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2 � McKinley, et al.programs. Data locality is the property that references to the same memory locationor adjacent locations are reused within a short period of time.Caches also have an impact on programming; programmers substantially enhanceperformance by using a style that ensures more memory references are handled bythe cache. Scienti�c programmers expend considerable e�ort at improving local-ity by structuring loops so that the innermost loop iterates over the elements of acolumn, which are stored consecutively in Fortran. This task is time consuming,tedious, and error prone. Instead, achieving good data locality should be the re-sponsibility of the compiler. By placing the burden on the compiler, programmerscan get good uniprocessor performance even if they originally wrote their programfor a vector or parallel machine. In addition, programs will be more portablebecause programmers will be able to achieve good performance without makingmachine-dependent source-level transformations.1.1 Optimization FrameworkBased on our experiments and experiences, we believe that compiler optimizationsto improve data locality should proceed in the following order:(1) Improve order of memory accesses to exploit all levels of the memory hierarchythrough loop permutation, fusion, distribution, skewing, and reversal. Thisprocess is mostly machine independent and requires knowledge only of thecache line size.(2) Fully utilize the cache through tiling, a combination of strip-mining and looppermutation [Irigoin and Triolet 1988]. Knowledge of the data size, cache size,and cache line size is essential [Coleman and McKinley 1995; Lam et al. 1991].Higher degrees of tiling can be applied to exploit multilevel caches, the TLB,etc.(3) Promote register reuse through unroll-and-jam (also known as register tiling)and scalar replacement [Callahan et al. 1990; Carr and Kennedy 1994a]. Thenumber and type of registers available are required to determine the degree ofunroll-and-jam and the number of array references to replace with scalars.In this article, we concentrate on the �rst step. Our algorithms are complementaryto and in fact improve the e�ectiveness of optimizations performed in the lattertwo steps [Carr 1992]. However, the other steps and interactions between steps arebeyond the scope of this article.1.2 OverviewWe present a compiler strategy based on an e�ective, yet simple, model for esti-mating the cost of executing a given loop nest in terms of the number of cacheline references. This article extends previous work [Kennedy and McKinley 1992]with a slightly more accurate memory model. We use the model to derive a loopstructure which results in the fewest accesses to main memory. To achieve this loopstructure, we use a compound loop transformation algorithm that consists of looppermutation, fusion, distribution, and reversal. The algorithm is implemented in asource-to-source Fortran 77 translator.We present extensive empirical results for kernels and benchmark programs thatvalidate the e�ectiveness of our optimization strategy. They reveal programmers



Improving Data Locality with Loop Transformations � 3often use programming styles with good locality. We measure both inherent data lo-cality characteristics of scienti�c programs and our ability to improve data locality.When the cache miss rate for a program is nonnegligible, we show there are usuallyopportunities to improve data locality. Our optimization algorithm takes advantageof these opportunities and consequently improves performance. As expected, looppermutation plays the key role. In addition, loop fusion and distribution can pro-duce signi�cant improvements. Our algorithms never found an opportunity whereloop reversal could improve locality.2. BACKGROUNDIn this section, we characterize data reuse and present our data locality cost model.2.1 Data DependenceWe assume the reader is familiar with concept of data dependence [Kuck et al. 1981;Go� et al. 1991]. ~� = f�1 : : : �kg is a hybrid distance/direction vector with the mostprecise information derivable. It represents a data dependence between two arrayreferences, corresponding left to right from the outermost loop to innermost loopenclosing the references. Data dependences are loop-independent if the accesses tothe same memory location occur in the same loop iteration; they are loop-carriedif the accesses occur on di�erent loop iterations.2.2 Sources of Data ReuseThe two sources of data reuse are temporal reuse, multiple accesses to the samememory location, and spatial reuse, accesses to nearby memory locations that sharea cache line or a block of memory at some level of the memory hierarchy. (Unit-stride access is the most common type of spatial locality.) Temporal and spatialreuse may result from self-reuse from a single array reference or group-reuse frommultiple references [Wolf and Lam 1991]. Without loss of generality, we assumeFortran's column-major storage.Since processor speeds outpace memory by factors ranging from 10 to 100 incurrent uniprocessors, even a single miss in the cache on an inner loop iterationcan degrade performance. Our measure of locality is the number of cache lines aloop nest accesses. We minimize accesses to memory by minimizing the number oftimes a cache line must be fetched from memory.To simplify analysis, we concentrate on reuse that occurs between small numbersof inner loop iterations. Our memory model assumes there will be no con
ict orcapacity cache misses in one iteration of the innermost loop.1 We use the algorithmsRefGroup, RefCost, and LoopCost to determine the total number of cache linesaccessed when a candidate loop l is placed in the innermost loop position. Theresult reveals the relative amounts of reuse between loops in the same nest andacross disjoint nests; it also drives permutation, fusion, distribution, and reversalto improve data locality, thus minimizing the number of cache lines accessed.1Lam et al. [1991] support this assumption.



4 � McKinley, et al.DO K = 2,N-1DO J = 2,N-1DO I = 2,N-1A(I,J,K) = A(I+1,J+1,K) + B(I,J,K) + B(I,J+1,K) + B(I+1,J,K)Reference Groupsfor loop J: for loop I & K:fA(I,J,K)g fA(I,J,K)gfA(I+1,J+1,K)g fA(I+1,J+1,K)gfB(I,J,K), B(I,J+1,K), B(I+1,J,K)g fB(I,J,K), B(I+1,J,K)gfB(I,J+1,K)gFig. 1. RefGroup example.2.3 Reference GroupsOur cost model �rst applies algorithm RefGroup to calculate group-reuse. Tworeferences are in the same reference group if they exhibit group-temporal or group-spatial reuse, i.e., they access the same cache line on the same or di�erent iterationsof an inner loop. This formulation is more general than previous work [Kennedyand McKinley 1992], but slightly more restrictive than uniformly generated ref-erences [Gannon et al. 1988]. The goal of the RefGroup algorithm is to avoidovercounting cache lines accessed by multiple references that generally access thesame set of cache lines.RefGroup. Two references Ref1 and Ref2 belong to the same reference group withrespect to loop l if:(1) 9 Ref1 ~� Ref2 and(a) ~� is a loop-independent dependence or(b) �l is a small constant d (jdj � 2) and all other entries are zero,(2) or, Ref1 and Ref2 refer to the same array and di�er by at most d0 in the �rstsubscript dimension, where d0 is less than or equal to the cache line size interms of array elements. All other subscripts must be identical.Condition (1) accounts for group-temporal reuse, and condition (2) detects mostforms of group-spatial reuse. Note that a reference can be in only one referencegroup, since algorithm RefGroup puts a reference in a group if it meets eitherConditions (1) or (2) with any other reference in the group. We specify jdj � 2in our implementation because previous work on dependence testing found fewconstant distances greater than 2 [Go� et al. 1991]. In addition, given a cache linesize of at least 2 elements and jdj � 2, the references will only require at most 2cache lines.Consider the example nest in Figure 1. Because the two references to A fail allthe tests, regardless of the loop, RefGroup always places them in distinct groups.For the J loop, B(I,J,K) and B(I,J+1,K) satisfy condition (1b), and B(I,J,K) andB(I+1,J,K) satisfy condition (2). Thus for the J loop, all three references to B arein the same group, even though B(I,J+1,K) and B(I,J+1,K) do not satisfy any of theconditions. Since the I and K loops do not carry the dependence between B(I,J,K)



Improving Data Locality with Loop Transformations � 5Input: L = fl1; : : : ; lng a loop nest with headers lbl; ubl; steplR = f Ref1; : : : ; Refmg representatives from each reference grouptripl = (ubl � lbl + stepl)=steplcls = the cache line size in data items,coe�(f;il) = the coe�cient of the index variable il in the subscript fstride(f1; il; l) = j stepl � coe�(f1; il)jOutput:LoopCost(l) = number of cache lines accessed with l as innermost loopAlgorithm:LoopCost(l) = mXk=1 (RefCost(Refk(f1(i1; : : : ; in); : : : ; fj(i1; : : : ; in)); l))Yh6=l triphRefCost(Refk, l) = 1 if ((coe�(f1; il) = 0) ^ : : :^ Invariant(coe�(fj; il) = 0))tripl� clsstride(f1;il;l)� if ((stride(f1; il; l) < cls)^ Unit(coe�(f2; il) = 0) ^ : : :^(coe�(fj; il) = 0))tripl otherwise NoneFig. 2. LoopCost algorithm.and B(I,J+1,K), only B(I,J,K) and B(I+1,J,K) belong to the same group for the Iand K loops.2.4 Loop Cost in Terms of Cache LinesOnce we account for group-reuse, we can calculate the reuse carried by each loopusing the functions RefCost and LoopCost in Figure 2. To determine the cost incache lines of a reference group, we select an arbitrary array reference with thedeepest nesting from each group. Each loop l with trip iterations in the nest isconsidered as a candidate for the innermost position. Let cls be the cache line sizein data items and stride be the step size of l multiplied by the coe�cient of theloop index variable.RefCost calculates locality for l, i.e., the number of cache lines l uses: 1 forloop-invariant references, trip/(cls/stride) for consecutive references, or trip for non-consecutive references. LoopCost then calculates the total number of cache linesaccessed by all references when l is the innermost loop. It simply sums RefCostfor all reference groups, then multiplies the result by the trip counts of all theremaining loops. RefCost and LoopCost appear in Figure 2. This method evaluatesimperfectly nested loops (see Section 3.5.1 for an example), complicated subscriptexpressions, and nests with symbolic bounds [McKinley 1992].In Figure 3, we give an example of computing LoopCost on matrix multiply.Algorithm RefGroup, with respect to all of the three loops, puts both referencesto C(I,J) in one reference group, and A(I,K) and B(K,J) each in their own referencegroup. RefCost with respect to the I loop detects the self-spatial reuse carried byC(I,J) and A(I,K) and assigns each reference the cost of (1=cls)n cache lines. B(K,J)



6 � McKinley, et al.f JKI ordering gDO J = 1, NDO K = 1, NDO I = 1, NC(I,J) = C(I,J) + A(I,K) * B(K,J)LoopCost (with cls = 4)Refs J K IC(I,J) n � n2 1 � n2 14n � n2A(I,K) 1 � n2 n � n2 14n � n2B(K,J) n � n2 14n � n2 1 � n2total 2n3 + n2 54n3 + n2 12n3 + n2Fig. 3. Loop cost for matrix multiply.has loop-invariant reuse and a cost of 1. LoopCost for the I loop is thus (1=2)n3+n2for a machine with cls = 4 and n2 outer iterations of the J and K loops. LoopCostwith respect to the J and K loops is similar.3. COMPOUND LOOP TRANSFORMATIONSIn this section, we show how the cost model guides loop permutation, fusion, dis-tribution, and reversal. Each subsection describes tests based on the cost modelthat determine when individual transformations are pro�table. Using these compo-nents, Section 3.5 presents Compound, an algorithm for discovering and applyinglegal compound loop nest transformations that aim to minimize the number of cachelines accessed. All of these transformations are implemented in our experimentalcompiler.3.1 Loop PermutationTo determine the loop permutation which accesses the fewest cache lines, we relyon the following observation.If loop l promotes more reuse than loop l0 when both are considered for the in-nermost loop, l will likely promote more reuse than l0 at any outer loop position.We therefore simply rank the loops using LoopCost, ordering the loops from out-ermost to innermost (l1 : : : ln) so that LoopCost(li�1) � LoopCost(li). We callthis permutation of the nest with the least cost memory order. If the bounds aresymbolic, we compare the dominating terms.We de�ne the algorithm Permute in Figure 4 to achieve memory order whenpossible on perfect nests.2 To determine if the order is a legal one, we permute thecorresponding entries in the distance/direction vector. If the result is lexicographi-cally positive, the permutation is legal, and we transform the nest. (By de�nition,the original distance/direction vector is legal, i.e., lexicographically positive [Allen2In Section 3.5, we perform imperfect interchanges with distribution. The evaluationmethod canalso drive imperfect loop interchange [Wolfe 1986], but we did not implement it.



Improving Data Locality with Loop Transformations � 7Input:O = fi1; i2; :::; ing, the original loop orderingDV = set of original legal direction vectors for lnL = fi�1 ; i�2 ; : : : ; i�ng , a permutation of O with the best estimated localityOutput:P = L, or a permutation of O that is legally as close to L as possibleAlgorithm:if 8 DV, L is a legal permutationreturn LP = ; ; k = 0 ; m = nwhile L 6= ;for j = 1;ml = lj 2 Lif direction vectors for fp1; : : : ; pk; lg are legalP = fp1; : : : ; pk; lgL = L � flg ; k = k + 1 ; m = m� 1break forendifendforendwhile Fig. 4. Algorithm permute.and Kennedy 1984; Banerjee 1990].) If a legal permutation exists which positionsthe loop with the most reuse innermost, the algorithm is guaranteed to �nd it. Ifthe desired inner loop cannot be obtained, the next most desirable inner loop ispositioned innermost if possible, and so on. Because most data reuse occurs on theinnermost loop, positioning it correctly is likely to yield the best data locality.More formally stated, given a memory ordering L = fi�1 ; i�2 ; : : : ; i�ng of theloops fi1; i2; :::; ing where i�1 has the least reuse and i�n the most, the algorithmbuilds up a legal permutation in P by �rst testing to see if the loop i�1 is legal inthe outermost position. If it is legal, it is added to P and removed from L. If it isnot legal, the next loop in L is tested. Once a loop l is positioned, the process isrepeated starting from the beginning of L� flg until L is empty.Permute works by positioning the outer k loops such that the partial directionvectors are lexicographically positive, which means either all entries are zero, or atleast one positive entry precedes negative entries in all the partial direction vectorsfp1; : : : ; pkg. Consider placing a loop l at position k+1 for a single dependence. Ifthe direction vector entry at position l is positive or zero, l is legal in position k+1.If the entry at l is negative and fp1; : : : ; pkg positive, l is also legal in positionk + 1. However, if the entry at position l is negative, and fp1; : : : ; pkg is zero,then positioning l would create a negative, illegal direction vector. Notice that nopermutation of fp1; : : : ; pkg can change a positive vector to zero and thus enable anegative entry at l to be placed in position k + 1. This property enables Permuteto work greedily from the outermost loop to the innermost. The following theoremholds for the Permute algorithm.



8 � McKinley, et al.Theorem. If there exists a legal permutation where �n is the innermost loop,then Permute will �nd a permutation where �n is innermost.Given an original set of legal direction vectors, if L is legal then �n is clearly in-nermost. Otherwise, the proof by contradiction of the theorem proceeds as follows.Each step of the \for" is guaranteed to �nd a loop that results in partial, positivedirection vectors; otherwise the original was not legal [Allen and Kennedy 1984;Banerjee 1990]. In addition, if any loop �1 through �n�1 may be legally positionedprior to �n, it will be.Permute therefore places the loops carrying the most reuse as innermost as pos-sible. If the desired inner loop cannot be obtained, it places the next most desirableinner loop in the innermost position if possible, and so on. This characteristic isimportant because most data reuse occurs on the innermost loop, so positioning itcorrectly is key to achieving the best data locality.Complexity. When memory order is legal, as it is in 80% of the loops in our testsuite, Permute simply sorts loops according to their LoopCost and tests for legality.Otherwise algorithm Permute selects a legal permutation as close to memory orderas possible, testing the legality of n(n � 1) loop permutations in the worst case.However, these steps only involve testing data dependences; evaluating the localityof the loop nest turns out to be the most expensive part of the algorithm. Ouralgorithm computes the best permutation with one evaluation step (i.e., invocationof LoopCost) for each loop in the nest. The complexity of algorithm Permute istherefore O(n) in the number of LoopCost invocations, where n is the number ofloops in the nest.3.1.1 Example: Matrix Multiplication. In Figure 3, we saw that algorithm Ref-Group for matrix multiply puts the two references to C(I,J) in the same refer-ence group and A(I,K) and B(K,J) in separate groups for all loops. AlgorithmMemoryOrder uses LoopCost to select JKI as memory order; A(I,K) and C(I,J) ex-hibit spatial locality, and B(K,J) exhibits loop-invariant temporal locality, resultingin the fewest cache line accesses.To validate our cost model, we gathered results for all possible permutations,ranking them left to right from the least to the highest cost (JKI, KJI, JIK, IJK,KIJ, IKJ) in Figure 5. Consistent with our model, choosing I as the inner loopresults in the best execution time. Changing the inner loop has a dramatic e�ecton performance. The impact is greater on the 512 � 512 versus the 300 � 300matrices because a larger portion of the working set stays in the cache. Executiontimes vary by signi�cant factors of up to 3.7 on the Sparc2, 6.2 on the i860, and23.9 on the RS/6000. The entire ranking accurately predicts relative performance.We performed this type of comparison on several more kernels and a small pro-gram with the same result: memory order always resulted in the best performance.3.2 Loop ReversalLoop reversal reverses the order in which the iterations of a loop nest execute andis legal if dependences remain carried on outer loops. Reversal does not change thepattern of reuse, but it is an enabler, i.e., it may enable permutation to achievebetter locality. We extend Permute to perform reversal as follows. If memory orderis not legal, Permute places outer loops in position �rst, building up lexicograph-
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10 � McKinley, et al.(a) Sample Fortran 90 loops for ADI IntegrationDO I = 2, NS1 X(I,1:N) = X(I,1:N) - X(I-1,1:N)*A(I,1:N)/B(I-1,1:N)S2 B(I,1:N) = B(I,1:N) - A(I,1:N)*A(I,1:N)/B(I-1,1:N)(b) + Translation to Fortran 77 +DO I = 2, NDO K = 1, NX(I,K) = X(I,K) - X(I-1,K)*A(I,K)/B(I-1,K)DO K = 1, NB(I,K) = B(I,K) - A(I,K)*A(I,K)/B(I-1,K)(c) + Loop Fusion & Interchange +DO K = 1, NDO I = 2, NX(I,K) = X(I,K) - X(I-1,K)*A(I,K)/B(I-1,K)B(I,K) = B(I,K) - A(I,K)*A(I,K)/B(I-1,K)LoopCost (with cls = 4.)RefGroup K IX(I,K) n � n 14n � nA(I,K) n � n 14n � nB(I,K) n � n 14n � ntotal 3 � n2 34 � n2S1 total 3 � n2 34 � n2S2 total 2 � n2 12 � n2S1 + S2 5 � n2 54 � n2Fig. 6. Loop fusion.ically positive dependence vectors. If Permute cannot legally position a loop in adesired position, Permute tests if reversal is legal and enables the loop to be putin the position. Reversal did not improve locality in our experiments; therefore wewill not discuss it further.3.3 Loop FusionLoop fusion takes multiple loop nests and combines their bodies into one loop nest.It is legal only if no data dependences are reversed [Warren 1984]. As an exampleof its e�ect, consider the code fragment written in Fortran 90 in Figure 6(a) thatperforms ADI integration. Scalarizing the Fortran 90 into Fortran 77 results inthe code in Figure 6(b) which exhibits both poor temporal and poor spatial reuse.The problem is not the fault of the programmer; instead, it is inherent in how thecomputation can be expressed in Fortran 90. Fusing the K loops results in temporallocality for array B. In addition, the compiler is now able to apply loop interchange,signi�cantly improving spatial locality for all the arrays. This transformation isillustrated in Figure 6(c).



Improving Data Locality with Loop Transformations � 113.3.1 Pro�tability of Loop Fusion. Loop fusion may improve reuse directly bymoving accesses to the same cache line to the same loop iteration. AlgorithmRefGroup discovers this reuse between two nests by treating the statements as ifthey already were in the same loop body. The two loop headers are compatible ifthe loops have the same number of iterations. Two nests are compatible at level lif the loops at level 1 to l are compatible and if the headers are perfectly nested upto level l. To determine the pro�tability of fusing two compatible nests, we use thecost model as follows:(1) Compute RefGroup and LoopCost as if all the statements were in the samenest, i.e., fused.(2) Compute RefGroup and LoopCost independently for each candidate and addthe results.(3) Compare the total LoopCosts.If the fused LoopCost is lower, fusion alone will result in additional locality. Forexample, fusing the two K loops in Figure 6 lowers the LoopCost for K from 5n2 to3n2. Candidate loops for fusion need not be nested within a common loop. Notethat the memory order for the fused loops may di�er from the individual nests.3.3.2 Loop Fusion To Enable Loop Permutation. Loop fusion may also indirectlyimprove reuse in imperfect loop nests by providing a perfect nest that enables aloop permutation with better data locality. For instance, fusing the K loops inFigure 6 enables permutation of the loop nest, improving spatial and temporallocality. Using the cost model, we detect that this transformation is desirable,since LoopCost of the I loop is lower than the K loops, but memory order cannotbe achieved because of the loop structure. We then test if fusion of all inner nestsis legal and if it creates a perfect nest in which memory order can be achieved.3.3.3 Loop Fusion Algorithm. Fusion thus serves two purposes:(1) to improve temporal locality and(2) to fuse all inner loops, creating a nest that is permutable.Previous research has shown that optimizing temporal locality for an adjacent setof m compatible loop nests is NP-hard [Kennedy and McKinley 1993]. In thiswork, the problem is harder, since all the headers are not necessarily compatible.We therefore apply a greedy strategy based on the depth of compatibility. Webuild a DAG from the candidate loops. The edges are dependences between theloops; the weight of an edge is the di�erence between the LoopCosts of the fusedand unfused versions. We partition the nests into sets of compatible nests at thedeepest levels possible. To yield the most locality, we �rst fuse nests with thedeepest compatibility and temporal locality. Nests are fused only if legal, i.e., nodependences are violated between the loops or in the DAG. We update the graph,then fuse at the next level until all compatible sets are considered. This algorithmappears in Figure 7.Since we allow loop nests to be reordered due to fusion, we may need to calculateLoopCost for every pair of loop nests. The complexity of the fusion algorithm istherefore O(m2) in the number of invocations of LoopCost, where m is the number



12 � McKinley, et al.Fuse(L)Input: L = l1; : : : ; lk, nests that are fusion candidatesAlgorithm:Build H = fH1; : : : ; Hjg, Hi = fhkg a set ofcompatible nests with depth(Hi) � depth(Hi+1)Build dag G with dependence edges and weightsfor each Hi = fh1 : : : hmg, i = 1 to jfor l1 = h1 to hmfor l2 = h2 to l1if ((9 locality between l1 and l2)/� 9 edge (l1, l2) with weight > 0 �/& (it is legal to fuse them))fuse l1 and l2 and update Gendforendforendfor Fig. 7. Fusion algorithm.Execution time (in seconds) vs. Organization
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fusedFig. 8. Performance of erlebacher.of candidate nests for fusion. If we only fused adjacent loop nests, the complexityof the algorithm would drop to O(m).3.3.4 Example: Erlebacher. The original hand-coded version of Erlebacher, aprogram solving PDEs using ADI integration with 3D arrays, mostly consists ofsingle-statement loops in memory order. We applied loop distribution by hand toloops containing multiple statements, placing each statement in a separate loopnest. Since the loops are fully distributed in this version of Erlebacher, it resemblesthe output of a Fortran 90 scalarizer.From the fully distributed version of Erlebacher, we created two optimized ver-sions of the program. In the �rst, we applied Permute to transform individualloop nests into memory order. In the second optimized version, we applied Fuseto obtain more temporal locality. In Figure 8, we measure the performance of theoriginal program (Hand), the transformed fully distributed program (Distributed),and the fused version (Fused).



Improving Data Locality with Loop Transformations � 13Distribute(L, S)Input: L = fl1; : : : ; lmg, a loop nest containingS = fs1; : : : ; skg statementsAlgorithm:for j = m� 1 to 1Restrict the dependence graph to � carried atlevel j or deeper and loop independent �Divide S into �nest partitions P = fp1; : : : ; pmgs.t. if sr , st 2 a recurrence, sr , st 2 pi.computeMemoryOrderi for each piif ( 9 i j MemoryOrderi is achievable withdistribution and permutation)perform distribution and permutationreturnendforFig. 9. Distribution algorithm.Fusion is always an improvement (of up to 17%) over the hand-coded and dis-tributed versions. Since each statement is in a separate loop, many variables areshared between loops. Permuting the loops into memory order increases localityin each nest, but slightly degrades locality between nests, hence the degradation inperformance of the distributed version compared to the original. Even though thebene�ts of fusion are additive rather than multiplicative (as in loop permutation),its impact can be signi�cant. Its impact will only increase as more programs arewritten with Fortran 90 array syntax.3.4 Loop DistributionLoop distribution separates independent statements in a single loop into multipleloops with identical headers. To maintain the meaning of the original loop, state-ments in a recurrence (a cycle in the dependence graph that does not include inputdependences) must be placed in the same loop. Groups of statements which mustbe in the same loop are called partitions. In our system we only use loop distri-bution to indirectly improve reuse by enabling loop permutation on a nest that isnot permutable3. Statements in di�erent partitions may prefer di�erent memoryorders that are achievable after distribution. The algorithm Distribute appears inFigure 9. It divides the statements into the �nest granularity partitions and testsif that enables loop permutation.4 It performs distribution on the innermost loopthat enables permutation. For a nest of depth m, it starts with the loop at levelm � 1 and works out to the outermost loop, stopping if successful.We only invoke algorithm Distribute if memory order cannot be achieved on anest if and not all of the inner nests can be fused (see Section 3.5). Distributetests if distribution will enable memory order to be achieved for any of the parti-3Distribution could also be e�ective if (1) there is no temporal locality between partitions, andthe accessed arrays are too numerous to �t in cache at once, or (2) register pressure is a concern.We do not address these issues here.4The compound transformation algorithm in Section 3.5 follows distribution and permutationwith fusion to regain lost temporal locality.



14 � McKinley, et al.Compound(N )Input: N = fn1; : : : nkg, adjacent loop nestsAlgorithm:for i = 1 to kCompute MemoryOrder (ni)if (Permute(ni) places inner loop in memory order)continueelse if (ni is not a perfect nest & contains onlyadjacent loops mj)if (FuseAll(mj,l) and Permute(l)places inner loop in memory order)continueelse if (Distribute(ni,l))Fuse(l)end forFuse(N )Fig. 10. Compound loop transformation algorithm.tions. The dependence structure required to test for loop permutation is createdby restricting its test to dependences on statements in the partition of interest.We thus perform distribution only if it combines with permutation to improve theactual LoopCost. Since LoopCost is calculated for each individual partition, thecomplexity of algorithm Distribute is O(m), where m is the number of individualpartitions created by loop distribution. See Section 3.5.1 for an example.3.5 Compound Transformation AlgorithmThe driving force behind our application of compound loop transformations is tominimize actual LoopCost by achieving memory order for as many statements inthe nest as possible. The algorithm Compound uses permutation, fusion, distribu-tion, and reversal as needed to place the loop that provides the most reuse at theinnermost position for each statement.Algorithm Compound in Figure 10 considers adjacent loop nests. It �rst opti-mizes each nest independently and then applies fusion between the resulting nestsif legal, and data locality is improved. To optimize a nest, the algorithm beginsby computing memory order and determining if the loop containing the most reusecan be placed innermost. If it can, the algorithm does so and goes on to the nextloop. Otherwise, it tries to enable permutation into memory order by fusing allinner loops to form a perfect nest. If fusion cannot enable memory order, the algo-rithm tries distribution. If distribution succeeds in enabling memory order, severalnew nests may be formed. Since the distribution algorithm divides the statementsinto the �nest partitions, these nests are candidates for fusion to recover temporallocality.Complexity. The complexity of algorithm Compound is O(nm2) in the numberof invocations of LoopCost, where n is the number of loops in a nest and m thenumber of adjacent loop nests. O(n) invocations of LoopCost are needed to cal-culate memory order for each loop nest, and the process may need to be repeatedup to O(m2) times when applying loop fusion. Fortunately, fusion and distribution



Improving Data Locality with Loop Transformations � 15only need to be invoked if the original loop nest cannot be permuted into memoryorder. In practice, the loop fusion algorithm is seldomly applied and does not needto consider many adjacent loop nests. Loop distribution may increase m, the num-ber of adjacent loop nests, by creating additional loop nests. In the worst case itcan increase m to the number of statements in the program. The increase in thenumber of loop nests was negligible in practice; a single application of distributionnever created more than three new nests.Compilation Time. Accurately estimating the increase in compilation time causedby applying algorithm Compound is di�cult. First, our implementation dependsupon the e�ciency of the ParaScope infrastructure [Cooper et al. 1993]. Second,our implementation on top of ParaScope is not especially e�cient. Given these twocaveats, our tests showed a 25% increase in compilation time over just parsing anddependence analysis when Compound is applied. The time required for algorithmCompound is only 33% of the time required to apply dependence analysis alone.We feel that this cost is not prohibitive for highly optimizing compilers.3.5.1 Example: Cholesky Factorization. Consider optimizing the Cholesky Fac-torization kernel in Figure 11(a). Notice that there are references to A(K,K) nestedat di�erent levels. Since these references have temporal locality, RefGroup placesthem in the same group. LoopCost then uses the most deeply nested reference tocompute the cost in cache lines of A(K,K). For the entire nest, LoopCost selects KJIas the best loop organization and ranks the nests from lowest cost to highest (KJI,JKI, KIJ, IKJ, JIK, IJK). Compound then tries to achieve this loop organization.Because KJI cannot be achieved with permutation alone, and fusion is of no helphere, Compound calls Distribute. Since the loop is of depth 3, Distribute starts bytesting distribution at depth 2, the I loop. S2 and S3 go into separate partitions(there is no recurrence between them at level 2 or deeper). Memory order of S3 isKJI. Distribution of the I loop places S3 alone in a IJ nest where I and J may belegally interchanged into memory order, as shown in Figure 11(b). Note that oursystem handles the permutation of both triangular and rectangular nests.To gather performance results for Cholesky, we generated all possible loop per-mutations; they are all legal. For each permutation, we applied the minimal amountof loop distribution necessary. (Wolfe enumerates these loop organizations [Wolfe1991].) Compared to matrix multiply, there are more variations in observed andpredicted behavior. These variations are due to the triangular loop structure; how-ever, Compound still attains the loop structure with the best performance.4. EXPERIMENTAL RESULTSTo validate our optimization strategy, we implemented our algorithms, executed theoriginal and transformed program versions on our test suite, and simulated cachehit rates. We measured execution times on two architectures: the IBM RS/6000model 540 and the HP PA-RISC model 715/50. To measure our ability to improvelocality, we also determined (for our memory model) the best locality achievablethrough loop transformations in the ideal case, assuming correctness could be ig-nored. We collected statistics on the data locality in the original, transformed, andideal programs. These statistics use the cache con�guration of the IBM RS/6000.



16 � McKinley, et al.(a) fKIJ formgDO K=1,NS1 A(K,K) = SQRT(A(K,K))DO I=K+1,NS2 A(I,K) = A(I,K)/A(K,K)DO J=K+1,IS3 A(I,J) = A(I,J)-A(I,K)*A(J,K)(b) + fKJI formg Loop Distribution & Triangular Interchange +DO K=1,NA(K,K) = SQRT(A(K,K))DO I=K+1,NA(I,K)=A(I,K)/A(K,K)DO J=K,NDO I=J+1,NA(I,J+1) = A(I,J+1)-A(I,K)*A(J+1,K)LoopCostRefs K J IA(K,K) n � n | 1 � nA(I,K) n � n2 1 � n2 14n � n2A(I,J) 1 � n2 n � n2 14n � n2A(J,K) n � n2 14n � n2 1 � n2total 2n3 + 2n2 54n3 + n2 12n3 + n2 + nS2 total 2n2 | 14n2 + nS3 total 2n3 + n2 54n3 + n2 12n3 + n2Execution times (in seconds) vs. Loop Organization
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Improving Data Locality with Loop Transformations � 174.1 MethodologyWe implemented the cost model, the transformations, and the algorithms describedabove in Memoria, the memory compiler in the ParaScope Programming Environ-ment [Carr 1992; Carr and Kennedy 1994b; Cooper et al. 1993; Kennedy et al.1993]. Memoria is a source-to-source translator that analyzes Fortran programsand transforms them to improve their cache performance. To increase the preci-sion of dependence analysis, we perform auxiliary induction variable substitution,constant propagation, forward expression propagation, and dead-code eliminationusing PFC [Allen and Kennedy 1987].5 Memoria also determines if scalar expan-sion will further enable distribution. Since scalar expansion is not integrated inthe current version of the transformer, we applied it by hand when directed by thecompiler. Memoria then used the resulting code and dependence graph to gatherstatistics and perform data locality optimizations using the algorithm Compound.For our test suite, we used 35 programs from the Perfect Benchmarks, the SPECbenchmarks, the NAS kernels, and some miscellaneous programs. They ranged insize from 195 to 7608 noncomment lines. Their execution times on the IBM RS/6000ranged from seconds to a couple of hours.4.2 Transformation ResultsIn Table I, we report the results of transforming the loop nests of each program.For each program, Table I �rst lists the number of loop nests (N) of depth 2 ormore which were considered for transformation. Mem Order and Inner Loopcolumns re
ect the percentage of loop nests and inner loops, respectively, that are:O: originally in memory order,P: permuted into memory order, orF: fail to achieve memory order.These three numbers sum to 100%. The percentage of loop nests in the programthat are in memory order after transformation is the sum of the original and thepermuted entries. Similarly for the inner loop, the sum of the original and thepermuted entries is the percentage of nests where the most desirable innermostloop is positioned correctly.Table I also lists the number of times that fusion and distribution were appliedby the compound algorithm. Either fusion, distribution, or both were applied to22 out of the 35 programs.In the Loop Fusion column,C is the number of candidate nests for fusion,A is the number of nests that were actually fused.Candidate nests for fusion were adjacent nests, where at least one pair of nestswere compatible. Fusion improved group-temporal locality for these programs; itdid not �nd any opportunities to enable interchange. There were 229 adjacent loopnests that were candidates for fusion, and of these, 80 were fused with one or more5Note that for our execution-time experiments on the HP PA-RISC, we were only able to performdependence analysis on the codes becausePFC lost its platform (PFC runs on an IBM 370 andis written in PL/I.)



18 � McKinley, et al.Table I. Memory order statistics.Mem Order Inner Loop Loop Loop LoopCostO P F O P F Fusion Dist RatioProg N % percentages % C A D R F IPerfect Benchmarksadm 106 52 16 32 53 16 31 0 0 1 2 2.5 6.1arc2d 75 55 28 17 65 34 1 35 12 1 2 2.2 4.1bdna 56 75 18 7 75 18 7 4 2 3 6 2.3 2.5dyfsm 80 63 15 22 65 19 16 2 1 0 0 3.0 8.6
o52 76 83 17 0 95 5 0 4 1 0 0 1.7 1.7mdg 12 83 8 8 83 8 8 0 0 0 0 1.1 1.7mg3d 40 95 3 3 98 0 2 0 0 1 2 1.0 1.1ocean 56 82 13 5 84 13 4 2 1 3 6 2.0 2.2qcd 45 53 11 36 58 16 15 0 0 0 0 4.9 6.1spc77 162 64 7 29 66 7 27 0 0 0 0 2.3 5.5track 32 50 16 34 56 19 25 2 1 1 2 1.9 7.9trfd 29 52 0 48 66 0 34 0 0 0 0 1.0 15SPEC Benchmarksdnsa7 50 64 14 22 74 16 10 5 2 1 2 2.0 2.9doduc 33 6 6 88 6 6 88 0 0 4 12 1.8 14fpppp 8 88 12 0 88 12 0 0 0 0 0 1.0 1.0hyd2d 55 100 0 0 100 0 0 44 11 0 0 1.0 1.0m300 2 50 50 0 50 50 0 0 0 1 2 4.5 4.5mdp2 1 0 0 100 0 0 100 0 0 0 0 1.0 1.0msp2 1 0 0 100 0 0 100 0 0 0 0 1.0 1.0ora 3 100 0 0 100 0 0 0 0 0 0 1.0 1.0sucor 36 42 19 39 42 19 39 0 0 4 8 3.5 5.3s256 8 88 12 0 88 12 0 0 0 0 0 4.9 4.9tcatv 6 100 0 0 100 0 0 7 2 0 0 1.0 1.0NAS Benchmarksappbt 87 98 0 2 100 0 0 3 1 0 0 1.0 1.2applu 71 73 3 24 79 6 15 3 1 2 6 1.3 8.0appsp 84 73 12 15 80 12 8 8 4 0 0 1.2 4.3buk 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0cgm 6 0 0 100 0 0 100 0 0 0 0 1.0 2.7embar 2 50 0 50 50 0 50 0 0 0 0 1.0 1.1�tpd 18 89 0 11 100 0 0 0 0 0 0 1.0 1.0mgrid 19 89 11 0 100 0 0 3 1 1 2 1.0 1.0Miscellaneous Programserle 30 83 13 4 100 0 0 28 11 0 0 1.0 1.0lpckd 4 75 0 25 75 0 25 3 1 0 0 1.0 1.1simpl 22 86 9 5 86 9 5 6 2 0 0 2.4 2.7wave 85 58 29 13 65 29 6 70 26 0 0 4.2 4.3total 1400 69 11 20 74 11 15 229 80 23 52 | |



Improving Data Locality with Loop Transformations � 19other nests to improve reuse. Fusion was applicable in 17 programs and completelyfused nests of depth 2 and 3. In Wave and Arc2d, Compound fused 26 and 12 nestsrespectively.In the Loop Dist column,D is the number of loop nests distributed to achieve better loop permutation,R is the number of nests that resulted.The Compound algorithm only applied distribution when it enabled permutationto attain memory order in a nest or in the innermost loop for at least one of theresultant nests. Compound applied distribution in 12 of the 35 programs. On 23nests, distribution enabled loop permutation to position the inner loop or the entirenest correctly, creating 29 additional nests. In Bdna, Ocean, Applu, and Su2cor,six or more nests resulted.LoopCost Ratio in Table I estimates the potential reduction in LoopCost for the�nal transformed program (F) and the ideal program (I) over the entire program.Remember that the ideal program achieves memory order for every nest withoutregard to dependence constraints or limitations in the implementation. By ignoringcorrectness, it is in some sense the best data locality one could achieve. For the �naland ideal versions, the average ratio of original LoopCost to transformed LoopCostis listed. This ratio includes loops that Compound did not transform and revealsthe potential for locality improvement.Memoria may not obtain memory order due to the following reasons: (1) looppermutation is illegal due to dependences, (2) loop distribution followed by permu-tation is illegal due to dependences, (3) the loop bounds are too complex, i.e., notrectangular or triangular. For the 20% of nests where the compiler could not achievememory order, 87% were because permutation and then distribution followed bypermutation could not be applied because of dependence constraints. The rest werebecause the loop bounds were too complex. More sophisticated dependence testsmay enable the algorithms to transform a few more nests.4.3 Coding StylesImprecise dependence analysis is a factor in limiting the potential for improvementsin our application suite. For example, dependence analysis for the program Cgmcannot expose potential data locality for our algorithm because of imprecision dueto the use of index arrays. The program Mg3d is written with linearized arrays.This coding style introduces symbolics into the subscript expressions and againmakes dependence analysis imprecise. The inability to analyze the use of indexarrays and linearized arrays prevents many optimizations and is not a de�ciencyspeci�c to our system.Other coding styles may also inhibit optimization in our system. For example,Linpackd and Matrix300 are written in a modular style with singly nested loopsenclosing function calls to routines which also contain singly nested loops. To im-prove programs written in this style requires interprocedural optimization [Cooperet al. 1993; Hall et al. 1991]; these optimizations are not currently implemented inour translator.Many loop nests (69%) in the original programs are already in memory order,and even more (74%) have the loop carrying the most reuse in the innermost posi-



20 � McKinley, et al.tion. This result indicates that scienti�c programmers often pay attention to datalocality; however, there are many opportunities for improvement. Our compiler wasable to permute an additional 11% of the loop nests into memory order, resultingin a total of 80% of the nests in memory order and a total of 85% of the inner loopsin memory order position. Memoria improved data locality for one or more nestsin 66% of the programs.4.4 Successful TransformationWe illustrate our ability to transform for data locality by program in Figures 13and 12. The �gures characterize the programs by the percentage of their nestsand inner loops that are originally in memory order and that we transform intomemory order. In Figure 13, half of the original programs have fewer than 70%of their nests in memory order. In the transformed versions, 29% have fewer than70% of their nests in memory order. Over half now have 80% or more of their nestsin memory order. The results in Figure 12 are more dramatic. The majority of theprograms now have 90% or more of their inner loops positioned correctly for thebest locality (according to our memory model). Our transformation algorithms canthus determine and achieve memory order in the majority of nests and programs.Unfortunately, our ability to successfully transform programs may not result inrun-time improvements for several reasons: data sets for these benchmark programstend to be small enough to �t in cache; the transformed loop nests may be CPUbound instead of memory bound; and the optimized portions of the program maynot signi�cantly contribute to the overall execution time.4.5 Performance ResultsIn Figure 14, we present the performance of our test suite running on an IBMRS/6000 model 540 with a 64KB cache, 4-way set-associative replacement policyand 128-byte cache lines. In Figure 15, we present the performance of our testsuite on an HP 715/50 with a 64KB direct-mapped cache with 32-byte cache lines.Figures 14 and 15 present detailed results for four kernels from Dnasa: Btrix,Emit, Gmtry, and Vpenta. Results are reported in normalized execution time withthe base time of 100 not indicated. The arithmetic mean in each �gure includesonly those programs shown in the bar graph. On both machines, we used thestandard Fortran 77 compiler with the -O option to compile both the originalprogram and the version produced by our automatic source-to-source transformer.All applications successfully compiled and executed on the RS/6000. ApplicationsFlo52 and Wave did not compile and run on the HP. For those applications notlisted in Figure 14 and Figure 15, no performance improvement or degradationoccurred.Figure 14 and Figure 15 show a number of applications with signi�cant perfor-mance improvements: Arc2d, Dnasa7 (Btrix, Emit, Gmtry, Vpenta), Appsp, andSimple. These results indicate that data locality optimizations are particularlye�ective for scalarized vector programs, since these programs are structured toemphasize vector operations rather than cache-line reuse. However, the predictedimprovements did not materialize for many of the programs. To explore theseresults, we simulated cache behavior to determine cache hit rates for our test suite.



Improving Data Locality with Loop Transformations � 21
<= 20

Original

Final

Percentage of Loop Nests in Memory Order

12

8

4

0

N
um

be
r 

of
 P

ro
gr

am
s

>=40         >= 60    >= 70   >=80    >= 90

16

Fig. 12. Achieving memory order for the inner loop.
<= 20

Original

Final

Percent of Inner Loops in Memory Order

0

4

8

12

16

20

N
um

be
r 

of
 P

ro
gr

am
s

>=40           >= 60    >= 70   >=80    >= 90Fig. 13. Achieving memory order for loop nests.



22 � McKinley, et al.
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Fig. 14. Performance results on IBM RS/6000 model 540.
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Improving Data Locality with Loop Transformations � 23We simulated cache1, an RS/6000 cache (64KB, 4-way set-associative, 128-bytecache lines), and cache2, an i860 cache (8KB, 2-way set-associative, 32-byte cachelines).6 The i860 cache was chosen to reveal the potential of our optimizations on asmall cache. For each program and cache, we determined the change in the hit ratesboth for just the optimized procedures and for the entire program. Table II presentsthese rates. Small variations in cache hit rates after program transformations canbe caused by changes in cache interference and code generation. Places where thecompiler a�ected cache hit rates by � 0:1% are emboldened for greater emphasis.For the Final columns we chose the better of the fused and unfused versions foreach program.As illustrated in Table II, the reason more programs did not improve on theRS/6000 is due to high hit ratios in the original programs caused by small data setsizes. When the cache is reduced to 8KB, the optimized portions have more signif-icant improvements. For instance, whole program hit rates for Dnasa7 and Appspshow signi�cant improvements after optimization for the smaller cache even thoughthey barely changed in the larger cache. Our optimizations obtained improvementsin whole program hit rates for Adm, Arc2d, Dnasa7, Hydro2d, Appsp, Erlebacher,Simple, and Wave. Improvements in the optimized loop nests were more dramatic.The improvements did not always carry over to the entire program, since the un-optimized nests may still dominate the execution time.We measured hit ratios both with and without applying loop fusion. For the 8KBcache, fusion improved whole program hit rates for Hydro2d, Appsp, and Erlebacherby 0.51%, 0.24%, and 0.95%, respectively. We were surprised to improve Linpackd'sperformance with fusion by 5.3% on the subroutine matgen and by 0.02% for theentire program. Matgen is an initialization routine whose performance is not usu-ally measured. Unfortunately, fusion also lowered hit rates in Track, Dnasa7, andWave; the degradation may be due to added cache con
ict and capacity misses afterloop fusion. To recognize and avoid these situations requires cache capacity andinterference analysis similar to that performed for evaluating loop tiling [Colemanand McKinley 1995; Lam et al. 1991]. Because our fusion algorithm only attemptsto optimize reuse at the innermost loop level, it may sometimes merge array refer-ences that interfere or over
ow cache. We intend to correct this de�ciency in thefuture.Our results are very favorable when compared to Wolf's results, though directcomparisons are di�cult because he combines tiling with cache optimizations andreports improvements only relative to programs with scalar replacement [Wolf 1992].Wolf applied permutation, skewing, reversal, and tiling to the Perfect Benchmarksand Dnasa7 on a DECstation 5000 with a 64KB direct-map cache. His results showperformance degradations or no change in all but Adm, which showed a small (1%)improvement in execution time. Our transformations did not degrade performanceon any of the Perfect programs, and performance of Arc2d was signi�cantly im-proved.6Carr andWu [1995] also simulate an HP-style cache, but their results are similar to theRS/6000.



24 � McKinley, et al.Table II. Simulated cache hit rates.Optimized Procedures Whole ProgramCache 1 Cache 2 Cache 1 Cache 2Program Orig Final Orig Final Orig Final Orig FinalPerfect Benchmarksadm 100 100 97.7 97.8 99.95 99.95 98.48 98.58arc2d 89.0 98.5 68.3 91.9 95.30 98.66 88.58 93.61bdna 100 100 100 100 99.45 99.45 97.32 97.32dyfesm 100 100 100 100 99.98 99.97 97.02 96.95
o52 99.6 99.6 96.7 96.3 98.77 98.77 93.84 93.80mdg 100 100 87.4 87.4 || || || ||mg3d 98.8 99.7 95.3 98.7 || || || ||ocean 100 100 93.0 92.8 99.36 99.36 93.71 93.72qcd 100 100 100 100 99.83 99.83 98.85 98.79spec77 100 100 100 100 99.28 99.28 93.79 93.78track 100 100 100 100 99.81 99.81 97.49 97.54trfd 99.9 99.9 93.7 93.7 99.92 99.92 96.43 96.40SPEC Benchmarksdnasa7 83.2 92.7 54.5 73.9 99.26 99.27 85.45 88.76doduc 100 100 95.5 95.5 99.77 99.77 95.92 95.92fpppp 100 100 100 100 99.99 99.99 98.34 98.34hydro2d 97.9 98.3 90.2 91.9 98.36 98.48 92.77 93.28matrix300 99.7 99.7 91.6 92.1 93.26 93.26 81.66 81.67su2cor 100 100 99.2 99.8 98.83 98.83 70.41 70.41swm256 100 100 100 100 98.83 98.84 81.00 81.11tomcatv 97.8 97.8 87.3 87.3 99.20 99.20 95.26 95.25NAS Benchmarksapplu 99.9 99.9 99.4 99.4 99.38 99.36 97.22 97.14appsp 90.5 92.9 88.5 89.0 99.33 99.39 96.04 96.43mgrid 99.3 99.8 91.6 92.1 99.65 99.65 96.04 96.04Miscellaneous Programserlebacher 99.4 99.8 94.0 96.8 98.00 98.25 92.11 93.36linpackd 98.7 100 94.7 100 98.93 98.94 95.58 95.60simple 91.0 99.1 84.3 93.7 97.35 99.34 93.33 95.65wave 98.2 99.9 82.9 95.9 99.74 99.82 87.31 88.09Cache1: 64KB cache, 4-way, 128-byte cache line (RS/6000);Cache2: 8KB cache, 2-way, 32-byte cache line (i860);cold misses are not included.



Improving Data Locality with Loop Transformations � 25Our results on the routines in Dnasa7 are similar to Wolf's, both showing im-provements on Btrix, Gmtry, and Vpenta. Wolf improvedMxm by about 10% on theDECstation, but slightly degraded performance on the i860. Wolf slowed Choleskyby about 10% on the DECstation and by a slight amount on the i860. We neitherimprove or degrade either kernel. More direct comparisons are not possible becauseWolf does not present cache hit rates, and the execution times were measured ondi�erent architectures.4.6 Data Access PropertiesTo further interpret our results, we measured the data access properties for ourtest suite. We report the data access properties for the inner loops on the original(orig), ideal memory order, and �nal versions of the programs in Tables III and IV.Locality of Reference Group classi�es the percentage of RefGroups displayingeach form of self-reuse as invariant (I), unit-stride (U), or none (N). (G) containsthe percentage of RefGroups constructed partly or completely using group-spatialreuse. The amount of group reuse is indicated by measuring the average number ofreferences in each RefGroup (Refs/Group), where a RefGroup size greater than 1implies group-temporal reuse and occasionally group-spatial reuse. The amount ofgroup reuse is presented for each type of self-reuse and their average (Avg). TheLoopCost Ratio column estimates the potential improvement as an average (Avg)over all the nests, and a weighted average (Wt) uses nesting depth. The last rowcontains the totals for all the programs.Table III reveals that each of the applications we improved (Arc2d, Dnasa7,Appsp, Simple, and Wave) had a signi�cant gain in self-spatial reuse (Unit) on theinner loop over the original program. Spatial locality was the key to getting goodcache performance. Although programmers can make the e�ort to ensure unit-stride access in their applications, we have shown that our optimization strategymakes this unnecessary. By having the compiler compute the machine-dependentloop ordering, a variety of coding styles can be run e�ciently without additionalprogrammer e�ort.The all programs row in Table IV indicates that on average fewer than tworeferences exhibited group-temporal reuse in the inner loop, and no references dis-played group-spatial reuse. Instead, most programs exhibit self-spatial reuse. Formany programs (e.g., Adm, Trfd, Dnasa7, Embar), the ideal program exhibits sig-ni�cantly more invariant reuse than the original or �nal. Invariant reuse typicallyoccurs on loops with reductions and time-step loops that are often involved in re-currences and cannot be permuted. Our analysis usually determines that spatialreuse is of more bene�t than temporal reuse when they are carried on di�erentloops. In some cases, tiling may be able to exploit invariant reuse carried by outerloops and continue to bene�t from the spatial reuse carried by inner loops.4.7 Analysis of Individual ProgramsBelow, we examine Arc2d, Simple, Gmtry (three of the applications that we im-proved), and Applu (the only application with a degradation in performance). Wenote speci�c coding styles that our system e�ectively ported to the RS/6000 andHP PA-RISC.



26 � McKinley, et al. Table III. Data access properties.Locality of Reference Groups LoopCost% Groups Refs/Group RatiosProgram I U N Gp I U N Avg Avg WtPerfect Benchmarksadm orig 4 70 26 0 1.04 1.39 1.34 1.36�nal 5 83 12 0 1.03 1.38 1.32 1.36 2.54 2.68ideal 19 77 4 0 1.50 1.32 1.10 1.34 6.10 6.24arc2d orig 3 53 44 1 1.53 1.23 1.26 1.25�nal 3 77 20 0 2.12 1.34 1.00 1.29 2.21 2.16ideal 14 66 20 0 1.72 1.31 1.00 1.30 4.14 4.73bdna orig 2 62 36 0 2.00 1.08 1.04 1.08�nal 2 64 34 0 2.00 1.08 1.03 1.08 2.31 2.24ideal 5 61 34 0 1.52 1.07 1.03 1.08 2.51 2.44dyfesm orig 8 55 37 0 1.19 1.20 1.25 1.21�nal 12 61 27 0 1.44 1.15 1.25 1.21 3.08 3.06ideal 22 60 18 0 1.46 1.17 1.05 1.21 8.62 9.93
o52 orig 1 92 7 0 1.50 1.38 1.00 1.35�nal 1 94 5 0 1.50 1.37 1.00 1.35 1.72 1.79ideal 1 94 5 0 1.50 1.37 1.00 1.35 1.72 1.79mdg orig 1 75 24 0 2.00 1.14 1.00 1.12�nal 0 76 24 0 0 1.16 1.00 1.12 1.11 1.09ideal 1 78 21 0 1.00 1.15 1.00 1.12 1.70 1.63mg3d orig 0 4 96 0 0 1.26 1.00 1.01�nal 0 4 96 0 0 1.26 1.00 1.01 1.00 1.00ideal 0 4 96 0 1.00 1.27 1.00 1.01 1.13 1.12ocean orig 0 56 44 0 0 1.07 1.00 1.04�nal 0 69 31 0 0 1.06 1.00 1.04 2.05 2.16ideal 2 67 31 0 1.33 1.05 1.00 1.04 2.20 2.30qcd orig 34 42 24 0 2.27 1.22 1.53 1.65�nal 43 47 10 0 2.03 1.28 1.75 1.65 3.71 3.73ideal 51 40 9 0 2.05 1.10 1.86 1.65 6.40 6.65spec77 orig 5 42 53 0 1.57 1.56 1.37 1.46�nal 10 43 47 0 3.00 1.58 1.04 1.46 3.22 3.10ideal 25 33 42 0 2.00 1.59 1.00 1.45 5.59 5.60track orig 7 75 18 0 1.40 1.09 1.23 1.14�nal 7 81 12 0 1.20 1.15 1.00 1.14 1.99 1.84ideal 36 60 4 0 1.19 1.11 1.00 1.14 7.95 9.68trfd orig 7 62 31 2 1.50 1.28 1.00 1.21�nal 7 62 31 2 1.50 1.28 1.00 1.21 1.00 1.00ideal 52 34 14 2 1.40 1.00 1.00 1.21 14.81 17.34SPEC Benchmarksdnasa7 orig 5 48 47 0 1.41 1.48 1.16 1.33�nal 8 57 35 0 1.33 1.48 1.10 1.34 2.08 2.27ideal 35 37 28 0 1.61 1.27 1.07 1.34 2.95 3.33doduc orig 10 2 88 0 1.24 1.33 1.17 1.18�nal 7 63 30 0 1.00 1.29 1.00 1.18 5.44 5.44ideal 7 64 29 0 1.00 1.28 1.00 1.18 5.45 5.45fpppp orig 0 4 96 0 0 1.00 1.00 1.00�nal 0 5 95 0 0 1.00 1.00 1.00 1.03 1.03ideal 0 5 95 0 0 1.00 1.00 1.00 1.03 1.03matrix300 orig 0 75 25 0 0 1.00 1.00 1.00�nal 0 100 0 0 0 1.00 0 1.00 4.50 4.50ideal 0 100 0 0 0 1.00 0 1.00 4.50 4.50tomcatv orig 2 70 28 0 1.00 1.24 1.00 1.17�nal 2 70 28 0 1.00 1.24 1.00 1.17 1.00 1.00ideal 2 70 28 0 1.00 1.24 1.00 1.17 1.00 1.00



Improving Data Locality with Loop Transformations � 27Table IV. Data access properties.Locality of Reference Groups LoopCost% Groups Refs/Group RatiosProgram I U N G I U N Avg Avg WtNAS Benchmarksappbt orig 0 17 83 0 0 1.04 1.00 1.01�nal 0 17 83 0 0 1.04 1.00 1.01 1.00 1.00ideal 0 17 83 0 1.67 1.03 1.00 1.01 1.26 1.38applu orig 0 26 74 0 2.00 1.05 1.06 1.06�nal 1 27 72 0 1.25 1.06 1.06 1.06 1.35 1.50ideal 8 23 69 0 1.45 1.07 1.01 1.06 8.03 10.06appsp orig 0 38 62 0 0 1.04 1.08 1.06�nal 0 49 51 0 0 1.03 1.09 1.06 1.25 1.24ideal 8 44 48 0 1.49 1.03 1.02 1.06 4.34 4.43buk orig 0 0 0 0 0 0 0 0 0�nal 0 0 0 0 0 0 0 0 1.00 1.00ideal 0 0 0 0 0 0 0 0 1.00 1.00cgm orig 0 38 62 0 0 1.10 1.00 1.04�nal 0 38 62 0 0 1.10 1.00 1.04 1.00 1.00ideal 38 0 62 0 1.10 0 1.00 1.04 2.75 2.62embar orig 0 50 50 0 0 1.00 1.00 1.00�nal 0 50 50 0 0 1.00 1.00 1.00 1.00 1.00ideal 50 0 50 0 1.00 0 1.00 1.00 1.12 1.12�tpde orig 0 72 28 0 0 1.02 1.00 1.01�nal 0 72 28 0 0 1.02 1.00 1.01 1.00 1.00ideal 0 72 28 0 0 1.02 1.00 1.01 1.00 1.00mgrid orig 15 56 29 0 1.12 1.97 1.00 1.56�nal 15 56 29 0 1.12 1.97 1.00 1.56 1.00 1.00ideal 15 56 29 0 1.12 1.97 1.00 1.56 1.00 1.00Miscellaneous Programserlebacher orig 23 82 20 0 1.22 1.52 1.55 147�nal 23 82 20 0 1.22 1.52 1.55 147 1.00 1.00ideal 23 82 20 0 1.22 1.52 1.55 147 1.00 1.00linpackd orig 0 55 45 0 0 1.00 1.05 1.02�nal 0 55 45 0 0 1.00 1.05 1.02 1.00 1.00ideal 0 57 43 0 0 1.04 1.00 1.02 1.10 1.10simple orig 0 93 7 0 0 2.25 1.85 2.22�nal 0 98 2 0 0 2.26 1.00 2.23 2.48 2.48ideal 1 97 2 0 1.50 2.27 1.00 2.23 2.72 2.72wave orig 6 47 47 1 1.95 1.48 1.27 1.41�nal 1 71 28 0 2.00 1.55 1.02 1.41 4.26 4.25ideal 3 70 27 0 1.63 1.55 1.01 1.41 4.30 4.28all orig 3 37 60 0 1.53 1.26 1.15 1.23�nal 3 44 53 0 1.52 1.27 1.05 1.23 | |ideal 8 41 51 0 1.23 1.26 1.03 1.23 | |



28 � McKinley, et al.Arc2d is a 
uid-
ow solver from the Perfect Benchmarks. The main computa-tional routines exhibit poor cache performance due to nonunit stride accesses. Themain computational loop is an imperfect loop nest with four inner loops, two withnesting depth 2 and two with nesting depth 3. Our algorithm is able to achieve afactor of 6 improvement on the main loop nest by attaining unit-stride accesses tomemory in the two loops with nesting depth 3. This improvement alone accountedfor a factor of 1.9 on the whole application. The additional improvement illustratedin Figure 14 is attained similarly by improving less time-critical routines. Our op-timization strategy obviated the need for the programmer to select the \correct"loop order for performance.Simple is a two-dimensional hydrodynamics code. It contains two loops thatare written in a \vectorizable" form (i.e., a recurrence is carried by the outer looprather than the innermost loop). These loops exhibited poor cache performance.Compound reorders these loops for data locality (both spatial and temporal) ratherthan vectorization to achieve the improvements shown in Figure 14. In this case,the improvements in cache performance far outweigh the potential loss in low-levelparallelism when the recurrence is carried by the innermost loop. To regain anylost parallelism, unroll-and-jam can be applied to the outermost loop [Callahanet al. 1988; Carr and Kennedy 1994a]. Finally, it is important to note that theprogrammer was allowed to write the code in a form for one type of machine and stillattain machine-independent performance through the use of compiler optimization.Gmtry, a SPEC benchmark kernel from Dnasa7, performs Gaussian eliminationacross rows, resulting in no spatial locality. Although this structure may havebeen how the author viewed Gaussian elimination conceptually, it translated topoor performance. Distribution and permutation achieved unit-stride accesses inthe innermost loop. The programmer is therefore allowed to write the code in aform that she or he understands, while the compiler handles the machine-dependentperformance details.Applu su�ers from a tiny degradation in performance only on the RS/6000 (2%).The two leading dimensions of the main data arrays are very small (5 � 5). Whileour model predicts better performance for unit-stride access to the arrays, the smallarray dimensions give the original reductions in the inner loop better performanceon the RS/6000. Locality within the two innermost loops is not a problem.5. RELATED WORKAbu-Sufah [1979] �rst discussed applying compiler transformations based on datadependence (e.g., loop interchange, fusion, distribution, and tiling) to improve pag-ing. In this article, we extend and validate recent research to integrate optimiza-tions that target parallelism and the memory hierarchy [Kennedy and McKinley1992]. We extend the original cost model to capture more types of reuse. The onlytransformation they perform is loop permutation, whereas we integrate permuta-tion, fusion, distribution, and reversal into a comprehensive approach and presentextensive experimental results.Our approach has several advantages over previous research. We measure boththe e�ectiveness of our approach and, unlike other optimization studies, the inherentdata locality characteristics of programs and our ability to exploit them. Our workis applicable to a wider range of programs because we do not require perfect nests



Improving Data Locality with Loop Transformations � 29or nests that can be made perfect with conditionals [Ferrante et al. 1991; Gannonet al. 1988; Li and Pingali 1992; Wolf and Lam 1991]. It is also quicker, both inthe expected and worse case.Previous research focused on evaluating data locality when given a loop permu-tation [Ferrante et al. 1991; Gannon et al. 1988]. Since they must evaluate a givenpermutation, they may consider up to n! loop permutations (though n is typicallysmall) in order to �nd the loop permutation which yields the best data locality.(Neither paper speci�es an algorithm for generating a smaller search space.) Incomparison, our approach evaluates the reuse carried by each loop and directlydetermines the best loop permutation. Since evaluation is the most expensive step,we expect our algorithm will be much faster in practice. Our algorithm is also the�rst to combine loop fusion and distribution with loop permutation.Wolf and Lam [1991] use unimodular transformations (a combination of permuta-tion, skewing, and reversal) and tiling with estimates of temporal and spatial reuseto improve data locality. They prune their search space by ignoring loops thatdo not carry reuse and loops that cannot be permuted due to legality constraints,but may still have many legal loop organizations remaining whose locality must beevaluated. Their memory model is potentially more precise than ours because itdirectly calculates reuse across outer loops; however, it may be less precise becauseit ignores loop bounds even when they are known constants.Wolf and Lam's evaluation is performed on the Perfect Benchmarks and routinesin Dnasa7 in the SPEC Benchmarks, a subset of our test suite [Wolf and Lam1991; Wolf 1992]. It is di�cult to directly compare our experiments because theircache optimization results include tiling and scalar replacement and are executedon a di�erent processor. However, we improve a few more programs/routines thanthey do. In addition, their cache optimizations degrade six programs/routines, inone case by 20%. We degrade only one program by a slight 2%; Applu from theNAS Benchmarks. In Wolf and Lam's experiments, skewing was never needed, andreversal was seldom applied [Wolf 1992]. We therefore chose not to include skewing,even though (1) it is implemented in our system [Kennedy et al. 1993] and (2) ourmodel can drive it. We did integrate reversal, but it did not help to improve locality.Li and Pingali [1992] use linear transformations (any linear mapping from oneloop nest to another loop nest) to optimize for both data locality and parallelism.They do not propose exhaustive search, since the search space becomes in�nite, buttransform the loop nest based on certain references in the program. They give nodetails of their heuristic to order loops for locality. We therefore o�er no comparisonon e�ectiveness or complexity.Applying an exhaustive search approach is not practical when including loopfusion and distribution because they create and combine loop nests. Fusion forimproving reuse is by itself NP-hard [Kennedy and McKinley 1993]. By drivingheuristics with a cache model, our algorithms are e�cient and usually �nd the bestloop organization for data locality using permutation, fusion, and distribution.When compared with previous work [Gannon et al. 1988; Wolf and Lam 1991], ourcache model loses precision in the RefGroup and LoopCost algorithms because ofsimplifying assumptions about outer loops. Because our algorithms do not considerthe order of outer loops, they miss loop invariance when it spans multiple innerloops. In practice, this inaccuracy does not a�ect our ability to derive the best loop



30 � McKinley, et al.organization, since the algorithms �nd and compare invariance and other forms ofreuse precisely for innermost loops. If we cannot position the best inner loop, wemay miss a better outer loop organization. But this imprecision is exactly whatenables us to achieve a single evaluation step and lower algorithmic complexity.It is an open question whether a more precise cache model will yield performanceimprovements in practice for real applications.6. TILINGPermuting loops into memory order maximizes estimated short-term cache-linereuse across iterations of inner loops. The compiler can also apply loop tiling,a combination of strip-mining and loop interchange, to capture long-term invariantreuse at outer loops [Coleman and McKinley 1995; Irigoin and Triolet 1988; Lamet al. 1991; Wolf and Lam 1991; Wolfe 1987]. Tiling must be applied judiciouslybecause it a�ects scalar optimizations, increases loop overhead, and may decreasespatial reuse at tile boundaries. Our cost model provides us with the key insight toguide tiling|the primary criterion for tiling is to create loop-invariant referenceswith respect to the target loop. These references access signi�cantly fewer cachelines than both consecutive and nonconsecutive references, making tiling worth-while despite the potential loss of spatial reuse at tile boundaries. For machineswith long cache lines, it may also be advantageous to tile outer loops if they carrymany unit-stride references, such as when transposing a matrix. In the future, weintend to study the cumulative e�ects of optimizations presented in this article withtiling, unroll-and-jam, and scalar replacement.7. CONCLUSIONThis article presents a comprehensive approach to improving data locality and isthe �rst to combine loop permutation, fusion, distribution, and reversal into anintegrated algorithm. Because we accept some imprecision in the cost model, ouralgorithms are simple and inexpensive in practice, making them ideal for use ina compiler. More importantly, the simplifying assumptions used in our modeldo not appear to hinder the compiler's ability to exploit data locality for scienti�capplications. The empirical results presented in this article validate the accuracy ofour cost model and algorithms for selecting the best loop structure for data locality.In addition, they show this approach has wide applicability for existing Fortranprograms regardless of their original target architecture, particularly for vector andFortran 90 programs. We believe this is a signi�cant step toward achieving goodperformance with machine-independent programming.ACKNOWLEDGMENTSWe wish to thank Ken Kennedy for providing the impetus and guidance for muchof this research. We are obliged to Peter Craig at Digital for inspiring the additionof loop reversal. We are grateful to the ParaScope research group at Rice Univer-sity for the software infrastructure on which this work depends. In particular, weappreciate the assistance of Nathaniel McIntosh on simulations. We acknowledgethe Center for Research on Parallel Computation at Rice University for supplyingmost of the computing resources for our experiments and simulations. We also wishto thank Qunyan Wu who ran the experiments on the HP 715/50.
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