itscomponent algorithms are proven optimal. The e�cacy of the optimizer is illustratedwith experimental results. In most cases, it is very e�ective and either achieves orimproves the performance of hand-crafted parallel programs. When performance isnot satisfactory, we provide an interactive parallel programming tool which combinescompiler analysis and algorithms with human expertise.

AcknowledgmentsKen Kennedy provided me with the three most important elements of support ingraduate school: intellectual, political and �nancial. In addition, Ken, Keith Cooperand Linda Torczon fostered a research atmosphere and working environment whosebene�ts are untold. I would also like to recognize the other members of my committee,Keith Cooper, Don Johnson and Danny Sorensen. Keith has been an endless sourceof encouragement and wisdom throughout my graduate career. Don Johnson gaveme my �rst taste of research and hooked me for life.I am fortunate that many of my fellow graduate students and friends supported myresearch intellectually, emotionally and with implementations. I would especially liketo thank Chau-Wen Tseng, Marina Kalem, Mary Hall, Paul Havlak, Nat McIntosh,Preston Briggs, Ben Chase and the entire compiler group.I am extremely gratefully to my entire family. As always, my parents were aconstant source of love and encouragement. To my husband Scotty Strahan, I hopeI am the rock for you that you have been for me.
A little Madness in the SpringIs wholesome even for the King. Emily Dickinson (1830-1886).

ContentsAbstract iiAcknowledgments iiiList of Illustrations ix1 Introduction 11.1 Automatic parallelization : 21.2 Interactive parallelization : 41.3 Overview : 42 Technical Background 62.1 Dependence Analysis : 62.2 Interprocedural dependence analysis : : : : : : : : : : : : : : : : : : : 102.3 Augmented call graph : 103 Interactive Parallel Programming 123.1 Introduction : 123.2 Work Model : 133.3 Transformations : 163.3.1 Reordering transformations : : : : : : : : : : : : : : : : : : : 173.3.2 Dependence breaking transformations : : : : : : : : : : : : : : 183.3.3 Memory hierarchy transformations : : : : : : : : : : : : : : : 193.3.4 Miscellaneous transformations : : : : : : : : : : : : : : : : : : 203.4 Transformation algorithms : 203.4.1 Loop interchange : 203.4.2 Loop skewing : 213.4.3 Loop distribution : 243.4.4 Unroll and jam : 263.5 Incremental analysis after edits : 283.6 User and compiler interaction : 30

v3.7 Related work : 313.8 Discussion : 324 Loop Transformations with Arbitrary Control Flow 344.1 Motivation : 344.2 Loop distribution : 364.2.1 Mechanics : 374.2.2 Restructuring : 384.2.3 Code generation : 454.3 Other transformations : 534.3.1 Loop skewing : 534.3.2 Loop reversal : 534.3.3 Loop permutation : 534.3.4 Strip mining : 544.3.5 Privatization : 544.3.6 Scalar expansion : 554.3.7 Loop fusion : 554.3.8 Loop peeling : 564.4 Related work : 584.5 Discussion : 595 Interprocedural Transformations 615.1 Introduction : 615.2 Technical background : 645.2.1 Augmented call graph : 645.2.2 Interprocedural section analysis : : : : : : : : : : : : : : : : : 645.3 Support for interprocedural optimization : : : : : : : : : : : : : : : : 665.3.1 The ParaScope compilation system : : : : : : : : : : : : : : : 665.3.2 Recompilation analysis : 685.4 Interprocedural transformation : 695.4.1 Loop extraction : 695.4.2 Loop embedding : 695.5 Intraprocedural transformations : 715.5.1 Loop fusion : 715.5.2 Loop permutation : 72

vi5.6 Experimental results : 735.6.1 Spec77 : 745.6.2 Ocean : 755.7 Related work : 765.8 Discussion : 766 Optimizing for Parallelism and Data Locality 786.1 Introduction : 786.2 Memory and language model : 806.3 Tradeo�s in optimization : 816.4 Optimizing data locality : 836.4.1 Sources of data reuse : 836.4.2 Simplifying assumptions : 846.4.3 Loop cost : 846.4.4 Reference groups : 856.4.5 Loop cost algorithm : 866.4.6 Imperfectly nested loops : 886.5 Loop permutation : 896.5.1 Memory order : 896.5.2 Permuting to achieve memory order : : : : : : : : : : : : : : : 906.6 Data locality experimental results : 926.6.1 Matrix multiply : 926.6.2 Stencil computations: Jacobi and SOR : : : : : : : : : : : : : 936.6.3 Erlebacher : 956.7 Parallelism : 986.7.1 Performance estimation : 986.7.2 Introducing parallelism : 1006.7.3 Strip mining : 1016.7.4 Parallelization algorithm : 1026.8 Optimization algorithm : 1036.9 Experimental results : 1046.9.1 Matrix multiply : 1046.9.2 Dmxpy : 1056.10 Related work : 1056.11 Discussion : 106

vii7 An Automatic Parallel Code Generator 1087.1 Introduction : 1087.2 Parallel code generation : 1097.2.1 Driving code generation : 1097.2.2 Procedure cloning : 1127.2.3 Loop-based optimization : 1137.3 Partitioning for loop distribution and loop fusion : : : : : : : : : : : 1157.3.1 Simple partition algorithm : 1177.3.2 Merging the solutions : 1217.3.3 Discussion : 1217.4 Loop fusion : 1227.5 Loop distribution : 1237.6 Integrating interprocedural transformations : : : : : : : : : : : : : : : 1247.6.1 Selecting the appropriate interprocedural transformation : : : 1257.6.2 Extensions to procedure cloning : : : : : : : : : : : : : : : : : 1257.7 Discussion : 1268 Experimental Results 1278.1 Introduction : 1278.2 Methodology : 1288.2.1 Ask and ye shall receive : 1288.2.2 Original parallel versions and nearby sequential versions : : : 1288.2.3 Creating an automatically parallelized version : : : : : : : : : 1298.2.4 Execution environment : 1308.3 Results : 1318.4 Parallel code generation statistics : 1338.5 Discussion : 1349 Conclusions 135A Description of Test Suite Programs 138A.1 Banded Linear Systems : 138A.2 BTN Unconstrained Optimization : 139A.3 Direct Search Method : 139A.4 Erlebacher : 140

viiiA.5 Interior Point Method : 140A.6 Linpackd Benchmark : 141A.7 Multidirectional Search Method : 141A.8 1-D Seismic Inversion : 142A.9 Optimal Control : 142A.10 Two-Point Boundary Problems : 142Bibliography 144

Illustrations3.1 PED User Interface : 153.2 E�ect of loop skewing on dependences and iteration space : : : : : : 223.3 E�ect of unroll and jam on iteration space : : : : : : : : : : : : : : : 274.1 Control and data dependence graphs for distribution example : : : : 395.1 Sections and data access descriptors : : : : : : : : : : : : : : : : : : : 655.2 Information
ow for interprocedural transformations : : : : : : : : : : 675.3 Stages of preparing program versions for experiment : : : : : : : : : : 736.1 Memory and parallelism tradeo�s : 826.2 Stencil computation: Jacobi : 936.3 Stencil computation: Successive Over Relaxation (SOR) : : : : : : : 946.4 Erlebacher: forward and backward sweeps in Z dimension : : : : : : : 976.5 Parallel loop training set : 1007.1 Counter example for the greedy algorithm : : : : : : : : : : : : : : : 1167.2 Partition graph Go : 1177.3 Dividing Go : 1217.4 Fusing Gs & Gp and merging the result : : : : : : : : : : : : : : : : : 122

1Chapter 1IntroductionMany program transformations that introduce parallelism into sequential, scienti�cFortran programs have proven e�ective in improving performance on vector andshared-memory multiprocessor hardware. For advanced parallel architectures, ob-taining the best performance often requires the program to be modi�ed for the par-ticular features of the underlying architecture. Currently, users must modify theirprograms for each architecture of interest to achieve high performance. Not only areprogrammers required to understand architecture speci�c details, their programs areusually not portable once they have been modi�ed in this fashion. To address theseproblems, this dissertation seeks to determine the following:Does there exists a machine-independent parallel programming style fromwhich compilers can produce parallel programs with acceptable or excellentperformance on shared-memory multiprocessors with local caches and acommon bus?Clearly, we are not attempting to solve the \dusty deck" problem, where a programdeveloped using a sequential algorithm is automatically transformed to a parallelone. This problem is inherently more di�cult because programs may need signi�canttechnical expertise or algorithmic restructuring for good parallel performance. In fact,this problem has not been solved even for uniprocessor vector machines [KKLW80b,CDL88].A lesson to be learned from vectorization is that programmers rewrote their pro-grams in a portable, vectorizable style based on feedback from vectorizing compilers[CKK89, Wol89c]. Compilers were then able to take these programs and generatemachine-dependent vector code with excellent results. We are testing this same the-sis for the harder problem of shared-memory parallel machines.Vectorization achieves high performance by simply utilizing parallelism on a singlestatement for a single loop level. On any architecture where parallelism exacts ahigher cost, larger regions of parallelism, i.e. higher granularity, must be discoveredand exploited to achieve high performance. Because successes in this arena were few,we choose to explore parallel code generation for shared-memorymultiprocessors with

2local caches and a common bus. We believe the solution to this problem to be a �rststep in compiling for more advanced parallel architectures.We advocate that one machine independent program version be developed in asequential language, such as Fortran 77, the most widely used programming languagein the scienti�c community. Our compiler would then apply ambitious algorithms tocustomize the program for a shared-memory multiprocessor.1.1 Automatic parallelizationPrevious automatic parallel code generation algorithms for shared-memory multi-processors are, for the most part, ad hoc and have not yet established an accept-able level of success. Although, many transformations and combinations of trans-formations have been shown to parallelize interesting example loops, an e�ectiveoverall parallelization strategy for complete applications has not been forthcoming[ABC+88, ACK87, KKLW80a, Wol89a, WL90]. The automatic parallelization prob-lem is very di�cult for a variety of reasons.One important reason is that the theoretical statement of seeking all possibleparallelism does not work well in practice. In practice, parallelism incurs overhead.If this overhead is not taken into account, parallelization can degrade performancerather than enhance it. Similarly, parallelism introduced without regard to its e�ecton the performance of the memory subsystem can degrade performance. Anotherreason parallelization is di�cult to discover in complete applications is that it requiresprecise array analysis in the presence of procedure calls. Until recently, this analysiswas not available [CK87b, HK90, HK91].We have developed a new interprocedural approach for automatic parallel codegeneration for complete applications. Two important components of this algorithmare generalized and interprocedural transformations that attack the problems foundreal programs.1. Generalized transformations for loops containing conditional control
ow. Muchprevious work cannot apply parallelizing transformations when loops containconditional control
ow. In this thesis, a broad selection of loop transformationsis extended to deal with conditional branches using the control dependencerepresentation. In particular, a new algorithm for performing loop distributionis shown to be optimal for a legal partitioning of the statements into new loops.

32. Interprocedural transformations. We introduce two new interprocedural trans-formations, loop embedding and loop extraction that expose loop nests to otheroptimizations without incurring costs associated with procedure inlining. Wepresent a strategy for determining the bene�ts and safety of these two transfor-mations when combined with other loop-based optimizations. The compoundtransformations are judiciously applied when performance is expected to im-prove. The recompilation system and analysis needed to perform and test theseoptimizations is shown to be e�cient.These algorithms enable automatic parallelization of complete applications.Three important factors in optimizing for parallel architectures are granularity,parallelism and data locality. Parallelism is usually most e�ective when it achievesthe highest possible granularity, the amount of work per parallel task. The granularityof parallelism must also be su�cient to overcome the overhead of parallelism, such asprocessor synchronization costs. We only perform loops in parallel when performanceestimation determines there is enough granularity to improve execution time.To address data locality, we present a simple cost model for determining cacheline reuse. It computes reuse due to accesses to consecutive memory locations on aparticular cache line and reuse due to multiple accesses to the same memory locationon a cache line. The cost model is used to order loops in a nest to improve datalocality and to discover and exploit parallelism. This optimization strategy producesdata locality at the innermost loops and parallelism at the outermost loop. Eachis placed where it is most likely to be e�ective. Experimental results validate thisapproach. They indicate that the cost model is accurate and e�ective for drivingoptimization, even for scalar machines.This strategy provides the core of the optimizer. Algorithms for applying addi-tional loop transformations are also described. In particular, a new, uni�ed algorithmfor performing loop fusion and distribution is presented which achieves maximal gran-ularity under certain constraints. Several component algorithms are shown to beoptimal. The optimization algorithms are based on theoretical and practical con-siderations. All of the algorithms are incorporated into a cohesive interproceduralparallel code generation algorithm.

41.2 Interactive parallelizationUnfortunately, automatic parallelization is unlikely to yield excellent parallel perfor-mance in every case for a variety of reasons. For example, the algorithm may beunsuitable for parallel execution. One di�culty which often arises is that importantconstants and symbolics values are unknown at compile time. Therefore, in additionto improved automatic parallelization via advanced compiler techniques, we combinecompiler strategies and human insight in an interactive parallel programming tool.Our tool, the ParaScope Editor is intended to provide all the analysis and opti-mization capabilities of the parallelizer in an intelligent editor. It provides a largecollection of parallelism enhancing transformations that have proven e�ective, such asloop interchange, loop fusion and strip mining. It contains a user-assertion facility forcommunication between the user and the compiler, as well as an advanced text andstructure editor for Fortran with functions such as searching and view �ltering. In or-der to make the ParaScope Editor (Ped) truly interactive, updates after user changessuch as edits, transformations and assertions must be quick and precise. We describefast incremental algorithms for precise updates after user or compiler changes. Theyare implemented in Ped and have proven themselves e�cient in practice [HHK+93].1.3 OverviewIn Chapter 2 we begin by describing the analysis required to perform e�ective pro-gram parallelization. We then serve two purposes by discussing the ParaScope Editorin Chapter 3. The �rst is a general description of interactive parallel programmingand the supporting implementation. However, we also introduce the loop-based trans-formations which form a basis for parallel code generation. We detail several of thetransformation algorithms and present new incremental update algorithms for them.These algorithms serve as an introduction to the analysis and representations neces-sary to support automatic as well as interactive parallelization.The next two chapters are devoted to new algorithms that make the parallelizationof complete applications viable throughout the rest of the dissertation. Chapters 6and 7 then develop an integrated, automatic parallel code generation strategy. Thisoptimizer is tested experimentally to determine if it provides support for machine-independent parallel programming.The experiment compares a good hand-coded parallel program to one derived byhand-simulating our automatic algorithm on a nearby sequential version. Therefore,

5parallelism is known to exist and we measure the ability of our automatic techniquesto uncover this parallelism. The results of our experiment indicate that given a fewassertions, the automatically generated versions usually perform as well or better thanhand-coded versions. These results do not completely prove the thesis statement, butprovide very promising support for it.

6Chapter 2Technical BackgroundFor the most part, this dissertation focuses on on exploiting existing analysis toperform e�ective optimizing transformations. To understand these optimizations re-quires knowledge of the tenents on which they are based. We therefore begin with anoverview of the analysis required for program parallelization and transformation.2.1 Dependence AnalysisDependences describe a partial order between statements that must be maintained topreserve the meaning of a program with sequential semantics. A dependence betweenstatement S1 and S2, denoted S1�S2, indicates that S1, the source, must be executedbefore S2, the sink. There are two types of dependence: data dependence and controldependence.Data dependenceA data dependence, S1�S2, indicates that S1 and S2 read or write a common memorylocation in a way that requires their execution order to be preserved [Ber66]. Thereare four types of data dependence [Kuc78]:True (
ow) dependenceoccurs when S1 writes a memory location that S2 later reads.Anti dependenceoccurs when S1 reads a memory location that S2 later writes.Output dependenceoccurs when S1 writes a memory location that S2 later writes.Input dependenceoccurs when S1 reads a memory location that S2 later reads.11Input dependences do not restrict statement order.

7Control dependenceIntuitively, a control dependence, S1�cS2, indicates that the execution of S1 directlydetermines whether S2 will be executed. The control
ow graph Gf represents the
ow of execution in the program. The following formal de�nitions of control depen-dence and the postdominance relation computed on Gf are taken from the literature[FOW87, CFS90].De�nition 2.1 x is postdominated by y in Gf if every path from x tothe exit node of Gf contains y.De�nition 2.2 Given two statements x, y 2 Gf , y is control dependenton x if and only if:1. 9 a non-null path p, x ! y, such that y postdominates every nodebetween x and y on p, and2. y does not postdominate x.Based on these de�nitions, a control dependence graph Gcd can be built with thecontrol dependence edges (x, y)l where l is the label of the �rst edge on path x !y. Additionally, if Gf is structured, rooted and acyclic, the resulting Gcd is a tree,where structured has its usual meaning as originally formulated by B�ohm and Jacopini[BJ66]. If Gf is unstructured, rooted and acyclic, the resulting Gcd is a dag [CFS90].Loop-carried and loop-independent dependenceBecause scienti�c Fortran programs spend most of their time executing loops [Knu71],this thesis focuses on executing loops in parallel. Dependence analysis determineswhich loops in the program may be run safely in parallel. A dependence betweeniterations of a loop is called loop-carried and prevents the iterations of a loop frombeing executed in parallel [All83, AK87]. Consider the following loop:DO I = 2, NS1 A(I) = : : :S2 : : : = A(I)S3 : : : = A(I-1)ENDDOThe true dependence S1�S2 is called loop-independent because it exists regardlessof the surrounding loops. Loop-independent dependences, whether data or control,occur within a single iteration of a loop and do not inhibit a loop from running in

8parallel. For example, if S1�S2 were the only dependence in the loop, the iterationsof this loop could be run in parallel, because statements executed on each iterationonly a�ect other statements in the same iteration and not in any other iterations.However, loop-independent dependences do a�ect statement order within a loop iter-ation. Interchanging statements S1 and S2 violates the loop-independent dependenceand changes the meaning of the program.By comparison, the true dependence S1�S3 is loop-carried because the source andsink of the dependence occur on di�erent iterations of the loop; S3 reads the memorylocation that was written by S1 on the previous iteration. Loop-carried dependencesinhibit loop iterations from executing in parallel without explicit synchronization.When there are nested loops, the level of any carried dependence is the outermostloop on which it �rst arises [All83, AK87].Dependence testingDetermining the existence of data dependence between array references is more dif-�cult than for scalars, because the subscript expressions must be considered. Theprocess of di�erentiating between two subscripted references in a loop nest is calleddependence testing [Ban88, Wol89b, GKT91]. To illustrate, consider the problem ofdetermining whether or not there exists a dependence from statement S1 to S2 in thefollowing loop nest:DO i1 = L1; U1DO i2 = L2; U2� � �DO in = Ln; UnS1 A(f1(i1; : : : ; in); : : : ; fm(i1; : : : ; in)) = : : :S2 : : : = A(g1(i1; : : : ; in); : : : ; gm(i1; : : : ; in))ENDDO� � �ENDDOENDDOLet � and � be vectors of n integer indices within the ranges of the upper and lowerbounds of the n loops. There is a dependence from S1 to S2 if and only if there exist� and � such that � is lexicographically less than or equal to � and the followingsystem of dependence equations is satis�ed:fk(�) = gk(�) 8k; 1 � k � m

9Distance and direction vectorsDistance and direction vectors may be used to characterize data dependences bytheir access pattern between loop iterations. If there exists a data dependence for� = (�1; : : : ; �n) and � = (�1; : : : ; �n), then the distance vector D = (D1; : : : ;Dn) isde�ned as � � �. The direction vector d = (d1; : : : ; dn) of the dependence is de�nedby the equation: di = 8>><>>: < if �i < �i= if �i = �i> if �i > �iDependence distances and directions are represented as a vector whose elements,displayed left to right, represent the dependence from the outermost to the innermostloop in the nest. By de�nition all distance and direction vectors are lexicographicallypositive. We use ~� = (�1; : : : ; �n)to represent a distance or direction vector, where �i is the dependence distance ordirection for the loop at level i. For example, consider the following loop nest:DO I = 1, NDO J = 1, MDO K = 1, lA(I+1, J, K-1) = A(I, J, K) + CENDDOENDDOENDDOThe distance and direction vectors for the true dependence between the de�nition anduse of array A are (1; 0;�1) and (<;=; >), respectively. Since several di�erent valuesof � and � may satisfy the dependence equations, a set of distance and directionvectors may be needed to completely describe the dependences arising between a pairof array references.Distance vectors, �rst used by Kuck and Muraoka [KMC72, Mur71], specifythe number of loop iterations between two accesses to the same memory location.Direction vectors, introduced by Wolfe [Wol82], summarize distance vectors and aretherefore less precise. However, there are situations where direction vectors may becomputed, but distance vectors cannot be.

10Both may be used to calculate loop-carried dependences. Additionally, directionvectors are su�cient to determine the safety and pro�tability of loop interchange[AK87, Wol82]. Distance vectors are often required by other transformations that ex-ploit parallelism [Ban90b, KMT91a, Lam74, WL90, Wol86] and improve data locality[CCK90, KMT91a, GJG87]. Data dependence also characterizes reuse of individualmemory locations [CCK90].2.2 Interprocedural dependence analysisThe presence of procedure calls complicates the process of analyzing dependences.Without interprocedural analysis worst case assumptions must be made in the pres-ence of procedure calls. Conventional interprocedural analysis discovers constants,aliasing,
ow-insensitive side e�ects such as ref and mod, and
ow-sensitive sidee�ects such as use and kill [CCKT86, CKT86a]. However, parallelization is limitedbecause arrays are treated as monolithic objects, making it impossible to determinewhether two references to an array actually access the same memory location.Array sectionsTo provide more precise analysis, array accesses can be summarized in terms of reg-ular sections or data access descriptors that describe subsections of arrays such asrows, columns and rectangles [BK89, CK87b, HK91]. Local symbolic analysis andinterprocedural constants are required to build accurate sections. Once constructed,sections may be quickly intersected during interprocedural analysis and dependencetesting to determine whether dependences exist. This analysis is described in moredetail in Section 5.2.2.2.3 Augmented call graphThe program representation for our work on whole program optimization requiresan augmented call graph to describe the calling relationship among procedures andspecify loop nests. For this purpose, the program's call graph, which contains theusual procedure nodes and call edges, is augmented to include loop nodes and nestingedges. The loop nodes contain loop header information. If a procedure p contains aloop l, there will be a nesting edge from the procedure node representing p to theloop node representing l. If a loop l contains a call to a procedure p, there will be a

11nesting edge from l to p. Any inner loops are also represented by loop nodes and arechildren of their outer loop. The outermost loop of each routine is marked enclosingif all the other statements in the procedure fall inside the loop. Each loop is alsomarked as sequential or parallel. A loop with no loop-carried dependences (i.e all thedirection vectors contain \=" for the loop) is parallel and all others sequential.

12Chapter 3Interactive Parallel ProgrammingThe ParaScope Editor is a new kind of exploratory parallel programming tool fordeveloping scienti�c Fortran programs. It is able to compensate in many cases forthe de�ciencies of automatic parallelizers, by bringing user expertise and compilertechnology to bear on program parallelization. It assists the knowledgeable user bydisplaying the results of sophisticated program analyses and by providing a set ofpowerful interactive transformations. After an edit or parallelism-enhancing trans-formation, the ParaScope Editor incrementally updates both the analyses and sourcequickly. These fast updates are useful in both batch and automatic systems. Thischapter focuses on these abilities and introduces the transformations and the analysisthey require that are used throughout the thesis.3.1 IntroductionThe ParaScope Editor helps users interactively transform a sequential Fortran 77program into a parallel program with explicit parallel constructs, such as those inPCF Fortran [Lea90]. In a language likePCF Fortran, the principal mechanism for theintroduction of parallelism is the parallel loop, which speci�es that its iterations maybe run in parallel according to any schedule. The fundamental problem introduced bysuch languages is the possibility of nondeterministic execution. For example, considerconverting the following sequential loop into a parallel loop.DO I = 1, 100A(INDEX(I)) = A(INDEX(I)) + 1ENDDODependence analysis conservatively assumes that INDEX(I) for a particular iterationmay equal INDEX(I) for a later iteration. Therefore, there may be a loop-carried de-pendence on A and an automatic parallelizer would not execute this loop in parallel.Unfortunately, a parallelizer is often forced to make conservative assumptions aboutwhether dependences exist. These assumptions may arise because of complex sub-scripts (as above) or the use of unknown symbolics. As a result, automatic systemsmiss loops that could be parallelized. For example, it may be that INDEX(I) is a

13permutation, allowing the loop to be safely performed in parallel. This weakness hasled previous researchers to conclude that automatic systems, by themselves, are notpowerful enough to �nd all of the parallelism in a program.However, the analysis performed by automatic systems can be extremely useful tothe programmer during the parallelization process. The ParaScope Editor (Ped) isbased upon this observation. It is designed to support an interactive parallelizationprocess in which the user examines a particular loop and its dependences. To safelyparallelize a loop, the user must either determine that each dependence shown isnot valid (because of some overly conservative assumption made by the system),or transform the loop to satisfy valid dependences. After each transformation, Pedreconstructs the dependence graph so that the user may determine the level of successachieved and apply additional transformations if desired.A tool with this much functionality is bound to be complex. Ped incorporatesa complete source editor and supports dependence analysis, dependence display, anda large variety of program transformations to enhance parallelism. We describe indetail elsewhere the usage, user interface and motivation of the ParaScope Editor[BKK+89, FKMW90, KMT91b]. We also cover elsewhere the types of analysesand representations needed to support this tool and automatic parallelization (seeSection 2) [KMT91a]. In this chapter, we focus on e�cient algorithms for incremen-tal updates after a transformation or edit. All of these algorithms are implementedin Ped.We begin with an overview of the existing work model and a description of thetransformation process. These descriptions include the mechanisms for communi-cation between the user and Ped, and an example Ped session. The incrementalalgorithms for determining safety and pro�tability, and for performing the update ofdependence information and source for four important transformations are also de-tailed. The transformations are loop interchange, loop skewing, loop distribution,and unroll and jam. We discuss related work and conclude.3.2 Work ModelThis thesis exploits loop-level parallelism, which comprises most of the usable paral-lelism in scienti�c codes when synchronization costs are considered [CSY90]. In thework model best supported by Ped, the user �rst selects a loop for parallelization.Ped then displays all of its loop-carried data dependences. Other dependences, such

14as control dependences, may also be displayed at the option of the user. The user maysort, �lter or mark the dependences. This mechanism allows users to mark as rejectedthose dependences that are due to overly conservative dependence analysis, so thatthe transformations will ignore them. If dependence testing is exact and proves adependence to exist, the dependence is pre-marked as proven. Otherwise, the depen-dence is pre-marked as pending, signifying to the user that it may be the result ofoverly-conservative analysis. Additionally, the user may mark pending dependencesas accepted, indicating that the dependence does in fact occur. A similar facility isprovided for variable classi�cation [FKMW90]. These provide users with a powerfulmechanism for experimenting with di�erent parallelization strategies.Ped's user interface is shown in Figure 3.1. The �gure shows a black and whitescreen dump of a color Ped session. The program pane in the top half of the windowdisplays a loop from a parallel direct search program produced by Virginia Torczon.The outer loop on line 29 is selected by clicking the mouse on the loop icon, the `�' inthe leftmost column. The selection causes the header and all the enclosed statementsto be a di�erent color than the other text (in this black and white picture, it is notdetectable). Buttons across the top of the editing pane invoke various Ped features,such as transformations, program analysis, view �ltering and editing.In Ped color is used to convey points of interest, focus or special meaning. Thedependence pane is in the middle pane of the window and shows dependences carriedby the selected loop. The output dependence on S(INDEX(I),J) is selected, whichcauses it to be highlighted in the dependence pane. The dependence is also re
ectedin the text pane by an arrow from the highlighted source reference to the highlightedsink reference. In this example, the dependence has its source and sink at the samereference, so only one reference is highlighted. If the end points of the dependencespan the width of the screen, one end point is brought into view. To view the otherend point the user need only select it in the dependence pane, and then Ped willbring it into view in the text pane. The labels across the top of the dependence panemay be selected to sort by that characteristic. They may also be used in �lter andmarking queries on dependences.The variable display at the bottom of the Ped window presents each variablethat participates in the loop. It also presents the classi�cation of the variable if theloop were run in parallel. The user interface for all three of these displays is uni�ed,requiring the user to learn only one simple paradigm.

15Figure 3.1: PED User Interface

163.3 TransformationsPed provides a variety of interactive, structured transformations that enhance orexpose parallelism in programs. If the user has made assertions about dependencesand variables, the transformations take these into account. These transformations areapplied according to a power steering paradigm: the user speci�es the transformationto be made, and the system provides advice and carries out the mechanical details.The user is therefore relieved of the responsibility of making tedious and error proneprogram changes.Ped evaluates each transformation invoked according to three criteria: applicabil-ity, safety, and pro�tability. A transformation is applicable if it can be mechanicallyperformed. For example, loop interchange is inapplicable for a single loop. A trans-formation is safe if it preserves the meaning of the original sequential program. Sometransformations are always safe, others require a speci�c dependence pattern. Finally,Ped classi�es a transformation as pro�table if it can determine that the transforma-tion directly or indirectly improves the parallelism of the resulting program.To perform a transformation, the user makes a program selection and invokesthe desired transformation. If the transformation is inapplicable, Ped responds witha diagnostic message. If the transformation is safe, Ped advises the user as to itspro�tability. For parameterized transformations, Ped may also suggest a parametervalue. The user may then apply the transformation. For example, see loop skewingand unroll and jam in Sections 3.4.2 and 3.4.4.If the transformation is unsafe or unpro�table, Ped responds with a warningexplaining the cause. In these cases, the user may decide to override the system adviceand apply the transformation anyway. For example, if a user decides to parallelizea loop with loop-carried dependences, Ped will warn the user of the dependencesbut allow the loop to be made parallel. This override ability is extremely importantin an interactive tool, since it allows the user to apply knowledge unavailable tothe tool. The program's abstract syntax tree (AST) and dependence information areautomatically updated after each transformation to re
ect the transformed source.Ped supports a large set of transformations that have proven useful for introduc-ing, discovering, and exploiting parallelism. Ped also supports transformations forimproving data locality. Each transformation is brie
y introduced below. Many arefound in the literature [AC72, AK87, CCK90, KM90, KMT91b, KKLW84, Lov77,Wol86]. In Ped, their novel aspect is the analysis of their applicability, safety, prof-

17itability and the incremental updates of source and dependence information. Weclassify the transformations implemented in Ped as follows.Reordering TransformationsLoop Distribution Loop InterchangeLoop Skewing Loop ReversalLoop Fusion Statement InterchangeUnroll and JamDependence Breaking TransformationsPrivatization Scalar ExpansionArray Renaming Loop PeelingLoop Splitting AlignmentMemory Hierarchy TransformationsStrip Mining Scalar ReplacementLoop UnrollingMiscellaneous TransformationsSequential $ Parallel Loop Bounds AdjustingStatement Addition Statement Deletion3.3.1 Reordering transformationsReordering transformations change the order in which statements are executed, eitherwithin or across loop iterations. They are safe if all the dependences in the originalprogram are preserved. Reordering transformations are used to expose or enhanceloop-level parallelism. They are often performed in concert with other transformationsto structure computations in a way that allows useful parallelism to be introduced.These may also be used to optimize data locality.� Loop distribution partitions independent statements inside a loop into multi-ple loops with identical headers. It is used to separate statements that may beparallelized from those that must be executed sequentially [KM90, KMT91a,Kuc78]. The partitioning of the statements is targeted to vector or parallelhardware as speci�ed by the user.� Loop interchange interchanges the headers of two perfectly nested loops,changing the order in which the iteration space is traversed. When loop in-

18terchange is safe, it can be used to adjust the granularity of parallel loops[AK87, KMT91a, Wol89b].� Loop skewing adjusts the iteration space of two perfectly nested loops byshifting the work per iteration in order to expose parallelism. When possible,Ped computes and suggests the optimal skew degree. Loop skewing may be usedwith loop interchange inPed to expose wavefront parallelism [KMT91a,Wol86].� Loop reversal reverses the order of execution of loop iterations.� Loop fusion can increase the granularity of parallel regions and promote reuseby fusing two contiguous loops when dependences are not violated [AC72,KKP+81].� Statement interchange interchanges two adjacent independent statements.� Unroll and jam increases the potential candidates for scalar replacement andpipelining by unrolling the body of an outer loop in a loop nest and fusing theresulting inner loops [AC72, CCK90, CCK88, KMT91a].3.3.2 Dependence breaking transformationsDependence breaking transformations are used to satisfy speci�c dependences thatinhibit parallelism. They may introduce new storage to eliminate storage-relatedanti or output dependences, or convert loop-carried dependences to loop-independentdependences, often enabling the safe application of other transformations. If all thedependences carried on a loop are eliminated, the loop may then be run in parallel.� Privatization makes an array or scalar variable local to a parallel loop, elimi-nating dependences on the variable between loop iterations.� Scalar expansion transforms a scalar variable into a one-dimensional array.It breaks output and anti dependences which may be inhibiting parallelism[KKLW80a].� Array renaming, also known as node splitting [KKLW80a], is used to breakanti dependences by copying the source of an anti dependence into a newlyintroduced temporary array and renaming the sink to the new array [AK87].Loop distribution may then be used to separate the copying statement into aseparate loop, allowing both loops to be parallelized.

19� Loop peeling peels o� the �rst or last k iterations of a loop as speci�ed bythe user. It is useful for breaking dependences which arise on the �rst or last kiterations of the loop [AC72].� Loop splitting, or index set splitting, separates the iteration space of one loopinto two loops, where the user speci�es at which iteration to split. For exam-ple, if DO I = 1, 100 is split at 50, the following two loops result: DO I = 1, 50and DO I = 51, 100. Loop splitting is useful in breaking crossing dependences,dependences that cross a speci�c iteration [AK87].� Alignment moves instances of statements from one iteration to another tobreak loop-carried dependences [Cal87].3.3.3 Memory hierarchy transformationsMemory optimizing transformations adjust a loop's balance between computationsand memory accesses to make better use of the memory hierarchy and functionalpipelines. These transformations have proven to be extremely e�ective for both scalarand parallel machines.� Strip mining takes a loop with step size of 1, and changes the step size to anew user speci�ed step size greater than 1. A new inner loop is inserted whichiterates over the new step size. If the minimum distance of the dependences inthe loop is less than the step size, the resultant inner loop may be parallelized.Used alone the order of the iterations is unchanged, but used in concert withloop interchange the iteration space may be tiled [Wol89a] to utilize memorybandwidth and cache more e�ectively [CK89].� Scalar replacement takes array references with consistent dependences andreplaces them with scalar temporaries that may be allocated into registers[CCK90]. It improves the performance of the program by reducing the numberof memory accesses required.� Loop unrolling decreases loop overhead and increases potential candidates forscalar replacement by unrolling the body of a loop [AC72, KMT91a].

203.3.4 Miscellaneous transformationsFinally Ped has a few miscellaneous transformations.� Sequential$ Parallel converts a sequential DO loop into a parallel loop, andvice versa.� Loop bounds adjusting adjusts the upper and lower bounds of a loop by aconstant. It is used in preparation for loop fusion.� Statement addition adds an assignment statement.� Statement deletion deletes an assignment statement.3.4 Transformation algorithmsThe incremental update algorithms for the transformations serve a critical function;they update the code and dependence information quickly and immediately, allowingusers to understand the changes, see the e�ects, and continue the transformationprocess without reanalyzing the entire program. Although many of the algorithms forapplying these transformations have appeared elsewhere, our implementation givespro�tability advice and performs incremental updates of dependence information.Rather than describe all these phases for each transformation, we have chosen toexamine only a few interesting transformations in detail. We discuss loop interchange,loop skewing, loop distribution, and unroll and jam. The purpose, mechanics, andsafety of these transformations are presented, followed by their pro�tability estimates,user advice, and incremental dependence update algorithms.3.4.1 Loop interchangeLoop interchange has been used extensively in vectorizing and parallelizing compilersto adjust the granularity of parallel loops and to expose parallelism [AK87, KKLW84,Wol86]. Ped interchanges pairs of adjacent loops. Loop permutations may be per-formed as a series of pairwise interchanges. Ped supports interchange of triangularor skewed loops. It also interchanges hexagonal loops that result after skewed loopsare interchanged.

21SafetyLoop interchange is safe if it does not reverse the order of execution of the source andsink of any dependence. Ped determines this by examining the direction vectors forall dependences carried on the outer loop. If any dependence has a direction vectorof the form (<;>), interchange is unsafe. These dependences are called interchangepreventing. They are precomputed and recorded in a
ag in the dependence edge.Each dependence edge carried on the outer loop is examined. If any one of these hasthe interchange preventing
ag set, Ped advises the user that interchange is unsafe.Pro�tabilityPed judges the pro�tability of loop interchange by calculating which of the loopswill be parallel after the interchange. A dependence carried on the outer loop willmove inward if it has a direction vector of the form (<;=). These dependences arecalled interchange sensitive. They are also precomputed and stored in a
ag on eachdependence edge. Ped examines each dependence edge on the outer loop to determinewhere it will be following interchange. It then checks for dependences carried on theinner loop as well; they move outward following interchange. Depending on theresult, Ped advises the user that neither, one, or both of the loops will be parallelafter interchange.UpdateUpdates after loop interchange are very quick. Dependence edges on the interchangedloops are moved directly to the appropriate loop level based on their interchange sen-sitive
ags. All the dependences in the loop nest then have the elements in theirdirection vector corresponding to the interchanged loops swapped, e.g., (<;=) be-comes (=; <). Finally, the interchange
ags are recalculated for dependences in theloop nest.3.4.2 Loop skewingLoop skewing is a transformation that changes the shape of the iteration space toexpose parallelism across a wavefront [IT88, Lam74, Mur71, Wol86]. It can be ap-plied in conjunction with loop interchange, strip mining, and loop reversal to obtain

22Figure 3.2: E�ect of loop skewing ondependences and iteration spaceafter skewbefore skewi j ji
e�ective loop-level parallelism in a loop nest [Ban90b, WL90, Wol89a]. All of thesetransformations are supported in Ped.Loop skewing is applied to a pair of perfectly nested loops that both carry depen-dences, even after loop interchange. Loop skewing adjusts the iteration space of theseloops by shifting the work per iteration, changing the shape of the iteration spacefrom a rectangle to a parallelogram, as illustrated in Figure 3.2. Skewing changesdependence distances for the inner loop so that all dependences are carried on theouter loop after loop interchange. The inner loop can then be safely parallelized.Loop skewing of degree � is performed by adding � times the outer loop indexvariable to the upper and lower bounds of the inner loop, followed by subtracting thesame amount from each occurrence of the inner loop index variable in the loop body.In the example below, the loop nest on the right results when the J loop in the leftloop nest is skewed by degree 1 with respect to loop I.DO I = 1, 100 DO I = 1, 100DO J = 2, 100 DO J = I + 2, I + 100A(I,J) = A(I-1,J) + A(I,J-1) A(I,J-I) = A(I-1,J-I) + A(I,J-I-1)ENDDO ENDDOENDDO ENDDOFigure 3.2 illustrates the iteration space for this example. For the original loop,dependences with distance vectors (1; 0) and (0; 1) prevent either loop from beingsafely parallelized. In the skewed loop, the distance vectors for dependences aretransformed to (1; 1) and (0; 1). There are no longer any dependences within eachcolumn of the iteration space, so parallelism is exposed. However, to introduce theparallelism on the I loop requires a loop interchange.

23SafetyLoop skewing is always safe because it does not change the order in which arraymemory locations are accessed. It only changes the shape of the iteration space.Pro�tabilityTo determine if skewing is pro�table, Ped ascertains whether skewing will exposeparallelism that can be made explicit using loop interchange and suggests the min-imum skew amount needed to do so. This analysis requires that all dependencescarried on the outer loop have precise distance vectors. Skewing is only pro�table if:1. 9 dependences on the inner loop, and2. 9 at least one dependence on the outer loop with a distance vector (d1; d2),where d2 � 0.The interchange preventing or interchange sensitive dependences in case (2) preventthe application of loop interchange to move all dependences to the outer loop. If theydo not exist, at least one loop may already be safely parallelized, possibly by usingloop interchange. The purpose of loop skewing is to change the distance vector to(d1; d02), where d02 � 1. In terms of the iteration space, loop skewing is needed totransform dependences that point down or downwards to the left into dependencesthat point downwards to the right. Followed by loop interchange, these dependenceswill remain on the outer loop, allowing the inner loop to be safely parallelized.To compute the skew degree, we �rst consider the e�ect of loop skewing on eachdependence. When skewing the inner loop with respect to the outer loop by aninteger degree �, the original distance vector (d1; d2) becomes (d1; �d1 + d2). So forany dependence where d2 � 0, we want � such that �d1+d2 � 1. To �nd the minimalskew degree we compute � = &1 � d2d1 'for each dependence, taking the maximum� for all the dependences; this is suggestedas the skew degree.

24UpdateUpdates after loop skewing are also very fast. After skewing by degree �, the incre-mental update algorithm changes the original distance vectors (d1; d2) for all depen-dences in the nest to (d1; �d1 + d2), and then updates their interchange
ags.3.4.3 Loop distributionLoop distribution separates independent statements inside a single loop into multipleloops with identical headers [AK87, KKP+81]. It is used to expose partial parallelismby separating statements which may be parallelized from those that must be executedsequentially. It is a cornerstone of vectorization and parallelization.In Ped the user can specify whether distribution is for the purpose of vectorizationor parallelization. If the user speci�es vectorization, then each statement is placed ina separate loop when possible. If the user speci�es parallelization, then statementsare grouped together into the fewest loops such that the most statements can be madeparallel and the original statement order is maintained. The user is presented witha partition of the statements into new loops, as well as an indication of which loopsare parallelizable. The user may then apply or reject the distribution partition.SafetyTo maintain the meaning of the original loop, the partition must not put statementsthat are involved in recurrences into di�erent loops [KM90, KKP+81]. Recurrencesare calculated by �nding strongly connected regions in the subgraph composed ofloop-independent dependences and dependences carried on the loop to be distributed.Statements not involved in recurrences may be placed together or in separate loops,but the order of the resulting loops must preserve all other data and control depen-dences. Ped always computes a partition which meets these criteria.If there is control
ow in the original loop, the partition may cause decisions thatoccur in one loop to be used in a later loop. These decisions correspond to loop-independent control dependences that cross between partitions. We use the methoddescribed in Section 4.2 to insert new arrays, called execution variables, that recordthese \crossing" decisions. Given a partition, this algorithm introduces the minimalnumber of execution variables necessary to e�ect the partition, even for loops witharbitrary control
ow.

25Pro�tabilityCurrently Ped does not change the order of statements in the loop during parti-tioning. This simpli�cation improves the recognizability of the resulting program,but may reduce the parallelism uncovered. In particular, statements that fall lexi-cally between statements in a recurrence will be put into the same partition as therecurrence. In addition, when the source of a dependence lexically follows the sink,these statements will be placed in the same partition. A more
exible partitioningalgorithm that allows statements to be reordered is described in Section7.3.When distributing for vectorization, statements not involved in recurrences areplaced in separate loops. When distributing for parallelization, they are partitionedas follows. A statement is added to the preceding partition only if it does not causethat partition to be sequentialized. Otherwise it begins a new partition. Considerdistributing the loop on the left for parallelization.DO I = 2, N PARALLEL DO I = 2, NS1 A(I) = : : : S1 A(I) = : : :S2 : : : = A(I - 1) ENDDOENDDO PARALLEL DO I = 2, NS2 : : : = A(I - 1)ENDDOThis loop contains only the loop-carried true dependence S1�S2. Since there areno recurrences, S1 and S2 begin in separate partitions. S1 is placed in a parallelpartition, then S2 is considered. The addition of S2 to the partition would instantiatethe loop-carried true dependence, causing the partition to be sequential. Therefore,S2 is placed in a separate loop and both loops may be made parallel as seen on theright above.UpdateUpdates can be performed quickly on the existing dependence graph after loop dis-tribution. Data and control dependences between statements in the same partitionremain unchanged. Data dependences between statements placed in separate parti-tions are converted from loop-carried dependences into loop-independent dependences(as in the above example).Loop-independent control dependences that cross partitions are deleted and re-placed as follows. First, loop-independent data dependences are introduced betweenthe de�nitions and uses of execution variables representing the crossing decision. A

26control dependence is then inserted from the test on the execution variable to thesink of the original control dependence. The update algorithm is explained morethoroughly in Section 4.2.3.4.4 Unroll and jamUnroll and jam is a transformation that unrolls an outer loop in a loop nest, then jams(or fuses) the resulting inner loops [AC72, CCK88]. Unroll and jam can be used toconvert dependences carried by the outer loop into loop independent dependences ordependences carried by some inner loop. It brings two accesses to the same memorylocation closer together and can signi�cantly improve performance by enabling reuseof either registers or cache. When applied in conjunction with scalar replacement onscienti�c codes, unroll and jam has resulted in integer factor speedups, even for singleprocessors [CCK90]. Unroll and jam may also be applied to imperfectly nested loopsor loops with complex iteration spaces. Figure 3.3 shows an example iteration spacebefore and after unroll and jam of degree 1.Before performing unroll and jam of degree � on a loop with step �, we mayneed to use loop splitting to make the total number of iterations divisible by � + 1by separating the �rst few iterations of the loop into a preloop. We then create �additional copies of the loop body. All occurrences of the loop index variable in theIth new loop body must be incremented by �I. The step of the loop is then increasedto �(�+ 1). Consider the following.before: DO I = 1, 100DO J = 1, 100C(I, J) = 0.0DO K = 1, 100C(I, J) = C(I, J) + A(I, K) * B(K, J)ENDDOENDDOENDDOafter: DO I = 1, 100, 2DO J = 1, 100C(I, J) = 0.0C(I + 1, J) = 0.0DO K = 1, 100C(I, J) = C(I, J) + A(I, K) * B(K, J)C(I + 1, J) = C(I + 1, J) + A(I + 1, K) * B(K, J)ENDDOENDDOENDDO

27Figure 3.3: E�ect of unroll and jam on iteration space
after unroll and jambefore unroll and jami j i j

In the above matrix multiply example, loop I is unrolled and jammed by one to bringtogether references to B(K, J), resulting in the second loop nest. Unroll and jam mayalso be performed on loop J to bring together references to A(I, K).SafetyTo determine safety, an alternative formulation of unroll and jam is used. Unroll andjam is equivalent to strip mining the outer loop by the unroll degree, interchangingthe strip mined loop to the innermost position, and then completely unrolling thestrip mined loop. Since strip mining and loop unrolling are always safe, we only needto determine whether we can safely interchange the strip mined loop to the innermostposition.Ped determines this requirement by searching for interchange preventing depen-dences on the outer loop. Unroll and jam is unsafe if any dependence carried by theouter loop has a direction vector of the form (<;>). Even if such a dependence isfound, unroll and jam is still safe if the unroll degree is less than the distance of thedependence on the outer loop, since this dependence would remain carried by theouter loop. Ped will either warn the user that unroll and jam is unsafe, or provide arange of safe unroll degrees.Unroll and jam of imperfectly nested loops changes the execution order of theimperfectly nested statements with respect to the rest of the loop body. Dependencescarried on the unrolled loop with distance less than or equal to the unroll degreeare converted into loop-independent dependences. If any of these dependences cross

28between the imperfectly nested statements and the statements in the inner loop, theyinhibit unroll and jam. Speci�cally, the intervening statements cannot be moved andprevent fusion of the inner loops.Pro�tabilityBalance describes the ratio between computation and memory access rates [CCK88].Unroll and jam is pro�table if it brings the balance of a loop closer to the balanceof the underlying machine. Ped automatically calculates the optimal unroll and jamdegree for a loop nest, including loops with complex iteration spaces [CCK90].UpdateAn algorithm for the incremental update of the dependence graph after unroll andjam is described elsewhere [CCK90]. However, we chose a di�erent strategy. Since noglobal data-
ow or symbolic information is changed by unroll and jam, Ped rebuildsthe scalar dependence graph for the loop nest and re�nes it with dependence tests.This update strategy proved much simpler to implement and is very quick in practice.3.5 Incremental analysis after editsEditing is fundamental for any program development tool because it is the most
ex-ible means of making program changes. The ParaScope Editor therefore providesadvanced editing features. When editing, the user has complete access to the func-tionality of the hybrid text and structure editor underlying Ped, including simpletext entry, template-based editing, search and replace functions, intelligent and cus-tomizable view �lters, and automatic syntax and type checking.Rather than reanalyze immediately after each edit, Ped waits for a reanalyzecommand from the user. The user may thus avoid analyzing intermediate stages ofthe program that may be illegal or simply uninteresting. The transformations, thedependence display and the variable display are disabled during an editing session,because they rely on dependence information that may be invalidated by the edits.Once the user prompts Ped, the dependence driver invokes syntax and type checking.If errors are detected, the user is warned; otherwise, reanalysis proceeds.Unfortunately, incremental dependence analysis after edits is a very di�cult prob-lem. Precise dependence analysis requires utilization of several di�erent kinds of in-formation. In order to calculate precise dependence information, Ped may need to

29incrementally update the control
ow graph, control dependence graph, static singleassignment graph (ssa) [CFR+89], and call graphs, as well as recalculate scalar liverange, constant, symbolic, interprocedural, and dependence testing information.Several algorithms for performing incremental analysis are found in the litera-ture; for example, data-
ow analysis [RP88, Zad84], interprocedural analysis [Bur90,RC86], interprocedural recompilation analysis [BCKT90], as well as dependence anal-ysis [Ros90]. However, few of these algorithms have been implemented and evaluatedin an interactive environment. Rather than tackle all these problems at once, wechose a simple yet practical strategy for the current implementation of Ped. First,the scope of each program change is evaluated. Incremental analysis is applied onlywhen it may be pro�table, otherwise batch dependence analysis is invoked. Ped willapply incremental dependence analysis when the following situations are detected:No update neededMany program edits fall into this category. It is trivial using a structure editor todetermine that changes to comments or whitespace do not require reanalysis. Othermore interesting cases include changes to arithmetic expressions that do not disturbcontrol
ow or symbolic analysis. For instance, changing the assignment A(I) = B(I)to A(I) = B(I) + 1 does not a�ect dependence information one whit.Delete dependence edgesRemoval of an array reference may be handled simply by deleting all edges involvingthat reference.Add dependence edgesAddition of an array reference may be handled by scanning the loop nest for occur-rences of the same variable, performing dependence tests between the new referenceand any other references, and adding the necessary dependence edges.Redo dependence testingChanges to loop bounds or array subscript expressions require dependence testing tobe performed on all a�ected array variables.

30Redo local symbolic analysisSome types of program changes do not a�ect the scalar dependence graph, but mayrequire symbolic analysis to be reapplied. For instance, changing the assignmentJ=J+1 to J=J+2, where J is an auxiliary induction variable, requires redoing symbolicanalysis and dependence testing.Redo local dependence analysisChanges such as the modi�cation of control
ow or variables involved in symbolicanalysis require signi�cant updates best handled by redoing dependence analysis.However, the nature of the change may allow the reanalysis to be limited to thecurrent loop nest or procedure. In these cases, the entire program does not need tobe reanalyzed.3.6 User and compiler interactionOnce the programmer begins changing the source for the purpose of optimization,version control begins to play an important role. Is the new version now machinedependent, or is it a better machine independent version, or it is a bug �x? Theautomation of version control is still an open question and in the current imple-mentation, version control is left to the programmer. In order to facilitate a singlemachine-independent program version we propose the following compiler-controlledapproach.In this approach, the compiler would �rst perform automatic parallelization as asource-to-source transformation producing a machine speci�c version. If the user issatis�ed with the program's resulting performance, the user need not intervene at all.If the user is unsatis�ed, the compiler communicates to the user in the interactivetool, in this case Ped. The compiler would mark the loops in the original versionthat it was unable to parallelize or parallelize well. It would also rank the loopsand subroutines by their e�ects on execution time using performance estimation orrun-time pro�ling. If the user wants to maintain portability, the onus shifts to theuser to make assertions and improvements in an architecture independent manner.The user is assisted with the hints and functionality currently provided Ped, such asdependence display and transformations. In addition, users would be able to invoke

31the compiler's optimizing and parallelizing algorithms in Ped to determine the e�ectsof their changes, providing almost an interactive compiler.3.7 Related workSeveral other research groups are also developing advanced parallel programmingtools. Ped's analysis and transformation capabilities compare favorably to automaticparallelization systems such as Parafrase, Ptran, and of course PFC. Our work oninteractive parallelization bears similarities to Sigmacs, Pat, and Superb.Ped has been greatly in
uenced by the Rice Parallel Fortran Converter (PFC),which has focused on the problem of automatically vectorizing and parallelizing se-quential Fortran [AK87]. PFC has a mature dependence analyzer which performs datadependence analysis, control dependence analysis, interprocedural constant propaga-tion [CCKT86], interprocedural side-e�ect analysis of scalars [CKT86a], and inter-procedural array section analysis [CK87b, HK91]. Ped expands on PFC's analysisand transformation capabilities and makes them available to the user in an interactiveenvironment. Because of its mature analysis and implementation, PFC is availableas a dependence information server for the ParaScope Editor. On demand, the infor-mation provided by PFC is converted into the internal representations in ParaScopeEditor. This functionality enables the use of PFC's more advanced analysis in Ped.Parafrase was the �rst automatic vectorizing compiler [KKLW84]. It supports pro-gram analysis and performs a large number of program transformations to improveparallelism. In Parafrase, program transformations are structured in phases and arealways applied where applicable. Batch analysis is performed after each transforma-tion phase to update the dependence information for the entire program. Parafrase-2adds scheduling and improved program analysis and transformations [PGH+90]. Moreadvanced interprocedural and symbolic analysis is planned [HP90]. Parafrase-2 usesFaust as a front end to provide interactive parallelization and graphical displays[GGGJ88].Ptran is also an automatic parallelizer with extensive program analysis. It com-putes the ssa and program dependence graphs, and performs constant propagationand interprocedural analysis [CFR+89, FOW87]. Ptran introduces both task andloop parallelism, but the only other program transformations are variable privatiza-tion and loop distribution [ABC+87, Sar90].

32Sigmacs, a programmable interactive parallelizer in the Faust programmingenvironment, computes and displays call graphs, process graphs, and a statementdependence graph [GGGJ88, SG90]. In a process graph each node represents a taskor a process, which is a separate entity running in parallel. The call and process graphsmay be animated dynamically at run time. Sigmacs also performs several interactiveprogram transformations, and is planning on incorporating automatic updates ofdependence information.Pat is also an interactive parallelization tool [SA88, SA89]. Its dependence analy-sis is restricted to Fortran programs where only one write occurs to each variable in aloop. In addition, Pat uses simple dependence tests that do not calculate general dis-tance or direction vectors. Hence, it is incapable of applying loop level transformationssuch as loop interchange and skewing. However, Pat does support replication andalignment, insertion and deletion of assignment statements, and loop parallelizationfor a single loop. It can also insert synchronization to protect speci�c dependences.Pat divides analysis into scalar and dependence phases, but does not perform sym-bolic or interprocedural analysis. The incremental dependence update that followstransformations is simpli�ed due to its austere analysis [SAS90].Superb interactively converts sequential programs into data parallel SPMD pro-grams that can be executed on the Suprenum distributed memory multiprocessor[ZBG88]. Superb provides a set of interactive program transformations, includingtransformations that exploit data parallelism. The user speci�es a data partitioning,then node programs with the necessary send and receive operations are automati-cally generated. Algorithms are also described for incremental update of use-def anddef-use chains following structured program transformations [KZBG88].3.8 DiscussionThe ParaScope Editor provides a complementary strategy to backup automatic par-allelization. In an integrated approach that makes the compiler algorithms available,as well as the individual transformations, the user may make assertions and see theresults in the automatically generated version. It also enables users to experimentwith di�erent mixtures of transformations without reanalyzing the entire programbetween transformations.Our experience with the ParaScope Editor has shown that dependence analysis canbe used in an interactive tool with ample e�ciency [HHK+93]. This e�ciency is due

33to fast yet precise dependence analysis algorithms, and a dependence representationthat makes it easy to �nd dependences and to reconstruct them after a change.To our knowledge, Ped is the �rst tool to o�er general editing with dependencereconstruction along with a substantial collection of useful program transformations.

34Chapter 4Loop Transformations with Arbitrary Control FlowPrevious code generation techniques and program transformations have known limi-tation dealing with control
ow. Many of these transformations are loop based andare not applicable when there exists control
ow such as branching within a loop orexit branches out of a loop. Because most programs contain meaningful control
owin loops, this limitation is a serious
aw. For truly e�ective parallel code generation,this problem must be addressed.In this chapter, we extend a broad selection of transformations from Section 3.3 todeal with arbitrary control
ow, thus allowing an integrated transformation systemfor parallel code generation or interactive parallelization that is not inhibited bycontrol
ow. Several transformations are inhibited by some type of control
ow andothers are easily extended. For example, loop permutation is safe when branches areinternal and is inhibited by exit branches. Strip mining, on the other hand, is saferegardless of the type of branching. Two particularly important transformations, loopdistribution and loop fusion require more sophisticated algorithms that leverage thecontrol dependence graph.In the next section, we give a motivating example, an introduction to the problemswith previous work, a few de�nitions and our general approach. Due to its wide spreaduse and the new and optimal results presented here, We begin with the algorithmfor loop distribution when loops contain arbitrary control
ow. The following sectiondetail a variety of other transformations and includes loop skewing, loop reversal,loop permutation, strip mining, privatization, scalar expansion, loop fusion and looppeeling.4.1 MotivationTo motivate our treatment of conditional control
ow, we �rst consider loop distri-bution. Loop distribution breaks up a single loop into two or more loops, each ofwhich iterates over a disjoint subset of the statements in the body of the originalloop. The usefulness of this transformation derives from its ability to convert a large

35loop whose iterations cannot be run in parallel into multiple loops, many of whichcan be parallelized. Consider the following code.DO I = 2, NA(I) = B(I) + CD(I) = A(I-1)*EENDDOIf we wish to retain the original meaning of this code fragment, the iterations cannotbe run in parallel without explicit synchronization lest a value of A(I-1) is fetched be-fore the previous iteration has a chance to store it. However, if the loop is distributed,each of the resulting loops can be run in parallel.DOALL I = 2, NA(I) = B(I) + CENDDODOALL I = 2, ND(I) = A(I-1)*EENDDOThe presence of conditionals complicates distribution. Consider, for example thefollowing loop.DO I = 2, NIF (A(I) .EQ. 0) THENA(I) = B(I) + CD(I) = A(I-1)*EENDIFENDDOIn order to place the �rst assignment in the �rst loop and the second assignmentin the second loop, the result of the if statement must be known in both loops.The if cannot be replicated in both loops, because the �rst assignment changes thevalue of A. One solution to this problem is to convert all if statements to conditionalassignment statements, as follows:DO I = 2, NP(I) = A(I) .EQ. 0IF (P(I)) A(I) = B(I) + CIF (P(I)) D(I) = A(I-1)*EENDDOThe resulting loop can be distributed by considering only data dependence, becausethe control dependence has been converted to a data dependence involving the logicalarray P. This approach, called if-conversion [AKPW83, All83], has been used success-

36fully in a variety of vectorization systems which incorporate several other transforma-tions as well [AK87, SK86, KKLW84]. However, if-conversion has several drawbacks.If vectorization or parallelization fails, it is not easy to reconstruct e�cient branchingcode. In addition, if-conversion may cause signi�cant increases in the code space tohold conditionals.For these reasons, research in automatic parallelization has concentrated on analternative approach that uses control dependences to model control
ow [FOW87,ABC+87, ABC+88]. Our approach uses both data and control dependence graphs(as were de�ned in Sections 2.1 and 2.1). For our purposes, it is useful to classify thetype of control
ow in a loop nest and its correspondence in the control dependencegraph as either1. internal branching or2. exit branching.Internal branching consists of conditional control
ow that a�ects only the statementsexecuted on a particular iteration of the loop. These are loop-independent controldependences. Exit branching is conditional control
ow which terminates the exe-cution of the loop. These are loop-carried control dependences. Internal branchingmay utilize structured or unstructured constructs. Exit branching can only be formedusing unstructured control
ow (gotos in Fortran).Exit branches are inherently sequential because they give rise to loop carried de-pendences. Although the main focus of this dissertation is the use of transformationsin a parallelizing environment, many of the transformations below are also useful forscalar compilation and data locality optimizations. Therefore, the extensions and lim-itations necessary for both internal and exit branching are include in the discussionbelow.4.2 Loop distributionLoop distribution is an integral part of transforming a sequential program into aparallel one. It was introduced by Muraoka [Mur71] and is used extensively in par-allelization, vectorization, and memory management. For loops with control
ow,previous methods for loop distribution have signi�cant drawbacks. We present a newalgorithm for loop distribution in the presence of control
ow modeled by a controldependence graph. This algorithm is shown optimal in that it generates the minimumnumber of new arrays and tests possible. We also present a code generation algorithm

37that produces code for the resulting program without replicating statements or condi-tions. These algorithms are very general and can be used in automatic or interactiveparallelization systems.This section presents a method for performing loop distribution in the presence ofcontrol
ow based on control dependences. Control dependences may be used like datadependences for determining the placement of statements in loops. However, whenthere exists a control dependence between statements that crosses their new respectiveloop bodies, correct code generation requires recording the results of evaluating thepredicate in a logical array and testing the logical array in the second loop.Our approach is optimal in the sense that it introduces the fewest possible newlogical arrays and tests. In particular, it introduces one array for each conditionalnode upon which some node in another loop in the distribution depends. We alsopresent an algorithm for generating code for the body of a loop after distribution.The algorithms are very fast, both asymptotically and practically. This algorithm isalso described elsewhere [KM90]4.2.1 MechanicsLoop distribution may be separated into a three-stage process: (1) the statementsin the loop body are partitioned into groups to be placed in di�erent output loops;(2) the control and data dependence graphs are restructured to e�ect the new looporganization and (3) an equivalent program is generated from the dependence graphs.To perform loop distribution without changing the original meaning of the loop, theplacement of statements into new loops must preserve the data and control depen-dences of the original. The method we present is designed to work on any partitionthat is legal, i.e., any partition that preserves the control and data dependences.A partition can preserve all dependences if and only if there exists no dependencecycle spanning more than one output loop [KKP+81, AK87]. If there is a cycleinvolving control and/or data dependences, it must be entirely contained within asingle partition.2 This condition is both necessary and su�cient. Consider whatmust be done to generate code given a partitioning into loops: some linear order forthe loops must be chosen. If we treat each output loop as a single node and de�nedependence between loops to be inherited in the natural way from control and data2Loops with exit branches are an exception to this condition. The necessary extensions are discussedat the end of Section 4.2.2.

38dependences between statements, then the resulting graphs will be acyclic if and onlyif each original recurrence is con�ned to a single loop. Since an acyclic graph canalways be ordered using topological sort and a cyclic graph can never be ordered, thecondition is established.In the algorithms presented below the nodes in both the control and data depen-dence graphs usually represent a single statement. Exceptions to the single statementper node rule are inner loops and irreducible regions; all of their statements are rep-resented with a single node.Because our algorithm accepts any legal partition as input, it is as general aspossible. It can be used for vectorization, which seeks a partition of the �nest possiblegranularity, or for MIMD parallelization, which seeks the coarsest possible granularitywithout sacri�cing parallelism. We discuss a partitioning strategy in Section 7.3 forshared-memory parallel code generation. In the discussion here, we assume a legalpartition is provided.4.2.2 RestructuringIn the original program, control decisions are made and used in the same loop on thesame iteration, but a partition may specify that decisions that are made in one loop beused in another. This problem is illustrated below by Example 4.1. Its correspondingGcd and data dependence graph are shown in Figure 4.1.Example 4.1:DO I = 1, NS1 IF (A(I) .GT. T) THENS2 A(I) = IELSES3 T = T + 1S4 F(I) = A(I)S5 IF (B(I) .NE. 0) THENS6 U = A(I) / B(I)ELSES7 U = A(I) - US8 C(I) = B(I) + C(I)ENDIFENDIFS9 D(I) = D(I) + C(I)ENDDO

39Figure 4.1: Control and data dependencegraphs for distribution example(a) Gcd (b) Data Dependence..S1S2 S3 S4 S5S6 S7 S8S9..t f f ft f fS1S2 S3 S4 S5S6 S7 S8S9..lclc lclc lclcThe data dependence graph in Figure 4.1(b) shows true dependences with solidlines and anti dependences with dashed lines. Loop carried edges are labeled with lc.In this example, output dependences are redundant and are not included. Given thedata and control dependences in Figure 4.1, the statements may be placed in fourpartitions: (S1, S2, S3), (S4, S5), (S6, S7), and (S8, S9). This particular partition ischosen solely for exposition of the algorithm, and in Figure 4.1(a) it is superimposedon Gcd such that each partition is enclosed by dashed lines.Given this partition, some statements are no longer in the same loop with state-ments upon which they are control dependent. For example, S4 is control dependenton S1, but S1 and S4 are not in the same partition. In Figure 4.1 the Gcd edges thatcross partitions represent decisions made in one loop, and used in a later loop. Theremay be a chain of decisions on which a node n is control dependent, but given a legalpartition, all of n's immediate predecessors and ancestors in Gcd are guaranteed eitherto be in n's partition, or in an earlier one. Therefore the execution of n may be deter-mined solely from the execution of n's predecessors. We introduce execution variablesto compute and store decisions that cross partitions in Gcd for both structured andunstructured code.

40Execution variablesExecution variables are only needed for branch nodes, because they correspond tocontrol decisions in the original program. Any node in Gcd that has a successor mustbe a branch node, but only branch nodes with at least one successor in a di�erentpartition are of interest here. For each branch in this restricted set, a unique executionvariable is created. Only one execution variable is created, regardless of the numberof successors or the number of di�erent partitions to which the successors belong.The execution variable is assigned the value of the test at the branch, capturingthe branch decision. Later this variable will be tested to determine control
ow ina subsequent partition. Hence, the creation of an execution variable will replacecontrol dependences between partitions with data dependences. Execution variablesare arrays, with one value for each iteration of the loop, because each iteration cangive rise to a di�erent control decision. If desired, loop invariant decisions can bedetected [AC72] and represented with scalar execution variables.All previous techniques, whether they are Gcd based or not, use Boolean logicwhen introducing arrays to record branch decisions. These methods require eithertesting and recording the path taken in previous loops or introducing additionalarrays. In Example 4.1 in the loop with statements (S6, S7), either S6, or S7, orneither may execute on a given iteration. Because there are three possibilities, thecorrect decision cannot be made with a single Boolean variable. For example, if S1takes the true branch, then neither S6 nor S7 should execute. If just S5's decision isstored, then one of S6 or S7 will mistakenly be executed, because the branch recordingarray for S5 must either be true or false, regardless of S1's decision.Given this drawback, we have formulated execution variables to have three possiblevalues: true, false and >, which represents \unde�ned". Every execution variable isinitialized to > at the beginning of the loop in which it will be assigned, indicating thatthe branch has not yet been executed. Because of the existence of a \not executed"value, the control dependent successors in di�erent partitions need only test the valueof the execution variables for their immediate predecessors; they do not need to testthe entire path of their control dependence ancestors. This condition is true whetherthe control
ow is unstructured or structured. Execution variables completely capturethe control decision at a node, making them extremely powerful.

41Algorithm 4.1: Execution variable and guard creationInput: partitions, Gcd, statement orderOutput: modi�ed Gcd with execution variablesAlgorithm:for each partition, Pfor each n 2 P, in orderif (9 an edge (n, o)l 2 Gcd, where o 62 P)insert \evn(i) = >" into P at toplet test be n's branch conditionif (9 (n, m)l where m 2 P)replace n with (\evn(i) = test"\if (evn(i) .EQ. true)"else replace n with \evn(i) = test"endiffor each Pk 6= P containing a successor of n(Build guards, and modify Gcd)for each l where 9 (n, p)l with p 2 Pkcreate new statement N:\if (evn(i) .eq. l)",add N to Pk (N is new and unique)insert data dependences for evnfor each (n, q)l where q 2 Pk(Update control dependences)delete (n, q)l from Gcdadd (N, q)true to GcdendforendforendforendifendforendforRestructuringThe restructuring Algorithm 4.1 creates and inserts execution variables and guards,given a distribution partition. It also updates the control and data dependence graphsto re
ect the changes it makes. The algorithm is applied in partition order and, withina partition, in statement order over Gcd (statement order is the original lexical order).The algorithm can be subdivided into three parts. First, execution variables for a

42branch node n are created where needed. Next, guard expressions are inserted for anynodes control dependent on n. Then the control and data dependences are updated,re
ecting the new guards and execution variables.The need for an execution variable for n is determined by considering n's imme-diate successors. If there is an outgoing edge from n to a node that is not in n'spartition, an execution variable is created. In Example 4.1, execution variables areneeded for S1 and S5. The initialization of the execution variable is inserted at thebeginning of n's partition, ensuring it will always be executed. Next, an assignmentof the execution variable to n's test is inserted in node n. If n has successors in itspartition, its branch is changed to test the execution variable. Otherwise, its branchis deleted.For each partition Pk that contains a successor of n, a guard on n's executionvariable is built. Here the successors of n are also considered in statement order.A guard is built for every distinct label from n into Pk. Each guard compares n'sexecution variable, evn(I), to the distinct label l. All of n's successors in Gcd in Pk onlabel l are severed from n and connected to the newly created corresponding guard.Our examples have only two labels, true and false, but any number of branch targetscan be handled.Consider Example 4.1. S5 has successors in two partitions, (S6, S7) and (S8, S9).The successors in (S6, S7) are on di�erent branches. S6 is on the true branch, so theguard expression created is \ev5(i) .eq. true." S7 is on the false branch, so itsguard expression is \ev5(i) .eq. false." The old edges (5, 6) and (5, 7) are deletedfrom Gcd, and new edges attaching 6 and 7 to their corresponding guards are created.Similarly a guard is created for and connected to S8.The following simple optimization is included in the algorithm and examples but,for clarity, does not appear in the statement of the algorithm. Determining whetherthe initialization of an execution variable is necessary can be accomplished when anexecution variable is created for a node n. If n is not control dependent on anyother node, i.e., a root in the control dependence graph, then there is no need forinitialization to be inserted. During guard creation for the successors of this node,the execution variable is known to have a value other than >. Therefore, if control
ow is structured, only one guard is needed for each successor partition instead of foreach label.After restructuring is applied, each partition has a correct Gcd, a correct datadependence graph, and possibly some new statements (execution variable assignments

43and guards). At this point the code for the distribution partition can be generated.We use a simple code generation algorithm, which is described in Section 4.2.3. Giventhe distribution in Figure 4.1 for Example 4.1, restructuring and code generationresults in the following code.DO I = 1, NEV1(I) = A(I) .GT. TS1 IF (EV1(I) .EQ TRUE) THENS2 A(I) = IELSES3 T = T + 1ENDIFENDDODO I = 1, NEV5(I) = >IF (EV1(I) .EQ. FALSE) THENS4 F(I) = A(I)S5 EV5(I) = B(I) .EQ. 0ENDIFENDDODO I = 1, NS6 IF (EV5(I) .EQ. TRUE) U = A(I) / B(I)S7 ELSE IF (EV5(I) .EQ. FALSE) U = A(I) - UENDDODO I = 1, NS8 IF (EV5(I) .EQ. FALSE) C(I) = B(I) + C(I)S9 D(I) = D(I) + C(I)ENDDOThe advantages of three-valued logic are illustrated by the concise guards for S6and S7. As shown in Section 4.2.2, ev5(i) must be explicitly tested for true or false,because if S1 evaluated to true, then ev5(i) will be > and neither S6 nor S7 shouldexecute. Not only do we avoid testing ev1(i) here, if S4 and S5 were in S1's partition,there would be no need to store S1's decision at all, even though S6 are S7 indirectlydependent on S1 and S1 remains in a di�erent loop.OptimalityGiven a distribution, this section proves that our algorithm creates the minimal num-ber of execution variables needed to track control decisions a�ecting statement ex-ecution in other loops. It also establishes that the algorithm produces the minimalnumber of guards on the values of an execution variable required to correctly executethe distributed code. Therefore, our algorithm is optimal for a given distributionpartition.

44Lemma 4.1 Each execution variable represents a unique decision thatmust be communicated between two loops.Proof. An execution variable is created only when a decision in one partition directlya�ects the execution of a statement in another partition, as speci�ed by Gcd. Thede�nition of Gcd guarantees that no decision node subsumes another, and thereforeany decisions represented by execution variables are unique. 2The restructuring algorithm creates the minimal number of guards on the valuesof an execution variable required to correctly determine execution. Letp = the number of distinct partitions, P, andm = the number of distinct branch labels, l,that contain successors of node n. There are at most k tests on the value of anexecution variable evn, where k = pXi=1 mXj=1(lj 2 Pi):k is the sum of distinct labels into every distinct partition, and is bounded by thenumber of n's successors that are in separate partitions Pi.Theorem 4.1 The number of guards that test an execution variable isthe minimum required to preserve correctness for the given distribution.Proof. By contradiction. If there exists a version of the distribution with fewer guards,then guards would be produced that were either unnecessary or redundant. If therewere unnecessary guards, then Lemma 4.1 would be violated. If there were redundantguards, then there would be multiple guards for nodes in the same partition with thesame label. However, the algorithm produces at most one guard per label used in apartition. 2Exit branchesBecause exit branches determine the number of iterations that are executed for anentire loop, they are somewhat sequential in nature. It is possible to perform distribu-tion on such loops in a limited form by placing all exit branches in the �rst partition.Of course any other statements involved in recurrences with these statements mustalso be in the �rst partition. This forces the number of iterations to be completelydetermined by the �rst loop. If there are any statements left, any legal partitioning

45of them may be performed. The control dependences for each of the subsequent par-titions can be satis�ed with execution variables as described above. However, duringcode generation their loop bounds must be adjusted. If an exit branch was taken,any statements preceding it in the original loop must execute the same number oftimes as the �rst loop, later statements must execute one less time than the �rst loop.Otherwise, when no exit branch is taken, all loops must execute the same number oftimes as the �rst loop.4.2.3 Code generationTo review, there are three phases to distribution in the presence of control
ow. The�rst step determines a partitioning based on data and control dependences. Thesecond step inserts execution variables and guards to e�ect the partition and updatesthe control and data dependences. The third step is code generation.In step two the only changes to the data dependence graph are the addition ofedges that connect the de�nitions of execution variables to their uses. A Gcd isbuilt for each new loop during this phase. In each new loop's Gcd there are no controldependences between guards. However, there may be relationships between executionvariables that can be exploited during code generation.Now we consider code generation for unstructured or structured control
ow with-out exit branches (Section 4.2.2 outlines the extensions for exit branches). Becausethe data and control dependence graphs, as well as the program statements are cor-rect on entry to the code generation phase, a variety of code generation algorithmscould be used. For example, any of the code generation algorithms based on theprogram dependence graph could be used in conjunction with the above algorithm[FM85, FMS88, CFS90, BB89]. The very simple code generation scheme describedhere has been is implemented in the ParaScope Editor [KMT91a].When transformations are applied in an interactive environment, it is importantto retain as much similarity to the original program as possible. The programmer canmore easily recognize and understand transformed code when it resembles the original.For this reason, although partitioning may cause statements to change order, theoriginal statement order and control structure within a partition is maintained. If theoriginal loop is structured, the resulting code will be structured. If the original loopwas unstructured and di�cult to understand, so most likely will be the distributedloop.

46To maintain the original statement ordering, an ordering number is computed andstored in order[n]. All the nodes in Gcd are numbered relative to their original lexicalorder, from one to the number of nodes. All of the execution variable initializationnodes are numbered zero, so they will always be generated before any other nodein their partition. The newly created guard nodes have an order number and arelative number, rel[n]. Their order numbers are the number of the node whoseexecution variable appears in the guard expression. Their relative numbers, rel[n],are the number of the guard's lowest numbered successor. Both of these numberscan be computed when the guard is created. To simplify the discussion, branchesare assumed to have only two label values, true and false, but the algorithm may beeasily extended for multi-valued branches.The rest of our discussion is divided into three parts. First relabeling, whichcorrects and renames statement labels, is described. The code generation discussionis separated into one section for structured and one for unstructured code.Label renamingA distribution partition may specify that the destination of a goto, that is, a labeledstatement, be in a di�erent loop from the goto. Replication and label renaming ofgotos of this type must be performed to compensate for this after restructuring andbefore code generation. Renaming is easily accomplished by replacing the destinationof a goto that is no longer in the same loop with an existing label or a new label, lPj ,which may require a continue. The new destination has the same relative orderingas the original label. Often this will be the last statement in the partition. Reuse oflabels is done whenever possible. Example 4.2:DO I = 1, NS1 IF (p1) GOTO 4S2S3 GOTO 54 IF (p4) GOTO 65 S56 S6ENDDO GcdS1S2 S3 S4 S5S6...f f t ff

47Consider Example 4.2 with a distribution partition (S1, S2, S3, S6) and (S4, S5).The destination of S1's goto, S4, is not in the same partition as S1, therefore thegoto's label must be renamed. In this case, the new destination of S1's jump mustnot interfere with the execution of S6. To determine the destination and new label,the statement number of the original labeled statement (in this case 4) is comparedto each statement in the partition following S1 in order. When a statement numbergreater than the original is found (S6 in our example), its label is used or a new oneis created for it. Any empty jumps are deleted. A straightforward relabeling of the�rst partition in Example 4.2 after restructuring results in the following.DO I = 1, NEV1[I] = p1S1 IF (EV1[I] .EQ. TRUE) GOTO 6S26 S6ENDDOStructured code generationWhen Gcd is a tree, code generation is relatively simple [FM85, FMS88, BB89]. Thisdiscussion emphasizes properly selecting and inserting the appropriate control struc-tures for newly created guards. Other Gcd code generation algorithms must selectand create control structures for all branches. Because we use the original controlstructures for all but the newly created guards, only they are of interest here. Whenthe guards are created, they are identi�ed by setting guard [n] to true. For all othernodes, guard [n] evaluates to false. With structured control
ow the only two controlstructures that need be inserted when generating guards are if-then and if-then-else.Our algorithm for code generation from structured or unstructured code appearsin Figure 4.2. It considers each partition and its nodes based on their order number,from lowest to highest. If a node n is not a guard node, it is generated with itsoriginal control structure followed by any descendants using depth-�rst recursion onGcd. Given a tree Gcd, and that all control dependences are satis�ed, the ancestorsof a node n in Gcd must be generated before n is. If the node is a guard node,the control structure for it must be selected and created. This work is done in theprocedure genguard.

48Algorithm 4.2: Code generation after distributionCodegen(n)Input: n is a statement nodeGcd, ordered partitions, order[n], rel[n],guard[n], goto[n]Output: The distributed loopsAlgorithm:for each partition, Pgen (DO) (The original loop header)while (9 n 2 P)choose n with smallest order[n] andif goto[n] and not only predecessor,with greatest rel[n], otherwise smallest rel[n]done = falsedelete n from Pif (guard[n])genguard (n)else gen (n)gensuccessors (n, all) (all matches any branch label)endifendwhileendforgensuccessors (n, l)Input: n is a statement nodel is a labelAlgorithm:while (done = false and 9 (n, m)l 2 Gcd and P)choose m with smallest order[m]if (9 (p, m) where p 6= n)(In structured code m has one predecessor and this will never occur)done = trueelse delete (m) from Pgen (m)gensuccessors (m, all)endifendwhile

49Algorithm 4.2Continuedgenguard (n)Input: n is a statement nodeAlgorithm:(Generate unstructured code)if (9 (p, rel[n]) p 6= n and p still 2 P)let L be the statement label of node rel[n]gen (if n goto L)(Generate structured constructs)(The original conditional was structured)else if (9 (n; q)true and (n; r)false where order[q] < order[r])gen (if n then)gensuccessors (n, true)gen (else)gensuccessors (n, false)gen (endif)(The original conditional was structured)else if (9 o where order[o] = order[n])(n chosen s.t. rel[n] < rel[o])gen (if n then)gensuccessors (n, true)delete o from Pgen (else if o then)gensuccessors (o, true)gen (endif)(The original could be unstructured or structured)else gen (IF n then)gensuccessors (n, true)gen (endif)endifend

50If the guard node has true and false branches, an if-then-else is generated, wherethe conditional is the guard expression. For each successor on the true branch, it andits descendants are generated recursively, in order. The false successors are generatedsimilarly under the else. If there are two guards with the same order number, theyare ordered by their relative number, and an if-then-else-if-then is generated.The �rst guard expression becomes the �rst conditional, and its successors and theirdescendants are generated in the corresponding then. The second guard expressionconditions the else-if-then, and is followed by its descendants. Otherwise the guardis the only node with this order number, and an if-then is generated for the guardand its descendants.In Example 4.3 the control dependence graph is a long narrow tree. After applyingthe above algorithms to this loop, the code below results. The �rst loop shows thedead branch optimization. The second loop illustrates that it is possible to generatecorrect code without adding control dependences between guards. More e�cient codecould be generated by noticing in the second loop nest if ev1[i] is true then neitherev3[i] or ev5[i] can be true, and similarly if ev3[i] is true then ev5[i] cannot be true.This code would not have fewer tests, but would be more e�cient and have a di�erentstructure. Example 4.3:DO I = 1, NS1 IF (p1) THENS2ELSES3 IF (p3) THENS4ELSES5 IF (p5) THENS6ELSES7ENDIFENDIFENDIFENDDO
Gcd

S1S2 S3S4 S5S6 S7
..

..
..

......................

......................
t ft ft f

51DO I = 1, NEV3[I] = >EV5[I] = >S1 EV1[I] = p1IF (EV1[I] .EQ. FALSE) THENS3 EV3[I] = p3IF (EV3[I] .EQ. FALSE) THENS5 EV5[I] = p5IF (EV5[I] .EQ. FALSE) THENS7ENDIFENDIFENDIFENDDODO I = 1, NIF (EV1[I] .EQ. TRUE) S2IF (EV3[I] .EQ. TRUE) S4IF (EV5[I] .EQ. TRUE) S6ENDDOUnstructured code generationWe can avoid the usual problems when generating code with a dag Gcd for unstruc-tured control
ow by using the original structure and computing some additionalinformation about the origin of the new guards. This information can be computedduring code generation, or when the guards are created. If a guard is the only pre-decessor of its successors, the ordering and structure selection for structured control
ow can be used. For guards that have successors with multiple predecessors, goto'sare generated.The key insight is that, although a node can be control dependent on many nodes,only one of these dependences may be from a structured construct. Observe that in aconnected subpart of Gcd, when guards are created from gotos outside the partitioninto the subpart, the guards with the highest order numbers will be generated �rst.One or two gotos may result. When a goto will result in a guarded goto and astructured construct, care is taken to generate the goto �rst. In this case the nodewith larger relative number between the two guards will be selected, and a goto forit is generated.The recursive generation of successors and their descendants must choose thelowest numbered successor to generate �rst. In structured code this is guaranteedto be the true branch, but with an if-goto the false branch is lower. In structured

52code, the generation of successors is immediately preceded by their one and onlypredecessor. In unstructured code, to ensure all control dependences are satis�ed,the recursion must cease if a node has other predecessors that have not yet beengenerated. When there are multiple goto's this situation may arise.Returning to Example 4.2 and applying code generation results in the code below.DO I = 1, NEV1[I] = p1S1 IF (EV1[I] .EQ. TRUE) GOTO 6S26 S6ENDDODO I = 1, NIF (EV1[I] .EQ. FALSE) GOTO 5IF (EV1 .EQ TRUE) THENS4 IF (p4) GOTO P25 S5P2 CONTINUEENDDONotice that when the second partition is generated the goto is generated �rst.The guards for S4 and S5 have the same order number, i.e. 1, but because S1 was agoto, the jump to S5 is generated �rst. Then S4's guard, S4, and S5 are generated.Here and in Example 4.4 there are jumps into structured constructs. Although thesejumps are non-standard Fortran, some compilers accept them and regardless can beimplemented with goto's.Finally, consider Example 4.4 with a distribution partition (S1, S2) and (S3, S4,S5, S6) where nodes are control dependent on more than one predecessor.Example 4.4:DO I = 1, NS1 IF (p1) GOTO 5S2 IF (p2) THENS3S4ELSE5 S5S6ENDIFENDDO GcdS1S2S3 S4 S5 S6...f ttt t f fDistribution restructuring, label renaming, and code generation performed on theabove results in the following code.

53DO I = 1, NEV2[I] = >S1 EV1[I] = p1IF (EV1[I] .EQ. TRUE) GOTO P1S2 EV2[I] = p2P1 CONTINUEENDDODO I = 1, NIF (EV1[I] .EQ. TRUE) GOTO 5IF (EV2[I] .EQ. TRUE) THENS3S4ELSE IF (EV2[I] .EQ. FALSE) THEN5 S5S6ENDIFENDDO4.3 Other transformationsWe now describe the extensions and algorithms for a selection of other loop transfor-mations.4.3.1 Loop skewingLoop skewing is always safe, regardless of the type of control
ow, because it doesnot change the order in which array memory locations are accessed. It only changesthe shape of the iteration space (see Section 3.4.2).4.3.2 Loop reversalLoop reversal reverses the order of loop iterations. In the absence of control
ow, it issafe if there are no loop-carried data dependences. This safety test is easily extendedto handle control dependences. If the control dependences are loop-independent (i.e.they are completely internal to the loop nest), then they do not inhibit loop reversal.However, if they are loop-carried (i.e. exit branches) then loop reversal is not safe.4.3.3 Loop permutationBecause loop permutations may be performed as a series of pair-wise interchanges, therest of this discussion is simpli�ed by focusing on loop interchange. Loop interchange

54is safe if it does not reverse the order of execution of the source and sink of any datadependence. By examining the direction vectors for all dependences carried on theouter loop, one may determine if there exists any data dependence with a directionvector of the form (< >) which would be reversed by loop interchange. These datadependences are called interchange-preventing.First consider nested loops containing internal branching. The tests for loop per-mutation are only concerned with preserving the original
ow of values and althoughinternal branching a�ects this
ow, data dependence fully characterizes it. Therefore,the existing safety test su�ces for this case.An exit branch completely out of a nest inhibits permutation of any loops in thenest. Such permutation might result in executing too many iterations of some loopsand too few of others. In a more restrictive setting where the exit branch is only outof a inner subset of the nest, permutation on the outer subset may be possible. Asimple way to understand this e�ect is to think of it as a direction vector. Considerexit branches out of the k inner loops of a perfect loop nest of depth n to have acontrol dependence direction vector (=1 =2 : : : �n�k : : : �n�1 �n). The direction vectorindicates that loop levels (n�k) to nmay not be moved, but that levels 1 to (n�k�1)are free to be permuted.4.3.4 Strip miningBecause strip mining does not change the loop body or the iteration space, no ad-ditional mechanisms are needed when the loop body contains any type of control
ow.4.3.5 PrivatizationAny variable can be made private to a loop if it is de�ned and used only withinthe loop and it is always de�ned before it is used. To determine if these conditionshold for scalar variables requires general data-
ow information. When testing theseconditions for arrays, data-
ow and dependence information are required. Generaldata-
ow analysis is sophisticated enough to determine these conditions for scalarsin loops containing control
ow [CF87].

554.3.6 Scalar expansionIn vectorization, scalar expansion is often preferable to privatization. However, it isnot clear in many cases which of the two is preferred. Scalar expansion has similar,but slightly less restrictive constraints than scalar privatization. Scalar expansionalso requires that the variable be de�ned before it is used on all iterations of the loop,but it may still be live outside of the loop. Consider the following example of scalarexpansion.DO I = 1, N becomes DO I = 1, NT = : : : TA(I) = : : :: : : = T : : : = TA(I)ENDDO ENDDO: : : T = TA(N): : : = T : : :: : : = TNotice that the value stored on the last iteration of the loop, ta(n), must be storedinto the scalar t . If there is no use of t outside the loop this is not necessary.3Again, data-
ow analysis is able to determine these conditions in the loop and if thelast value is always stored back, live analysis of t is unnecessary.4.3.7 Loop fusionLoop fusion places the bodies of two adjacent loops with the same number of iterationsinto a single loop [AC72]. Fusion is safe for two loops l1 and l2 if it does not resultin values
owing from statements originally in l2 back into statements originally in l1and vice versa. The simple test for safety performs dependence testing on the loopbodies as if they were in a single loop. Each forward dependence originally between l1and l2 is tested. Fusion is unsafe if any dependences are reversed, becoming backwardloop-carried dependences in the fused loop.If either loop contains internal branching, then the same test for safety is correctbecause the control dependences have the same e�ect in the fused code as in theoriginal.3Privatization could also utilize a store back, allowing it to be applicable even when loop de�nitionsreach outside the loop.

56Exit branchesFusion is unsafe if there are exits out of the �rst loop which bypass execution of thesecond, so that the second loop header is control dependent upon the exit branches.The control dependences indicate that every exit test must execute before any of thestatements in the second loop may be determined to execute.If there are no exit branches out of the �rst loop and there is an exit branch in thesecond loop, it is possible to fuse correctly by restructuring the fused loops based oncontrol dependence. The test for safety in this case need only determine if the datadependences prevent fusion. The restructuring step needs to replicate the controldependences for the second loop in the fused loop. Consider Example 4.5 and itscorresponding control dependence graph.Notice that the exit branches in the second loop result in a cyclic control dependenceon the header. To maintain this control dependence structure for the statements in thesecond loop an execution variable ev is inserted and the code is slightly restructured.A scalar execution variable ev records which exit branch, if any, is taken. Outsidethe loop, it is initialized to >, which means that no exit branch has been taken. Inthe fused loop, the execution variable is assigned the label of the branch at the pointan exit branch would be taken. The exit branch, goto label, is replaced with agoto to the end of the loop (10 continue in our example). The restructuring iscompleted by mimicking the original control dependence structure on the do. An ifstatement is inserted which dominates the execution of all the statements originatingin the second nest. The test for the if is false when an exit branch was taken on aprevious iteration.4.3.8 Loop peelingPeeling takes the statements in one or more iterations of a loop, executes them outsideof the loop, and adjusts the loop bounds accordingly. Peeling may be performed onthe �rst or last iteration. A slightly more general form of peeling, index set splitting,places a number of peeled iterations in a pre-loop or a post-loop. The considerationsthat arise from all of these are basically equivalent, so consider peeling the �rstiteration of a loop as seen below.DO I = lb, ub, ss becomes SL(lb)SL(I) DO I = lb + ss, ub, ssENDDO SL(I)ENDDO

57Example 4.5: FusionDO I = 1, N becomes EV = >S1 DO I = 1, NS2 S1ENDDO S2DO I = 1, N IF (EV .EQ. >) THENS3 S3S4 S4S5 IF (test5) GOTO ex1 IF (test5) THENS6 IF (test6) GOTO ex2 EV = ex1ENDDO GOTO 10SL8 ENDIF: : : IF (test6) THENex1 SL9 EV = ex2ex2 SL10 GOTO 10ENDIF10 CONTINUEENDDOIF (EV .NE. >) GOTO EVSL8: : :ex SL9ex SL10Control dependence graph..DO DOS1 S2 S3 S4 S5S6...
Peeling the �rst iteration replicates every statement in the loop, where every occur-rence of the induction variable is replaced with the loop's lower bound. The new looplower bound is the step size plus the original.Peeling is always legal for loops with or without control
ow because it doesnot change the order of statement execution. However, because peeling replicatesstatements, some care must be taken when labeled statements due to branching arepresent. For each peeled statement that is labeled, a new unused label must replace

58it. All references to that label in the peeled statements must also be changed tore
ect the new label. Of course, the destinations of exit branches should remain asthey were.4.4 Related workOne approach taken in automatic vectorizers when loops contain conditional control
ow is to convert control dependences into data dependences using a technique calledif-conversion [All83, AKPW83]. If-conversion is theoretically appealing because itallows for a uni�ed treatment of data dependence without control dependences, andhas been used successfully in a number of vectorization systems [KKLW84, SK86].However, it has several drawbacks.In its original form, if-conversion is intractable and may introduce an exponentialnumber of new logical arrays to record control
ow decisions. Unfortunately, evenwhen applied in more limited circumstances, it results in substantial increases in codespace used for holding the results of conditionals. In addition, after if-conversion hasbeen performed, it is not easy to reconstruct the original program, or even e�cientbranching code, if vectorization fails. Another concern is that the transformed code nolonger resembles the original. Even though many other transformation have this prob-lem to some degree, if-conversion typically obliterates the original program. Thesedrawbacks are exacerbated in an interactive environment and are signi�cant enoughthat other solutions have been sought.An alternative approach when control
ow is present uses explicit control and datadependences. In his dissertation, Towle develops techniques for vectorizing programswith control
ow using loop distribution, scalar expansion, and replication usingdata and control dependence information [Tow76]. However, his de�nition of controldependence embeds, but does not extract the essential control relationship betweentwo statements, that is if the execution of one statement directly determines theexecution of another.Control dependence as formulated by Ferrante, Ottenstein, and Warren is clean,complete, and extracts this essential relationship [FOW87]. They include control anddata dependences in the program dependence graph, pdg, and our approach uses thesame basis. Their paper also discusses several optimizing transformations performedon the pdg: node splitting, code motion, loop fusion, and loop peeling. However,

59their algorithms are applicable only for structured control
ow. Neither Towle orFerrante et al. present loop distribution.Ferrante, Mace, and Simons present related algorithms whose goals are to avoidreplication and branch variables when possible [FM85, FMS88]. Their code generationalgorithms convert parallel programs into sequential ones, and like ours, are based onGcd. They discuss three transformations that restructure control
ow: loop fusion,dead code elimination, and branch deletion.Callahan and Kalem present two methods for generating loop distributions in thepresence of control
ow [CK87a]. The �rst, which works for structured or unstruc-tured control
ow, replicates the control
ow of the original loop in each of the newloops by using Gf . Branch variables are inserted to record decisions made in one loopand used in other loops. An additional pass then trims the new loops of any emptycontrol
ow. Dietz uses a very similar approach [Die88]. These approaches have someof the same drawbacks of if-conversion, i.e. the proliferation of unnecessary guards.Callahan and Kalem's second method, which works only for structured control
ow, uses Gf , Gcd, and Boolean execution variables. Their execution variables indi-cate if a particular node in Gf is reached and they are created for edges in Gcd thatcross between partitions. Their execution variables are assigned true at the successorindicating the successor will execute, rather than assigning the decision made at thepredecessor. Also, one execution variable may be needed for every successor in thedescendant partition. Because their code generation algorithm is based on Gf , ratherthan Gcd, the proof of how an execution variable is used is much more di�cult andis not given. Towle [Tow76] and Baxter and Bauer [BB89] use similar approaches forinserting conditional arrays.The Stardent compiler distributes loops with structured control
ow by keepinggroups of statements with the same control
ow constraints together [All90]. Forexample, all the statements in the true branch of a block if must stay together, soonly the outer level of if nests can be considered. This limits e�ectiveness of distri-bution because partitions are arti�cially made larger, possibly by grouping parallelstatements with sequential ones.4.5 DiscussionIn summary, although much attention has been paid to modeling and understandingcontrol
ow in other work, a general formulation of parallelism enhancing transfor-

60mations with arbitrary control
ow was not available until now. Using control anddata dependences, we have presented new and generalized versions of many importantloop transformations. In particular, the algorithm for loop distribution was shownoptimal and represents a signi�cant improvement over previous algorithms.

I myself have never been able to �nd out precisely what feminism is; I only know thatpeople call me a feminist whenever I express sentiments that di�erentiate me from adoormat. Rebecca West, 1913.

61Chapter 5Interprocedural TransformationsStriving for a large granularity of parallelism has a natural consequence; the compilermust look for parallelism in regions of the program that span multiple procedures.This kind of optimization is called whole program or interprocedural analysis andtransformation. This chapter presents a new approach that enables compiler opti-mization of procedure calls and loop nests containing procedure calls. We introducetwo interprocedural transformations, loop extraction and loop embedding, that moveloops across procedure boundaries, exposing them to loop nest optimizations. We alsodescribe the e�cient support of these transformations using the interprocedural com-pilation system in the ParaScope parallel programming environment. These transfor-mations are shown e�ective in practice on existing applications programs.5.1 IntroductionTo expose parallelism and computation for parallel architectures, the compiler mustconsider a statement in light of its surrounding context. Loops provide a proven sourceof both context and parallelism. Loops with signi�cant amounts of computation areprime candidates for compilers seeking to make e�ective utilization of the availableresources. Good software engineering practices encourage modularity as a way tomanage program computation and complexity, and increasingly, programmers areusing a modular programming style. Therefore, it is natural to expect that programswill contain many procedure calls and procedure calls in loops, and to ensure highperformance compilers will need to optimize them.Unfortunately, most conventional compilation systems abandon parallelizing op-timizations on loops containing procedure calls. Two existing compilation technolo-gies are used to overcome this problem: interprocedural analysis and interproceduraltransformation.1. Interprocedural analysis applies data-
ow analysis techniques across proce-dure boundaries to enhance the e�ectiveness of dependence testing. Regularsection analysis is a sophisticated form of interprocedural analysis which makes

62it possible to parallelize loops with calls (see Section 2.3). It determines ifthe side e�ects to arrays as a result of each call are limited to nonintersectingsubarrays on di�erent loop iterations [CK87b, HK90].2. Interprocedural transformation is the process of moving code across pro-cedure boundaries, either as an optimization or to enable other optimizations.The most common form of interprocedural transformation is procedure inlining.Inlining substitutes the body of a called procedure for the procedure call andoptimizes it as a part of the calling procedure [AC72].Even though regular section analysis and inlining are frequently successful at en-abling optimization, each of these methods has its limitations [HK90, LY88a, Hus82].Compilation time and space considerations require that regular section analysis sum-marize array side e�ects. In general, summary analysis for loop parallelization isless precise than the analysis of inlined code. On the other hand, inlining can yieldan increase in code size which may disastrously increase compile time and seriouslyinhibit separate compilation [CHT91, RG89]. Furthermore, inlining may cause a lossof precision in dependence analysis due to the complexity of subscripts that resultfrom array parameter reshapes. For example, when the dimension size of a formalarray parameter is also passed as a parameter, translating references of the formal tothe actual can introduce multiplications of unknown symbolic values into subscriptexpressions. This situation occurs when inlining is used on the spec Benchmarkprogram matrix300 [BCHT90].In this chapter, a hybrid approach is developed that overcomes some of theselimitations. We introduce a pair of new interprocedural transformations: loop embed-ding, which pushes a loop header into a procedure called within the loop, and loopextraction, which extracts the outermost loop from a procedure body into the callingprocedure. However, because there is a cost for interprocedural transformations, ourstrategy applies them only when performance bene�ts are expected to result.The performance bene�t of these transformations comes from using the exposedloops in high-payo� intraprocedural loop optimizations. Any intraprocedural trans-formations that requires loop nests may be applicable on those provided by loopembedding and extraction. Additionally, testing the safety and pro�tability of someof the loop transformations across procedure boundaries requires no extension tothe tests discussed in Chapters 3 and 4. Extensions are needed for transformations

63that require dependence distance information such as loop permutation. The intra-procedural optimizations which are extended in this chapter are loop fusion and looppermutation. These results easily generalize for other transformations such as loopskewing [Wol86] and unroll and jam [CCK88].As a motivating example, consider the Fortran code in Example 5.1(a). The Jloop in subroutine S may safely be made parallel, but the outer I loop in subroutineP may not be. However, the amount of computation in the J loop is small relativeto the I loop and may not be su�cient to make parallelization pro�table. If the Iloop is embedded into subroutine S as shown in (b), the inner and outer loops may beinterchanged as shown in (c). The resulting parallel outer J loop now contains plentyof computation. As an added bene�t, procedure call overhead has been reduced.Loop embedding and loop extraction provide many of the optimization opportu-nities of inlining without its signi�cant costs. Code growth of individual proceduresis nominal, so compilation time is not seriously a�ected. Overall program growthis also moderate because multiple callers may invoke the same optimized procedurebody. In addition, the compilation dependences among procedures are reduced sincethe compiler controls the small amount of code movement across procedures and caneasily determine if an editing change of one procedure invalidates other procedures.Our approach to interprocedural optimization is fundamentally di�erent from pre-vious research in that the application of interprocedural transformations is restrictedExample 5.1: Loop embeddingSUBROUTINE P SUBROUTINE P SUBROUTINE PREAL A(N,N) REAL A(N,N) REAL A(N,N)INTEGER IDO I = 1, 100CALL S(A,I) CALL S(A) CALL S(A)ENDDOSUBROUTINE S(F,I) SUBROUTINE S(F) SUBROUTINE S(F)REAL F(N,N) REAL F(N,N) REAL F(N,N)INTEGER I,J INTEGER I,J INTEGER I,JPARALLEL DO J = 1, 20 DO I = 1, 100 PARALLEL DO J = 1, 20F(J,I) = F(J,I-1) + 9 PARALLEL DO J = 1, 20 DO I = 1, 100ENDDO F(J,I) = F(J,I-1) + 9 F(J,I) = F(J,I-1) + 9ENDDO ENDDOENDDO ENDPARDO(a) before transformation (b) loop embedding (c) loop interchange

64to cases where it is expected to be pro�table. This strategy, called goal-directed inter-procedural optimization, avoids the costs of interprocedural optimization when it doesnot enable other performance enhancing optimizations [BCHT90]. Interproceduraltransformations are applied as dictated by a code generation algorithm that explorespossible transformations, selecting a choice that introduces parallelism and exploitsdata locality.The code generator is part of an interprocedural compilation system that e�cientlysupports interprocedural analysis and optimization by retaining separate compilationof procedures. We �rst explored this type of system using a simple, performanceestimation based parallel code generation algorithm [HKT91]. This chapter providesa more general framework and that is integrated into a more sophisticated paral-lelization algorithm discussed in Chapter 7. We also present experimental results toillustrate the e�cacy of these transformations on application programs.5.2 Technical background5.2.1 Augmented call graphThe program representation for interprocedural transformations requires an aug-mented call graph (Gac) which describes the calling relationships among proceduresand loop nests. The details of the Gac are presented in Section 2.3. Figure 5.1(a)shows an abbreviated version of the augmented call graph Gac for the program fromExample 5.1, where the solid line is a call edge and the dashed lines are nesting edges.5.2.2 Interprocedural section analysisA regular section describes the side e�ects to the substructures of an array. Sectionsrepresent a restricted set of the most commonly occurring array access patterns;single elements, rows, columns, grids and their higher dimensional analogs. Thisrestriction on the shapes assists in making the implementation e�cient [HK90]. Therepresentation of the dimensions of a particular array variable may take one of threeforms:1. an invocation invariant expression, representing a single element,2. a range consisting of a lower bound, an upper bound and a step size, or3. the special element ?, signifying that all of this dimension may be a�ected.

65Figure 5.1: Sections and data access descriptorsPISJ(a) Gac
Ref:A[1:20; I-1]Mod:A[1:20; I](b) Sections

Ref:A[J=1,20; I-1]Mod:A[J=1,20; I](c) dadSections are separated into modi�ed and referenced sets. The sections for Example 5.1are shown in Figure 5.1(b).By using sections, the problem of locating dependences on procedure calls is sim-pli�ed to the problem of �nding dependences on ordinary statements. The modi�edand referenced subsections for the call appear to the dependence analyzer like theleft- and right-hand sides of an assignment, respectively. For single-element subsec-tions, dependence testing is the same as it would be for any other variable access.For subsections that contain one or more dimensions with ranges, the dependenceanalyzer simulates do loops for each of the range dimensions, with the lower bound,upper bound and step size of the loop corresponding to those of the range.Regular sections enable dependence analysis to determine if loops containing callsare parallel and are su�cient to determine the safety of intraprocedural transforma-tions on a loop nest containing calls. However, a more precise version of sections isneeded to determine the safety of intraprocedural transformations which involve loopsin di�erent procedures before loop embedding or extraction places them in the sameprocedure. These are similar to data access descriptors or dads and they providedetailed information about references and how the loops in a called procedure accessit [BK89]. Our version of dads are a little more precise because we have the loopheader information in Gac, but for the purposes of this discussion dads evoke theappropriate meaning.

66A dad identi�es the section of an array accessed and the order of that accessin terms of each enclosing loop's index expression. It also indicates the relativeordering of the accesses. We consider dads as annotations of sections. In addition,the sections are marked as exact or inexact for the purposes of dependence testingused in determining the safety of intraprocedural transformations in the caller. Theregular section information is su�cient to test dependence on loops containing calls.To test dependence on the loops in the call at the call site demands that the dadbe exact in the following sense. An exact reference or modi�ed section must be bedescribed in terms of a constant or any surrounding loops. It must also meet one ofthe following criteria either (1) it is not the result of a merge, or (2) if it is the resultof a merge, either the merge was between accesses where they overlap exactly andcompletely or the accesses are completely disjoint. Figure 5.1(c) illustrates the dadannotations for the program in Example 5.1.5.3 Support for interprocedural optimizationIn this section, we present the compilation system of the ParaScope ProgrammingEnvironment [CCH+88, CKT86a]. This system was designed for the e�cient supportof interprocedural analysis and optimization. The tools in ParaScope cooperate toenable the compilation system to perform interprocedural analysis without directexamination of source code. This information is then used in code generation to makedecisions about interprocedural optimizations. The code generator only examines thedependence graph for the procedure currently being compiled, not the graph for theentire program. In addition, ParaScope employs recompilation analysis after programchanges to minimize program reanalysis [CKT86b]. This system was original intendedfor scalar compilation. This section extend the ParaScope system to support parallelcode generation.5.3.1 The ParaScope compilation systemInterprocedural analysis in the ParaScope compilation system consists of two principalphases. The �rst takes place prior to compilation. At the end of each editing session,the immediate interprocedural e�ects of a procedure are determined and stored. Forexample, this information includes the array sections of global variables and call-by-reference formal parameters that are locally modi�ed or referenced in the procedure.The procedure's calling interface is also determined in this phase. It includes descrip-

67Figure 5.2: Information
ow for interprocedural transformationsAugmentedCall GraphRSDAnalysis RSDs DependenceAnalysis Marked k LoopsDependence Graphsw/RSDs & Slices CodeGenerationtions of the calls and loops in the procedure and their relative positions. In this way,the information needed from each module of source code is available at all times andneed not be derived on every compilation.Interprocedural optimization is orchestrated by the program compiler, a tool thatmanages and provides information about the whole program [CKT86a, Hal91]. Theprogram compiler �rst builds the augmented call graph described in Section 2.3.The program compiler then traverses the augmented call graph, performing inter-procedural analysis, and subsequently, code generation. Conceptually, program com-pilation consists of three principal phases: (1) interprocedural analysis, (2) depen-dence analysis, and (3) planning and code generation.Interprocedural analysisThe program compiler calculates interprocedural information over the augmentedcall graph. First, the information collected during editing is recovered from thedatabase and associated with the appropriate nodes and edges in the call graph.This information is then propagated in a top-down or bottom-up pass over the nodesin the call graph, depending on the interprocedural problem. Section analysis isperformed at this time. Interprocedural constant propagation and symbolic analysisare also performed, as these greatly increase the precision of subsequent dependenceanalysis.Dependence analysisInterprocedural information is then made available to dependence analysis, whichis performed separately for each procedure. Dependence analysis yields dependence

68edges that are placed in the dependence graph. If the source or sink of a dependence isa call site, a section annotates it. The section may more accurately describe the por-tion of the array involved in the dependence. Dependence analysis also distinguishesparallel loops in the augmented call graph. Dependence analysis is separated fromcode generation for an important reason; it provides the code generator knowledgeabout each procedure without reexamining its source or dependence graph.Planning and code generationThe �nal phase of the program compiler determines where interprocedural optimiza-tion is estimated to be pro�table. Planning is important to interprocedural optimiza-tion since unnecessary transformations may lead to signi�cant compile-time costswithout any execution-time bene�t. To determine the safety of transformations, thedependence graph and sections are su�cient.The relationship among the compilation phases is depicted in Figure 5.2. Eachstep adds annotations to the call graph that are used by the next phase. Followingprogram transformation, each procedure is separately compiled. Interprocedural in-formation for a procedure is provided to the compiler to enhance intraproceduraloptimization.Procedure cloningProcedures optimized with loop embedding or extraction may have multiple callers,and an optimization valid for one caller may not be valid for another. To avoid codegrowth, multiple callers should share the same version of the optimized procedurewhenever possible. This technique of generating multiple copies of a procedure andtailoring the copies to their calling environments is called procedure cloning [CKT86a,CHK92].5.3.2 Recompilation analysisA unique part of the ParaScope compilation system is its recompilation analysis,which avoids unnecessary recompilation after program edits. Recompilation anal-ysis tests that interprocedural facts used to optimize a procedure have not beeninvalidated by editing changes [CKT86b, BC86, BCKT90]. To extend recompila-tion analysis for interprocedural transformations, a few additions are needed. Whenan interprocedural transformation is performed, a description of the interprocedural

69transformations annotates the nodes and edges in the augmented call graph. Onsubsequent compilations, this information indicates to the program compiler that thesame tests used initially to determine the safety of the transformations should bereapplied.To determine if interprocedural transformations are still safe, the new and oldsections are �rst compared, in most cases avoiding examination of the dependencegraph. As a result, dependence analysis is only applied to procedures where it isno longer valid, allowing separate compilation to be preserved. The recompilationprocess after interprocedural transformations have been applied is described in moredetail elsewhere [Hal91].5.4 Interprocedural transformationLoop extraction and loop embedding expose the loop structure to optimization with-out incurring the costs of inlining. Just as inlining is always safe, these transforma-tions are always safe. The mechanics of performing the movement of a loop header isdetailed below. If moving additional statements is desired, it may be performed withthe techniques developed for inlining.5.4.1 Loop extractionLoop extraction moves a loop that encloses the body of its procedure p outward intoone of its callers. This optimization may be thought of as partial inlining. The newversion of p no longer contains the loop. The caller now contains a new loop headersurrounding the call to p. The index variable of the loop, originally a local in p,becomes a formal parameter and is passed at the call. The calling procedure createsa new variable to serve as the loop index, avoiding name con
icts. It is always safeto extract an outer enclosing loop from a procedure. Example 5.2(a) contains a loopwith two calls to procedure S and (b) contains the result after loop extraction. Notethat (b) has an additional variable declaration for the loop index J in P. It is includedin the actual parameter list for S. The J loops may now be fused and interchanged toimprove performance, as in Example 5.2(c).5.4.2 Loop embeddingLoop embedding moves a loop that contains a procedure call into the called procedureand is the dual of loop extraction. The new version of the called procedure requires a

70Example 5.2:SUBROUTINE P(A) SUBROUTINE P(A) SUBROUTINE P(A)REAL A(N,N), B(N,N) REAL A(N,N), B(N,N) REAL A(N,N), B(N,N)INTEGER I INTEGER I,J INTEGER I,JDO I = 1, 3DO I = 1, 3 DO J = 1, 100 DO J = 1, 100CALL S(A,I) CALL S(A,I,J) DO I = 1, 3CALL S(B,I) ENDDO CALL S(A,I,J)ENDDO DO J = 1, 100 CALL S(B,I,J)CALL S(B,I,J) ENDDOENDDO ENDDOENDDOSUBROUTINE S(F,I) SUBROUTINE S(F,I,J) SUBROUTINE S(F,I,J)REAL F(N,N) REAL F(N,N) REAL F(N,N)INTEGER I,J INTEGER I,J INTEGER I,JDO J = 1,100F(J,I) = F(J,I) + 9 F(J,I) = F(J,I) + 9 F(J,I) = F(J,I) + 9ENDDO(a) before transformation (b) loop extraction (c) loop fusion & interchangenew local variable for the loop's index variable. If a name con
ict exists, a new namefor the loop's index variable must be created. This transformation is illustrated inExample 5.1.If the index variable of the loop to be embedded appears in an actual parameterat the call site, this parameter is no longer correctly de�ned. To remedy this problem,the formal parameters in the call that depend on it must be assigned and computedin the newly embedded loop. In the simplest case, an index variable i is passed to aformal f . Here, f should be assigned i on every iteration of the embedded loop, priorto the rest of the loop body.If an actual is an array reference whose subscript expression contains the loopindex variable, the actual passed at the call becomes simply the array name. In thecalled procedure, the original subscript expression for each dimension of the actualis added to the subscript expression for the corresponding dimension of the formalat each reference to the formal. If the array parameter is reshaped across the call,this translation is more complicated. The array formal is replaced by a new arraywith the same shape as the actual. The references to the variable are translated bylinearizing the formal's subscript expressions and then converting to the dimensionsof the new array [BC86]. Finally, the subscript expressions for each dimension of the

71actual are added to those for the translated reference. This method is also the onethat is used in our implementation of inlining.Dependence updatesBecause our code generator only applies loop extraction and loop embedding aftersafety and pro�tability are ensured, an update of local dependence information maynot be necessary. However, if further optimization is desired, updating the dependenceinformation is straightforward. The dependence information just moves and translateswith the loop which is moving.Embedding versus ExtractionThere are several factors which a�ect the choice between embedding or extractionduring the optimization process. All things being equal, embedding loops needed foroptimizations into the called procedure is preferable because it reduces procedure calloverhead. However, if several loops originating from di�erent call sites are needed toperform an optimization, extraction is required (as illustrated in Example 5.2). If anoptimization uses a loop in the call and more than one loop of the caller, then loopextraction is also preferred. On the other hand, if the optimization involves the innerloop of the caller and more than one loop in the called procedure, loop embeddingis preferred. The other option for these and other more complex circumstances is toperform loop embedding or extraction multiple times to adjoin the necessary loops.5.5 Intraprocedural transformationsThe following two sections discuss how to test for the safety of intraprocedural trans-formations across procedure boundaries. The tests are needed when the requisiteloops are not in the same procedure, but may be placed together via embedding orextraction.5.5.1 Loop fusionWhen several procedure calls appear contiguously or loops and calls are adjacent,it may be possible to extract the outer loop from the called procedure(s). Onceloops are exposed, fusion and other optimizations may be performed as illustrated byExample 5.2. In the algorithm checkFusion, we consider fusion of fs1; s2g, where si

72is either a call or a loop. Loop fusion is restricted in this setting in that there maynot be any intervening statements between s1 and s2.The test for fusion between two loops, l1 and l2, requires the inspection of thedependence source and sink variable references in l1 and l2. If one or more of theloops is inside a call, the variable references are represented instead as the modi�edand referenced sections for the call. The section and its dad correspond to theloops being considered for fusion and are tested identically to variable references (seeSection 5.2.2). Unfortunately, while variable references are always exact, a sectionis not. If a section for a particular array is not exact and a potential dependenceexists between the loop nests, fusion is conservatively assumed to be unsafe. (Thereexists a potential dependence if an array is referenced in both nests and at least oneis a write.) A more precise test could be performed by inspecting the dependencegraphs for each called procedure. In practice, the more precise test may be no moresuccessful and could introduce signi�cant overhead.5.5.2 Loop permutationLoop permutation of a loop nest rearranges the loop headers, changing the order inwhich the iteration space is traversed. As with fusion, the distance/direction vectorsfor the loops in the caller being considered in the permutation must be computableAlgorithm 5.1: Interprocedural fusion testcheckFusion (s1; s2)Input: (s1; s2), where si is a call or a loop and s1 is adjacent to s2Output: returns true if fusion is safeAlgorithm:let l1 = the loop header of s1let l2 = the loop header of s2if the number of iterations of l1 di�er from l2return falsefor each forward dependence (srcs1 , sinks2)if srcs1 or sinks2 is not exactreturn falseif (srcs1 , sinks2) becomes backward loop-carriedreturn falseendforreturn true

73at the call. Again, the sections involved in dependences must be exact or the testconservatively assumes the transformation to be unsafe. Conversely, in the call thedistance/direction vectors for surrounding loops could be made available when thecall is being optimized. This option is less appealing because other optimizations areinhibited in the caller. Regardless, if there are loops in either the caller or the calledroutine that do not carry any dependences, the augmented call graph re
ects it andmany permutations can be shown safe without additional dependence testing.5.6 Experimental resultsThis section presents signi�cant performance improvements due to interproceduraltransformation on two scienti�c programs, spec77 and ocean, taken from the PerfectBenchmarks [CKPK90]. To locate opportunities for transformations, we browsedthe dependences in the program using the ParaScope Editor [BKK+89, KMT91a,KMT91b]. Using other ParaScope tools, we determined which procedures in theprogram contained procedure calls. We examined the procedures containing calls,looking for interesting call structures. We located adjacent calls, loops adjacent tocalls, and loops containing calls which could be optimized; the entire applicationwas not parallelized. The original and optimized programs were executed on a 20-processor Sequent Symmetry S81. Since the optimizations used di�ered slightly foreach program, they are described separately.Figure 5.3: Stages of preparing program versions for experimentspec77 Transform Directives oninner loopsDirectives onouter loops Block OriginalIPinfoIPtrans

745.6.1 Spec77Spec77 contains 3278 non-comment lines and is a
uid dynamics weather simulationthat uses Fast Fourier Transforms and rapid elliptic problem solvers. In spec77, loopscontaining calls were common. Overall, transformations were applied to 19 suchloops. Embedding and interchange were applied to 8 loops which contained calls to asingle procedure. The remaining 11 loops, which contained multiple procedure calls,were optimized using extraction, fusion and interchange. These loops were found inprocedures del4, gloop and gwater.For the 19 transformed loops, performance was measured among three possibil-ities: (1) no parallelization of loops containing procedure calls, (2) parallelizationusing interprocedural information, and (3) interprocedural information and transfor-mations. To obtain these versions, the steps illustrated in Figure 5.3 were performed.The Original version contains directives to parallelize the loops in the leaf pro-cedures that are invoked by the 19 loops of interest. The IPinfo version parallelizesthe 19 loops containing calls. For the IPtrans version, we performed interproceduraltransformation followed by outer loop parallelization. The parallel loops in each ver-sion were also strip mined to allow multiple consecutive iterations to execute on thesame processor without synchronization. The compiler default is to schedule eachiteration of a parallel loop separately, incurring additional overhead.processors = 7 processors = 19time in optimized time in optimizedportion speed-up portion speed-upOriginal 81.9s 5.7 45.8s 10.1IPinfo 80.0s 5.8 48.0s 9.7IPtrans 80.6s 5.8 36.4s 12.7The results reported above are the best execution time in seconds for the optimizedportions of each version. The speedups are compared against the execution time inthe optimized portion of the program on a single processor, which was 463.7s. Thisportion accounted for more than 21 percent of the total sequential execution time.With seven processors, the results are similar for all three versions, since each pro-gram version provided adequate parallelism and granularity for seven processors. On19 processors, IPinfo was slower than the original program because the parallel outerloops had insu�cient parallelism { only 7 to 12 iterations. The parallel inner loops ofOriginal were better matched to the number of processors because they had at least

7531 iterations. The interprocedural transformation version IPtrans demonstrated thebest performance, a speedup of 12.7, because it combined the amount of parallelismin Original with increased granularity. The interprocedural transformations resultedin a 21 percent improvement in execution time over Original in the optimized portion.Parallelizing just these 19 loops resulted in a speedup for the entire program of about1.25 on 19 processors and 1.23 on 7 processors.5.6.2 OceanOcean has 1902 non-comment lines and is a 2-D
uid dynamics ocean simulation thatuses Fast Fourier Transforms. There were 31 places in the main routine of oceanwhere we extracted and fused interprocedurally adjacent loops. They were dividedalmost evenly between adjacent calls and loops adjacent to calls. In all 15 caseswhere a loop was adjacent to a call, the loop was 2-dimensional, while the loop in thecalled procedure was 1-dimensional. Prior to fusion, we coalesced the 2-dimensionalloop into a 1-dimensional loop by linearizing the subscript expressions of its arrayreferences. The resulting fused loops consisted of between 2 and 4 parallel loops fromthe original program, thus increasing the granularity of parallelism.To measure performance improvements due to interprocedural transformation, weperformed steps similar to those in Figure 5.3. Directives forced the parallelizationand blocking of the individual loops in the Original version, and the fused loops inIPtrans. The execution times were measured for the entire program and just theoptimized portion. The optimized execution times are shown below.processors = 19time in optimizedportion speed-upOriginal 116.6s 5.5IPtrans 79.3s 8.1The speedups are relative to the time in the optimized portion of the sequential versionof the program, which was 645.9 seconds. The optimized code accounted for about5 percent of total program execution time. For the whole program, the parallelizedversions achieve a speedup of about 1.06 over the sequential execution time.Note that IPtrans achieved a 32 percent improvement over Original in the opti-mized portion. This improvement resulted from increasing the granularity of parallelloops and reducing the amount of synchronization. It is also possible that fusion

76reduced the cost of memory accesses. Often the fused loops were iterating over thesame elements of an array. These 31 groups of loops were not the only opportunitiesfor interprocedural fusion; there were many other cases where fusion was safe, but thenumber of iterations were not identical. Using a more sophisticated fusion algorithmmight result in even better execution time improvements.5.7 Related workWhile the idea of interprocedural optimization is not new, previous work on inter-procedural optimization for parallelization has limited its consideration to inline sub-stitution [AJ90, CHT91, Hus82] and interprocedural analysis of array side e�ects[BK89, BC86, CK87b, HK90, HHL90a, HHL90b, LY88a, LY88b, TIF86]. The vari-ous approaches to array side-e�ect analysis must make a tradeo� between precisionand e�ciency. Section analysis used here loses precision because it only represents aselection of array substructures, and it merges sections for all references to a variableinto a single section. However, these properties make it e�cient enough to be widelyused by code generation. In addition, experiments with regular section analysis on theLinpack library demonstrated a 33 percent reduction in parallelism-inhibiting depen-dences, allowing 31 loops containing calls to be parallelized [HK90]. Comparing thesenumbers against published results of more precise techniques, there was no bene�t tobe gained by the increased precision of the other techniques [LY88a, LY88b, TIF86].5.8 DiscussionThe usefulness of this approach has been illustrated on the Perfect Benchmark pro-grams spec77 and ocean. Taken as a whole, the results indicate that providing free-dom to the code generator becomes more important as the number of processorsincrease. E�ectively utilizing more processors requires more parallelism in the code.This behavior was particularly evident in spec77, where the bene�ts of interproceduraltransformation were increased with the number of processors.Although it may be argued that scienti�c programs structured in a modular fash-ion are rare in practice, we believe that this is an artifact of the inability of previ-ous compilers to perform interprocedural optimizations of the kind described here.Increasing numbers of scienti�c programmers are using a modular programming styleand cannot a�ord to pay a performance penalty. By providing compiler supportto e�ciently optimize procedures containing calls, we encourage the use of modular

77programming, which, in turn, will make these transformations applicable on a widerrange of programs. These techniques enable a desirable programming style whichuses procedures that can be e�ectively parallelized.This chapter and the previous one provide algorithmic support for applying trans-formations to entire applications. In particular, program optimization is enabled forloops containing control
ow and is not inhibited when loop nests span procedureboundaries. We now turn to the proper application of these transformations to e�ectexcellent parallel performance.

78Chapter 6Optimizing for Parallelism and Data LocalityPrevious research has used program transformation to introduce parallelism and toexploit data locality. Unfortunately, these two objectives have usually been consid-ered independently. This chapter explores the tradeo�s between e�ectively utilizingparallelism and memory hierarchy on shared-memory multiprocessors. We present asimple, but surprisingly accurate, memory model to determine cache line reuse fromboth multiple accesses to the same memory location and from consecutive memoryaccess. The model is used in memory optimizing and loop parallelization algorithmsthat e�ectively exploit data locality and parallelism in concert. We demonstrate thee�cacy of this approach with very encouraging experimental results. This algorithmforms the core of our parallel code generation strategy.6.1 IntroductionTransformations to exploit parallelism and to improve data locality are two of themost valuable compiler techniques in use today. Independently, each of these opti-mizations has been shown to result in dramatic improvements. This chapter seeks tocombine the bene�ts of both by using a simple memory model to drive optimizationsfor data locality and parallelism. By unifying the treatment of these optimizations,we are able to place loops with data reuse on inner loops and to introduce parallelismfor outer loops. Our strategy produces data locality at the innermost loops, where itis most likely to be exploited by the hardware and places parallelism at the outermostloop, where it is most e�ective. If these two goals con
ict, we present an algorithmthat usually reaps the bene�ts of both.Optimizing data locality is necessarily both architecture and language dependent.However, the reuse of memory locations and the consecutive access of adjacent mem-ory locations form the foundation of most memory hierarchy optimizations. Reuseof a particular memory reference for arrays can be discovered using data-dependenceanalysis. However, reuse of consecutive accesses, often called unit stride access, is asigni�cant source of reuse that can easily be determined when the storage order ofarrays and the cache line size is known. In this chapter we introduce a simple model

79for estimating the cost, in memory references, of executing a given loop nest. Theprincipal advantage of this model over previous models is that it takes into accountcache reuse due to consecutive accesses to the same cache line. We show how thismodel can be used to exploit data locality at multiple levels via loop permutation.Our algorithm �rst uses the memory model to �nd a loop organization that ex-ploits data locality. It then seeks to parallelize the outermost loop or a parallel loopthat can be positioned outermost. Given su�cient iterations, it then strip mines theloop into two loops, such that one loop is used to achieve locality and the other isused to introduce parallelism.Matrix multiply exampleAs an example of this process, consider the ubiquitous matrix multiply.DO J = 1, NDO K = 1, NDO I = 1, NC(I,J) = C(I,J) + A(I,K) * B(K,J)Assuming arrays are stored such that columns of the arrays are in consecutive memorylocations, i.e. column-major order, this loop organization exploits data locality inthe following manner. The consecutive access on the inner I loop to C(I,J) and A(I,K)provide an opportunity for cache line reuse when the cache line size is greater than1. There is also a loop-invariant reuse of B(K,J) on the I loop. Additionally, the Jand the I loops can be parallel. However, if the number of processors, P, is less thanthe number of iterations of either loop, it is not pro�table to utilize both levels ofparallelism at once due to additional scheduling overhead. A better execution timewould result by maximizing the granularity of one level of the parallelism and thenmatching it to the machine. If N = P, selecting J to be executed in parallel preservesdata locality and introduces a single level of parallelism with maximum granularity.PARALLEL DO J = 1, NDO K = 1, NDO I = 1, NC(I,J) = C(I,J) + A(I,K) * B(K,J)However, if the number of loop iterations is greater than the number of processors,N > P, it is often useful to combine independent iterations into a single parallel taskto achieve granularity that matches the machine. The parallel loop is strip mined by

80the number of processors where the strip size is SS = d N/P e. We call the J loop thestrip and the JJ loop, which walks between strips, the iterator.PARALLEL DO JJ = 1, N, SSDO J = JJ, MIN(JJ + SS - 1, N)DO K = 1, NDO I = I, NC(I,J) = C(I,J) + A(I,K) * B(K,J)The parallel JJ loop carves up the data space nicely, but if each processor's cache isstill not large enough to contain all of array A, tiling the loop nest further improvesperformance by providing reuse of A. Tiling combines strip mining and loop inter-change to promote reuse across a loop nest [IT88, Wol89a]. For matrix multiply, theloop nest may be tiled by strip mining the K loop by TS and then interchanging itwith J.PARALLEL DO JJ = 1, N, SSDO KK = 1, N, TSDO J = JJ, MIN(JJ + SS - 1, N)DO K = KK, MIN(KK + B - 1, N)DO I = I, NC(I,J) = C(I,J) + A(I,K) * B(K,J)Here, TS is selected based on the cache size. This organization moves the reuse ofA(1:N,KK:KK+TS-1) on the J loop closer together in time, making it more likely to stillbe in cache. This optimization approach may be divided into three phases:1. optimizing to improve data locality,2. �nding and positioning a parallel loop, and3. performing low-level memory optimizations such as tiling for cache and placingreferences in registers [LRW91, CCK90].This chapter focuses on the �rst two phases. We advocate the �rst two phases befollowed by a low-level memory optimizing phase, but do not address it here.6.2 Memory and language modelBecause we are evaluating reuse, we require some knowledge of the memory hierarchy.However, because our model is very simple, only minimal knowledge of the cache isrequired; the compiler must know the cache line size (cls). The size, set associativity,and replacement policy of the cache are not important here. In addition, we assume a

81write-back cache and ignore non-unique write references. If the cache is write-through,these writes should be included.In addition, we only concern ourselves with memory accesses caused by arrayreferences, since they dominate memory access in scienti�c Fortran codes. We alsoassume that arrays are stored in column-major order, where unit stride accesses inthe �rst array dimension translate into contiguous memory accesses. Our results arealso valid for row-major arrays such as those found in C with only minor changes.6.3 Tradeo�s in optimizationThis section illustrates with an experiment the in
uence of memory reuse and par-allelism granularity on speed-up. As expected, it indicates the best performance ispossible only when both are utilized e�ectively in concert. It also shows that whenboth cannot be achieved at once, there are situations where favoring one or the otherresults in the best execution time. Neither always dominates. To illustrate, we phrasethe following question.Given enough computation to make parallelism pro�table, what is the e�ectof reuse and how should it a�ect the optimization strategy?Figure 6.1 presents the results of executing di�erent parallel versions of the followingloop nest on 18 processors of a Sequent Symmetry S81 with 20 processors, withincreasing amounts of total work.DO J = 1, NDO I = 1, MDO H = 1, LC(I, J) = C(I, J) + A(I, J) + B(I, J)The total amount of work is increased by varying the upper bounds N and M from2 to the number of processors (P = 18). We consider positioning I or J as the outerparallel loop in the nest. In Figure 6.1, the best version of this loop nest has an outerparallel J loop with 18 iterations (N = 18) and total work is increased by varying Mfrom 2 to 18. Each of the 18 processors accesses distinct columns of each array. Thisorganization exploits cache line reuse on each processor and results in linearly-scalablespeed-up.When the J loop is outermost and the number of parallel iterations of is variedfrom 2 to 18 along with P and the I loop contains 18 iterations, the total amount of

82
total work

s p
 e

 e
 d

 -
u

p

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
best (J out,N=18,M=2:18)

mem (I out,M=18,N=2:18)

gran (J out,N=2:18,M=18)

worst (I out,M=2:18,N=18)Figure 6.1: Memory and parallelism tradeo�swork increases, but the work per processor remains the same. This organization isillustrated by the gran line. In this case, the speed-up scales by the number of paralleliterations, but cache line reuse is still facilitated on each processor.If instead the I loop is made outermost and parallel, then processors must competefor the cache line which contains C(I,J) in order to write it. This competition is calledfalse sharing. In addition, multiple processors require cache lines containing A(I,J)and B(I,J), increasing network contention and total memory utilization. When thenumber of parallel iterations of the I loop as outermost varies from 2 to 18 along withP and the J loop contains 18 iterations, the worst line indicates the performance. Ifthe number of parallel iterations of I is held at 18 while the J loop is varied from 2 to18, the mem line results.Compare the pair of lines best and mem. The factor of two di�erence is due to thebene�t of cache line reuse in best, and the limitations of false sharing and increasedbus and memory utilization in mem. The same comparison holds for the gran andworst lines. These results indicate that the parallelizing algorithm must recognizereuse and false sharing to be e�ective.Now compare the pair of crossing lines gran and mem. These computations di�eronly by an interchange. An optimization strategy that only used loop interchange

83would be forced to pick between the two. To obtain the best performance for thisexample, the J loop would be outermost when N > 8, otherwise the I loop should beoutermost. In addition, this \crossover" point would need to be determined for eachcomputation, a daunting task. Our approach instead combines loop interchange andstrip mining in a parallelization strategy that minimizes false sharing and exploitsdata reuse.6.4 Optimizing data localityIn this section we describe two sources of data reuse, then we incorporate both ina simple yet realistic cost model. In subsequent sections, this cost model is used toguide optimizations for improving data locality and exploiting parallelism.6.4.1 Sources of data reuseWe �rst consider the two major sources of data reuse.� multiple accesses to the same memory location� accesses to consecutive memory locations (i.e. stride 1 or unit stride access)Multiple accesses to the same memory location may arise from either a single arrayreference or multiple array references. These accesses are loop-independent if theyoccur in the same loop iteration, and are loop-carried if they occur on di�erent loopiterations. Wolf and Lam call this temporal reuse [WL91]. The most obvious source oftemporal reuse is from loop-invariant references. For instance, consider the referenceto A(J) in the following loop nest. It is invariant with respect to the I loop, and isreused by each iteration.DO J = 1,NDO I = 1,NS = S + A(J) + B(I) + C(J,I)A second source of data reuse is caused by multiple accesses to consecutive memorylocations. For instance, each cache line is reused multiple times on the inner I loopfor B(I) in the above example. Wolf and Lam call this spatial reuse [WL91]. Theactual amount of reuse is dependent on the size of B(I) relative to the cache line sizeand the pattern of intervening references. For the rest of this chapter, we assumefor simplicity that the cache line size is expressed as a multiple of the number ofarray elements. For reasonably large computations, references such as C(J,I) do not

84provide any reuse on the I loop, because the desired cache lines have been
ushed byintervening memory accesses.Previous researchers have studied techniques for improving locality of accessesfor registers, cache, and pages [AS79, CCK90, WL91, GJG88]. We concentrate onimproving the locality of accesses for cache; i.e. we attempt to increases the localityof access to the same cache line. Empirical results show that improving spatial reusecan be signi�cantly more e�ective than techniques that consider temporal reuse alone[KMT92]. In addition, consecutive memory access results in reuse at all levels of thememory hierarchy except for registers.6.4.2 Simplifying assumptionsTo simplify analysis we make two assumptions. First, our loop cost function assumesthat reuse occurs only across iterations of the innermost loop. This assumptiondecreases precision but greatly simpli�es analysis, since it allows the number of cacheline accesses to be calculated independent of the permutation of all outer loops. Thisassumption is accurate if the inner loop contains a su�ciently large number of memoryaccesses to completely
ush the cache after executing all of its iterations. We showlater that our optimizations to improve locality can select a desirable permutation ofouter loops even with this restriction.Cache interference refers to the situation where two memory locations are mappedto the same cache line, eliminating an opportunity to exploit reuse for one of thereferences. Our second assumption is that cache interferences occur rarely for smallnumbers of inner loop iterations, compared to the total number of distinct cache linesaccessed in those iterations. In other words, we expect very few interferences for eachcache line being reused, since the cache line is only needed for a small number ofconsecutive inner loop iterations. Lam et al. show that this assumption may not holdif cache lines must remain live for longer periods of time. Considerable interferencemay take place when loops are tiled to increase reuse across outer loops [LRW91].6.4.3 Loop costGiven these assumptions, we present a loop cost function LoopCost based on ourmemory model. Its goal is to estimate the total number of cache lines accessed whena candidate loop l is positioned as the innermost loop. The result is used to guide looppermutation to improve data locality. The estimate is computed in two steps. First,

85references that will access the same cache line in the same or di�erent iterations ofthe l loop are combined using RefGroup. Second, the number of cache lines accessedby all groups is calculated using LoopCost.6.4.4 Reference groupsThe goal of the RefGroup algorithm is to partition variable references in the programtext into reference groups such that all references in a group access the same memorylocations, and consequently the same cache line. Wolf and Lam call these groupsequivalence classes exhibiting group-temporal reuse. The partition process is particu-larly simple here because we only consider reuse for each loop when it is positionedinnermost.Two references are in the same reference group for loop l if they actually accesssome common memory location (data dependence ~� exists between them), and theAlgorithm 6.1: Determine reference groupsRefGroup (Refs, DG, l)Input:Refs = fRef 1 : : :Ref ng referencesDG = fhRef i ~� Ref ji; : : :g the dependence graphl = candidate innermost loopOutput:fRefGroup1 : : :RefGroupmg reference groups for lAlgorithm:m = 0while Refs 6= ; dom = m+ 1RefGroupm = frg, where r 2 RefsRefs = Refs � frgfor each hr ~� r0i or hr0 ~� ri 2 DG s.t. r0 2 Refsif (�l is a constant d) & (�l is the onlynonzero entry in ~�)RefGroupm = RefGroupm + fr0gRefs = Refs � fr0gendifendforendwhile

86reuse occurs on l if it is positioned as the innermost loop. The common accesses thenoccur on either the same iteration of l (�l = 0) or across d iterations of l (�l = d).More formally we de�ne RefGroup as follows.De�nition 6.1 Two references Ref 1 and Ref 2 belong to the same ref-erence group with respect to loop l if and only if:1. 9 Ref 1~�Ref 2 , and2. ~� is a loop-independent dependence, or�l, the entry in ~� corresponding to loop l, is a constant d (d may bezero) and all other entries are zero.Jacobi exampleFor instance, consider the following Jacobi iteration example.DO I = 2,N-1DO J = 2,N-1A(J,I) = 0.2* (B(J,I) + B(J-1,I) + B(J,I-1)+ B(J+1,I) + B(J,I+1))Data dependences connect all references to B. The reference groups for the I loop are:fA(J,I)g, fB(J,I),B(J,I-1),B(J,I+1)g,fB(J-1,I)g, fB(J+1,I)g.The reference groups for the J loop are:fA(J,I)g, fB(J,I),B(J-1,I),B(J+1,I)g,fB(J,I-1)g, fB(J,I+1)g.RefGroup is shown in Algorithm 6.1. Its e�ciency may be improved by pruningall identical array references, since they access the same memory location on eachiteration and always fall in the same reference group.6.4.5 Loop cost algorithmAfter the number of reference groups for loop l is computed with RefGroup, thealgorithm RefCost is applied to estimate the total number of cache lines that wouldaccessed by each reference group if l were the innermost loop. Once again, the taskis simpli�ed because we only consider reuse between iterations of l.

87RefCost works by considering one array reference Ref from each reference group;these representative references are classi�ed as loop-invariant, consecutive, or non-consecutive with respect to loop l. Loop-invariant array references have subscriptsthat do not vary with l; they require only one cache line for all iterations of l.4Consecutive array accesses vary with l only in the �rst subscript dimension. Theyaccess a new cache line every cls iterations, resulting in trip=cls cache line accesses,assuming l performs trip iterations. Fewer cache lines are reused for nonunit strides.Non-consecutive array accesses vary with l in some other subscript dimension; theyaccess a di�erent cache line each iteration, yielding a total of trip cache line accesses.Once RefCost is computed, the algorithm LoopCost calculates the total numberof cache lines accessed by all references when l is the innermost loop. It simplysums RefCost for all reference groups, then multiplies the result by the trip countsof all the remaining loops. This calculation will underestimate the number of cachelines accessed on the inner loop, if the distance of the dependences for a particularRefGroup set are greater than cls. Also, slight underestimates occurs because theexact alignment of arrays in memory is not known until run-time. LoopCost willoverestimate the number of cache lines, if there is additional reuse across an outerloop.LoopCost is expressed more formally in Algorithm 6.2 for the following loop nestcontaining one array reference from each reference group RefGroup1 : : :RefGroupm:do i1 = lb1; ub1; s1do i2 = lb2; ub2; s2� � �do in = lbn; ubn; snRef 1(f1(i1; : : : ; in); : : : ; fj(i1; : : : ; in))� � �Ref m(g1(i1; : : : ; in); : : : ; gk(i1; : : : ; in))Note that LoopCost can be used to calculate cache line accesses even for array refer-ences with complex subscript expressions. For instance, it determines that A(I+J+N)results in consecutive memory accesses with respect to both the I and J loops.4Of course, loop-invariant references should eventually be put in registers.

88Algorithm 6.2: Determine inner loop costLoopCost (L;R; cls)Input: L = fl1; : : : ; lng a loop nest with headers lb; ub; sR = fRef 1; : : : ;Refmg representatives from each reference grouptripl = (ubl � lbl + sl)=slcls = the cache line size,appear(f) = the set of index variables that appears inthe subscript expression fcoe�(il; f) = the coe�cient of the index variable il in the subscript f(it may be zero)Output: LoopCost(l) = number of cache lines accessed with l as innermost loopAlgorithm:LoopCost(l) = mXk=1 0@RefCost(Ref k(f1(i1; : : : ; in); : : : ; fj(i1; : : : ; in))) � Yh6=l triph1ARefCost(Ref k) =1 if (il 62 appear(f1))^ : : :^ (il 62 appear(fj)) loop invarianttripl=cls if (il 2 appear(f1)) ^ (jcoe� (il; f1)j = 1) ^ (jslj = 1) ^ unit stride(il 62 appear(f2))^ : : :^ (il 62 appear(fj))tripl otherwise no reuse6.4.6 Imperfectly nested loopsBecause of their simplicity, both RefGroup and LoopCost can also be applied toimperfectly nested loops. Consider the following example, where the �rst de�nitionof A(J) is imperfectly nested:DO J = 1, 100A(J) = 0DO I = 1, 100A(J) = A(J) + : : :RefGroup would place all references to A(J) in the same reference group. When weapply RefCost to calculate the number of cache lines accessed by a reference group, weneed to select the most deeply nested member of the group. LoopCost then multipliesthe result by the trip counts of all the loops that actually enclose the reference.

896.5 Loop permutationThe previous section presents our cost model for evaluating the data locality of agiven loop structure with respect to cache. In this section we show how the costmodel guides loop permutation to restructure a loop nest for better data locality.A naive optimization algorithm would simply generate all legal loop permuta-tions and select the permutation that yields the best estimated data locality usingLoopCost. Unfortunately, generating all possible loop permutations takes time thatis exponential in the number of loops and can be expensive in practice. It becomesincreasingly unappealing when transformations such as strip mining introduce evenlarger search spaces.Instead of testing all possible permutations, we show how our cost model allowsus to design an algorithm to directly compute a preferred loop permutation.6.5.1 Memory orderThe locality evaluating function LoopCost does not calculate data reuse on outerloops; however, we can still restructure programs to exploit outer loop reuse. The keyinsight is that if loop l causes more reuse than loop l0 when both are considered asinnermost loops, l will also promote more reuse than l0 when both loops are placedat the same outer loop position.LoopCost can thus be considered to be a measure of the reuse carried by aloop. This allows us to select a desired permutation of loops called memory or-der that yields the best estimated data locality. We simply rank each loop l us-ing LoopCost, ordering the loops from outermost to innermost (l1 : : : ln) such thatLoopCost(li�1) � LoopCost(li).Memory order algorithmThe algorithm MemoryOrder is de�ned as follows. It computes LoopCost for eachloop, sorts the loops in order of decreasing cache line accesses (i.e. increasing reuse),and returns this loop permutation.ExampleAs an example, recall matrix multiply. We compute memory order with cls = 4.The reference groups for matrix multiply put the two references to C(I,J) in the same

90group on all the loops and A(I,K) and B(K,J) are placed in separate groups. LoopCostcomputes the relative reuse on each of the loops as seen below.LoopCost as innermostreferences J K IC(I; J) n � n2 1 � n2 1=4n � n2A(I;K) 1 � n2 n � n2 1=4n � n2B(K; J) n � n2 1=4n � n2 1 � n2totals 2n3 + n2 5=4n3 + n2 1=2n3 + n2The algorithm MemoryOrder uses these costs to compute a preferred loop orderingof (J, K, I), from outermost to innermost. The same result is obtained by previousresearchers [AK84, WL91].6.5.2 Permuting to achieve memory orderWe must now decide whether the desired memory order is legal. If it is not, we mustselect some legal loop permutation close to memory order. To determine whether aloop permutation is legal is straightforward. We permute the entries in the distanceor direction vector for every true, anti, and output dependence to re
ect the desiredloop permutation. The loop permutation is illegal if and only if the �rst nonzero entryof some vector is negative, indicating that the execution order of a data dependencehas been reversed [AK84, Ban90a, Ban90b, WL90].In many cases, the loop permutation calculated by MemoryOrder is legal and weare �nished. However, if the desired memory order is prevented by data dependences,we use a simple heuristic for calculating a legal loop permutation near memory order.The algorithm for determining this organization takes max(D;n2) time in the worst-case where n is the depth of the nest and D is the number of dependences, a de�niteimprovement over considering all legal permutations, which is exponential in n. Thealgorithm is guaranteed to �nd a legal permutation with the desired inner loop, if oneexists.Permutation algorithmGiven a memory ordering fi�1; i�2; : : : ; i�ng of the loops fi1; i2; :::; ing where i�1 hasthe least reuse and i�n has the most, we can test if it is a legal permutation directly

91Algorithm 6.3: Determine the closestpermutation to memory orderNearbyPermutation (O;DV ;L)Input:O = fi1; i2; :::; ing, the original loop orderingDV = set of original legal direction vectors for lnL = fi�1 ; i�2 ; : : : ; i�ng , a permutation of OOutput:P a nearby permutation of OAlgorithm:P = ; ; k = 0 ; m = nwhile L 6= ;for j = 1; ml = lj 2 Lif direction vectors for fp1; : : : ; pk; lg are legalP = fp1; : : : ; pk; lgL = L � flg ; k = k + 1 ; m = m� 1break forendifendforendwhileby performing the equivalent permutation on the elements of the direction vectors.If the result is a legal set of direction vectors, the loops are permuted accordingly.Otherwise, we attempt to achieve a \nearby" permutation with the algorithmNearbyPermutation. The algorithm builds up a legal permutation in P by �rst testingto see if the loop i�1 is legal in the outermost position. If it is legal, it is added to Pand removed from L. If it is not legal, the next loop in L is tested. Once a loop l ispositioned, the process is repeated starting from the beginning of L � flg until L isempty. The following theorem holds for the NearbyPermutation algorithm.Theorem 6.1 If there exists a legal permutation where �n is the inner-most loop, then NearbyPermutation will �nd a permutation where �n isinnermost.The proof by contradiction of the theorem proceeds as follows. Given an original setof legal direction vectors, each step of the \for" is guaranteed to �nd a loop whichresults in a legal direction vector, otherwise the original was not legal [AK84, Ban90a].

92In addition, if any loop �1 through �n�1 may be legally positioned prior to �n it willbe. This characteristic is important because most data reuse occurs on the innermostloop and is due to spatial reuse, so positioning the inner loop correctly will yield thebest data locality.6.6 Data locality experimental resultsWe tested the algorithm for optimizing data locality independently and report someof these results here.6.6.1 Matrix multiplyWe executed all possible loop permutations of matrix multiply for 3 problem sizes,150 � 150, 300 � 300 and 512 � 512, on a variety of uniprocessors to determine theaccuracy of the MemoryOrder in predicting the best loop permutations. In Table 6.1,the permutations are ordered from the most desirable to the least based on the rankingcomputed by MemoryOrder. On all the processors, memory order JKI produced thebest results in all but two cases. On all the processors but the Sequent, the entireranking generally served to accurately predict relative performance. These resultsillustrate that LoopCost is e�ective in predicting relative reuse on outer loops as wellas inner loops. Table 6.1: Matrix Multiply (in seconds)Loop PermutationProcessor JKI KJI JIK IJK KIJ IKJ150� 150Sequent Weitek 26.0 27.1 31.1 30.7 28.4 26.9Sun Sparc2 2.33 2.25 3.20 3.16 2.81 2.79Intel i860 1.16 1.17 1.23 1.18 3.50 3.42IBM RS6000 0.42 0.46 0.36 0.38 1.08 1.08300� 300Sun Sparc2 18.3 17.8 26.1 25.2 24.9 27.1Intel i860 9.7 10.2 21.7 21.8 59.1 58.9IBM RS6000 3.37 3.47 12.5 12.5 56.4 56.5512� 512Sun Sparc2 91.0 93.6 223 240 277 336Intel i860 60.2 46.7 143 156 292 292IBM RS6000 16.7 17.0 183 186 399 399The disparity in execution times between permutations became greater as theprocessor speed increased. On the individual processors, execution times varied by

93signi�cant factors of up to 3.69 on the Sparc2, 6.25 on the i860, and a dramatic 23.89on the RS6000. These results indicate that data locality should be the overwhelmingforce driving scalar compilers today.6.6.2 Stencil computations: Jacobi and SORStencil computations such as Jacobi and SOR are �nite di�erence techniques fre-quently used to solve partial di�erence equations [BHMS91]. Jacobi runs completelyin parallel, while SOR causes a computational wavefront to sweep diagonally throughthe array. Both kernels were written using 500 � 500 2D arrays. We created andmeasured the execution time of the following program versions: (all of the actualprograms appear in Figures 6.2 and 6.3).Memory Order: Loops are ordered according to the algorithmMemoryOrder. Bothtemporal and spatial reuse are exploited. Neither program required the algo-rithm NearbyPermutation.Poor Order: Loops are permuted in exactly the opposite manner as memory order.It is provided merely to show the worst-case performance if data locality is nottaken into account.Figure 6.2: Stencil computation: JacobiMemory OrderDO I = 2,N-1DO J = 2,N-1A(J,I) = 0.2�(B(J,I) + B(J-1,I) + B(J,I-1) + B(J+1,I) + B(J,I+1))Poor OrderDO J = 2,N-1DO I = 2,N-1A(J,I) = 0.2�(B(J,I) + B(J-1,I) + B(J,I-1) + B(J+1,I) + B(J,I+1))1D TilesDO JJ = 2,N-1,TILEDO I = 2,N-1DO J = JJ,MIN(JJ+TILE-1,N-1)A(J,I) = 0.2�(B(J,I) + B(J-1,I) + B(J,I-1) + B(J+1,I) + B(J,I+1))2D TilesDO II = 2,N-1,TILEDO JJ = 2,N-1,TILEDO I = II,MIN(II+TILE-1,N-1)DO J = JJ,MIN(JJ+TILE-1,N-1)A(J,I) = 0.2�(B(J,I) + B(J-1,I) + B(J,I-1) + B(J+1,I) + B(J,I+1))

941D and 2D Tiles: The loops are �rst placed in memory order, then one or bothloops are tiled in order to exploit reuse on the outer loop. This version showsthat tiling can degrade performance if insu�cient reuse exists on outer loops.Memory order can be easily computed for both kernels. Temporal reuse is identicalfor both loops, since each results in the same number of reference groups (four forJacobi, three for SOR). The J loop has much lower LoopCost, since all referencegroups yield consecutive accesses when J is considered as the candidate innermostloop. In comparison, all references result in non-consecutive accesses with I innermost.Spatial reuse from consecutive accesses thus dominates when considering the properloop permutation for good data locality.The execution times measured for these program versions appear in Tables 6.2 and6.3. Permuting loops to achieve memory order for these two kernels shows impressiveimprovements compared to their poorly ordered counterparts. The speedups for bothprograms range from a factor of 1.3 to 8.4. The RS6000 is especially sensitive toconsecutive accesses; for Jacobi, its performance increased by a factor of 8.4 in memoryorder. Figure 6.3: Stencil computation:Successive Over Relaxation (SOR)Memory OrderDO I = 2,N-1DO J = 2,N-1A(J,I) = 0.2�(A(J,I) + A(J-1,I) + A(J,I-1) + A(J+1,I) + A(J,I+1))Poor OrderDO J = 2,N-1DO I = 2,N-1A(J,I) = 0.2*(A(J,I) + A(J-1,I) + A(J,I-1) + A(J+1,I) + A(J,I+1))1D TilesDO JJ = 2,N-1,TILEDO I = 2,N-1DO J = JJ,MIN(JJ+TILE-1,N-1)A(J,I) = 0.2�(A(J,I) + A(J-1,I) + A(J,I-1) + A(J+1,I) + A(J,I+1))2D TilesDO II = 2,N-1,TILEDO JJ = 2,N-1,TILEDO I = II,MIN(II+TILE-1,N-1)DO J = JJ,MIN(JJ+TILE-1,N-1)A(J-I,I) = 0.2�(A(J-I,I) + A(J-I-1,I) + A(J-I,I-1)+ A(J-I+1,I) + A(J-I,I+1))

95Empirical results show that neither Jacobi nor SOR possess su�cient reuse atouter loops to justify tiling; spatial reuse is the most important factor for thesestencil computations. In fact, tiling degrades performance. The tiled versions of eachkernel begin to recover only as tile sizes become quite large.Table 6.2: Performance of Jacobi (in seconds)1D Tiles 2D TilesProcessor Memory Poor 4 16 32 4x4 16x16 32x32Sun Sparc2 0.37 0.75 0.48 0.40 0.39 0.47 0.40 0.38Intel i860 0.12 0.48 0.30 0.16 0.14 0.23 0.14 0.13IBM RS6000 0.09 0.76 0.26 0.13 0.11 0.12 0.09 0.09Table 6.3: Performance of SOR (in seconds)1D Tiles 2D TilesProcessor Memory Poor 4 16 32 4x4 16x16 32x32Sun Sparc2 0.31 0.41 0.41 0.33 0.32 0.39 0.33 0.32Intel i860 0.20 0.57 0.37 0.24 0.21 0.27 0.21 0.21IBM RS6000 0.13 0.41 0.22 0.16 0.14 0.15 0.13 0.136.6.3 ErlebacherErlebacher is a small benchmark program written by Thomas Eidson of ICASE thatperforms Alternating-Direction-Implicit (ADI) integration. It performs vectorizedtridiagonal solves in each dimension, resulting in computation wavefronts across allthree dimensions. Our results are for the forward and backward sweeps in Z dimension.The program versions we used are as follows.Vector Order: All sequential loops (those carrying dependences) are placed out-ermost. Inner loops may all be executed in parallel. Within the parallel andsequential loop nests, each is ordered for data locality.Parallel Order: All parallel loops are placed outermost. Inner loops are sequentialand carry dependences corresponding to reuse. Within each group, loops areordered for data locality. This is the loop permutation selected by optimiza-tions that attempt to exploit temporal reuse without considering spatial reuse(consecutive accesses).

96Memory Order: The loops are ordered according to descending LoopCost. As wehave shown, both temporal and spatial reuse are considered when choosingmemory order. All of the loop nests in Erlebacher were fully permutable, nonerequired the algorithm NearbyPermutation.Hand-coded: The loops are ordered according to the original source as provided byThomas Eidson.In addition, for each loop strategy we also have fused and separate versions of theprogram.Alone: All the statements remain in the same nest as originally written, resulting insingle statement loop nests.Fuse: Each single statement loop nest is �rst permuted into the desired loop order.We then fuse all adjacent loop nests where legal. This version demonstrates thee�ects of exploiting reuse through loop fusion.Figure 6.4 demonstrates vector, parallel, memory order and hand-coded versions fortwo of the loop nests found in the solution stage for the Z dimension. For this example,parallel order exploits the temporal reuse represented by dependences carried on theK loop. However as seen in Table 6.4, it results in the worst performance because iteliminates consecutive accesses for the references to array F.Both vector and memory order place I as the innermost loop, resulting in cacheline reuse for references to array F. However, memory order also selects the middleloop that yields the most reuse. In the �rst loop nest the J loop is preferred becauseboth A(K) and B(K) become loop-invariant references, overcoming the savings derivedfor the K loop from putting F(I,J,K) and F(I,J,K-1) in the same reference group.Table 6.4: Performance of Erlebacher (in seconds)Vector Order Parallel Order Memory Order HandProcessor Alone Fuse Alone Fuse Alone Fuse CodedMotorola 68020 836 838 847 848 838 840 841Intel i386 20.5 20.6 20.2 20.1 19.9 19.8 20.1Sequent Weitek 8.74 8.61 8.90 8.49 8.26 7.96 8.14Sun Sparc2 1.09 1.07 .842 .682 .813 .672 .806Intel i860 .705 .696 .660 .631 .548 .518 .547IBM RS6000 .493 .480 .459 .441 .400 .383 .390

97Figure 6.4: Erlebacher: forward andbackward sweeps in Z dimensionf Vector Order (outer loops sequential/inner loops parallel) gDO K=N-2,1,-1DO J=1,NDO I=1,NF(I,J,K)=(F(I,J,K)-A(K)*F(I,J,K-1))*B(K)DO K=N-2,1,-1DO J=1,NDO I=1,NF(I,J,K) = F(I,J,K) - C(K)*F(I,J,K+1) - E(K)*F(I,J,N)f Parallel Order (outer loops parallel/inner loops sequential) gDO J=1,NDO I=1,NDO K=N-2,1,-1F(I,J,K)=(F(I,J,K)-A(K)*F(I,J,K-1))*B(K)DO J=1,NDO I=1,NDO K=N-2,1,-1F(I,J,K) = F(I,J,K) - C(K)*F(I,J,K+1) - E(K)*F(I,J,N)f Memory Order (in order of decreasing LoopCost) gDO K=N-2,1,-1DO J=1,NDO I=1,NF(I,J,K)=(F(I,J,K)-A(K)*F(I,J,K-1))*B(K)DO J=1,NDO K=N-1,2,-1DO I=1,NF(I,J,K) = F(I,J,K) - C(K)*F(I,J,K+1) -E(K)*F(I,J,N)f Hand-coded gDO K=N-2,1,-1DO J=1,NDO I=1,NF(I,J,K)=(F(I,J,K)-A(K)*F(I,J,K-1))*B(K)DO J=1,NDO K=N-2,1,-1DO I=1,NF(I,J,K) = F(I,J,K) - C(K)*F(I,J,K+1) - E(K)*F(I,J,N)

98In comparison, in the second loop nest K is the preferred middle loop. By com-bining F(I,J,K) and F(I,J,K+1) in the same reference group and making F(I,J,N) a loop-invariant reference, the K loop provides more savings than the J loop can by makingboth A(K) and B(K) loop-invariant. This results in approximately a 5-10% improve-ment for the i860, showing that simply selecting the correct innermost loop is notenough su�cient to yield the maximum data locality.Our results show that data locality grows in importance with processor speeds.Loop fusion provides additional improvements in execution time, but selecting thecorrect loop permutation for good data locality again yields the greatest bene�t.6.7 ParallelismIn the following two subsections, parallelism is evaluated and exploited. We �rstpresent a performance estimator that evaluates the potential bene�t of parallelism. Aparallel code generation strategy then uses performance estimation and the cost modeldeveloped in the previous section with other transformations to combine e�ectiveparallelism and memory order, making tradeo�s as necessary.6.7.1 Performance estimationThis section uses performance estimation to quantify the e�ects of parallelism onexecution time. Our performance estimator predicts the cost of parallel and sequentialperformance using a loop model and a training set approach.The goal of our performance estimator is to assist in code generation for bothshared and distributed memory multiprocessors [BFKK92, KMM91]. Modeling thetarget machines at an architectural level would require calculating an analytical modelfor each supported architecture. Instead our performance estimator uses a trainingset to characterize each architecture in a machine-independent fashion. A trainingset is a group of kernel computations that are compiled, executed and timed oneach target machine. They measure the cost of operations such as multiplication,branching, intrinsics, and loop overhead. These costs are then made available to theperformance estimator via a table of data. Note, the training sets for the performanceestimator only measure access times to data in registers or the closest cache.Of particular interest is the estimation of parallel loops. Given su�cient par-allel granularity, using all available processors results in the best execution time.

99Estimating the cost in this circumstance may be modeled by determining the follow-ing. cs = cost of starting parallel executioncf = cost of forking and synchronizinga parallel processP = number of processorsb = number of iterations of the parallel loopt(B) = cost of the loop bodyIf the loop bounds are unknown, a guess is used that is based on the declared dimen-sion of the arrays accessed in the loop. With these parameters the performance of aparallel loop with su�cient work may be estimated by:cs + cfP + & bP ' t(B) :However, if the amount of work is not su�cient, parallel loop execution is moredi�cult to model. Instead of an equation, a table is used to indicate the appropriatenumber of processors for the best performance. The model and the table are generatedusing a training set.The sample training set for determining parallel loop overhead begins by varyingthe total amount of work. For each unit of work, the number of processors is variedfrom 1 to the total available. The number of processors which minimize the executiontime of this work is selected. The result of a training run for parallel loops on theSequent S81 appears in Figure 6.5.This particular training run repeatedly performed a single scalar operation thatexecuted for approximately 10 microseconds, which represents one unit of work inFigure 6.5. Each of the contour lines indicates a particular execution time. Thesingle line cutting across the contour lines represents the minimum execution time forexecuting a particular work load and the appropriate number of processors. Whentotal work is below 250 a table determines the appropriate number of processors andapproximate execution time. Once the total work is over about 250, the parallel loopmodel is used. The estimator provides a single cost function for evaluating loops thatchooses between the techniques based on total work and number of loop iterations.Estimate(l; how) returns h�; npi wherel is a loop with body Bhow indicates whether l may be run in parallel

100
0 50 100 150 200 250 300 350 400 450 500

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
120

140

160

400

500

600

1000

2000

3000

Interpolated contours in microseconds

total work

p
r o

 c
e

s s
 o

 r
s

Figure 6.5: Parallel loop training setThis function returns a tuple h�; npi with an estimate � which is the minimal executiontime and the number of processors np necessary to obtain the estimate, based onwhether the loop is parallel. Note, if the loop is sequential or it is not pro�table torun it in parallel, the sequential running time and np = 1 are returned.6.7.2 Introducing parallelismThe key to introducing parallelism is to maintain memory order during parallelizationby using strip mining and loop shifting (loop shifting moves an inner loop outwardacross one or more loops). Strip mining performs two functions in parallelization. (1)It preserves cache line reuse in parallel execution. Without strip mining, consecutiveiterations may be scheduled on di�erent processors, denying cache line reuse. (2)Because strip mining results in two loops, the parallel iterator loop may be shiftedoutward to maximize granularity while the sequential strip remains in place providingthe data locality introduced using memory order. To illustrate this point, considerthe subroutine dmxpy from Linpackd written in memory order [DBMS79].DO J = JMIN, N2DO I = 1, N1Y(I) = Y(I) + X(J) * M(I,J)

101The J loop is not parallel. The I loop can be parallel. Both contain reuse. Asimple parallelization that maximizes granularity would interchange the two loops andmake the I loop parallel without strip mining. Unfortunately with this organization,the parallel loop may be scheduled such that consecutive iterations are assigned todi�erent processors causing false sharing of Y and eliminating cache line reuse forconsecutive accesses to X and M. In addition, cache lines containing the same arrayelements would be required at multiple processors, increasing total memory and busutilization.We instead strip mine a parallel loop by strip size SS =dN1/Pe to provide reuse onthe strip and parallelize the resultant iterator. If the parallel loop is outermost, as inmatrix multiply, parallelization is complete. If not, we use loop shifting to move theparallel iterator to its outermost legal position, maximizing its granularity. Applyingthis strategy to dmxpy, we begin with the memory ordered loop nest. The I loopis the only parallel loop and it contains reuse. Therefore, it is strip mined. Theparallel iterator is not outermost, but it is legally shifted to the outermost position.The compiler shifts the loop, resulting in maximum granularity and data locality asillustrated below.PARALLEL DO I = 1, N1, SSDO J = JMIN, N2DO II = I, MIN(I + SS - 1, N1)Y(II) = Y(II) + X(J) * M(II,J)6.7.3 Strip miningIf a loop is selected to be performed in parallel, it is strip mined if it contains anyreuse. Given su�cient iterations, strip mining exploits data locality and parallelismby using dN/Pe as the strip size where N is the number of iterations. Assumingcls � P, the iteration space is su�ciently large if P < N. IfP < N < cls � P;strip mining by dN/Pe is less than the cls and may result in false sharing. However,the granularity of the parallel loop does match P and some reuse will occur. In thiscase, we still strip mine by dN/Pe. However, if N < P, strip mining may provide reusebut at the cost of drastically reducing the granularity of parallelism. This tradeo� isvery machine speci�c. We choose not to strip mine when N < P.

102When memory order is computed, the loops are marked to indicate if they containany reuse. If there is reuse, the strip mining algorithm uses the above equations toselect a strip size that maximizes granularity and reuse. If there is no reuse, thestrip mining algorithm does not perform strip mining, giving more
exibility to thescheduler.6.7.4 Parallelization algorithmFor memory ordered loop nests that are not parallel on the outermost loop, theParallelization algorithm uses loop shifting to introduce parallelism. It uses loopshifting, rather than a general loop permutation algorithm, in order to minimize thee�ect of parallelization on data locality. It performs strip mining when the loopcontains reuse before shifting for the same reason. In the worst case, it is O(n2) time.Algorithm 6.4 introduces parallelism into memory order. It begins by testingwhether the outermost loop is parallel. In the �rst iteration of the \for k" (j = k = 1),Algorithm 6.4: Introduce parallelismParallelization (L)Input: L = f�1; : : : ; �ng a legal permutationOutput: T a parallelizing transformationAlgorithm:T = ;for j = 1; nfor k = j; nif �k legal at position j & parallelT = f StripMine(�k),shift iterator to j, parallelize it greturn Telseif �k legal at j & �j becomes parallelT = fStripMine(�k), shift k iterator to j,StripMine(new �j+1),parallelize the j+1 iterator gendifendforif T 6= ; return Tendfor

103the �rst \if" tests if the outermost loop is parallel. Trivially, a shift of loop �j toposition j is always legal.If the loop is parallel, it is strip mined and parallelized and the algorithm returns.If the loop is not parallel, a legal shift of an inner loop to position j which is parallelat position j is sought. If a parallel loop is found that can be shifted outermost toj, it is strip mined, parallelized and shifted and the algorithm returns. Otherwise, ashift to position j may cause the next inner loop, i.e. the loop originally positionedat j, to be parallel. This situation is determined in the \elseif." Because it is moredesirable to parallelize a loop at position j than at j+1, all other shifts to position jare considered before this parallelization is returned at the completion of the \for k."In Algorithm 6.4 Parallelize does not detect when strip mining results in a strip sizeof less than cls or strip mining is not performed due to insu�cient parallel iterations.As we saw in Section 6.3 these conditions are unavoidable in some cases and the bestpossible performance is gained even when they hold. However, we extend Parallelizeas follows to seek a better parallelization for which neither condition holds.If StripMine returns with a strip size of less than cls or does not strip mine due toinsu�cient parallel iterations, then the number of parallel iterations PI and the sizeof the strip SS are recorded and the \for k" loop continues instead of returning. If the\for k" �nds a parallelization where neither condition holds, it returns. Otherwise,at the completion of the \for k" it selects the parallelization with the largest pair(PI, SS).6.8 Optimization algorithmThe optimization driver for exploiting data reuse and introducing parallelism appearsin Algorithm 6.5. It combines the component algorithms described in the previoussections and is also O(n2) time.It �rst calls MemoryOrder to optimize data locality via loop permutation. It thendetermines whether the loop contains su�cient computation to pursue parallelism.If it does, the memory ordered loop nest is provided to the algorithm Parallelize. Ifneeded, Parallelize uses strip mining and loop shifting to introduce loop level paral-lelism.The search space in Parallelize is constrained to meet our goal of perturbing thememory order as little as possible. If parallelism is not discovered and would be

104Algorithm 6.5: Optimizing for parallelism and data localitySimpleOptimizer (L)Input: L = fl1; : : : ; lngOutput: T an optimization of LAlgorithm:O = MemoryOrder(L)np = Estimate (O, parallel)if np > 1 (parallelism is pro�table)T = Parallelize(O)endifperform f O; T gpro�table, other optimization strategies that consider all loop permutations, loopskewing [WL90], or loop distribution (see Chapter 7) should be explored.6.9 Experimental resultsThe overall parallelization strategy was also tested by applying it by hand to two ker-nels. The results of these experiments and those for data locality are very promising.6.9.1 Matrix multiplyThe speed-ups of a parallel tiled matrix multiply on 7 and 19 processors of a SequentSymmetry S81 for arrays of size 150� 150 and 300 � 300 are presented in Table 6.5.We ran a sequential version with the loops in memory order JKI, a sequential tiledversion, and the identically tiled parallel version. The parallel version is tiled by 4and is the same version presented in Section 6.1. Besides tiling, no other low-levelmemory optimizations were used. The speed-ups were basically linear for both matrixsizes when comparing the two tiled versions.Table 6.5: Speed-ups for Parallel Matrix Multiplyspeed-up of parallel JKI tiled19 processors 7 processorsover over over oversequential JKI sequential JKI tiled sequential JKI sequential JKI tiled150x150 20.5 18.8 7.5 6.8300x300 20.1 18.7 7.5 7.0

1056.9.2 DmxpyThe subroutine dmxpy from Linpack was optimized using these algorithms as illus-trated in Section 6.7.2. In scienti�c programs, there are many instances of this typeof doubly-nested loop which iterates over vectors and/or matrices, where only oneloop is parallel and it is best ordered at the innermost position. These loops maybe an artifact of a vectorizable programming style. They appear frequently in thePerfect benchmarks [CKPK90], the Level 2 BLAS [DCHH88], and the Livermoreloops [McM86].Table 6.6 illustrates the performance bene�ts with the organization of dmxpygenerated by our algorithm on matrices of size 200 � 200 on 19 processors. Forcomparison, the performance when the I strip is not returned to its best memoryposition and a parallel inner I loop were also measured.Table 6.6: Dmxpy on 19 processorsloop organizationI loop parallelI J II I II J J Ispeed-up over sequential JI 16.4 13.8 2.96.10 Related workOur work bears the most similarity to research by Wolf and Lam [WL91]. Theydevelop an algorithm that estimates all temporal and spatial reuse for a given looppermutation, including reuse on outer loops. This reuse is represented as a localizedvector space. Vector spaces representing reuse for individual and multiple referencesare combined to discover all loops L carrying some reuse. They then exhaustivelyevaluate all legal loop permutations where some subset of L is in the innermostposition, and select the one with the best estimated locality.Wolf and Lam's algorithm for selecting a loop permutation is potentially moreprecise and powerful than the one presented here. It directly calculates reuse acrossouter loops and can suggest loop skewing and reversal to achieve reuse; however, howoften these transformations are needed is yet to be determined. Skewing in particularis undesirable because it reduces spatial reuse.Gannon et al. also formulate the dependence testing problem to give reuse andvolumetric information about array references [GJG88]. This information is then

106used to tile and interchange the loop nests for cache, after which parallelism is in-serted at the outermost possible position. They do not consider how the parallelisma�ects the volumetric information nor if interchange would improve the granularityof parallelism.Porter�eld presents a formula that approximates the number of cache lines ac-cessed for a loop nest, but it is restricted to a cache line size of one and loops withuniform dependences [Por89]. Ferrante et al. present a more general formula thatalso approximates the number of cache lines accessed and is applicable across a widerrange of loops [FST91]. However, they �rst compute an estimate for every array ref-erence and then combine them, trying not to do dependence testing. Like Wolf andLam, they exhaustively search for a loop permutation with the lowest estimated cost.Many algorithms have been proposed in the literature for introducing parallelisminto programs. Callahan et al. use the metric of minimizing barrier synchroniza-tion points via loop distribution, fusion and interchange for introducing parallelism[ACK87, Cal87]. Wolf and Lam [WL90] introduce all possible parallelism via the uni-modular transformations: loop interchange, skewing, and reversal. Neither of thesetechniques try to map the parallelism to a machine, or try take into account datalocality, nor is any loop bound information considered. Banerjee also considers intro-ducing parallelism via unimodular transformations, but only for doubly nested loops[Ban90b]. Banerjee does however consider loop bound information.Because we accept some imprecision, our algorithms are simpler and may be ap-plied to computations that have not been fully characterized in Wolf and Lam's uni-modular framework. For instance, we can support imperfectly nested loops, multipleloop nests, and imprecise data dependences. We believe that this approximation is avery reasonable one, especially in view of the fact that we intend to use a scalar cachetiling method as a �nal step in the code generation process [CCK90]. In addition,the algorithms presented here are O(n2) time in the worst case, where n is the depthof the loop nest, and are a considerable improvement over work which compares alllegal permutations and then picks the best, taking exponential time. Our approachhas appeared elsewhere [KM92].6.11 DiscussionWe have addressed the problem of choosing the best loop ordering in a nest of loops forexploiting data locality and for generating parallel code for shared-memory multipro-

107cessors. As our experimental results bear out, the key issue in loop order selection isachieving e�ective use of the memory hierarchy, especially cache lines. Our approachimproves data locality, provides the highest granularity of parallelism, and properlypositions loops for low-level memory optimizing transformations. When possible, thebene�ts of parallelism and data locality are therefore both exploited.The next chapter incorporates this algorithm into a more general, interproceduralapproach for generating parallel code.

108Chapter 7An Automatic Parallel Code GeneratorIn this chapter, we present a parallel code generation algorithm for shared-memorymultiprocessors. We use the results of Chapters 4 and 5 to design an interproceduralalgorithm for complete application programs. The key parallelization componentis the algorithm for improving data locality and introducing parallelism developedChapter 6. This chapter presents a new technique that performs loop fusion toenhance granularity. When necessary, partial parallelism is exploited using loop dis-tribution. A general, uni�ed treatment of fusion and distribution for loop nests isdescribed and shown optimal under certain constraints. The result is a cohesive loop-based, interprocedural parallelization algorithm which builds on extends the work inprevious chapters.7.1 IntroductionThe goal of the optimization algorithm presented in this chapter is to introduceparallelism in a way that minimizes execution time over the entire program. Themajor components used by the parallelizer to discover and exploit parallelism anddata locality are as follows.1. Loop-based intraprocedural transformations� loop permutation� strip mining� loop fusion� loop distribution2. Interprocedural transformations� loop embedding� loop extraction� procedure inlining� procedure cloning3. Performance estimation

109The purpose of this work is to improve execution time by exploiting and discover-ing parallelism and improving data locality. Exploiting parallelism takes three forms:(1) assuring su�cient granularity to make parallelism pro�table, (2) maximizing gran-ularity, making each parallel task as large as possible, and (3) matching the numberof parallel iterations to the machine. Assuring su�cient granularity and matchingit to the machine is dependent on the architecture. Most previous research focuseson discovering parallelism and/or maximizing its granularity without regard to datalocality [Cal87, WL90, ABC+87].Our approach addresses all of these concerns. The key component is the combi-nation of loop interchange and strip mining developed in Chapter 6 which considersall these factors. Su�cient granularity is assured using performance estimation (seeSection 6.7.1). In this chapter, we present a loop fusion algorithm to further in-crease granularity. In addition, we use loop distribution to discover parallelism whennecessary. A uni�ed treatment of fusion and distribution shows the problems to beidentical. This algorithm is shown to be optimal for a restricted problem scope.This chapter uses the extensions developed in Chapter 5 to design an algorithmthat considers loop-based transformations even in the presence of procedure calls.The loop-based transformations determine which, if any, interprocedural transfor-mations are necessary. The interprocedural transformations are called enablers andare applied using goal-directed interprocedural optimization [BCHT90]. The inter-procedural transformations are applied only when they are expected to improve ex-ecution time; i.e. the interprocedural transformations are required to perform aloop-based parallelization of a loop nest that spans procedures.7.2 Parallel code generation7.2.1 Driving code generationThe driver for optimizing a program appears in Algorithm 7.1. The algorithm Driveroptimizes routines and loops in reverse postorder using the augmented call graphGac, guaranteeing that a procedure or loop is optimized only when the context of itscalling procedures and outer loops is known. This formulation is general enough forperforming many whole program optimizations on programs without recursion, forwhich Gac is a DAG. It is used here to introduce a single level of high-granularity par-allelism and exploit the memory hierarchy. We illustrate this algorithm by optimizingthe following example.

110Example 7.1:PROCEDURE C edges 2 Gac:CALL S (C, S) { call edgeDO I = 1,N (C, I) { loop edgeCALL S (I, S) { call edgeENDDO (S, J) { loop edgePROCEDURE SDO J = 1, N: : :ENDDODriver begins with C and marks it visited. It then tests if all of procedure C'spredecessors have been optimized. Let's assume none of them have. Driver then triesto recursively optimize each of C's successors in the \forall." The �rst successor isthe call to S. However, all of S's predecessors have not been visited so it proceedsto the next successor, the I loop, whose predecessors have all been visited. Driverthen optimizes the I loop in step (3) of the algorithm using Optimize to specify aloop-based parallelization. Let's assume Optimize simply parallelizes the I loop. Theprocedure Transform applies this parallelization and marks all the descendants of theI loop (S and J) as optimized. Note, the descendants are not marked visited.Driver continues to seek optimization candidates for the descendants of the I loopto ensure that all paths to a procedure are optimized if possible. Driver is called againon procedure S, this time all of S's predecessors have been visited. It checks to see ifall the predecessors of S have been optimized as well as visited. Of S's predecessors,C and the I loop, only the I loop has been optimized. Therefore, there is a callingsequence to S that does not contain parallelism and S should be and is consideredfor optimization. The only successor of S is the J loop and it is optimized next usingOptimize. If a parallelization is speci�ed, it is performed. There are no more edgesor unvisited nodes, consequently the algorithm terminates.DiscussionThis section details more formally the Driver algorithm. Driver is initially called onthe program's root node, and each node in the Gac is initialized to be unvisited andunoptimized. The Gac is traversed in reverse postorder, such that a node n is onlyvisited once all its predecessors are visited. Note, that only procedure nodes may have

111Algorithm 7.1: Driver for parallel code generationDriver (n)Input: n is a node in the GacAlgorithm:if any predecessor of n is not visited returnmark n visitedif n is a procedure and all predecessors of n are marked optimized returnforall m where 9 edge (n;m) in topological order(1) if m is a procedureDriver (m)(2) if (m is visited) and (9 (m; s) 2 Gac such that s is optimized)T = Fusion(s1; : : : ; sk)Transform(n; fs1; : : : ; skg; T)endif(3) elseif m is an outer loop of procedure nlet L include the entire looping structure rooted at mT = Optimize(L)Transform(n;m; T)endifDriver (m)endifendforallmore than one immediate predecessor. If n is a procedure and all its predecessorsare marked as optimized, then parallelism has been introduced in each calling contextand the procedure does not need to be optimized for additional parallelism.Loop nests are optimized as a whole when the outermost loop of the nest isencountered in step (3) of the algorithm. If m is the outermost loop of a nestingstructure L at step (3), L is constructed and optimization is performed on it. Ifoptimization is successful, the transformation is applied and all the a�ected nodes aremarked as optimized by the subroutine Transform which appears in Algorithm 7.2.However, the algorithm continues to recurse over all successors of a node regardlessof node type until all nodes have been visited, or all the callers of a procedure havebeen optimized, or the loop or procedure itself has been optimized.At step (2), if m is a procedure and m is visited, optimization has just beenperformed on all the loops and calls it contains. If any of these successors of m are

112optimized, they are now considered for fusion. This feature allows fusion of loops thatare not enclosed by an outer loop. Fusion of loops that are enclosed by an outer loopand all other loop-based transformations are determined by the Optimize algorithm.For example, consider a procedure P containing two adjacent loops, l1 and l2. Theprocedure P is visited followed by l1 and l2. Both are determined to be parallel andare marked as optimized. Then Fusion (l1; l2) is considered to maximize granularityand to reduce synchronization and loop overhead.In order to simplify the discussion, this version of Driver does not perform anyinterprocedural transformations. The parallelizer is extended in Section 7.6 to per-form these interprocedural transformations. This version of the parallelizer does andmust perform procedure cloning for correctness.7.2.2 Procedure cloningProcedure cloning is required when optimizations along distinct call paths want touse di�erent versions of the same procedure [CKT86a, CHK92]. In our algorithm,this situation only occurs when a procedure is called more than once.Consider again Example 7.1. Procedure S may be called once directly and oncefrom inside the I loop. The second call to S is parallelized by making the I loopparallel and the �rst call by making the J loop parallel. In this case, two versionsof S are needed. The original sequential version of S is required for the parallel Iloop. Another version, called the clone, is needed in which to specify the J loop beperformed in parallel.To determine if cloning is necessary, the parallelizer keeps track of whether or notparallelism has been introduced in callers using the Walk&MarkGac algorithm. Thesubroutine Transform in Algorithm 7.2 determines if a clone is necessary.Remember, only nodes whose predecessors have all been visited, where at leastone is unoptimized, are candidates for optimization in Parallelization. If Optimizereturns a parallelizing transformation for a candidate, Transform is called to apply itto the appropriate procedure n. If none of n's predecessors are optimized, a clone isunnecessary and the transformation is performed directly on the procedure n. If anyof n's predecessors are marked optimized, then a clone is need on which to apply thecurrent optimizing transformation. If a clone already exists, then other loop nestsin the procedure have been optimized and the new optimization is also applied tothis existing clone. Otherwise a clone is created, and the optimization is applied to

113Algorithm 7.2: Applying transformations and cloningTransform (n;L; T)Input: n is a procedure node in the GacL is a set of loops in nT a transformation to perform on LAlgorithm:if T = ; returnif 9 a predecessor of n marked optimizedif 6 9 nclone create a clone of procedure n, ncloneApply (nclone; T)elseApply (n; T)endifforall l 2 L Walk&MarkGac(l)Walk&MarkGac (n)Input: n is a node in the GacAlgorithm:if n marked optimized returnmark n optimizedforall m where 9 edge (n;m) in topological orderWalk&MarkGac(m)endforallthe cloned procedure. Only two versions of any procedure are required using thissimpli�ed algorithm.7.2.3 Loop-based optimizationThe procedure Optimize in Algorithm 7.3 determines an optimizing transformationto parallelize an arbitrary loop nest L = fl1; : : : ; lng. L describes a loop nestingstructure rooted at l1 that may contain constructs such as imperfectly nested loops,procedure calls, and control
ow. The loop-level transformations Optimize considersare loop permutation, strip mining, loop fusion, and loop distribution.Optimize �rst calls Order&Parallelize which performs loop permutation and stripmining using the algorithms developed in Chapter 6 for improving data locality andexploiting parallelism. Order&Parallelize begins by improving data locality usingMemoryOrder. Given su�cient granularity, it then inserts parallelism into the resul-tant nest using the algorithm Parallelize. MemoryOrder and Parallelize are de�ned

114Algorithm 7.3: Optimizing a loop nestOptimize (L)Input: L = fl1; : : : ; lng, a loop nestOutput: T a parallelizing transformationAlgorithm:(1) T = Order&Parallelize (L)if (T 6= ;) return T(2) BD = BreakDependences (L)if BD 6= ;T = Order&Parallelize (BD(L))if (T 6= ;) return fT ;BDgendif(3) T = Distribution(BD(L))return fT ;BDgOrder&Parallelize (L)Input: L = fl1; : : : ; lng, a loop nestOutput: T a parallelizing transformationAlgorithm:O = MemoryOrder(L)np = Estimate (O(L), parallel)if np = 1 (parallelism is not pro�table) return OT = Parallelize(O(L))if T 6= ; (parallelism found)F = Fusion (T (O(L)))return f O; T ;F gendifreturn ;in Chapter 6. If Order&Parallelize has been successful at introducing parallelismat some level, fusion of loops in the resultant nest is considered. This algorithm isdiscussed in detail below.If step (1) is unsuccessful, step (2) attempts to satisfy as many dependences aspossible with BreakDependences. The literature includes a collection of transforma-tions that are used to satisfy speci�c dependences that inhibit parallelism. They in-clude loop peeling, scalar expansion [KKLW80a], array renaming [AK87, KKLW80a],alignment and replication [Cal87], and loop splitting [AK87].These transformations may introduce new storage to eliminate storage-relatedanti or output dependences, or convert loop-carried dependences to loop-independent

115dependences, often enabling the safe application of other transformations. If all thedependences carried on a loop are eliminated, the loop may then be run in parallel. IfBreakDependences has some success, Order&Parallelize is called again on the result.If neither step (2) or (3) is successful, loop distribution to introduce partial parallelismis considered, as discussed in the next section.The Optimize algorithm is able to introduce parallelism into loops which containprocedure calls and unstructured control
ow. This important ability stems from theanalysis and transformations described in Chapters 4 and 5.7.3 Partitioning for loop distribution and loop fusionIn this section, we present a new algorithm which maximizes parallelism and mini-mizes the number of loops. It uni�es the treatment of loop distribution and fusion.This solution is shown optimal for a single loop under certain constraints.Loop distribution is safe if the partition of statements into new loops preservesall of the original dependences (see Section 4.2). Dependences are preserved if anystatements involved in a dependence recurrence are placed in the same loop. Thedependences between the partitions then form an directed acyclic graph that canalways be ordered using topological sort [AK87, KKP+81].By �rst choosing a safe partition of the loops with the �nest possible granular-ity and then fusing partitions back together larger partitions may be formed. Thistransforms the loop distribution to one of loop fusion, a problem thought to be veryhard. In fact, Goldberg and Paige prove a nearby fusion problem NP-Hard, but theirresult is not applicable here [GP84]. The algorithm we present is linear.In the loop fusion problem for parallelism, the partitions begin as separate loopsthat are either parallel or sequential and may or may not be legally fused together.In loop distribution, it is always legal to fuse the loops back together and run theoriginal loop sequentially. We would like to utilize all the parallelism and have thefewest loops. Callahan refers to these criteria as maximal parallelism with minimumbarrier synchronization [Cal87].The loop distribution and loop fusion problem is a graph partitioning problem ona directed acyclic graph (DAG). Each node in the graph represents a sequential orparallel loop containing a set of statements. There are data dependence edges, someof which are fusion preventing. Fusion preventing edges exist between nodes thatcannot be fused together without changing the loop's semantics. Fusion preventing

116edges also exist between parallel nodes that, when fused, force the resultant loop tobe sequential. We seek to minimize the number of partitions (loops), subject to theconstraint that a particular partition contains only one type of node; i.e., undirectedfusion preventing edges are implicit between sequential and parallel nodes. A moreformal description follows.Partitioning problem:Goal: group parallel loops together and sequential loops together suchthat parallelism is maximized while minimizing the number of partitions.Given a DAG with:nodes parallel & sequential loopsedges data dependence edges some of which arefusion preventing edgesRules:1. cannot fuse two nodes with a fusion preventing edge between them2. cannot change relative ordering of two nodes connected by an edge3. cannot fuse sequential and parallel nodesCallahan presents a greedy algorithm for a closely related problem that omits rule 3[Cal87, ACK87]. His work also tries to partition a graph into minimal sets, but hismodel of parallelism includes loop-level and fork-join task parallelism. For example,consider the example graph in Figure 7.1.Callahan's greedy algorithm partitions this graph into fP1,S1g and fP2g, andplaces a barrier synchronization between the partitions. S1 and P1 run in parallel witheach other, and the iterations of P1 may be performed in parallel. P2 is performedin parallel once they both complete. Callahan's formulation of the loop distributionproblem ignores the node type, enabling the greedy algorithm to provably minimizethe number of loops and maximize parallelism for a single level-level [Cal87, ACK87].Our model of parallelism di�ers in that it only considers loop-level parallelism. IfFigure 7.1: Counter example for the greedy algorithm... ...S1 P1P2

117parallel the cost of loop overhead is higher than the cost of barrier synchronization,our model will be an improvement.Consider using the greedy algorithm for the loop distribution and loop fusionproblem restricted to loop-level parallelism. In the example in Figure 7.1, the loopsS1 and P1 are of di�erent node types and cannot be placed in the same partition,therefore one of P1 or S1 must be selected. If S1 is selected �rst, the greedy partitionis fS1g, fP1,P2g. If P1 is selected �rst, the greedy partition is fP1g, fS1g, fP2g. Thegreedy algorithm is foiled because it cannot determine which node to select �rst.Note, if the graph consists of just sequential nodes or just parallel nodes, then thisis equivalent to Callahan's problem formulation. Therefore, the greedy algorithm isoptimal in the number of loop nests created when the nodes are only of one type.Our algorithm is based on this observation.7.3.1 Simple partition algorithmOur solution divides the problem into two parts, a sequential graph and a parallelgraph. The greedy algorithm then minimizes the number of partitions for each ofthe graphs and maximizes parallelism in the parallel graph. Because parallel nodesand sequential nodes cannot be placed in the same partition without violating themaximumparallelization constraint, merging the solutions will result in a partitioningthat maximizes parallelism and minimizes the number of loops. The remainder of thissection describes how to correctly and e�ciently construct the separate graphs andmerge the reduced, partitioned solutions back together.Figure 7.2: Partition graph Go...S1 S2 P3P4 P5S6P7 S8

118Correctness of problem divisionTo separate the problem into two parts, the essential relationships in the originalgraph Go must be preserved in the two component graphs, the sequential graph Gsand the parallel graph Gp, without introducing unnecessary constraints. First, allthe ordering edges between two nodes of the same type must be preserved in thecomponent graphs. In addition, Go may represent relationships that prevent nodes ofthe same type from being in the same partition, but that do not have an edge betweenthem. Consider Go in Figure 7.2. Although an edge does not directly connect S1 andS6, they may not be fused together without including P4. This fusion would violatethe maximal parallelism constraint. These transitive, fusion preventing relationshipsare required between two nodes of the same type, that are connected by a path ofnodes of a di�erent type. No other edges are required. Gs also contains edges fromGo that connect sequential nodes (likewise for Gp).The simplest way to preserve all the fusion preventing relationships in Go in thecomponent graphs is to compute a modi�ed transitive closure on Go before pullingthem apart. A fusion preventing edge are added between two sequential nodes thatcannot be placed in the same partition because there exists a path between themthat contains at least one parallel node. Similarly, a fusion preventing edge is addedbetween two parallel nodes connected by a path containing a sequential node. Wenow show how to divide Go and compute the necessary transitive fusion preventingedges in linear time.Computing a transitive closure on a DAG is O(N � E) time and space where Nis the number of nodes in Go and E is the number of edges [AHU74]. Of course,transitive closure introduces additional edges that are unnecessary. Applying thisalgorithm to the graph in Figure 7.2, would result in the following fusion preventingedges: (S1,S6), (S2,S6), (S1,S8), (S2,S8), (P4,P7). The two of edges, (S1,S8) and (S2,S8),are redundant because of the original ordering edge (S6,S8) and the two other fusionpreventing edges (S1,S6), (S2,S6).E�cient problem divisionUsing the following de�nition, we can determine the minimal number of fusion pre-venting edges needed between parallel nodes to preserve correctness. Similarly, theminimal number of edges between sequential nodes can be determined.

119Algorithm 7.4: Add transitive fusionpreventing edges to partition graphFindParallelTFPedges (n)Input: n 2 Go a node in the original graphOutput: Gt partition graph with transitive fusion preventing edgesAlgorithm:if any predecessor of n is not visited returnmark n visited (reverse postorder walk)if n 2SnodesPaths(n) = [(t;n)2Go Paths(t)elsePaths(n) = nforall (t; n) 2 Go s.t. t 2Snodesforall pnodei 2Paths(t)addFusionPreventingEdge (pnodei; n)endforallendforallendifforall (n;m) 2 Go FindParallelTFPedges(m)De�nition 7.1 Two parallel nodes, pnodei and pnodej , require a tran-sitive fusion preventing edge in their component graph if and only if:8 pathk = apathpnodei ! snode+ ! pnodej 2 Go1: 9 n 2 pathk s:t n 6= pnodei and n 6= pnodej and2: 8 n 2 pathk; n 2 Snodeswhere Snodes is the set of sequential nodes and Pnodes is the set ofparallel nodes in the original graph Go.Intuitively, there must exists a path between two parallel nodes, with at least onenode on the path and and no parallel nodes are on the path.Based on this de�nition, FindParallelTFPedges in Algorithm 7.4 computes thenecessary transitive fusion preventing edges that must be inserted between parallelnodes. The corresponding algorithm FindSequentialFTPedges is speci�ed similarly.FindParallelTFPedges formulates this problem like a data-
ow problem, accept thatsolutions along the edges are di�erent depending on the types of nodes an edge con-nects.FindParallelTFPedges recursively walks the nodes in reverse postorder, such thata node is never visited until all its predecessors have been visited. For a node n, it

120computes a set of parallel nodes Paths(n), such that pnode 2 Paths(n) if there existsa path from pnode to n that contains sequential nodes and does not contain parallelnodes. Paths(n) for a sequential node is the union of all n's predecessors Paths.Paths(n) for a parallel node is itself, n.If n is a sequential node, no fusion preventing edges need be added. If n is aparallel node, fusion preventing edges are added from each member of Paths(t) to n,where t is a sequential node and a predecessor of n.Performing FindParallelTFPedges and FindSequentialTFPedges results in a par-tition graph Gt that includes all the necessary transitive relationships between parallelnodes, and those between sequential nodes. This graph can now easily be separatedby placing all the parallel nodes and all the edges between parallel nodes in onegraph Gp, and all the sequential nodes and edges between them in Gs. Algorithm 7.5provides the speci�cs.If this algorithm is applied to the example in Figure 7.2 the transitive graph andthe component graphs that result appear in Figure 7.3. The fusion preventing edges itadds are (S1,S6), (S2,S6), (P4,P7). Callahan's greedy algorithm may now be applied tothe component graphs to obtain a minimal solution for each. The minimal solution forthe example places S1 and S2 in the same partition, S6 and S8 in the same partition, P3Algorithm 7.5: Place sequential andparallel nodes into separate graphsPullApart (n)Input: n 2 Gt a node in partition graph with transitive fusion preventing edgesOutput: Gp partition graph for parallel nodesGs partition graph for sequential nodesAlgorithm:mark n visitedif n 2 Snodesadd n to Gsforall (n;m) s.t. m 2 Snodes add (n;m) to Gselse n 2 Pnodesadd n to Gpforall (n;m) s.t. m 2 Pnodes add (n;m) to Gpendifforall (n;m) s.t. m unvisited PullApart (m)

121and P4 in the same partition, and P7 and P5 in the same partition. This partitioningis illustrated in Figure 7.4 for Gs and Gp.7.3.2 Merging the solutionsMerging the separate solutions is a straightforward mapping of the edges in Go tothe nodes in Gs and Gp to form a merged graph Gm. The merged graph is formedby placing all the edges and nodes in Gs and Gp into Gm and then adding all theedges in Go where one endpoint is in Gs and and the other is in Gp. Because theconstruction of Gs and Gp assures they are both DAGs and Go is a DAG, Gm will bea DAG. Therefore, it can be topologically sorted into a linear ordering. In Figure 7.4,the merged graph Gm and a linear ordering for our example is presented.7.3.3 DiscussionThe driver for partitioning appears in Algorithm 7.6. It �rst inserts the requiredfusion preventing edges. The problem is then divided into two parts and the greedyalgorithm performed on each. The resulting solutions are minimal for each part.These solutions are then merged back together to form one overall solution thatproduces the minimal number of loops achievable without sacri�cing parallelism.These algorithms all take O(N + E) time and space, making them practical for usein a compiler. This algorithmic approach may be applied to other graph partitioningFigure 7.3: Dividing GoGt Gs Gp...S1 S2 P3P4 P5S6P7 S8
...S1 S2S6S8 P4P7 P3P5

122problems as well. The separation of concerns lends itself to other problems that needto sort or partition items of di�erent types while maintaining transitive relationships.In addition, the structure of the algorithm enables di�erent algorithms to be used forpartitioning or sorting the component graphs.The following two sections brie
y describe how to use the partitioning algorithmto perform loop fusion and loop distribution.7.4 Loop fusionIn Algorithm 7.1 Driver, candidates for loop fusion are discovered at step (2). Thecandidate nests have been optimized and may be parallel or sequential loops. Inaddition, candidates for loop fusion are discovered in Algorithm 7.3Order&Parallelize.Both algorithms need to fuse nests that do not have a common outer loop and mayfuse loops that do have a common outer loop. Therefore, fusion of outer distinctloops is attempted �rst. Fusion is then considered for any candidates created by theouter fusion as well as for candidates present in the original loop structure.Fusion is always considered last because it may interfere with loop permutation.Permutation is multiplicative and is therefore usually more e�ective than fusion, whichis additive, for creating a larger granularity of parallelism. However, fusion doesincrease granularity and reduce loop overhead. Fusion also has both good and badconsequences on cache line and register reuse. The merged references may increasedata reuse due to completely intersecting references. It may also thwart reuse bycausing the data for a single iteration to over
ow cache.Figure 7.4: Fusing Gs & Gp and merging the resultGs Gp Gm...S1S2S6S8 P3P4P5P7S1S2S6S8 P3P4P5P7fS1,S2g,fS6,S8g,fP3,P4g,fP5,P7g

123Algorithm 7.6: Partition AlgorithmPartition (Go)Input: Go = (N;E)N = parallel and sequential loopsE = data dependence & fusion preventing edgesOutput: T a parallelizing transformationAlgorithm:forall n 2 Go mark n unvisitedwhile (9 n 2 Go marked unvisited) and (n has no predecessors)FindParallelTFPedges (n)endwhileforall n 2 Go mark n unvisitedwhile (9 n 2 Go marked unvisited) and (n has no predecessors)FindSequentialTFPedges (n)endwhileforall n 2 Gt mark n unvisitedwhile (9 n 2 Gt marked unvisited) and (n has no predecessors)PullApart(n)endwhileGreedy (Gp)Greedy (Gs)Merge (Gp, Gs, Go)7.5 Loop distributionIn Algorithm 7.3 Optimize, loop distribution is considered at step (3) to introduceparallelism when other techniques have failed. Loop distribution seeks parallelismby separating independent parallel and sequential statements in L. If the loop nestcontains only a single loop, the partitioning algorithm can be applied to the �nestdivision of the statements in the loop. Although the partitioning algorithm yieldsmaximal theoretical parallelism, it may not be pro�table to perform all of the resul-tant loops in parallel. In this case, all unpro�table parallel loops should be markedsequential and the partitioning algorithm should be applied again.If there are multiple nests, loop distribution begins by �nding the �nest divisionof statements at the outermost loop level. If Order&Parallelize can parallelize anyof these, then the partitioning algorithm is applied to increase their granularity. Fordivided loop nests that Order&Parallelize cannot parallelize, the outer loop is speci�ed

124as sequential and this algorithm is applied recursively to the inner nest of loops.Otherwise, the nest is performed sequentially.7.6 Integrating interprocedural transformationsWe now consider integrating the interprocedural loop embedding, loop extraction andprocedure inlining to Algorithm 7.1 Driver, the driver for parallel code generation.In Chapter 5 we developed additional testing mechanisms in the caller for optimizingnesting structures that cross procedure boundaries. Potential loop and call sequencesthat may bene�t from embedding or extraction are adjacent procedure calls, loopsadjacent to calls, and loop nests containing calls. Another candidate for embeddingand extraction is a looping structure that contains an outermost loop that enclosesthe body of the called procedure. For example, two adjacent procedure calls mayboth contain parallel enclosing loops. If these loops may be fused legally and prof-itably, fusing them is accomplished by �rst performing loop extraction on both ofthe procedures. A candidate for procedure inlining in this setting contains loops, butdoes not contain an enclosing loop.Candidates for interprocedural optimization are discovered in traversal of the aug-mented call graph at steps (2) and (3) in Algorithm 7.1. At step (2), independentloops and procedures have been optimized and they are now considered for fusion.As illustrated in Section 5.5, the fusion algorithm is capable of testing and deter-mining fusion of candidate loops and calls. Therefore, no additional mechanisms arerequired in this case. If a fusion is speci�ed here, loop extraction is the appropriateinterprocedural transformation to enable it.In step (3), a loop structure rooted at m is created. If no attempt at inter-procedural transformation is desired, or if there are no calls within the loop struc-ture, m consists of just the loops in the current procedure. Even if no interproceduraltransformations are considered, loops containing calls will still be parallelized whenpro�table. Remember that when interprocedural transformations are considered, theyare still only applied if necessary to enable a parallelism enhancing transformation.If we wish to consider only loop embedding and extraction, then the loop structurefor any calls in m that contain enclosing loops is exposed to optimization by includingthe enclosing loops in L and ignoring the call site (L is the loop structure on whichOptimize is called). The extensions for array sections described in Chapter 5 placeannotations at the call and loops for the accessed arrays, allowing them to be treated

125as normal array references. By using the annotations, the optimization routine is thuspermitted to optimize across procedure boundaries when and if necessary. Similarly,if procedure inlining is a desired option, the entire loop structure in a call can beconsidered at the caller via this method.Optimize does not specify explicitly the interprocedural transformations that arerequired to perform the optimizing transformation T that it returns. The inter-procedural transformations are instead implicit in T given the original program'slooping structure.7.6.1 Selecting the appropriate interprocedural transformationTo apply the set of transformations speci�ed by T , the loops involved may need tobe placed in the same routine. In particular, if T speci�es a transformation acrossa procedure boundary, an interprocedural transformation is required. For example,if T involves imperfect nesting structures in the caller or the called procedure, thenprocedure inlining is required to perform T .If the nesting structures involved in T are perfect in the caller5 or are perfectenclosing loops in the called procedure, one of loop embedding or loop extraction ispreferred. They are preferable because they do not have the other potential costs ofinlining. For example, if there is only one call and its loops are involved in T , thenembedding the loop into the called procedure is selected because it reduces procedurecall overhead and it does not have inlining's other e�ects. Additionally, if T speci�esa distribution which results in a single call in a nest, embedding is performed here aswell. Otherwise, if there is more than one call involved, extraction is required to placethe loops from all the involved calls in the same procedure. Fusion, permutation, etc.may then be performed in the caller.7.6.2 Extensions to procedure cloningInterprocedural transformations may induce additional cloning. Remember that givena single level of parallelism, a procedure may be performed sequentially in one callingsequence and in parallel in another. For example, if a procedure is sequential it maybe called in a parallel loop or a sequential one. It is correct in either setting. If thecaller requires some of its called procedure loops to be parallel, a sequential version5In this case, the perfect loop may contain only calls and no other statements.

126minus the extracted loops is needed. Clones are needed if a procedure is called inmore than one parallelization setting that require di�erent versions of the procedure.We reuse clones when settings are identical and create them when required. The fourpotential versions of a procedure are� a sequential version (only one is required),� a sequential version that has loops extracted from it (as many versions as dif-ferent numbers of loops that are extracted for parallelizing distinct callers arerequired),� a parallel version (only one is required), and� a parallel version that has loops embedded into it (as many versions as callerswho embed di�erent loops or di�erent numbers of loops are required).7.7 DiscussionThis chapter has presented a general interprocedural algorithm for determining andperforming loop-based parallelization. It builds on and extends the algorithms andtechniques developed in previous chapters. This algorithm has a few drawbacks; itconsiders neither multiple levels of parallelism nor important transformations suchas loop skewing, loop reversal, and alignment. However, the framework is generalenough to support the addition of these types of transformations. The algorithmdoes perform loop permutation, strip mining, loop fusion, loop parallelization, loopdistribution and interprocedural transformations. As we show in Chapter 8, it is verye�ective in practice.

127Chapter 8Experimental ResultsIn this chapter we describe an experiment to test the e�cacy of the parallel codegeneration algorithm developed in the previous 5 chapters. A collection of programshand-coded for parallel machines were obtained for this experiment. From theseparallel programs two additional versions were obtained, a nearby sequential version,and an automatically parallelized version. The automatically parallelized version wasobtained from the nearby sequential version via the parallel code generation algorithmfrom Chapter 7. Using these program versions we measure the ability of automaticcompiler techniques to uncover parallelism that is available in the program. Basedon the results of this experiment, we are guardedly optimistic. In many cases, theanalysis and algorithms presented in this thesis relieve the programmer of the burdenof explicit parallel programming for a variety of shared-memory parallel machines.8.1 IntroductionA lesson to be learned from vectorization is that programmers rewrote their pro-grams in a vectorizable style based on feedback from their vectorizing compilers[CKK89, Wol89c]. Compilers were then able to take these programs and generatemachine-dependent vector code with excellent results. We are testing this same thesisfor shared-memory parallel machines. The experiment described below considers theautomatic parallelization of sequential program versions where parallelism is knownto exist. By measuring the ability of our automatic techniques to uncover this par-allelism, we are also testing whether a machine-independent parallel programmingstyle exists. This style would allow compilers to perform machine-speci�c optimiza-tion with excellent results.We designed the following experiment to measure the e�cacy of our automaticparallel code generator. A variety of programs written for parallel machines wereassembled. Each of these programs was transformed into a nearby sequential version.For each program, a sequential nearby version was easily created by eliminating allthe compiler directives. In all the programs, this process resulted in an appropriatemachine-independent sequential program version.

128On the nearby sequential version, we then simulated by hand our parallel codegeneration algorithm using the advanced analysis and transformations provided byPFC and the ParaScope Editor Ped. We ran and compared all three versions on aSequent Symmetry S81 with 20 processors. We measured execution times for eachversion for the entire application, for the portions the user was better able to paral-lelize, and for the portions our algorithm was better able to parallelize.8.2 Methodology8.2.1 Ask and ye shall receiveWe solicited programs from scientists at Argonne National Laboratory and from usersof the Sequent and Intel iPSC/860 at Rice. The applications programs that were vol-unteered had been written to run on the following parallel machines: the SequentSymmetry S81 with 20 processors, the Alliant FX/8 with 16 processors, and the InteliPSC/860 with 32 processors. The authors are numerical scientists at Rice University,Argonne National Laboratory, ICASE (Institute for Computer Applications in Scienceand Engineering), George Mason University, Princeton University and the Universityof Tennessee. All are associated with the Center for Research on Parallel Computation.The problems inherent to any program test set also arise here. In particular,it may be that only well structured codes were volunteered. Maybe the authorsof poorly structured ones were too embarrassed to expose their codes to a criticaleye. Fortunately, this furthers our arguments for a modular machine-independentprogramming style, rather than frustrating us during the experiments. By collectingprograms rather than writing them ourselves we avoided the pitfall of writing a testsuite to match the abilities of our techniques. No screening process was performed;we used all the programs that were submitted. Table 8.1 contains the name, theabbreviation we use to refer to it, the total number of lines, and the authors of thenine programs in the test suite. They are described in more detail in Appendix A.8.2.2 Original parallel versions and nearby sequential versionsFor each of the programs that were written for the Sequent, this version becamethe original parallel version. For the programs written for other architectures, anyparallelization directives were modi�ed to re
ect the equivalent Sequent directives.The nearby sequential versions of each program was created by simply deleting all

129Table 8.1: Program Test SuiteAbbreviation Program lines authorsInterior Interior Point Method 6153 Guangye Li & Irv LustigDirect Direct Search Methods 1212 Virginia TorczonMulti Multidirectional Search Methods 2357 Virginia TorczonErlebacher ADI Integration 1341 Thomas EidsonSeismic 1-D Seismic Inversion 1712 Michael LewisBTN BTN Unconstrained Optimization 3080 Stephen NashBanded Banded Linear Systems 1834 Stephen WrightODE Two-Point Boundary Problems 3962 Stephen WrightControl Optimal Control 2348 Stephen WrightLinpackd Linpackd benchmark 772 Jack Dongarrathe parallel directives. In Erlebacher, the parallelism was not made explicit. Here, anaive parallelization of outer loops was performed to create the parallel version.8.2.3 Creating an automatically parallelized versionTo create an automatically parallelized program, the nearby sequential program was�rst imported into the ParaScope Programming Environment [CCH+88, HHK+93].As a result of importing the program, each procedure in the program was placedin a separate module. Also, a program composition was automatically created thatdescribes the entire program and the call graph was built. At this stage the ProgramComposition Editor
agged modules that were incorrect. Ped then revealed a fewminor semantic errors which were corrected. For example, in one program a procedurewith many parameters had used the same name twice. Program analysis was alsoperformed automatically.However, to overcome gaps in the current implemantation of program analysis,we used the Program Composition Editor to import dependence information fromPFC.PFC is the Rice system for automatic vectorization (see Section 3.7) [AK87].PFC's analysis is more mature and includes important features not yet implementedin Ped. It performs advanced dependence tests which include symbolics dependencetests and it computes interprocedural constants, interprocedural symbolics and inter-procedural mod and ref information for simple array sections [GKT91, HK90, HK91].PFC produces a �le of dependence information that is converted into Ped's internalrepresentations.

130InPed we used the call graph, program analysis and the transformations thatPedprovides, to meticulously apply Driver (the parallelization algorithm from Chapter 7)to each of the programs by hand. As we discussed in Section 3.3, the implementationof transformation algorithms in Ped includes the correctness tests, but does not assistin choosing when or how to apply them. The application of the transformations wascompletely driven by the Driver algorithm. To perform Driver, the augmented callgraph Gac was easily derived from the call graph. The transformations were attemptedas speci�ed by the algorithm, and applied only when Ped assured their correctness.Optimization diaries were kept for each program.8.2.4 Execution environmentFor our experiments we used a 20 processor Sequent Symmetry S81 that was pro-vided by the Center for Research on Parallel Computation at Rice University underNSF Cooperative Agreement # CDA8619893. We selected the Sequent for severalreasons. The Sequent has a simple parallel architecture which does not include vectorhardware, allowing our experiments to focus solely upon medium grain parallelism.Each processor has its own 64Kbyte two-way set-associative cache and the cache linesize is 4 words. In addition the Sequent has a very
exible compiler that allowsthe program to completely specify parallelism and does not introduce all availableparallelism [Ost89]. These features gave our algorithms complete control over theparallelization process.To introduce parallelism into the programs, we used the parallel loop compilerdirectives suggested by the Sequent's user manual [Ost89]. To compile and run allthe program versions, we used the version 2.1 of Sequent's Fortran ATS compilerfor multiprocessing with optimization at its highest level (O3). An additional optioninstructed the compiler to use the Weitek 1167
oating-point accelerator. In a fewprograms, compiler bugs prevented the highest level of optimization and use of theWeitek chip at the same time. In these programs, the Weitek 1167
oating-pointaccelerator was used and optimization was suppressed.We measured execution times for each program version for the entire application,for the portions the user was better able to parallelize, and for the portions our algo-rithm was better able to parallelize. In programs where the original parallel versionand the automatically parallelized versions do not di�er, there were no di�ering por-tions. For example, if a loop is optimized the same way in both parallel versions,

131the individual execution time for that loop is not distinguished. However, if the au-tomatic version parallelized a loop and the original did not, the execution time forthat loop is measured in all versions. Execution times for the di�ering optimizedportions were measured using the microsecond clock, getusclk. The elapsed times forthe entire applications were measured in seconds using secnds.8.3 ResultsIn Table 8.2, we present the speed-up results for the di�erent parallel programs overtheir sequential counterparts. The results are divided up into three categories withtwo versions each. The two versions are:1. hand | the original user hand-coded parallel version2. auto | the automatically parallelized versionthe three categories are:1. Entire Application | measures the speed-up over the entire application. It alsoindicates the percent change between the hand-coded and automatic versions.2. Degradations|measures the speed-up in regions where the hand-coded versionexploited more parallelism than the automatic version.3. Improvements | measures the speed-up in regions where the automaticallyparallelized version exploited more parallelism than the original version.In Table 8.2, a blank entry means that no program or program subpart fell in thatcategory. For example, Linpackd did not have an original parallel program version,therefore all the hand-coded slots are left blank. In some cases, di�erences arosebetween versions in inner loops. When this situation occurred, the performance ofthe outer enclosing loop was measured in order to disrupt the execution as littleas possible. The speed-ups of these optimized versions are actually under reported.All these programs were complete applications, which read or computed initial data,computed, and printed results. Therefore, linear speed-ups on the entire applicationwere not expected and did not occur.As can be seen in the percent change column for the entire application category,except for one program, all the automatically generated programs performed the sameas the hand-coded parallel version or improved on it. In three programs, Interior,BTN and Multi, the users found more parallelism than our automatic techniques. InInterior these degradations did not have much e�ect on the overall application. If we

132Table 8.2: Speed-ups over sequential versionsEntire Application Degradations ImprovementsName hand auto � hand auto hand autoSeismic 9.1 12.3 35% 3.0 7.9Erlebacher 13.2 14.2 7% 13.8 15.0BTN 3.2 4.1 28% -6.1 1.0 2.0 3.9Interior 6.9 6.9 0% 6.9 5.2 6.9 10.4Direct 2.4 2.4 0%ODE 3.4 3.4 0%Controly 3.8 3.8 0%Bandedy ? 1.0 ? ? 1.0 ? ?Multi 5.3 1.0 -530% 15.1 1.0Linpackd 9.2 NA 16.519 processor Sequent? : result not obtainabley : 8 processorslook at the table containing the execution times, Table 8.3, it is apparent that boththe degradations and improvements only e�ected a small part of the overall executiontime.In BTN and Multi the user found parallelism by using critical sections in loopswhich we were unable to analyze properly. In BTN, this parallelism was actually over-whelmed by the overhead of the critical section, resulting in improved performancewhen executed sequentially. In Multi, the parallelism was su�cient to amelioratethe overhead of the critical section, resulting in improved performance for the hand-coded version. In the Banded program, the automatic techniques were unsuccessfulin �nding any parallelism. The reasons for this failure are discussed in Appendix A.Other than these programs, our algorithms either improved performance over thehand coded version or performed equally as well as the hand coded version.When we consider the improvements category, when our algorithms chose a dif-ferent optimization strategy from the user, they were always an improvement. Thisimprovement was a least a factor of 1.9 and at best a factor of 4.9.

133Table 8.3: Execution Times in secondsApplication Degradations Improvementsseq hand auto seq hand auto seq hand autoSeismic 155.97 17.05 12.59 21.14 7.14 2.69Erlebacher 88.22 6.67 6.20 87.83 6.36 5.86BTN 44.01 13.93 10.73 0.14 0.85 0.14 13.97 7.045 3.57Interior 1044.16 151.16 151.53 24.12 3.47 4.64 19.50 2.00 1.87Direct 151.28 63.65 63.65ODE 41.96 12.22 12.22Control 17.44 4.61 4.61Banded ? ? ?Multi 87.60 16.32 87.60Linpackd 547.59 59.43 517.87 31.43? : result not obtainable8.4 Parallel code generation statisticsTransformationsBesides loop parallelization, the most e�ective and most often applied code trans-formation was loop permutation to improve data locality. Outer loop parallelizationwas also enabled frequently by the memory ordering. In some cases, the loops neededto be strip mined such that memory reuse and parallelization were compatible. Forexample, loop permutation and strip mining were needed in Linpackd and Erlebacher.In this experiment, all of the transformation portions of the automatic parallelizationalgorithm were exercised except for loop distribution and loop embedding. The per-formance estimator also was used in several instances to inhibit parallelization. Anexample of these decisions was found in the program ODE. Of particular interest inthe program Seismic were opportunities to perform interprocedural loop extractionand loop fusion which resulted in excellent improvements.AnalysisThe analysis provided byPFC was accurate and for the most part bug free. Someanalysis beyond the current implementation was needed to parallelize these programs.Regular section analysis proved to be a very important feature of the current system,but a few improvements are needed. Flow-sensitive summary information about array

134accesses is need to determine array kills. There were at least two programs thatwould have bene�ted from this analysis. In one of these an array could have beenmade private. Currently,PFC performs symbolic analysis when the symbolic termis a constant. The analysis also needs to perform a more general and sophisticatedsymbolic test when the symbolic term is unknown and loop invariant. This featurewould allow it to better deal with linearized arrays. However, a better solutionto this problem, is to reward nicely structured multidimensional array referenceswith excellent performance. Programmers will then have an incentive to programmultidimensionally.AssertionsFive of the programs in this test suite used index arrays that were permutations ofthe index set [McK90]. Several were monotonic non-decreasing with a well de�nedwith a pattern. In three programs, automatic parallelization would not have beenpossible with out using an assertion and the testing techniques developed in ourearlier research [McK90]. The other two used them in a way that did not interferewith parallelization.8.5 DiscussionOur results are very promising. They are a clear indication that a clean, modularparallel programming style in Fortran 77 is suitable for portable parallel programmingof shared-memory machines given su�cient compiler technology.

135Chapter 9ConclusionsIn this research, we undertook to prove an ambitious thesis:Automatic compiler techniques can produce parallel programs with accept-able or excellent performance on shared-memory multiprocessors.In this chapter, we summarize what was achieved in pursuit of supporting the thesis.Both the successes and limitations are presented. In addition, the implications of thiswork for programmers, other architectures, and future work are described.Due to the limited success of other researchers attacking this problem [EB91,SH91, Sar90], we were not con�dent when we began that acceptable performancewould result from automatic techniques. Therefore, we concentrated much e�ort ondesigning and implementing Ped. During this process, we developed fast incremen-tal update algorithms for many transformations. These algorithms are useful in bothinteractive and batch systems because of their speed and precision. Implementingand designing Ped also provided insight into the analysis and transformations and atestbed for experimenting with di�erent automatic techniques. Indeed, Ped is prov-ing to be a valuable platform for compiling for other parallel architectures as well[HKK+91, DKMC92, HK92], illustrating the usefulness of this type of tool for devel-oping compilers for new types of architectures. At the same time however, we pursuedmore advanced and general compiler techniques for shared-memory multiprocessors.We �rst focused on generalizing existing compiler methods to handle conditionalcontrol
ow in loops and loop nests that span procedure calls. We developed tech-niques for loop transformations such as loop fusion when loops contain arbitrarycontrol
ow. In particular, the algorithm for performing a given loop distribution inthe presence of arbitrary control
ow is proven optimal.We also introduce a new approach which enables optimization across procedurecall boundaries without paying the penalties of procedure inlining. Two new trans-formations, loop embedding and loop extraction, move loops across call boundariesmaking them available to loop-level optimizations. These transformations are ap-plied judiciously using a goal-directed optimization strategy; the transformations are

136only applied when they enable performance enhancing optimizations. These inter-procedural transformations and the transformations for loops containing conditionalcontrol
ow provide a general platform for automatic parallelization algorithms forentire applications.The most signi�cant contribution of this thesis and the core of automatic paral-lelization is the algorithm that combines introducing parallelism and improving datalocality. The algorithm for improving data locality is based on a simple cost modelthat accurately predicts cache line reuse from multiple accesses to the same memorylocation and from consecutive memory access. This algorithm is shown e�ective foruniprocessors as well. Given su�cient granularity, parallelism is then introduced.The algorithm which combines parallelism and data locality uses the cost model tointroduce parallelism that complements data locality. This algorithm forms the coreof the parallelizing compiler and is shown conclusively to be very e�ective in practice,illustrating the necessity for considering data locality during parallelization.The automatic parallelizing compiler further enhances the granularity of paral-lelism using loop fusion. Also when necessary, the compiler achieves partial paral-lelism using loop distribution. The loop distribution and loop fusion problems areshown to be duals. A general algorithm for both determines maximal partial paral-lelism with the minimum number of loops for a collection of candidate sequential andparallel loops. This formulation is shown to maximize parallelism.Assuming a few assertions that describe index arrays and the range of scalarvalues, the complete parallel code generation algorithm is then shown e�ective inpractice via experimental results. This result illustrates very promising support ofthe thesis for shared-memory machines with a local cache and a common bus.In collecting the test suite, we solicited programs from researchers and then usedall the programs we received in our experiment. These programs were carefully hand-coded for good parallel performance and many are currently the best known parallelalgorithms. The fact that we were able to improve carefully hand-coded programsdesigned to exploit parallelism indicates that the details of parallel execution arebetter left to the compiler.Many of the parallel loops in the test suite contained procedure calls and control
ow. The modular program style that programmers are using to manage complexityproves the need for the generalized parallelization techniques developed in the the-sis. In addition, the improvements gained over the hand-coded programs are mostlydue to the component algorithm for optimizing data locality in concert with paral-

137lelism. Although, loop fusion did prove useful in several programs. We believe ourexperimental results provide strong evidence for the e�ectiveness of this approach.With this method, the programmer is permitted to pay more attention to the cor-rectness of a calculation and less to the explicit loop structure required to achievehigh performance.In the test-suite, the vast majority of loops that programmers speci�ed as parallelwere able to be detected as parallel by analysis. Most that were not contained un-ordered critical sections. Programs that use synchronization in order to perform loopsin parallel, such as \doacross" style parallelism and critical regions are not handled byour approach [Cyt86, Sub90, HKT92]. However, these loops are an important sourceof parallelism that should be addressed.We have not considered the more challenging issues which arise on shared-memorymachines with non-uniform access time such as the TC2000 Butter
y. Nor have weconsidered distributed memory architectures such as the Intel Hypercube. However,other research has shown that many of the same solutions prove e�ective on bothshared-memory and distributed-memory machines [LS90]. For example, the datalocality algorithm will be used in a compiler to improve distributed memory perfor-mance [HKT92]. Compiling for these architectures is more di�cult, but we believefuture work will show our techniques to be applicable and that they will serve as astepping stone in compilation for these machines.
This is not the end. It is not even the beginning of the end. But it is, perhaps, theend of the beginning. Winston Churchill, 10 Nov 1942, after the Battle of Egypt.

138Appendix ADescription of Test Suite ProgramsAlthough most of the programs we used are from algorithms that are being used inresearch and have been published in the literature, they do not come from a single testsuite. Therefore, we brie
y describe each below. Except for Linpackd all the programswere written to run on a parallel machine. We were unable to obtain a parallel versionof the Linpackd benchmark, but included it anyway because of its importance inthe numerical community and its well known algorithms. In the Implementationdetails section for each program, we brie
y describe the creation of the di�erentprogram versions. We also indicate any assumptions or changes that were made tothe programs to improve parallelization. As expected, the current analysis was lackingin a few cases. Whenever analysis was required beyond the current implementation,it is noted. Otherwise, all the parallelism detection and transformations were basedon the current analysis. The programs are ordered alphabetically.A.1 Banded Linear SystemsThis program is a partitioned Gaussian elimination algorithm with partial pivoting[Wri91a]. The system is assumed to be nonsingular. Hence, the submatrices in thechosen partitioning may be rank-de�cient and this makes the algorithmmore complexthan those which have been proposed for diagonally dominant and symmetric positive-de�nite systems. It is suitable for multiprocessors with small to moderate numbersof processors. It was written by Stephen Wright at Argonne National Laboratory.Implementation detailsThe hand-coded parallel version was written for an Alliant FX/8 using Alliant com-piler directives. This version was used for the sequential version. The parallelismconsisted of three parallel loops containing a single procedure call each. Using theSequent directives on those loops does not work. In attempting the automatic par-allelization, analysis was complicated by index variables used to perform array lin-earization based on the program input. With index array assertions and advancedsymbolic propagation to di�erentiate linearized subscripts, dependence analysis will

139be able to determine independence. However, the program also used o�sets into arow at a call site and then subscripted it with negative indices. This practice is notlegal Fortran and will thwart even advanced dependence analysis. It is most likely bethe bug responsible for the failure of hand-coded and automatic versions.A.2 BTN Unconstrained OptimizationThis program solves unconstrained nonlinear optimization problems based on a blocktruncated-Newton method [NS91, NS92]. It was written by Stephen Nash and ArielaSofer at George Mason University. Truncated-Newton methods obtain the searchdirection by approximately solving the Newton equations via some iterative method.The method used here is a block version of the Lanczos method, which is numericallystable for non-convex problems. This program also uses a parallel derivative checker.Implementation detailsThis program was written for execution on the Sequent and therefore required nomodi�cations for parallel execution. The sequential version was easily created byeliminating directives. There were two interesting parallel loops that used a criticalsection to update a shared variable. Using our analysis and the automatic parallelcode generator we were unable to parallelize these loops for this and other reasons.However, as can be seen in the results section, the critical section formed a bottleneckand actually degraded performance beyond that of the sequential performance.A.3 Direct Search MethodThis program is a derivative-free parallel algorithm for the nonlinear unconstrainedoptimization problem [DT91]. It was written by Virginia Torczon at Rice University.It searches based on the previous function values, where the function is continuous on acompact level set. A special feature of the algorithm embodied in this parallel programis that it is easily modi�ed to to take advantage of any number of processors and toadapt to any ratio of communication cost to function evaluation cost. The parallelismin this version scales with the problem size, but not the number of processors.

140Implementation detailsThis program was written for execution on the Sequent and therefore required nomodi�cations for parallel execution. The sequential version was easily created byeliminating directives.To automatically parallelize this program required an assertion that an index arrayused to subscript the data is a permutation array. The four parallel loops could thenbe identi�ed as such by our tools. Without this assertion, no parallelism could bedetected. With the assertion, the critical four loops could be identi�ed as parallel.The algorithm this program embodies is fully scalable, even though it is not re-
ected in the results shown earlier. The results are limited because problem sizewas constrained to 10 to �t on the Sequent. The theoretical speed-up was thereforelimited to 10. In addition, the function evaluations available for this study were verysmall which allowed the overhead of the parallel constructs to become a factor, furtherdegrading performance.A.4 ErlebacherErlebacher is a tri-diagonal solver for the calculation of derivatives written by ThomasEidson at ICASE, NASA-Langley.Implementation detailsThe hand-coded version of Erlebacher provided to us was a sequential version intendedfor an Intel Hypercube target. We used this as the nearby sequential version and handperformed parallelization on this version. To create the user parallelized version, weperformed a naive parallelization of outermost parallel loops.A.5 Interior Point MethodThis program implements a primal-Dual predictor-corrector interior point method tosolve multicommodity
ow problems [LL92]. It was written by Guangye Li at RiceUniversity and Irv Lustig at Princeton. This problem is a well known applicationof linear programming. The block structure of the constraint matrix is exploited viaparallel computation. The bundling constraints require the Cholesky factorizationof a dense matrix, where a method that exploits parallelism for the dense Choleskyfactorization is used.

141Implementation detailsThis program was written for execution on the Sequent and therefore required nomodi�cations for parallel execution. The sequential version was easily created byeliminating directives. During the automatic parallelization process, two points ofinterest were encountered. The �rst was a small bug, where a parameter was declaredtwice in a subroutine header that was pointed out by the type checker. The otherwas that debugging I/O was still present in a procedure called by a parallel loop. Dr.Li indicated the I/O was for development purposes and could be ignored.A.6 Linpackd BenchmarkThe Linpackd benchmark is a representative set of linear algebra routines that arewidely used by scientists and engineers to perform numerical operations on matrices[DBMS79]. We used a 200 �200 matrix size for our experiment. This program waswritten by Jack Dongarra, at the University of Tennessee.Modi�cations or assertionsThis program was originally a sequential version. From this version, we derived theautomatically parallelized version. We performed dead code elimination by hand us-ing constant propagation to delete some special case code for nonunit stride accesses.A.7 Multidirectional Search MethodThe parallel multidirectional search method is a more powerful and general versionof the direct search method described above [DT91]. It di�ers in that the parallelismavailable in the algorithm is proportional to both the size of the problem and the sizeof the search space. The search space is based on the number of processors. Thisalgorithm does not just enhance a sequential algorithm, it provides a more ambitiousand e�ective search strategy based on the number of processors and is fully scalable.Implementation detailsThis program contained a single parallel loop. Within the loop the programmer usedan unordered critical section to test for convergence. This construct could not be

142analyzed with existing techniques and caused parallelization to fail. More advancedtechniques are needed to analyze this programming style.A.8 1-D Seismic InversionThis program checks the adjointness of two routines which apply a linear operatorDW and its adjoint DW?. DW and DW? come from 1-D seismic inversion for oilexploration. The operator DW is the derivative of the incoherency or di�erentialsemblance with respect to the background sound velocity. This program was writtenby Michael Lewis at Rice University.Implementation detailsThis program was written for execution on the Sequent and therefore required nomodi�cations for parallel execution. The sequential version was easily created byeliminating directives. The automatically parallelized version of this program em-ployed interprocedural loop fusion to improve performance.A.9 Optimal ControlThis program computed solutions for linear-quadratic optimal control problems thatarise from Newton's method or two-metric gradient projection methods to nonlinearproblems [Wri91b]. It is a decomposition of the domain of the problem and is relatedto multiple shooting methods for two-point boundary value problems.Implementation detailsThis code was written for an Alliant FX/8 using Alliant compiler directives. Thisversion worked as the sequential version. Using the Sequent parallel loop directivesallowed the original parallel version to be obtained. In order to automatically par-allelize these loops, array kill analysis and one user assertion about the value of asymbolic were required.A.10 Two-Point Boundary ProblemsThis program uses �nite di�erences to solve two-point boundary value Bodes [Wri92].It was written by Stephen Wright at Argonne National Laboratory. It uses a struc-

143tured orthogonal factorization technique to solve the system in an e�ective, stableand parallel manner.Implementation detailsThis code was written for an Alliant FX/8 using Alliant compiler directives. Thisversion worked perfectly as the sequential version. The parallelism consisted of threeparallel loops containing a single procedure call each. Using the Sequent parallelloop directives allowed the original parallel version to be obtained. In order to auto-matically parallelize these loops, array kill analysis and better symbolic dependencetesting are needed than currently exist inPFC. The symbolic analysis was needed toanalyze array linearizations. However, both are well within the scope of an advanceddependence analyzer.

144Bibliography[ABC+87] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overviewof the PTRAN analysis system for multiprocessing. In Proceedings ofthe First International Conference on Supercomputing. Springer-Verlag,Athens, Greece, June 1987.[ABC+88] F. Allen, M. Burke, P. Charles, J. Ferrante, W. Hsieh, and V. Sarkar.A framework for detecting useful parallelism. In Proceedings of the Sec-ond International Conference on Supercomputing, St. Malo, France, July1988.[AC72] F. Allen and J. Cocke. A catalogue of optimizing transformations. InJ. Rustin, editor, Design and Optimization of Compilers. Prentice-Hall,1972.[ACK87] J. R. Allen, D. Callahan, and K. Kennedy. Automatic decompositionof scienti�c programs for parallel execution. In Proceedings of the Four-teenth Annual ACM Symposium on the Principles of Programming Lan-guages, Munich, Germany, January 1987.[AHU74] A. V. Aho, J. E. Hopcroft, and J. Ullman. The Design and Analysis ofComputer Algorithms. Addison-Wesley, Reading, MA, 1974.[AJ90] R. Allen and S. Johnson. Compiling C for vectorization, parallelization,and inline expansion. In Proceedings of the SIGPLAN '90 Conferenceon Program Language Design and Implementation, Atlanta, GA, June1990.[AK84] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedingsof the SIGPLAN '84 Symposium on Compiler Construction, Montreal,Canada, June 1984.[AK87] J. R. Allen and K. Kennedy. Automatic translation of Fortran programsto vector form. ACM Transactions on Programming Languages andSystems, 9(4):491{542, October 1987.[AKPW83] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren. Conversionof control dependence to data dependence. In Conference Record of

145the Tenth Annual ACM Symposium on the Principles of ProgrammingLanguages, Austin, TX, January 1983.[All83] J. R. Allen. Dependence Analysis for Subscripted Variables and Its Ap-plication to Program Transformations. PhD thesis, Dept. of ComputerScience, Rice University, April 1983.[All90] J. R. Allen. Private communication, February 1990.[AS79] W. Abu-Sufah. Improving the Performance of Virtual Memory Com-puters. PhD thesis, Dept. of Computer Science, University of Illinois atUrbana-Champaign, 1979.[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Aca-demic Publishers, Boston, MA, 1988.[Ban90a] U. Banerjee. A theory of loop permutations. In D. Gelernter, A. Nicolau,and D. Padua, editors, Languages and Compilers for Parallel Comput-ing. The MIT Press, 1990.[Ban90b] U. Banerjee. Unimodular transformations of double loops. In Advancesin Languages and Compilers for Parallel Computing, Irvine, CA, August1990. The MIT Press.[BB89] W. Baxter and H. R. Bauer, III. The program dependence graph andvectorization. In Proceedings of the Sixteenth Annual ACM Symposiumon the Principles of Programming Languages, Austin, TX, January 1989.[BC86] M. Burke and R. Cytron. Interprocedural dependence analysis and par-allelization. In Proceedings of the SIGPLAN '86 Symposium on CompilerConstruction, Palo Alto, CA, June 1986.[BCHT90] P. Briggs, K. Cooper, M. W. Hall, and L. Torczon. Goal-directed inter-procedural optimization. Technical Report TR90-147, Dept. of Com-puter Science, Rice University, December 1990.[BCKT90] M. Burke, K. Cooper, K. Kennedy, and L. Torczon. Interproceduraloptimization: Eliminating unnecessary recompilation. Technical ReportTR90-126, Dept. of Computer Science, Rice University, July 1990.[Ber66] A. J. Bernstein. Analysis of programs for parallel processing. IEEETransactions on Electronic Computers, 15(5):757{763, October 1966.[BFKK92] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static perfor-mance estimator in the Fortran D programming system. In J. Saltz and

146P. Mehrotra, editors, Languages, Compilers, and Run-Time Environ-ments for Distributed Memory Machines. North-Holland, Amsterdam,The Netherlands, 1992.[BHMS91] M. Bromley, S. Heller, T. McNerney, and G. Steele, Jr. Fortran at tengiga
ops: The Connection Machine convolution compiler. In Proceed-ings of the SIGPLAN '91 Conference on Program Language Design andImplementation, Toronto, Canada, June 1991.[BJ66] C. B�ohm and G. Jacopini. Flow diagrams, turing machines, and lan-guages with only two formation rules. Communications of the ACM,19(5), May 1966.[BK89] V. Balasundaram and K. Kennedy. A technique for summarizing dataaccess and its use in parallelism enhancing transformations. In Proceed-ings of the SIGPLAN '89 Conference on Program Language Design andImplementation, Portland, OR, June 1989.[BKK+89] V. Balasundaram, K. Kennedy, U. Kremer, K. S. McKinley, andJ. Subhlok. The ParaScope Editor: An interactive parallel program-ming tool. In Proceedings of Supercomputing '89, Reno, NV, November1989.[Bur90] M. Burke. An interval-based approach to exhaustive and incrementalinterprocedural data-
ow analysis. ACM Transactions on ProgrammingLanguages and Systems, 12(3):341{395, July 1990.[Cal87] D. Callahan. A Global Approach to Detection of Parallelism. PhD thesis,Dept. of Computer Science, Rice University, March 1987.[CCH+88] D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Torczon. Para-Scope: A parallel programming environment. International Journal ofSupercomputing Applications, 2(4):84{99, Winter 1988.[CCK88] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and im-proving balance for pipelined machines. Journal of Parallel and Dis-tributed Computing, 5(4):334{358, August 1988.[CCK90] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation forsubscripted variables. In Proceedings of the SIGPLAN '90 Conferenceon Program Language Design and Implementation, White Plains, NY,June 1990.[CCKT86] D. Callahan, K. Cooper, K. Kennedy, and L. Torczon. Interproceduralconstant propagation. In Proceedings of the SIGPLAN '86 Symposiumon Compiler Construction, Palo Alto, CA, June 1986.

147[CDL88] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A testsuite and results. In Proceedings of Supercomputing '88, Orlando, FL,November 1988.[CF87] R. Cytron and J. Ferrante. What's in a name? or the value of renamingfor parallelism detection and storage allocation. In Proceedings of the1987 International Conference on Parallel Processing, St. Charles, IL,August 1987.[CFR+89] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Ane�cient method of computing static single assignment form. In Pro-ceedings of the Sixteenth Annual ACM Symposium on the Principles ofProgramming Languages, Austin, TX, January 1989.[CFS90] R. Cytron, J. Ferrante, and V. Sarkar. Experiences using control depen-dence in PTRAN. In D. Gelernter, A. Nicolau, and D. Padua, editors,Languages and Compilers for Parallel Computing. The MIT Press, 1990.[CHK92] K. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In Proceed-ings of the 1992 IEEE International Conference on Computer Language,Oakland, CA, April 1992.[CHT91] K. Cooper, M. W. Hall, and L. Torczon. An experiment with inlinesubstitution. Software|Practice and Experience, 21(6):581{601, June1991.[CK87a] D. Callahan and M. Kalem. Control dependences. Supercomputer Soft-ware Newsletter 15, Dept. of Computer Science, Rice University, October1987.[CK87b] D. Callahan and K. Kennedy. Analysis of interprocedural side e�ects in aparallel programming environment. In Proceedings of the First Interna-tional Conference on Supercomputing. Springer-Verlag, Athens, Greece,June 1987.[CK89] S. Carr and K. Kennedy. Blocking linear algebra codes for memoryhierarchies. In Proceedings of the Fourth SIAM Conference on ParallelProcessing for Scienti�c Computing, Chicago, IL, December 1989.[CKK89] D. Callahan, K. Kennedy, and U. Kremer. A dynamic study of vector-ization in PFC. Technical Report TR89-97, Dept. of Computer Science,Rice University, July 1989.[CKPK90] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercomputer per-formance evaluation and the Perfect benchmarks. In Proceedings of the

1481990 ACM International Conference on Supercomputing, Amsterdam,The Netherlands, June 1990.[CKT86a] K. Cooper, K. Kennedy, and L. Torczon. The impact of interproceduralanalysis and optimization in the IRn programming environment. ACMTransactions on Programming Languages and Systems, 8(4):491{523,October 1986.[CKT86b] K. Cooper, K. Kennedy, and L. Torczon. Interprocedural optimization:Eliminating unnecessary recompilation. In Proceedings of the SIGPLAN'86 Symposium on Compiler Construction, Palo Alto, CA, June 1986.[CSY90] D. Chen, H. Su, and P. Yew. The impact of synchronization and gran-ularity on parallel systems. In Proceedings of the 17th InternationalSymposium on Computer Architecture, Seattle, WA, May 1990.[Cyt86] R. Cytron. Doacross: Beyond vectorization for multiprocessors. InProceedings of the 1986 International Conference on Parallel Processing,St. Charles, IL, August 1986.[DBMS79] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK User'sGuide. SIAM Publications, Philadelphia, PA, 1979.[DCHH88] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extendedset of Fortran basic linear algebra subprograms. ACM Transactions onMathematical Software, 14(1):1{17, March 1988.[Die88] H. Dietz. Finding large-grain parallelism in loops with serial control de-pendences. Proceedings of the 1988 International Conference on ParallelProcessing, August 1988.[DKMC92] E. Darnell, K. Kennedy, and J. Mellor-Crummey. Automatic softwarecache coherence through vectorization. In Proceedings of the 1992 ACMInternational Conference on Supercomputing, Washington, DC, July1992.[DT91] J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel ma-chines. SIAM Journal of Optimization, 1(4):448{474, November 1991.[EB91] R. Eigenmann and W. Blume. An e�ectiveness study of parallelizingcompiler techniques. In Proceedings of the 1991 International Conferenceon Parallel Processing, St. Charles, IL, August 1991.[FKMW90] K. Fletcher, K. Kennedy, K. S. McKinley, and S. Warren. The Para-Scope Editor: User interface goals. Technical Report TR90-113, Dept.of Computer Science, Rice University, May 1990.

149[FM85] J. Ferrante and M. Mace. On linearizing parallel code. In ConferenceRecord of the Twelfth Annual ACM Symposium on the Principles ofProgramming Languages, New Orleans, LA, January 1985.[FMS88] J. Ferrante, M. Mace, and B. Simons. Generating sequential code fromparallel code. In Proceedings of the Second International Conference onSupercomputing, St. Malo, France, July 1988.[FOW87] J. Ferrante, K. Ottenstein, and J. Warren. The program dependencegraph and its use in optimization. ACM Transactions on ProgrammingLanguages and Systems, 9(3):319{349, July 1987.[FST91] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhanc-ing cache e�ectiveness. In U. Banerjee, D. Gelernter, A. Nicolau,and D. Padua, editors, Languages and Compilers for Parallel Comput-ing, Fourth International Workshop, Santa Clara, CA, August 1991.Springer-Verlag.[GGGJ88] V. Guarna, D. Gannon, Y. Gaur, and D. Jablonowski. Faust: An envi-ronment for programming parallel scienti�c applications. In Proceedingsof Supercomputing '88, Orlando, FL, November 1988.[GJG87] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and localmemory management by global program transformations. In Proceed-ings of the First International Conference on Supercomputing. Springer-Verlag, Athens, Greece, June 1987.[GJG88] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and localmemory management by global program transformation. Journal ofParallel and Distributed Computing, 5(5):587{616, October 1988.[GKT91] G. Go�, K. Kennedy, and C. Tseng. Practical dependence testing. InProceedings of the SIGPLAN '91 Conference on Program Language De-sign and Implementation, Toronto, Canada, June 1991.[GP84] A. Goldberg and R. Paige. Stream processing. In Conference Record ofthe 1984 ACM Symposium on Lisp and Functional Programming, pages228{234, August 1984.[Hal91] M. W. Hall. Managing Interprocedural Optimization. PhD thesis, Dept.of Computer Science, Rice University, April 1991.[HHK+93] M. W. Hall, T. Harvey, K. Kennedy, N. McIntosh, K. S. McKinley, J. D.Oldham, M. Paleczny, and G. Roth. Experiences using the ParaScopeEditor: an interactive parallel programming tool. In Proceedings of the

150Fourth ACM SIGPLAN Symposium on Principles and Practice of Par-allel Programming, San Diego, CA, May 1993.[HHL90a] L. Huelsbergen, D. Hahn, and J. Larus. Exact dependence analysisusing data access descriptors. In Proceedings of the 1990 InternationalConference on Parallel Processing, St. Charles, IL, August 1990.[HHL90b] L. Huelsbergen, D. Hahn, and J. Larus. Exact dependence analysisusing data access descriptors. Technical Report 945, Dept. of ComputerScience, University of Wisconsin at Madison, July 1990.[HK90] P. Havlak and K. Kennedy. Experience with interprocedural analysis ofarray side e�ects. In Proceedings of Supercomputing '90, New York, NY,November 1990.[HK91] P. Havlak and K. Kennedy. An implementation of interproceduralbounded regular section analysis. IEEE Transactions on Parallel andDistributed Systems, 2(3):350{360, July 1991.[HK92] R. v. Hanxleden and K. Kennedy. Relaxing SIMD control
ow con-straints using loop transformations. In Proceedings of the SIGPLAN'92 Conference on Program Language Design and Implementation, SanFrancisco, CA, June 1992.[HKK+91] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. Anoverview of the Fortran D programming system. In U. Banerjee, D. Gel-ernter, A. Nicolau, and D. Padua, editors, Languages and Compilers forParallel Computing, Fourth International Workshop, Santa Clara, CA,August 1991. Springer-Verlag.[HKT91] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations forFortran D on MIMD distributed-memory machines. In Proceedings ofSupercomputing '91, Albuquerque, NM, November 1991.[HKT92] S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler op-timizations for Fortran D on MIMD distributed-memory machines. InProceedings of the 1992 ACM International Conference on Supercom-puting, Washington, DC, July 1992.[HP90] M. Haghighat and C. Polychronopoulos. Symbolic dependence analysisfor high-performance parallelizing compilers. In Advances in Languagesand Compilers for Parallel Computing, Irvine, CA, August 1990. TheMIT Press.

151[Hus82] C. A. Huson. An inline subroutine expander for Parafrase. Master'sthesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1982.[IT88] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of theFifteenth Annual ACM Symposium on the Principles of ProgrammingLanguages, San Diego, CA, January 1988.[KKLW80a] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. Analysis and transfor-mation of programs for parallel computation. In Proceedings of COMP-SAC 80, the 4th International Computer Software and Applications Con-ference, pages 709{715, Chicago, IL, October 1980.[KKLW80b] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. The structure ofan advanced retargetable vectorizer. In Proceedings of COMPSAC 80,the 4th International Computer Software and Applications Conference,pages 709{715, Chicago, IL, October 1980.[KKLW84] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. The structure of anadvanced retargetable vectorizer. In Supercomputers: Design and Ap-plications, pages 163{178. IEEE Computer Society Press, Silver Spring,MD, 1984.[KKP+81] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependencegraphs and compiler optimizations. In Conference Record of the EighthAnnual ACM Symposium on the Principles of Programming Languages,Williamsburg, VA, January 1981.[KM90] K. Kennedy and K. S. McKinley. Loop distribution with arbitrary con-trol
ow. In Proceedings of Supercomputing '90, New York, NY, Novem-ber 1990.[KM92] K. Kennedy and K. S. McKinley. Optimizing for parallelism and datalocality. In Proceedings of the 1992 ACM International Conference onSupercomputing, Washington, DC, July 1992.[KMC72] D. Kuck, Y. Muraoka, and S. Chen. On the number of operations si-multaneously executable in Fortran-like programs and their resultingspeedup. IEEE Transactions on Computers, C-21(12):1293{1310, De-cember 1972.[KMM91] K. Kennedy, N. McIntosh, and K. S. McKinley. Static performance es-timation in a parallelizing compiler. Technical Report TR91-174, Dept.of Computer Science, Rice University, December 1991.

152[KMT91a] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and transformationin the ParaScope Editor. In Proceedings of the 1991 ACM InternationalConference on Supercomputing, Cologne, Germany, June 1991.[KMT91b] K. Kennedy, K. S. McKinley, and C. Tseng. Interactive parallel pro-gramming using the ParaScope Editor. IEEE Transactions on Paralleland Distributed Systems, 2(3):329{341, July 1991.[KMT92] K. Kennedy, K. S. McKinley, and C. Tseng. Improving data locality.Technical Report TR92-179, Dept. of Computer Science, Rice University,March 1992.[Knu71] D. Knuth. An empirical study of FORTRAN programs. Software|Practice and Experience, 1:105{133, 1971.[Kuc78] D. Kuck. The Structure of Computers and Computations, Volume 1.John Wiley and Sons, New York, NY, 1978.[KZBG88] U. Kremer, H. Zima, H.-J. Bast, and M. Gerndt. Advanced tools andtechniques for automatic parallelization. Parallel Computing, 7:387{393,1988.[Lam74] L. Lamport. The parallel execution of DO loops. Communications ofthe ACM, 17(2):83{93, February 1974.[Lea90] B. Leasure, editor. PCF Fortran: Language De�nition, version 3.1. TheParallel Computing Forum, Champaign, IL, August 1990.[LL92] I. J. Lustig and G. Li. An implementation of a parallel primal-dualinterior point method for multicommondity
ow problems. TechnicalReport CRPC-TR92194, Center for Research on Parallel Computation,Rice University, January 1992.[Lov77] D. Loveman. Program improvement by source-to-source transforma-tions. Journal of the ACM, 17(2):121{145, January 1977.[LRW91] M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and op-timizations of blocked algorithms. In Proceedings of the Fourth Interna-tional Conference on Architectural Support for Programming Languagesand Operating Systems, Santa Clara, CA, April 1991.[LS90] C. Lin and L. Snyder. A comparison of programming models for sharedmemory multiprocessors. In Proceedings of the 1990 International Con-ference on Parallel Processing, St. Charles, IL, August 1990.

153[LY88a] Z. Li and P. Yew. E�cient interprocedural analysis for program restruc-turing for parallel programs. In Proceedings of the ACM SIGPLAN Sym-posium on Parallel Programming: Experience with Applications, Lan-guages, and Systems (PPEALS), New Haven, CT, July 1988.[LY88b] Z. Li and P. Yew. Interprocedural analysis and program restructuringfor parallel programs. Technical Report 720, Center for SupercomputingResearch and Development, University of Illinois at Urbana-Champaign,January 1988.[McK90] K. S. McKinley. Dependence analysis of arrays subscripted by indexarrays. Technical Report TR91-162, Dept. of Computer Science, RiceUniversity, December 1990.[McM86] F. McMahon. The Livermore Fortran Kernels: A computer test of thenumerical performance range. Technical Report UCRL-53745, LawrenceLivermore National Laboratory, 1986.[Mur71] Y. Muraoka. Parallelism Exposure and Exploitation in Programs. PhDthesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, February 1971. Report No. 71-424.[NS91] S. G. Nash and A. Sofer. A general-purpose parallel algorithm for un-constrained optimization. SIAM Journal of Optimization, 1(4):530{547,November 1991.[NS92] S. G. Nash and A. Sofer. BTN: software for parallel unconstrainedoptimization. ACM TOMS, 1992. to appear.[Ost89] A. Osterhaug, editor. Guide to Parallel Programming on Sequent Com-puter Systems. Sequent Technical Publications, San Diego, CA, 1989.[PGH+90] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, andD. Schouten. The structure of Parafrase-2: An advanced parallelizingcompiler for C and Fortran. In D. Gelernter, A. Nicolau, and D. Padua,editors, Languages and Compilers for Parallel Computing. The MITPress, 1990.[Por89] A. Porter�eld. Software Methods for Improvement of Cache Perfor-mance. PhD thesis, Dept. of Computer Science, Rice University, May1989.[RC86] B. Ryder and M. Carroll. An incremental algorithm for software analysis.In Proceedings of the Second ACM SIGSOFT/SIGPLAN Software En-gineering Symposium on Practical Software Development Environments,Palo Alto, CA, December 1986.

154[RG89] S. Richardson and M. Ganapathi. Interprocedural optimization: Ex-perimental results. Software|Practice and Experience, 19(2), February1989.[Ros90] C. Rosene. Incremental Dependence Analysis. PhD thesis, Dept. ofComputer Science, Rice University, March 1990.[RP88] B. Ryder and M. Paull. Incremental data
ow analysis algorithms. ACMTransactions on Programming Languages and Systems, 10(1):1{50, Jan-uary 1988.[SA88] K. Smith and W. Appelbe. PAT - an interactive Fortran parallelizingassistant tool. In Proceedings of the 1988 International Conference onParallel Processing, St. Charles, IL, August 1988.[SA89] K. S. Smith and W. Appelbe. An interactive conversion of sequentialto multitasking Fortran. In Proceedings of the 1989 ACM InternationalConference on Supercomputing, Crete, Greece, June 1989.[Sar90] V. Sarkar. PTRAN | the IBM parallel translation system. In Proceed-ings of the International Workshop on Compilers for Parallel Comput-ers, Paris, France, December 1990. To appear as a chapter in ParallelFunctional Programming Languages and Compilers, editor B. Szyman-ski, ACM Press, 1991.[SAS90] K. Smith,W. Appelbe, and K. Stirewalt. Incremental dependence analy-sis for interactive parallelization. In Proceedings of the 1990 ACM Inter-national Conference on Supercomputing, Amsterdam, The Netherlands,June 1990.[SG90] B. Shei and D. Gannon. SIGMACS: A programmable programming en-vironment. In Advances in Languages and Compilers for Parallel Com-puting, Irvine, CA, August 1990. The MIT Press.[SH91] J. Singh and J. Hennessy. An empirical investigation of the e�ective-ness of and limitations of automatic parallelization. In Proceedings ofthe International Symposium on Shared Memory Multiprocessors, Tokyo,Japan, April 1991.[SK86] R. G. Scarborough and H. G. Kolsky. A vectorizing Fortran compiler.IBM Journal of Research and Development, 30(2):163{171, March 1986.[Sub90] J. Subhlok. Analysis of Synchronization in a Parallel Programming En-vironment. PhD thesis, Dept. of Computer Science, Rice University,August 1990.

155[TIF86] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of CALLstatements. In Proceedings of the SIGPLAN '86 Symposium on CompilerConstruction, Palo Alto, CA, June 1986.[Tow76] R. A. Towle. Control and Data Dependence for Program Transformation.PhD thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, March 1976.[WL90] M. E. Wolf and M. Lam. Maximizing parallelism via loop transforma-tions. In Proceedings of the Third Workshop on Languages and Compil-ers for Parallel Computing, Irvine, CA, August 1990.[WL91] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Pro-ceedings of the SIGPLAN '91 Conference on Program Language Designand Implementation, Toronto, Canada, June 1991.[Wol82] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis,Dept. of Computer Science, University of Illinois at Urbana-Champaign,October 1982.[Wol86] M. J. Wolfe. Loop skewing: The wavefront method revisited. Interna-tional Journal of Parallel Programming, 15(4):279{293, August 1986.[Wol89a] M. J. Wolfe. More iteration space tiling. In Proceedings of Supercom-puting '89, Reno, NV, November 1989.[Wol89b] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MITPress, Cambridge, MA, 1989.[Wol89c] M. J. Wolfe. Semi-automatic domain decomposition. In Proceedings ofthe 4th Conference on Hypercube Concurrent Computers and Applica-tions, Monterey, CA, March 1989.[Wri91a] S. J. Wright. Parallel algorithms for banded linear systems. SIAMJournal of Scienti�c and Statistical Computation, 12(4):824{842, July1991.[Wri91b] S. J. Wright. Partitioned dynamic programming for optimal control.SIAM Journal of Optimization, 1(4):620{642, November 1991.[Wri92] S. J. Wright. Stable parallel algorithms for two-point boundary valueproblems. SIAM Journal of Scienti�c and Statistical Computation, 1992.to appear.[Zad84] F. Zadeck. Incremental data
ow analysis in a structured program editor.In Proceedings of the SIGPLAN '84 Symposium on Compiler Construc-tion, Montreal, Canada, June 1984.

156[ZBG88] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD parallelization. Parallel Computing, 6:1{18,1988.

