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In the past decade, processor speed has become significantly faster than memory speed. Small,
fast cache memories are designed to overcome this discrepancy, but they are only effective when
programs exhibit data locality. In this article, we present compiler optimizations to improve data
locality based on a simple yet accurate cost model. The model computes both temporal and spatial
reuse of cache lines to find desirable loop organizations. The cost model drives the application
of compound transformations consisting of loop permutation, loop fusion, loop distribution, and
loop reversal. We demonstrate that these program transformations are useful for optimizing
many programs. To validate our optimization strategy, we implemented our algorithms and ran
experiments on a large collection of scientific programs and kernels. Experiments illustrate that for
kernels our model and algorithm can select and achieve the best loop structure for a nest. For over
30 complete applications, we executed the original and transformed versions and simulated cache
hit rates. We collected statistics about the inherent characteristics of these programs and our
ability to improve their data locality. To our knowledge, these studies are the first of such breadth
and depth. We found performance improvements were difficult to achieve because benchmark
programs typically have high hit rates even for small data caches; however, our optimizations
significantly improved several programs.
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1. INTRODUCTION

Because processor speed is increasing at a much faster rate than memory speed,
computer architects have turned increasingly to the use of memory hierarchies with
one or more levels of cache memory. Caches take advantage of data locality in

Steve Carr was supported by NSF grant CCR-9409341 and Hewlett-Packard Company. Chau-Wen
Tseng was supported in part by an NSF CISE Postdoctoral Fellowship in Experimental Science.
The authors initiated this research at Rice University.

Authors’ addresses: K. S. McKinley, Computer Science Department, LGRC, University of
Massachusetts, Amherst MA 01003-4610; email: mckinley@cs.umass.edu; S. Carr, Depart-
ment of Computer Science, Michigan Technological University, Houghton MI 49931-1295; email:
carr@cs.mtu.edu; C.-W. Tseng, Department of Computer Science, University of Maryland, College
Park, MD 20742; email: tseng@cs.umd.edu.



2 . McKinley, et al.

programs. Data locality is the property that references to the same memory location
or adjacent locations are reused within a short period of time.

Caches also have an impact on programming; programmers substantially enhance
performance by using a style that ensures more memory references are handled by
the cache. Scientific programmers expend considerable effort at improving local-
ity by structuring loops so that the innermost loop iterates over the elements of a
column, which are stored consecutively in Fortran. This task is time consuming,
tedious, and error prone. Instead, achieving good data locality should be the re-
sponsibility of the compiler. By placing the burden on the compiler, programmers
can get good uniprocessor performance even if they originally wrote their program
for a vector or parallel machine. In addition, programs will be more portable
because programmers will be able to achieve good performance without making
machine-dependent source-level transformations.

1.1 Optimization Framework

Based on our experiments and experiences, we believe that compiler optimizations
to improve data locality should proceed in the following order:

(1) Tmprove order of memory accesses to exploit all levels of the memory hierarchy
through loop permutation, fusion, distribution, skewing, and reversal. This
process i1s mostly machine independent and requires knowledge only of the
cache line size.

(2) Fully utilize the cache through tiling, a combination of strip-mining and loop
permutation [Irigoin and Triolet 1988]. Knowledge of the data size, cache size,
and cache line size is essential [Coleman and McKinley 1995; Lam et al. 1991].
Higher degrees of tiling can be applied to exploit multilevel caches, the TLB,
ete.

(3) Promote register reuse through unroll-and-jam (also known as register tiling)
and scalar replacement [Callahan et al. 1990; Carr and Kennedy 1994a]. The
number and type of registers available are required to determine the degree of
unroll-and-jam and the number of array references to replace with scalars.

In this article, we concentrate on the first step. Our algorithms are complementary
to and in fact improve the effectiveness of optimizations performed in the latter
two steps [Carr 1992]. However, the other steps and interactions between steps are
beyond the scope of this article.

1.2 Overview

We present a compiler strategy based on an effective, yet simple, model for esti-
mating the cost of executing a given loop nest in terms of the number of cache
line references. This article extends previous work [Kennedy and McKinley 1992]
with a slightly more accurate memory model. We use the model to derive a loop
structure which results in the fewest accesses to main memory. To achieve this loop
structure, we use a compound loop transformation algorithm that consists of loop
permutation, fusion, distribution, and reversal. The algorithm is implemented in a
source-to-source Fortran 77 translator.

We present extensive empirical results for kernels and benchmark programs that
validate the effectiveness of our optimization strategy. They reveal programmers
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often use programmingstyles with good locality. We measure both inherent data lo-
cality characteristics of scientific programs and our ability to improve data locality.
When the cache miss rate for a program is nonnegligible, we show there are usually
opportunities to improve data locality. Our optimization algorithm takes advantage
of these opportunities and consequently improves performance. As expected, loop
permutation plays the key role. In addition, loop fusion and distribution can pro-
duce significant improvements. Our algorithms never found an opportunity where
loop reversal could improve locality.

2. BACKGROUND

In this section, we characterize data reuse and present our data locality cost model.

2.1 Data Dependence

We assume the reader is familiar with concept of data dependence [Kuck et al. 1981;
Goff et al. 1991]. § = {81 ...8;} is a hybrid distance/direction vector with the most
precise information derivable. It represents a data dependence between two array
references, corresponding left to right from the outermost loop to innermost loop
enclosing the references. Data dependences are loop-independent if the accesses to
the same memory location occur in the same loop iteration; they are loop-carried
if the accesses occur on different loop iterations.

2.2 Sources of Data Reuse

The two sources of data reuse are temporal reuse, multiple accesses to the same
memory location, and spatial reuse, accesses to nearby memory locations that share
a cache line or a block of memory at some level of the memory hierarchy. (Unit-
stride access is the most common type of spatial locality.) Temporal and spatial
reuse may result from self-reuse from a single array reference or group-reuse from
multiple references [Wolf and Lam 1991]. Without loss of generality, we assume
Fortran’s column-major storage.

Since processor speeds outpace memory by factors ranging from 10 to 100 in
current uniprocessors, even a single miss in the cache on an inner loop iteration
can degrade performance. Our measure of locality is the number of cache lines a
loop nest accesses. We minimize accesses to memory by minimizing the number of
times a cache line must be fetched from memory.

To simplify analysis, we concentrate on reuse that occurs between small numbers
of inner loop iterations. Our memory model assumes there will be no conflict or
capacity cache misses in one iteration of the innermost loop.! We use the algorithms
RefGroup, RefCost, and LoopCost to determine the total number of cache lines
accessed when a candidate loop [ is placed in the innermost loop position. The
result reveals the relative amounts of reuse between loops in the same nest and
across disjoint nests; it also drives permutation, fusion, distribution, and reversal
to improve data locality, thus minimizing the number of cache lines accessed.

1Lam et al. [1991] support this assumption.
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DO K = 2,N-1
DO J = 2,N-1
DO I = 2,N-1

A(LIK) = A(I+1,J+1,K) 4+ B(I,JK) + BI,J+1,K) + B(I+1,J K)

Reference Groups

for loop J: for loop I & K:
{A(LIK)) {A(LIK))
{A(I4+1,J+1,K)} {A(I4+1,J+1,K)}
{B(1,J.,K), B(I,J+1,K), B(I+1,J,K)} {B(1,J.K), B(I+1,J,K)}

{B(I,J+1,K)}

Fig. 1. RefGroup example.

2.3 Reference Groups

Our cost model first applies algorithm RefGroup to calculate group-reuse. Two
references are in the same reference group if they exhibit group-temporal or group-
spatial reuse, i.e., they access the same cache line on the same or different iterations
of an inner loop. This formulation is more general than previous work [Kennedy
and McKinley 1992], but slightly more restrictive than uniformly generated ref-
erences [Gannon et al. 1988]. The goal of the RefGroup algorithm is to avoid
overcounting cache lines accessed by multiple references that generally access the
same set of cache lines.

RefGroup. Two references Ref; and Refo belong to the same reference group with
respect to loop [ if:

(1) 3 Refy gRefz and
(a) §is a loop-independent dependence or
(b) & is a small constant d (|d| < 2) and all other entries are zero,

(2) or, Refi and Refy refer to the same array and differ by at most d' in the first
subscript dimension, where d’ is less than or equal to the cache line size in
terms of array elements. All other subscripts must be identical.

Condition (1) accounts for group-temporal reuse, and condition (2) detects most
forms of group-spatial reuse. Note that a reference can be in only one reference
group, since algorithm RefGroup puts a reference in a group if it meets either
Conditions (1) or (2) with any other reference in the group. We specify [d| < 2
in our implementation because previous work on dependence testing found few
constant distances greater than 2 [Goff et al. 1991]. In addition, given a cache line
size of at least 2 elements and |d| < 2, the references will only require at most 2
cache lines.

Consider the example nest in Figure 1. Because the two references to A fail all
the tests, regardless of the loop, RefGroup always places them in distinct groups.
For the I loop, B(I,J,K) and B(I,J+1,K) satisfy condition (1b), and B(I,J,K) and
B(I+1,1,K) satisfy condition (2). Thus for the I loop, all three references to B are
in the same group, even though B(1,J+1,K) and B(I,J+1,K) do not satisfy any of the
conditions. Since the I and K loops do not carry the dependence between B(I,J,K)
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INpPUT:
£ = {l,...,1l,} aloop nest with headers Ib;, ub;, step
R = { Ref,..., Refn} representatives from each reference group
tripp = (ub; — b + step,)/ step,
cls = the cache line size in data items,
coeff(f,i1) = the coefficient of the index variable 4; in the subscript f
stride(f1,4,1) = |step; * coeff( f1,11)]
OuTPUT:
LoopCost(l) = number of cache lines accessed with ! as innermost loop
ALGORITHM:
LoopCost(l) = Z (RefCost(Ref, (fi(i1, - in)y-. o, fi(in, - in) H trip,
k=1 h#l
RefCost(Refi, 1) = 1 if ((coeff(fi,41) =0) A Invariant
, (coeffl f;, 1) = 0))
trep, if ((stride(f1,i1,1) < ¢ ) Unit

(strid(é}jl,,l,z)) (coeff( f, ”) =0)A...A
(coefflfi, i) = 0))

trip; otherwise None

Fig. 2. LoopCost algorithm.

and B(L,J+1,K), only B(I,J,K) and B(I+1,J,K) belong to the same group for the 1
and K loops.

2.4 Loop Cost in Terms of Cache Lines

Once we account for group-reuse, we can calculate the reuse carried by each loop
using the functions RefCost and LoopCost in Figure 2. To determine the cost in
cache lines of a reference group, we select an arbitrary array reference with the
deepest nesting from each group. Each loop [ with ¢rip iterations in the nest is
considered as a candidate for the innermost position. Let cls be the cache line size
in data items and stride be the step size of [ multiplied by the coefficient of the
loop index variable.

RefCost calculates locality for [, i.e.; the number of cache lines [ uses: 1 for
loop-invariant references, trip/(cls/stride) for consecutive references, or trip for non-
consecutive references. LoopCost then calculates the total number of cache lines
accessed by all references when [ is the innermost loop. It simply sums RefCost
for all reference groups, then multiplies the result by the trip counts of all the
remaining loops. RefCost and LoopCost appear in Figure 2. This method evaluates
imperfectly nested loops (see Section 3.5.1 for an example), complicated subscript
expressions, and nests with symbolic bounds [McKinley 1992].

In Figure 3, we give an example of computing LoopCost on matrix multiply.
Algorithm RefGroup, with respect to all of the three loops, puts both references
to C(1,J) in one reference group, and A(L,K) and B(K,J) each in their own reference
group. RefCost with respect to the I loop detects the self-spatial reuse carried by
C(L,J) and A(I,K) and assigns each reference the cost of (1/¢ls)n cache lines. B(K,J)
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{ JKI ordering }
DOJ=1,N
DOK =1,N
DOT=1,N
C(LJ) = C(LJ) + A(LK) * B(K,J)
LoopCost (with cls = 4)

Refs J K I
C(LY) n*n? 1%n? %n*rﬁ
A(LK) 1%n? n *n? %n*rﬁ
B(K,J) n*n? %n*rﬁ 1% n?
total | 2n° 4+ n2 %ng’ + n? %ng’ + n2

Fig. 3. Loop cost for matrix multiply.

has loop-invariant reuse and a cost of 1. LoopCost for the Tloop is thus (1/2)n3+n?
for a machine with cls = 4 and n? outer iterations of the J and K loops. LoopCost
with respect to the J and K loops is similar.

3. COMPOUND LOOP TRANSFORMATIONS

In this section, we show how the cost model guides loop permutation, fusion, dis-
tribution, and reversal. Each subsection describes tests based on the cost model
that determine when individual transformations are profitable. Using these compo-
nents, Section 3.5 presents Compound, an algorithm for discovering and applying
legal compound loop nest transformations that aim to minimize the number of cache
lines accessed. All of these transformations are implemented in our experimental
compiler.

3.1 Loop Permutation

To determine the loop permutation which accesses the fewest cache lines, we rely
on the following observation.

If loop | promotes more reuse than loop ' when both are considered for the in-
nermost loop, | will likely promote more reuse than U at any outer loop position.

We therefore simply rank the loops using LoopCost, ordering the loops from out-
ermost to innermost (/1 ...ly) so that LoopCost(l;_1) > LoopCost(l;). We call
this permutation of the nest with the least cost memory order. If the bounds are
symbolic, we compare the dominating terms.

We define the algorithm Permute in Figure 4 to achieve memory order when
possible on perfect nests.? To determine if the order is a legal one, we permute the
corresponding entries in the distance/direction vector. If the result is lexicographi-
cally positive, the permutation is legal, and we transform the nest. (By definition,
the original distance/direction vector is legal, i.e., lexicographically positive [Allen

?In Section 3.5, we perform imperfect interchanges with distribution. The evaluation method can
also drive imperfect loop interchange [Wolfe 1986], but we did not implement it.
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INpPUT:
O = {i1,12,...,in}, the original loop ordering
DY = set of original legal direction vectors for I,
L = {is;y%09,---510,} , a permutation of O with the best estimated locality
OuTPUT:
P = L, or a permutation of O that is legally as close to £ as possible
ALGORITHM:
if V DV, L is a legal permutation
return £
P=0; k=0; m=n
while £ # §
for y=1,m
l=LeLl
if direction vectors for {p1, ..., px,!} are legal

P={p1,...,pr, 1}
L=L-{}; k=k+1; m=m-1
break for
endif
endfor
endwhile

Fig. 4. Algorithm permute.

and Kennedy 1984; Banerjee 1990].) If a legal permutation exists which positions
the loop with the most reuse innermost, the algorithm is guaranteed to find it. If
the desired inner loop cannot be obtained, the next most desirable inner loop is
positioned innermost if possible, and so on. Because most data reuse occurs on the
innermost loop, positioning it correctly is likely to yield the best data locality.

More formally stated, given a memory ordering £ = {is,,%s,,...,%5,} of the
loops {i1,142,...,4,} where i,, has the least reuse and i, the most, the algorithm
builds up a legal permutation in P by first testing to see if the loop i,, is legal in
the outermost position. If it is legal, it is added to P and removed from L. If it is
not legal, the next loop in £ is tested. Once a loop [ is positioned, the process is
repeated starting from the beginning of £ — {{} until £ is empty.

Permute works by positioning the outer k& loops such that the partial direction
vectors are lexicographically positive, which means either all entries are zero, or at
least one positive entry precedes negative entries in all the partial direction vectors
{p1,...,pr}. Consider placing a loop [ at position k 4 1 for a single dependence. If
the direction vector entry at position [ is positive or zero, [ is legal in position k+ 1.
If the entry at [ is negative and {p1,...,pr} positive, [ is also legal in position
k + 1. However, if the entry at position [ is negative, and {p1,...,pg} is zero,
then positioning [ would create a negative, illegal direction vector. Notice that no
permutation of {pi,...,pr} can change a positive vector to zero and thus enable a
negative entry at ! to be placed in position &£ + 1. This property enables Permute
to work greedily from the outermost loop to the innermost. The following theorem
holds for the Permute algorithm.
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THEOREM. If there exists a legal permutation where o, ts the innermost loop,
then Permute will find a permutation where o, ts innermost.

Given an original set of legal direction vectors, if £ is legal then o, is clearly in-
nermost. Otherwise, the proof by contradiction of the theorem proceeds as follows.
Each step of the “for” is guaranteed to find a loop that results in partial, positive
direction vectors; otherwise the original was not legal [Allen and Kennedy 1984;
Banerjee 1990]. In addition, if any loop oy through o, _1; may be legally positioned
prior to o,, it will be.

Permute therefore places the loops carrying the most reuse as innermost as pos-
sible. If the desired inner loop cannot be obtained, it places the next most desirable
inner loop in the innermost position if possible, and so on. This characteristic is
important because most data reuse occurs on the innermost loop, so positioning it
correctly 1s key to achieving the best data locality.

Complexity. When memory order is legal, as it is in 80% of the loops in our test
suite, Permute simply sorts loops according to their LoopCost and tests for legality.
Otherwise algorithm Permute selects a legal permutation as close to memory order
as possible, testing the legality of n(n — 1) loop permutations in the worst case.
However, these steps only involve testing data dependences; evaluating the locality
of the loop nest turns out to be the most expensive part of the algorithm. Our
algorithm computes the best permutation with one evaluation step (i.e., invocation
of LoopCost) for each loop in the nest. The complexity of algorithm Permute is
therefore O(n) in the number of LoopCost invocations, where n is the number of
loops in the nest.

3.1.1 Ezample: Matriz Multiplication. In Figure 3, we saw that algorithm Ref-
Group for matrix multiply puts the two references to C(I,J) in the same refer-
ence group and A(LK) and B(K,J) in separate groups for all loops. Algorithm
MemoryOrder uses LoopCost to select JKI as memory order; A(IK) and C(I,J) ex-
hibit spatial locality, and B(K,J) exhibits loop-invariant temporal locality, resulting
in the fewest cache line accesses.

To validate our cost model, we gathered results for all possible permutations,
ranking them left to right from the least to the highest cost (JKI, KJI, JIK, 1JK,
K1J, IKJ) in Figure 5. Consistent with our model, choosing I as the inner loop
results in the best execution time. Changing the inner loop has a dramatic effect
on performance. The impact is greater on the 512 x 512 versus the 300 x 300
matrices because a larger portion of the working set stays in the cache. Execution
times vary by significant factors of up to 3.7 on the Sparc2, 6.2 on the 1860, and
23.9 on the RS/6000. The entire ranking accurately predicts relative performance.

We performed this type of comparison on several more kernels and a small pro-
gram with the same result: memory order always resulted in the best performance.

3.2 Loop Reversal

Loop reversal reverses the order in which the iterations of a loop nest execute and
is legal if dependences remain carried on outer loops. Reversal does not change the
pattern of reuse, but it is an enabler, 1.e., it may enable permutation to achieve
better locality. We extend Permute to perform reversal as follows. If memory order
is not legal, Permute places outer loops in position first, building up lexicograph-
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Execution Times (in seconds) vs. Loop Organization

300 x 300
60

50

40

30

20

o

JKI KJI JIK IJK KIJ IKJ JKI KJI JIK IJK KI1J IKJ JKI KJI JIK IJK KIJ IKJ
Sun Sparc2 Intel 1860 IBM RS/6000

512 x 512

400

350

300

250

150

100

JKI KJI JIK UK KIJ IKJ JKI KJI JIK IJK KIJ IKJ JKI KJI JIK IJK KIJ IKJ
Sun Sparc2 Intel 1860 IBM RS/6000

Fig. 5.  Performance of matrix multiply.
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(a) Sample Fortran 90 loops for ADI Integration
DOTI=2N
S1 X(LL:N) = X(L1:N) - X(I-1,1:N)*A(L1:N)/B(I-1,1:N)
Sy B(LLN) = B(LL:N) - A(LL:N)*A(LL:N)/B(I-1,1:N)

(b) U Translation to Fortran 77 I}
DOTI=2N
DOK =1, N
X(LK) = X(LK) - X(I-1,K)*A(LK)/B(L-1,K)
DOK =1, N
B(LK) = B(LK) - A(LK)*A(LK)/B(I-1,K)

(c) U Loop Fusion & Interchange {}
DOK =1,N
DOT=2, N
X(LK) = X(LK) - X(I-1,K)*A(LK)/B(L-1,K)
B(LK) = B(LK) - A(LK)*A(LK)/B(I-1,K)

LoopCost (with cls = 4.)

RefGroup K 1
X(LK) | nxn | Ynxn
A(LK) | nxn | Ynxn

B(LK) | nxn | gn=n
total | 3xn? % xn?

Sy total | 3xn? % * n2
Sy total | 2%n? % *n2
S1 4+ Sy | 5xn? % * n2

Fig. 6. Loop fusion.

ically positive dependence vectors. If Permute cannot legally position a loop in a
desired position, Permute tests if reversal is legal and enables the loop to be put
in the position. Reversal did not improve locality in our experiments; therefore we
will not discuss it further.

3.3 Loop Fusion

Loop fusion takes multiple loop nests and combines their bodies into one loop nest.
It is legal only if no data dependences are reversed [Warren 1984]. As an example
of its effect, consider the code fragment written in Fortran 90 in Figure 6(a) that
performs ADI integration. Scalarizing the Fortran 90 into Fortran 77 results in
the code in Figure 6(b) which exhibits both poor temporal and poor spatial reuse.
The problem is not the fault of the programmer; instead, it is inherent in how the
computation can be expressed in Fortran 90. Fusing the K loops results in temporal
locality for array B. In addition, the compiler is now able to apply loop interchange,
significantly improving spatial locality for all the arrays. This transformation is
illustrated in Figure 6(c).
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3.3.1 Profitability of Loop Fuston. Loop fusion may improve reuse directly by
moving accesses to the same cache line to the same loop iteration. Algorithm
RefGroup discovers this reuse between two nests by treating the statements as if
they already were in the same loop body. The two loop headers are compatible if
the loops have the same number of iterations. Two nests are compatible at level [
if the loops at level 1 to [ are compatible and if the headers are perfectly nested up
to level [. To determine the profitability of fusing two compatible nests, we use the
cost model as follows:

(1) Compute RefGroup and LoopCost as if all the statements were in the same
nest, i.e., fused.

(2) Compute RefGroup and LoopCost independently for each candidate and add
the results.

(3) Compare the total LoopCosts.

If the fused LoopCost is lower, fusion alone will result in additional locality. For
example, fusing the two K loops in Figure 6 lowers the LoopCost for K from 5n? to
3n%. Candidate loops for fusion need not be nested within a common loop. Note
that the memory order for the fused loops may differ from the individual nests.

3.3.2 Loop Fusion To Enable Loop Permutation. Loop fusion may also indirectly
improve reuse in imperfect loop nests by providing a perfect nest that enables a
loop permutation with better data locality. For instance, fusing the K loops in
Figure 6 enables permutation of the loop nest, improving spatial and temporal
locality. Using the cost model, we detect that this transformation is desirable,
since LoopCost of the I loop is lower than the K loops, but memory order cannot
be achieved because of the loop structure. We then test if fusion of all inner nests
is legal and if it creates a perfect nest in which memory order can be achieved.

3.3.3 Loop Fusion Algorithm. Fusion thus serves two purposes:

(1) to improve temporal locality and

(2) to fuse all inner loops, creating a nest that is permutable.

Previous research has shown that optimizing temporal locality for an adjacent set
of m compatible loop nests is NP-hard [Kennedy and McKinley 1993]. In this
work, the problem is harder, since all the headers are not necessarily compatible.
We therefore apply a greedy strategy based on the depth of compatibility. We
build a DAG from the candidate loops. The edges are dependences between the
loops; the weight of an edge is the difference between the LoopCosts of the fused
and unfused versions. We partition the nests into sets of compatible nests at the
deepest levels possible. To yield the most locality, we first fuse nests with the
deepest compatibility and temporal locality. Nests are fused only if legal, i.e., no
dependences are violated between the loops or in the DAG. We update the graph,
then fuse at the next level until all compatible sets are considered. This algorithm
appears in Figure 7.

Since we allow loop nests to be reordered due to fusion, we may need to calculate
LoopCost for every pair of loop nests. The complexity of the fusion algorithm is
therefore O(m?) in the number of invocations of LoopCost, where m is the number



12 . McKinley, et al.

Fuse(L)
INPUT: L =11,...,lk, nests that are fusion candidates
ALGORITHM:

Build H = {H1,...,H;}, H; = {hy} aset of
compatible nests with depth(H;) > depth(H;4+1)
Build paG G with dependence edges and weights
for each H; = {h1...hm}, i =1to J
for 11 = hl to hm
for 12 = h2 to 11
if ((3 locality between I; and I5)
/+ 3 edge ({1, I2) with weight > 0 x/
& (it is legal to fuse them))
fuse 1 and [> and update G
endfor
endfor
endfor

Fig. 7. Fusion algorithm.

Execution time (in seconds) vs. Organization

M hand coded
0.7 [] distributed

M fused

Sun Sparc2 Intel i860 IBM RS/6000
Fig. 8. Performance of erlebacher.

of candidate nests for fusion. If we only fused adjacent loop nests, the complexity
of the algorithm would drop to O(m).

3.3.4 Ezample: Erlebacher. The original hand-coded version of Erlebacher, a
program solving PDEs using ADI integration with 3D arrays, mostly consists of
single-statement loops in memory order. We applied loop distribution by hand to
loops containing multiple statements, placing each statement in a separate loop
nest. Since the loops are fully distributed in this version of Erlebacher, it resembles
the output of a Fortran 90 scalarizer.

From the fully distributed version of Erlebacher, we created two optimized ver-
sions of the program. In the first, we applied Permute to transform individual
loop nests into memory order. In the second optimized version, we applied Fuse
to obtain more temporal locality. In Figure 8, we measure the performance of the
original program (Hand), the transformed fully distributed program (Distributed),
and the fused version (Fused).
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Distribute(L, S)
INPUT: = {l1,...,lm}, aloop nest containing
{

$1,-.., 5k} statements

ALGORITHM:
forj= m—-1tol
Restrict the dependence graph to § carried at
level 7 or deeper and loop independent &
Divide & into finest partitions P = {p1,...,pm }
s.t. if sy, st € a recurrence, sy, st € p;.
compute MemoryOrder; for each p;
if (34| MemoryOrder; is achievable with
distribution and permutation)
perform distribution and permutation
return
endfor

Fig. 9. Distribution algorithm.

Fusion is always an improvement (of up to 17%) over the hand-coded and dis-
tributed versions. Since each statement is in a separate loop, many variables are
shared between loops. Permuting the loops into memory order increases locality
in each nest, but slightly degrades locality between nests, hence the degradation in
performance of the distributed version compared to the original. Even though the
benefits of fusion are additive rather than multiplicative (as in loop permutation),
its impact can be significant. Its impact will only increase as more programs are
written with Fortran 90 array syntax.

3.4 Loop Distribution

Loop distribution separates independent statements in a single loop into multiple
loops with identical headers. To maintain the meaning of the original loop, state-
ments in a recurrence (a cycle in the dependence graph that does not include input
dependences) must be placed in the same loop. Groups of statements which must
be in the same loop are called partitions. In our system we only use loop distri-
bution to indirectly improve reuse by enabling loop permutation on a nest that is
not permutable®. Statements in different partitions may prefer different memory
orders that are achievable after distribution. The algorithm Distribute appears in
Figure 9. It divides the statements into the finest granularity partitions and tests
if that enables loop permutation.? It performs distribution on the innermost loop
that enables permutation. For a nest of depth m, 1t starts with the loop at level
m — 1 and works out to the outermost loop, stopping if successful.

We only invoke algorithm Distribute if memory order cannot be achieved on a
nest if and not all of the inner nests can be fused (see Section 3.5). Distribute
tests if distribution will enable memory order to be achieved for any of the parti-

3Distribution could also be effective if (1) there is no temporal locality between partitions, and
the accessed arrays are too numerous to fit in cache at once, or (2) register pressure is a concern.
We do not address these issues here.

4The compound transformation algorithm in Section 3.5 follows distribution and permutation
with fusion to regain lost temporal locality.



14 . McKinley, et al.

Compound (V)
INPUT: N = {n1,...nx}, adjacent loop nests

ALGORITHM:
fori=1tok
Compute MemoryOrder (n;)
if (Permute(n;) places inner loop in memory order)
continue
else if (n; is not a perfect nest & contains only
adjacent loops m)
if (FuseAll(m;,l) and Permute(])
places inner loop in memory order)
continue
else if (Distribute(n;,l))
Fuse({)
end for

Fuse(N)

Fig. 10. Compound loop transformation algorithm.

tions. The dependence structure required to test for loop permutation 1s created
by restricting its test to dependences on statements in the partition of interest.
We thus perform distribution only if it combines with permutation to improve the
actual LoopCost. Since LoopCost is calculated for each individual partition, the
complexity of algorithm Distribute is O(m), where m is the number of individual
partitions created by loop distribution. See Section 3.5.1 for an example.

3.5 Compound Transformation Algorithm

The driving force behind our application of compound loop transformations is to
minimize actual LoopCost by achieving memory order for as many statements in
the nest as possible. The algorithm Compound uses permutation, fusion, distribu-
tion, and reversal as needed to place the loop that provides the most reuse at the
innermost position for each statement.

Algorithm Compound in Figure 10 considers adjacent loop nests. It first opti-
mizes each nest independently and then applies fusion between the resulting nests
if legal, and data locality is improved. To optimize a nest, the algorithm begins
by computing memory order and determining if the loop containing the most reuse
can be placed innermost. If it can, the algorithm does so and goes on to the next
loop. Otherwise, it tries to enable permutation into memory order by fusing all
inner loops to form a perfect nest. If fusion cannot enable memory order, the algo-
rithm tries distribution. If distribution succeeds in enabling memory order, several
new nests may be formed. Since the distribution algorithm divides the statements
into the finest partitions, these nests are candidates for fusion to recover temporal
locality.

Complexity. The complexity of algorithm Compound is O(nm?) in the number
of invocations of LoopCost, where n is the number of loops in a nest and m the
number of adjacent loop nests. O(n) invocations of LoopCost are needed to cal-
culate memory order for each loop nest, and the process may need to be repeated
up to O(m?) times when applying loop fusion. Fortunately, fusion and distribution
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only need to be invoked if the original loop nest cannot be permuted into memory
order. In practice, the loop fusion algorithm is seldomly applied and does not need
to consider many adjacent loop nests. Loop distribution may increase m, the num-
ber of adjacent loop nests, by creating additional loop nests. In the worst case it
can increase m to the number of statements in the program. The increase in the
number of loop nests was negligible in practice; a single application of distribution
never created more than three new nests.

Compilation Time. Accurately estimating the increase in compilation time caused
by applying algorithm Compound is difficult. First, our implementation depends
upon the efficiency of the ParaScope infrastructure [Cooper et al. 1993]. Second,
our implementation on top of ParaScope is not especially efficient. Given these two
caveats, our tests showed a 25% increase in compilation time over just parsing and
dependence analysis when Compound is applied. The time required for algorithm
Compound is only 33% of the time required to apply dependence analysis alone.
We feel that this cost is not prohibitive for highly optimizing compilers.

3.5.1 Ezample: Cholesky Factorization. Consider optimizing the Cholesky Fac-
torization kernel in Figure 11(a). Notice that there are references to A(K,K) nested
at different levels. Since these references have temporal locality, RefGroup places
them in the same group. LoopCost then uses the most deeply nested reference to
compute the cost in cache lines of A(K,K). For the entire nest, LoopCost selects KJI
as the best loop organization and ranks the nests from lowest cost to highest (KJI,
JKI, K1J, IKJ, JIK, [IJK). Compound then tries to achieve this loop organization.

Because KJI cannot be achieved with permutation alone, and fusion is of no help
here, Compound calls Distribute. Since the loop 1s of depth 3, Distribute starts by
testing distribution at depth 2, the I loop. S and Ss go into separate partitions
(there is no recurrence between them at level 2 or deeper). Memory order of Ss is
KJI. Distribution of the I loop places S3 alone in a 1J nest where I and J may be
legally interchanged into memory order, as shown in Figure 11(b). Note that our
system handles the permutation of both triangular and rectangular nests.

To gather performance results for Cholesky, we generated all possible loop per-
mutations; they are all legal. For each permutation, we applied the minimal amount
of loop distribution necessary. (Wolfe enumerates these loop organizations [Wolfe
1991].) Compared to matrix multiply, there are more variations in observed and
predicted behavior. These variations are due to the triangular loop structure; how-
ever, Compound still attains the loop structure with the best performance.

4. EXPERIMENTAL RESULTS

To validate our optimization strategy, we implemented our algorithms, executed the
original and transformed program versions on our test suite, and simulated cache
hit rates. We measured execution times on two architectures: the IBM RS/6000
model 540 and the HP PA-RISC model 715/50. To measure our ability to improve
locality, we also determined (for our memory model) the best locality achievable
through loop transformations in the ideal case, assuming correctness could be ig-
nored. We collected statistics on the data locality in the original, transformed, and
tdeal programs. These statistics use the cache configuration of the IBM RS/6000.
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(a) {KIJ form}
DO K=1,N
S1 A(KK) = SQRT(A(K,K))
DO I=K+1,N
S A(LK) = A(LK)/A(K,K)
DO J=K+1,I
Ss A(LY) = A(LI)-A(LK)*A(J.K)

(b) U {KJIform} Loop Distribution & Triangular Interchange |
DO K=1,N
A(K.K) = SQRT(A(K,K))
DO I=K+1,N
A(LK)=A(LK)/A(K,K)
DO J=K,N
DO T=J+1,N
A(LI+1) = A(LI41)-A(LK)*A(J41,K)

LoopCost
Refs K J I
A(K,K) n*n — 1*n
A(LK) n o n? 1% n? %n*rﬁ
A(LT) 1% n? n*n? %n*rﬁ
A(JK) n o n? %n*rﬁ 1%n?
total | 2n° + 2n2 %ng’ + n? %ng’ +n24+n
Sy total 2n? — %n2 +n
S3 total 2n% 4+ n? %ng’ + n? %ng’ + n?
12 Execution times (in seconds) vs. Loop Organization

10

I

N

KJI JKI KIJ IKJ JIK IJK KIJI JKI KIJ IKJ JIK IJK KJI JKI KIJ IKJ JIK IJK

Sun Sparc2 Intel 1860 IBM RS/6000

Fig. 11.  Cholesky factorization.
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4.1 Methodology

We implemented the cost model, the transformations, and the algorithms described
above in Memoria, the memory compiler in the ParaScope Programming Environ-
ment [Carr 1992; Carr and Kennedy 1994b; Cooper et al. 1993; Kennedy et al.
1993]. Memoria is a source-to-source translator that analyzes Fortran programs
and transforms them to improve their cache performance. To increase the preci-
sion of dependence analysis, we perform auxiliary induction variable substitution,
constant propagation, forward expression propagation, and dead-code elimination
using PFC [Allen and Kennedy 1987].> Memoria also determines if scalar expan-
sion will further enable distribution. Since scalar expansion is not integrated in
the current version of the transformer, we applied it by hand when directed by the
compiler. Memoria then used the resulting code and dependence graph to gather
statistics and perform data locality optimizations using the algorithm Compound.

For our test suite, we used 35 programs from the Perfect Benchmarks, the SPEC
benchmarks, the NAS kernels, and some miscellaneous programs. They ranged in
size from 195 to 7608 noncomment lines. Their execution times on the IBM RS/6000
ranged from seconds to a couple of hours.

4.2 Transformation Results

In Table I, we report the results of transforming the loop nests of each program.
For each program, Table T first lists the number of loop nests (N) of depth 2 or
more which were considered for transformation. Mem Order and Inner Loop
columns reflect the percentage of loop nests and inner loops, respectively, that are:

O: originally in memory order,

P: permuted into memory order, or

F: fail to achieve memory order.

These three numbers sum to 100%. The percentage of loop nests in the program
that are in memory order after transformation is the sum of the original and the
permuted entries. Similarly for the inner loop, the sum of the original and the
permuted entries is the percentage of nests where the most desirable innermost
loop is positioned correctly.

Table I also lists the number of times that fusion and distribution were applied
by the compound algorithm. Either fusion, distribution, or both were applied to
22 out of the 35 programs.

In the Loop Fusion column,
C is the number of candidate nests for fusion,
A is the number of nests that were actually fused.

Candidate nests for fusion were adjacent nests, where at least one pair of nests
were compatible. Fusion improved group-temporal locality for these programs; it
did not find any opportunities to enable interchange. There were 229 adjacent loop
nests that were candidates for fusion, and of these, 80 were fused with one or more

5Note that for our execution-time experiments on the HP PA-RISC, we were only able to perform
dependence analysis on the codes because PFC lost its platform (PFC runs on an IBM 370 and
is written in PL/1.)
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Table I.  Memory order statistics.
Mem Order Inner Loop Loop Loop LoopCost
0 | P | F 0 | P | F Fusion Dist Ratio
Prog N percentages % C A D R F I
Perfect Benchmarks
adm 106 52 16 32 53 | 16 31 0 0 1 2 2.5 6.1
arc2d 75 55 28 17 65 | 34 1 35 12 1 2 2.2 4.1
bdna 56 75 18 7 75 18 4 2 3 6 2.3 2.5
dyfsm 80 63 | 15 22 65 19 16 2 1 0 0 3.0 8.6
flo52 76 83 | 17 0 95 5 0 4 1 0 0 1.7 1.7
mdg 12 83 8 8 83 8 8 0 0 0 0 1.1 1.7
mg3d 40 95 3 3 98 0 2 0 0 1 2 1.0 1.1
ocean 56 82 13 5 84 | 13 4 2 1 3 6 2.0 2.2
qed 45 53 | 11 36 58 | 16 15 0 0 0 0 4.9 6.1
spc77 162 64 7 29 66 7 27 0 0 0 0 2.3 5.5
track 32 50 | 16 34 56 | 19 25 2 1 1 2 1.9 7.9
trfd 29 52 0 48 66 0 34 0 0 0 0 1.0 15
SPEC Benchmarks
dnsa7 50 64 | 14 22 74 | 16 10 5 2 1 2 2.0 2.9
doduc 33 6 6 88 6 6 88 0 0 4 | 12 1.8 14
fpppp 8 88 | 12 0 88 | 12 0 0] o 0] o 1.0 1.0
hyd2d 55 100 0 0 100 0 0 44 | 11 0 0 1.0 1.0
m300 2 50 | 50 0 50 | 50 0 0 0 1 2 4.5 4.5
mdp2 1 0 0 | 100 0 0 100 0 0 0 0 1.0 1.0
msp2 1 0 0 | 100 0 0 100 0 0 0 0 1.0 1.0
ora 3 100 0 0 100 0 0 0 0 0 0 1.0 1.0
sucor 36 42 19 39 42 19 39 0 0 4 8 3.5 5.3
$256 8 88 | 12 0 88 | 12 0 0 0 0 0 4.9 4.9
tcatv 6 100 0 0 100 0 0 7 2 0 0 1.0 1.0
NAS Benchmarks
appbt 87 98 0 2 100 0 0 3 1 0 0 1.0 1.2
applu 71 73 3 24 79 6 15 3 1 2 6 1.3 8.0
appsp 84 73 | 12 15 80 | 12 8 8 4 0 0 1.2 4.3
buk 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0
cgm 6 0 0 | 100 0 0 100 0 0 0 0 1.0 2.7
embar 2 50 0 50 50 0 50 0 0 0 0 1.0 1.1
fitpd 18 89 0 11 100 0 0 0 0 0 0 1.0 1.0
mgrid 19 89 | 11 0 100 0 0 3 1 1 2 1.0 1.0
Muiscellaneous Programs
erle 30 83 | 13 4 100 0 0 28 [ 11 0 0 1.0 1.0
Ipckd 4 75 0 25 75 0 25 3 1 0 0 1.0 1.1
simpl 22 86 9 5 86 9 5 6 0 0 2.4 2.7
wave 85 58 | 29 13 65 29 6 70 | 26 0 0 4.2 4.3
total [ 1400 [[ 69 [ 11 [ 20 [ 7411 [ 152290 80 ] 23[s52]] —[] — |
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other nests to improve reuse. Fusion was applicable in 17 programs and completely
fused nests of depth 2 and 3. In Wave and Arc2d, Compound fused 26 and 12 nests
respectively.

In the Loop Dist column,

D is the number of loop nests distributed to achieve better loop permutation,
R is the number of nests that resulted.

The Compound algorithm only applied distribution when it enabled permutation
to attain memory order in a nest or in the innermost loop for at least one of the
resultant nests. Compound applied distribution in 12 of the 35 programs. On 23
nests, distribution enabled loop permutation to position the inner loop or the entire
nest correctly, creating 29 additional nests. In Bdna, Ocean, Applu, and SuZcor,
six or more nests resulted.

LoopCost Ratioin Table I estimates the potential reduction in LoopCost for the
final transformed program (F) and the ideal program (I) over the entire program.
Remember that the ideal program achieves memory order for every nest without
regard to dependence constraints or limitations in the implementation. By ignoring
correctness, it is in some sense the best data locality one could achieve. For the final
and ideal versions, the average ratio of original LoopCost to transformed LoopCost
is listed. This ratio includes loops that Compound did not transform and reveals
the potential for locality improvement.

Memoria may not obtain memory order due to the following reasons: (1) loop
permutation is illegal due to dependences, (2) loop distribution followed by permu-
tation is illegal due to dependences, (3) the loop bounds are too complex, i.e., not
rectangular or triangular. For the 20% of nests where the compiler could not achieve
memory order, 87% were because permutation and then distribution followed by
permutation could not be applied because of dependence constraints. The rest were
because the loop bounds were too complex. More sophisticated dependence tests
may enable the algorithms to transform a few more nests.

4.3 Coding Styles

Imprecise dependence analysis is a factor in limiting the potential for improvements
in our application suite. For example, dependence analysis for the program Cgm
cannot expose potential data locality for our algorithm because of imprecision due
to the use of index arrays. The program Mg3d is written with linearized arrays.
This coding style introduces symbolics into the subscript expressions and again
makes dependence analysis imprecise. The inability to analyze the use of index
arrays and linearized arrays prevents many optimizations and is not a deficiency
specific to our system.

Other coding styles may also inhibit optimization in our system. For example,
Linpackd and Matriz300 are written in a modular style with singly nested loops
enclosing function calls to routines which also contain singly nested loops. To im-
prove programs written in this style requires interprocedural optimization [Cooper
et al. 1993; Hall et al. 1991]; these optimizations are not currently implemented in
our translator.

Many loop nests (69%) in the original programs are already in memory order,
and even more (74%) have the loop carrying the most reuse in the innermost posi-
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tion. This result indicates that scientific programmers often pay attention to data
locality; however, there are many opportunities for improvement. Qur compiler was
able to permute an additional 11% of the loop nests into memory order, resulting
in a total of 80% of the nests in memory order and a total of 8% of the inner loops
in memory order position. Memoria improved data locality for one or more nests
in 66% of the programs.

4.4 Successful Transformation

We illustrate our ability to transform for data locality by program in Figures 13
and 12. The figures characterize the programs by the percentage of their nests
and inner loops that are originally in memory order and that we transform into
memory order. In Figure 13, half of the original programs have fewer than 70%
of their nests in memory order. In the transformed versions, 29% have fewer than
70% of their nests in memory order. Over half now have 80% or more of their nests
in memory order. The results in Figure 12 are more dramatic. The majority of the
programs now have 90% or more of their inner loops positioned correctly for the
best locality (according to our memory model). Our transformation algorithms can
thus determine and achieve memory order in the majority of nests and programs.

Unfortunately, our ability to successfully transform programs may not result in
run-time improvements for several reasons: data sets for these benchmark programs
tend to be small enough to fit in cache; the transformed loop nests may be CPU
bound instead of memory bound; and the optimized portions of the program may
not significantly contribute to the overall execution time.

4.5 Performance Results

In Figure 14, we present the performance of our test suite running on an IBM
RS/6000 model 540 with a 64KB cache, 4-way set-associative replacement policy
and 128-byte cache lines. In Figure 15, we present the performance of our test
suite on an HP 715/50 with a 64KB direct-mapped cache with 32-byte cache lines.
Figures 14 and 15 present detailed results for four kernels from Dnasa: Biriz,
Emit, Gmiry, and Vpenta. Results are reported in normalized execution time with
the base time of 100 not indicated. The arithmetic mean in each figure includes
only those programs shown in the bar graph. On both machines, we used the
standard Fortran 77 compiler with the -O option to compile both the original
program and the version produced by our automatic source-to-source transformer.
All applications successfully compiled and executed on the RS/6000. Applications
Flo52 and Wave did not compile and run on the HP. For those applications not
listed in Figure 14 and Figure 15, no performance improvement or degradation
occurred.

Figure 14 and Figure 15 show a number of applications with significant perfor-
mance improvements: Arc2d, Dnasa7 (Btriz, Emit, Gmtry, Vpenta), Appsp, and
Simple. These results indicate that data locality optimizations are particularly
effective for scalarized vector programs, since these programs are structured to
emphasize vector operations rather than cache-line reuse. However, the predicted
improvements did not materialize for many of the programs. To explore these
results, we simulated cache behavior to determine cache hit rates for our test suite.
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We simulated cachel, an RS/6000 cache (64KB, 4-way set-associative, 128-byte
cache lines), and cache2, an 1860 cache (8KB, 2-way set-associative, 32-byte cache
lines).® The 1860 cache was chosen to reveal the potential of our optimizations on a
small cache. For each program and cache, we determined the change in the hit rates
both for just the optimized procedures and for the entire program. Table II presents
these rates. Small variations in cache hit rates after program transformations can
be caused by changes in cache interference and code generation. Places where the
compiler affected cache hit rates by > 0.1% are emboldened for greater emphasis.
For the Final columns we chose the better of the fused and unfused versions for
each program.

As illustrated in Table II, the reason more programs did not improve on the
RS/6000 is due to high hit ratios in the original programs caused by small data set
sizes. When the cache is reduced to 8KB, the optimized portions have more signif-
icant improvements. For instance, whole program hit rates for Dnasa7 and Appsp
show significant improvements after optimization for the smaller cache even though
they barely changed in the larger cache. Our optimizations obtained improvements
in whole program hit rates for Adm, Arc2d, Dnasa7, Hydro2d, Appsp, Erlebacher,
Simple, and Wave. Improvements in the optimized loop nests were more dramatic.
The improvements did not always carry over to the entire program, since the un-
optimized nests may still dominate the execution time.

We measured hit ratios both with and without applying loop fusion. For the 8KB
cache, fusion improved whole program hit rates for Hydro2d, Appsp, and Erlebacher
by 0.51%, 0.24%, and 0.95%, respectively. We were surprised to improve Linpackd’s
performance with fusion by 5.3% on the subroutine matgen and by 0.02% for the
entire program. Matgen 1s an initialization routine whose performance is not usu-
ally measured. Unfortunately, fusion also lowered hit rates in Track, Dnasa?7, and
Wave; the degradation may be due to added cache conflict and capacity misses after
loop fusion. To recognize and avoid these situations requires cache capacity and
interference analysis similar to that performed for evaluating loop tiling [Coleman
and McKinley 1995; Lam et al. 1991]. Because our fusion algorithm only attempts
to optimize reuse at the innermost loop level, it may sometimes merge array refer-
ences that interfere or overflow cache. We intend to correct this deficiency in the
future.

Our results are very favorable when compared to Wolf’s results, though direct
comparisons are difficult because he combines tiling with cache optimizations and
reports improvements only relative to programs with scalar replacement [Wolf 1992].
Wolf applied permutation, skewing, reversal, and tiling to the Perfect Benchmarks
and Dnasa7 on a DECstation 5000 with a 64KB direct-map cache. His results show
performance degradations or no change in all but Adm, which showed a small (1%)
improvement in execution time. Our transformations did not degrade performance
on any of the Perfect programs, and performance of Arc2d was significantly im-
proved.

8 Carr and Wu [1995] also simulate an HP-style cache, but their results are similar to the RS/6000.
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Table II.  Simulated cache hit rates.
Optimized Procedures Whole Program
Cache 1 Cache 2 Cache 1 Cache 2
Program Orig |Final || Orig |Final Orig | Final || Orig |Final
Perfect Benchmarks

adm 100 |100 97.7 [97.8 |[99.95 [99.95 ||98.48 |98.58
arc2d 89.0 (98.5 [|68.3 (91.9 [|95.30 |98.66|/88.58 |93.61
bdna 100 |100 100 |100 99.45 199.45 ||97.32 [97.32
dyfesm 100 |100 100 |100 99.98 199.97 ||97.02 [96.95
flo52 99.6 [99.6 ||96.7 |96.3 (|98.77 |98.77 [|93.84 |93.80
mdg 100 |100 87.4 (874

mg3d 98.8 [99.7 ||95.3 |98.7

ocean 100 |100 93.0 [92.8 |[99.36 [99.36 |[93.71 |93.72
qcd 100 |100 100 |100 99.83 199.83 ||98.85 [98.79
specT7 100 |100 100 |100 99.28 199.28 ||93.79 [93.78
track 100 |100 100 |100 99.81 |99.81 ||97.49 [97.54
trid 99.9 [99.9 |(93.7 |93.7 [|99.92 [99.92 [|96.43 |96.40

SPEC Benchmarks
dnasa7 83.2 [92.7 ||54.5 |73.9 [|99.26 |99.27 ||85.45 |88.76
doduc 100 |100 95.5 [95.5 |[99.77 [99.77 |[95.92 |95.92
fpppp 100 |100 100 |100 99.99 199.99 ||98.34 |98.34
hydro2d 97.9 [98.3 |[90.2 |91.9 (|98.36 |98.48(/92.77 |93.28
matrix300(/99.7 [99.7 |[{91.6 |92.1 ||93.26 [93.26 ||81.66 |81.67
su2cor 100 |100 99.2 (99.8 ||98.83 [98.83 |[70.41 |70.41
swm256 100 |100 100 |100 98.83 |98.84 ||81.00 |81.11
tomcatv 97.8 [97.8 |[87.3 |87.3 [|99.20 [99.20 [|95.26 |95.25
NAS Benchmarks
applu 99.9 [99.9 |(99.4 |99.4 (|99.38 |99.36 [|97.22 |97.14
appsp 90.5 (92.9 [|88.5 [89.0 [|99.33 |99.39 ||96.04 (96.43
mgrid 99.3 (99.8 [|91.6 [92.1 [|99.65 |99.65 ||96.04 |96.04
Miscellaneous Programs
erlebacher||99.4 {99.8 |[94.0 [96.8 ||98.00 [98.25((92.11 |93.36
linpackd 98.7 (100 |[94.7 |100 |(|98.93 |98.94 [|95.58 |95.60
simple 91.0 [99.1 ||84.3 |93.7 (|97.35 |99.34(/93.33 |95.65
wave 98.2 (99.9 |[82.9 |95.9 (|99.74 |99.82|87.31 |88.09
Cachel: 64KB cache, 4-way, 128-byte cache line (RS/6000);
Cache2: 8KB cache, 2-way, 32-byte cache line (i860);

cold misses are not included.




Improving Data Locality with Loop Transformations . 25

Our results on the routines in Dnasa7 are similar to Wolf’s; both showing im-
provements on Biriz, Gmiry, and Vpenta. Wolfimproved Mzm by about 10% on the
DECstation, but slightly degraded performance on the 1860. Wolf slowed Cholesky
by about 10% on the DECstation and by a slight amount on the i860. We neither
improve or degrade either kernel. More direct comparisons are not possible because
Wolf does not present cache hit rates, and the execution times were measured on
different architectures.

4.6 Data Access Properties

To further interpret our results, we measured the data access properties for our
test suite. We report the data access properties for the inner loops on the original
(orig), ideal memory order, and final versions of the programs in Tables ITT and V.
Locality of Reference Group classifies the percentage of RefGroups displaying
each form of self-reuse as invariant (I), unit-stride (U), or none (N). (G) contains
the percentage of RefGroups constructed partly or completely using group-spatial
reuse. The amount of group reuse is indicated by measuring the average number of
references in each RefGroup (Refs/Group), where a RefGroup size greater than 1
implies group-temporal reuse and occasionally group-spatial reuse. The amount of
group reuse is presented for each type of self-reuse and their average (Avg). The
LoopCost Ratio column estimates the potential improvement as an average (Avg)
over all the nests, and a weighted average (Wt) uses nesting depth. The last row
contains the totals for all the programs.

Table TIT reveals that each of the applications we improved (Arc2d, Dnasa7,
Appsp, Simple, and Wave) had a significant gain in self-spatial reuse (Unit) on the
inner loop over the original program. Spatial locality was the key to getting good
cache performance. Although programmers can make the effort to ensure unit-
stride access in their applications, we have shown that our optimization strategy
makes this unnecessary. By having the compiler compute the machine-dependent
loop ordering, a variety of coding styles can be run efficiently without additional
programmer effort.

The all programs row in Table IV indicates that on average fewer than two
references exhibited group-temporal reuse in the inner loop, and no references dis-
played group-spatial reuse. Instead, most programs exhibit self-spatial reuse. For
many programs (e.g., Adm, Trfd, Dnasa7, Embar), the ideal program exhibits sig-
nificantly more invariant reuse than the original or final. Invariant reuse typically
occurs on loops with reductions and time-step loops that are often involved in re-
currences and cannot be permuted. Our analysis usually determines that spatial
reuse 1s of more benefit than temporal reuse when they are carried on different
loops. In some cases, tiling may be able to exploit invariant reuse carried by outer
loops and continue to benefit from the spatial reuse carried by inner loops.

4.7 Analysis of Individual Programs

Below, we examine Arc2d, Simple, Gmiry (three of the applications that we im-
proved), and Applu (the only application with a degradation in performance). We
note specific coding styles that our system effectively ported to the RS/6000 and
HP PA-RISC.
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Table III.  Data access properties.

Locality of Reference Groups LoopCost
% Groups Refs/Group Ratios
Program I | U | N | Gp I | U | N | Avg | Avg Wt
Perfect Benchmarks

adm orig 4 70 26 0 1.04 | 1.39 | 1.34 | 1.36
final 5 83 12 0 1.03 | 1.38 | 1.32 1.36 2.54 2.68
ideal | 19 77 4 0 1.50 | 1.32 | 1.10 | 1.34 6.10 6.24

arc2d orig 3 53 44 1 1.53 | 1.23 | 1.26 | 1.25
final 3 77 20 0 2.12 1.34 | 1.00 | 1.29 2.21 2.16
ideal | 14 66 20 0 1.72 1.31 1.00 | 1.30 4.14 4.73

bdna orig 2 62 36 0 2.00 | 1.08 | 1.04 | 1.08
final 2 64 34 0 2.00 | 1.08 | 1.03 | 1.08 2.31 2.24
1deal 5 61 34 0 1.52 1.07 | 1.03 | 1.08 2.51 2.44

dyfesm orig 8 55 37 0 1.19 | 1.20 | 1.25 | 1.21
final | 12 61 27 0 1.44 | 1.15 | 1.25 1.21 3.08 3.06
ideal | 22 60 18 0 1.46 | 1.17 | 1.05 1.21 8.62 9.93

flo52 orig 1 92 7 0 1.50 | 1.38 | 1.00 | 1.35
final 1 94 5 0 1.50 | 1.37 | 1.00 | 1.35 1.72 1.79
1deal 1 94 5 0 1.50 | 1.37 | 1.00 | 1.35 1.72 1.79

mdg orig 1 75 24 0 2.00 | 1.14 | 1.00 | 1.12
final 0 76 24 0 0 1.16 | 1.00 | 1.12 1.11 1.09
1deal 1 78 21 0 1.00 | 1.15 | 1.00 | 1.12 1.70 1.63

mg3d orig 0 4 96 0 0 1.26 | 1.00 | 1.01
final 0 4 96 0 0 1.26 | 1.00 | 1.01 1.00 1.00
1deal 0 4 96 0 1.00 | 1.27 | 1.00 | 1.01 1.13 1.12

ocean orig 0 56 44 0 0 1.07 | 1.00 | 1.04
final 0 69 31 0 0 1.06 | 1.00 | 1.04 2.05 2.16
1deal 2 67 31 0 1.33 | 1.05 | 1.00 | 1.04 2.20 2.30

qed orig | 34 42 24 0 227 | 1.22 | 1.53 | 1.65
final | 43 47 10 0 2.03 | 1.28 | 1.75 1.65 3.71 3.73
ideal | 51 40 9 0 2.05 1.10 | 1.86 | 1.65 6.40 6.65

spec77? orig 5 42 53 0 1.57 | 1.56 | 1.37 | 1.46
final | 10 43 47 0 3.00 | 1.58 | 1.04 | 1.46 3.22 3.10
ideal | 25 33 42 0 2.00 | 1.59 | 1.00 | 1.45 5.59 5.60

track orig 7 75 18 0 1.40 | 1.09 | 1.23 | 1.14
final 7 81 12 0 1.20 | 1.15 | 1.00 | 1.14 1.99 1.84
ideal | 36 60 4 0 1.19 | 1.11 1.00 | 1.14 7.95 9.68

trfd orig 7 62 31 2 1.50 | 1.28 | 1.00 | 1.21
final 7 62 31 2 1.50 | 1.28 | 1.00 | 1.21 1.00 1.00
ideal | 52 34 14 2 1.40 | 1.00 | 1.00 | 1.21 14.81 17.34

SPEC Benchmarks

dnasa7 orig 5 48 47 0 1.41 | 1.48 | 1.16 | 1.33
final 8 57 35 0 1.33 | 1.48 | 1.10 | 1.34 2.08 2.27
ideal | 35 37 28 0 1.61 1.27 | 1.07 | 1.34 2.95 3.33

doduc orig | 10 2 88 0 1.24 | 1.33 | 1.17 | 1.18
final 7 63 30 0 1.00 | 1.29 | 1.00 | 1.18 5.44 5.44
1deal 7 64 29 0 1.00 | 1.28 | 1.00 | 1.18 5.45 5.45

fpppp orig 0 4 96 0 0 1.00 | 1.00 | 1.00
final 0 5 95 0 0 1.00 | 1.00 | 1.00 1.03 1.03
1deal 0 5 95 0 0 1.00 | 1.00 | 1.00 1.03 1.03

matrix300 orig 0 75 25 0 0 1.00 | 1.00 | 1.00
final 0 100 0 0 0 1.00 0 1.00 4.50 4.50
1deal 0 100 0 0 0 1.00 0 1.00 4.50 4.50

tomcatv orig 2 70 28 0 1.00 | 1.24 | 1.00 | 1.17
final 2 70 28 0 1.00 | 1.24 | 1.00 | 1.17 1.00 1.00
1deal 2 70 28 0 1.00 | 1.24 | 1.00 | 1.17 1.00 1.00
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Table IV. Data access properties.
Locality of Reference Groups LoopCost
% Groups Refs/Group Ratios
Program I J]U|N]J]G| I | U] N |Avg|Avg| Wt
NAS Benchmarks

appbt orig 0 17 | 83 | 0 0 1.04 | 1.00 | 1.01
final 0 17 | 83 0 0 1.04 | 1.00 | 1.01 1.00 1.00
1deal 0 17 | 83 0 1.67 | 1.03 | 1.00 | 1.01 1.26 1.38

applu orig 0 26 | 74 | O | 2.00 | 1.05 | 1.06 | 1.06
final 1 27 | 72 0 1.25 1.06 | 1.06 | 1.06 | 1.35 1.50
1deal 8 23 | 69 0 1.45 1.07 | 1.01 1.06 | 8.03 | 10.06

appsp orig 0 38 | 62 0 0 1.04 | 1.08 | 1.06
final 0 49 | 51 0 0 1.03 | 1.09 | 1.06 | 1.25 1.24
1deal 8 44 | 48 0 1.49 | 1.03 | 1.02 1.06 | 4.34 4.43

buk orig 0 0 0 0 0 0 0 0 0

final 0 0 0 0 0 0 0 0 1.00 1.00
1deal 0 0 0 0 0 0 0 0 1.00 1.00

cgm orig 0 38 | 62 0 0 1.10 | 1.00 | 1.04
final 0 38 | 62 0 0 1.10 | 1.00 | 1.04 | 1.00 1.00
ideal | 38 0 62 0 1.10 0 1.00 | 1.04 | 2.75 2.62

embar orig 0 50 | 50 | O 0 1.00 | 1.00 | 1.00
final 0 50 | 50 0 0 1.00 | 1.00 | 1.00 | 1.00 1.00
ideal | 50 0 50 0 1.00 0 1.00 | 1.00 | 1.12 1.12

fitpde orig 0 72 28 0 0 1.02 | 1.00 | 1.01
final 0 72 28 0 0 1.02 | 1.00 | 1.01 1.00 1.00
1deal 0 72 28 0 0 1.02 | 1.00 | 1.01 1.00 1.00

mgrid orig 15 56 | 29 0 1.12 1.97 | 1.00 | 1.56
final | 15 56 | 29 0 1.12 1.97 | 1.00 | 1.56 | 1.00 1.00
ideal | 15 56 | 29 0 1.12 1.97 | 1.00 | 1.56 | 1.00 1.00

Muiscellaneous Programs

erlebacher orig | 23 | 8 | 20 | O | 1.22 | 1.52 | 1.55 147
final | 23 | 82 20 0 1.22 1.52 | 1.55 147 1.00 1.00
ideal | 23 | 82 20 0 1.22 1.52 | 1.55 147 1.00 1.00

linpackd orig 0 55 | 45 | O 0 1.00 | 1.05 | 1.02
final 0 55 | 45 0 0 1.00 | 1.05 1.02 1.00 1.00
1deal 0 57 | 43 0 0 1.04 | 1.00 | 1.02 1.10 1.10

simple orig 0 93 7 0 0 2.25 | 1.85 | 2.22
final 0 98 2 0 0 2.26 | 1.00 | 2.23 | 2.48 2.48
1deal 1 a7 2 0 1.50 | 2.27 | 1.00 | 2.23 | 2.72 2.72

wave orig 6 47 | 47 1 1.95 | 1.48 | 1.27 | 1.41
final 1 71 28 0 2.00 | 1.55 | 1.02 1.41 4.26 4.25
1deal 3 70 | 27 0 1.63 | 1.55 | 1.01 1.41 4.30 4.28

all orig 3 37 | 60 0 1.53 | 1.26 | 1.15 1.23
final 3 44 | 53 0 1.52 1.27 | 1.05 1.23 — —
1deal 8 41 51 0 1.23 | 1.26 | 1.03 | 1.23 — —
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Arc2d 1s a fluid-flow solver from the Perfect Benchmarks. The main computa-
tional routines exhibit poor cache performance due to nonunit stride accesses. The
main computational loop is an imperfect loop nest with four inner loops, two with
nesting depth 2 and two with nesting depth 3. Our algorithm is able to achieve a
factor of 6 improvement on the main loop nest by attaining unit-stride accesses to
memory in the two loops with nesting depth 3. This improvement alone accounted
for a factor of 1.9 on the whole application. The additional improvement illustrated
in Figure 14 is attained similarly by improving less time-critical routines. Qur op-
timization strategy obviated the need for the programmer to select the “correct”
loop order for performance.

Simple is a two-dimensional hydrodynamics code. It contains two loops that
are written in a “vectorizable” form (i.e., a recurrence is carried by the outer loop
rather than the innermost loop). These loops exhibited poor cache performance.
Compound reorders these loops for data locality (both spatial and temporal) rather
than vectorization to achieve the improvements shown in Figure 14. In this case,
the improvements in cache performance far outweigh the potential loss in low-level
parallelism when the recurrence is carried by the innermost loop. To regain any
lost parallelism, unroll-and-jam can be applied to the outermost loop [Callahan
et al. 1988; Carr and Kennedy 1994a]. Finally, it is important to note that the
programmer was allowed to write the code in a form for one type of machine and still
attain machine-independent performance through the use of compiler optimization.

Gmtry, a SPEC benchmark kernel from Dnasa?, performs Gaussian elimination
across rows, resulting in no spatial locality. Although this structure may have
been how the author viewed Gaussian elimination conceptually, 1t translated to
poor performance. Distribution and permutation achieved unit-stride accesses in
the innermost loop. The programmer is therefore allowed to write the code in a
form that she or he understands, while the compiler handles the machine-dependent
performance details.

Applu suffers from a tiny degradation in performance only on the RS/6000 (2%).
The two leading dimensions of the main data arrays are very small (5 x 5). While
our model predicts better performance for unit-stride access to the arrays, the small
array dimensions give the original reductions in the inner loop better performance
on the RS/6000. Locality within the two innermost loops is not a problem.

5. RELATED WORK

Abu-Sufah [1979] first discussed applying compiler transformations based on data
dependence (e.g., loop interchange, fusion, distribution, and tiling) to improve pag-
ing. In this article, we extend and validate recent research to integrate optimiza-
tions that target parallelism and the memory hierarchy [Kennedy and McKinley
1992]. We extend the original cost model to capture more types of reuse. The only
transformation they perform is loop permutation, whereas we integrate permuta-
tion, fusion, distribution, and reversal into a comprehensive approach and present
extensive experimental results.

Our approach has several advantages over previous research. We measure both
the effectiveness of our approach and, unlike other optimization studies, the inherent
data locality characteristics of programs and our ability to exploit them. Our work
is applicable to a wider range of programs because we do not require perfect nests
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or nests that can be made perfect with conditionals [Ferrante et al. 1991; Gannon
et al. 1988; Li and Pingali 1992; Wolf and Lam 1991]. Tt is also quicker, both in
the expected and worse case.

Previous research focused on evaluating data locality when given a loop permu-
tation [Ferrante et al. 1991; Gannon et al. 1988]. Since they must evaluate a given
permutation, they may consider up to n! loop permutations (though n is typically
small) in order to find the loop permutation which yields the best data locality.
(Neither paper specifies an algorithm for generating a smaller search space.) In
comparison, our approach evaluates the reuse carried by each loop and directly
determines the best loop permutation. Since evaluation is the most expensive step,
we expect our algorithm will be much faster in practice. Our algorithm is also the
first to combine loop fusion and distribution with loop permutation.

Wolfand Lam [1991] use unimodular transformations (a combination of permuta-
tion, skewing, and reversal) and tiling with estimates of temporal and spatial reuse
to 1improve data locality. They prune their search space by ignoring loops that
do not carry reuse and loops that cannot be permuted due to legality constraints,
but may still have many legal loop organizations remaining whose locality must be
evaluated. Their memory model is potentially more precise than ours because it
directly calculates reuse across outer loops; however, it may be less precise because
it ignores loop bounds even when they are known constants.

Wolf and Lam’s evaluation is performed on the Perfect Benchmarks and routines
in Dnasa7 in the SPEC Benchmarks, a subset of our test suite [Wolf and Lam
1991; Wolf 1992]. Tt is difficult to directly compare our experiments because their
cache optimization results include tiling and scalar replacement and are executed
on a different processor. However, we improve a few more programs/routines than
they do. In addition, their cache optimizations degrade six programs/routines, in
one case by 20%. We degrade only one program by a slight 2%; Applu from the
NAS Benchmarks. In Wolf and Lam’s experiments, skewing was never needed, and
reversal was seldom applied [Wolf 1992]. We therefore chose not to include skewing,
even though (1) it is implemented in our system [Kennedy et al. 1993] and (2) our
model can drive it. We did integrate reversal, but it did not help to improve locality.

Li and Pingali [1992] use linear transformations (any linear mapping from one
loop nest to another loop nest) to optimize for both data locality and parallelism.
They do not propose exhaustive search, since the search space becomes infinite, but
transform the loop nest based on certain references in the program. They give no
details of their heuristic to order loops for locality. We therefore offer no comparison
on effectiveness or complexity.

Applying an exhaustive search approach i1s not practical when including loop
fusion and distribution because they create and combine loop nests. Fusion for
improving reuse is by itself NP-hard [Kennedy and McKinley 1993]. By driving
heuristics with a cache model, our algorithms are efficient and usually find the best
loop organization for data locality using permutation, fusion, and distribution.

When compared with previous work [Gannon et al. 1988; Wolfand Lam 1991], our
cache model loses precision in the RefGroup and LoopCost algorithms because of
simplifying assumptions about outer loops. Because our algorithms do not consider
the order of outer loops, they miss loop invariance when it spans multiple inner
loops. In practice, this inaccuracy does not affect our ability to derive the best loop
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organization, since the algorithms find and compare invariance and other forms of
reuse precisely for innermost loops. If we cannot position the best inner loop, we
may miss a better outer loop organization. But this imprecision is exactly what
enables us to achieve a single evaluation step and lower algorithmic complexity.
It is an open question whether a more precise cache model will yield performance
improvements in practice for real applications.

6. TILING

Permuting loops into memory order maximizes estimated short-term cache-line
reuse across iterations of inner loops. The compiler can also apply loop tiling,
a combination of strip-mining and loop interchange, to capture long-term invariant
reuse at outer loops [Coleman and McKinley 1995; Irigoin and Triolet 1988; Lam
et al. 1991; Wolf and Lam 1991; Wolfe 1987]. Tiling must be applied judiciously
because it affects scalar optimizations, increases loop overhead, and may decrease
spatial reuse at tile boundaries. Qur cost model provides us with the key insight to
guide tiling—the primary criterion for tiling is to create loop-invariant references
with respect to the target loop. These references access significantly fewer cache
lines than both consecutive and nonconsecutive references, making tiling worth-
while despite the potential loss of spatial reuse at tile boundaries. For machines
with long cache lines, it may also be advantageous to tile outer loops if they carry
many unit-stride references, such as when transposing a matrix. In the future, we
intend to study the cumulative effects of optimizations presented in this article with
tiling, unroll-and-jam, and scalar replacement.

7. CONCLUSION

This article presents a comprehensive approach to improving data locality and is
the first to combine loop permutation, fusion, distribution, and reversal into an
integrated algorithm. Because we accept some imprecision in the cost model, our
algorithms are simple and inexpensive in practice, making them ideal for use in
a compiler. More importantly, the simplifying assumptions used in our model
do not appear to hinder the compiler’s ability to exploit data locality for scientific
applications. The empirical results presented in this article validate the accuracy of
our cost model and algorithms for selecting the best loop structure for data locality.
In addition, they show this approach has wide applicability for existing Fortran
programs regardless of their original target architecture, particularly for vector and
Fortran 90 programs. We believe this is a significant step toward achieving good
performance with machine-independent programming.
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