A Compiler Optimization Algorithm for Shared-Memory M ultiprocessors

Kathryn S. MCKinley
July 1, 1998

Abstract

This paper presents a new compiler optimization algorithat parallelizes applications for symmetric, shared-
memory multiprocessors. The algorithm considers datditgcparallelism, and the granularity of parallelism.
It uses dependence analysis and a simple cache model tatdriygtimizations. It also optimizes across pro-
cedures by using interprocedural analysis and transfawngat We validate the algorithm by hand-applying it
to sequential versions of parallel, Fortran programs djperaver dense matrices. The programs initially were
hand-coded to target a variety of parallel machines usiog frarallelism. We ignore the user’s parallel loop di-
rectives, and use known and implemented dependence argrottedural analysis to find parallelism. We then
apply our new optimization algorithm to the resulting pramr We compare the original parallel program to the
hand-optimized program, and show that our algorithm im@sd programs, matches 4 programs, and degrades
1 program in our test suite on a shared-memory, bus-basatlgbamachine with local caches. This experiment
suggests existing dependence and interprocedural aredysencan automatically detect user parallelism, and
demonstrates that user parallelized codes often benefitdto compiler optimizations, providing evidence that
we neecdboth parallel algorithms and compiler optimizations to effeely utilize parallel machines.

Index Terms—Program parallelization, parallelization techniquesigoam optimization, data locality, re-
structuring compilers, performance evaluation.
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1 Introduction

One lesson from vectorization is that users rewrote prograased on feedback from vectorizing compilers.
These rewritten programs were independent of any particidator hardware and were written in a style
amenable to vectorization. Compilers were then able torgémenachine-dependent vector code with excellent
results. We believe that just as automatic vectorizatioa mat successful for dusty deck programs, automatic
parallelization of dusty decks is unlikely to yield comglasuccess. Finding medium to large grain parallelism is
more difficult than single statement parallelism and coerpihave had limited success on dusty deck programs
[10, 19, 42, 43, 17]. We believe that only a combination obatfymic parallelization and compiler optimization
will enable the effective use of parallel hardware. Thisgrgmovides evidence that this approach is viable.

Since the amount of parallelism a dusty deck program casitaianknown, measuring the success of paral-
lelizing compilers on them is tenuous. The programs mayadlgtibe inherently sequential, parallel, or some-
where in between. Since a different version of the algoritmuld potentially achieve linear speed-up, only lin-
ear speed-ups (performance improvements that scale withutmber of processors) can be declared a complete
success. Linear speed-up is rare, even for parallel afiplicadue to communication overheads and Amdahl’'s
Law. In practice, parallel programs often require algonshand data structures that differ from their sequential
and vector counterparts. To achieve good parallel perfoceahe intellectual and programming costs required
for good parallel performance need to be paid. Our ultimai@ ¢ to provide compiler technology that de-
tects and exploits parallelism on a variety of parallel niaes, so that the programming cost will only have to
be paid once. Users will concentrate on parallel algoritiama high level. The compiler will be responsible
for machine-dependent details such as exploiting the mgimerarchy. In this paper, we consider optimizing
Fortran programs for symmetric shared-memory, bus-baaeadi@ machines with local caches.

We present an advanced parallelizing algorithm for conapégtplications that exploits and balances data
locality, parallelism, and the granularity of parallelisifhe algorithm uses existing dependence analysis tech-
nigues and a new cache model to drive the following loop dptitions: loop permutation, tiling, fusion, and
distribution. It tries to organize the computation suclt g&ch processor achieves data locality, accessing only
the data in its own cache, and such that the granularity d@flletism is large. Since we find that large grain
parallelism often crosses procedure boundaries, theitlgouses existing interprocedural analysis and new
interprocedural optimizations. The main advantage of @iingzation algorithm is that it yields good results,
and is polynomial with respect to loop nesting depth (it dbewever use dependence analysis which is, of
course, more expensive). In this paper, we present a newghanag algorithm, but clearly good analysis is a
prerequisite to this work and we discuss the analysis thablea our parallelization algorithm to succeed. We
present our parallelization algorithm in detail in SectBn

To test the algorithm, we performed the following experitaéstudy. We collected Fortran programs writ-
ten for a variety of parallel machines. Most of the programatir suite are published versions of state-of-the-art
parallel algorithms. The programs use parallel loops arlaiso use critical sections. We created sequential
versions of each program by converting the parallel loopseguential loops and by eliminating the critical
sections. The algorithm then optimized this version. We atorecommend that users convert their programs to
serial versions before handing it to the compiler, but wetbsemethodology to assess the ability of the com-
piler to find, exploit, and optimize known parallelism. WeedParaScope [12, 27], an interactive parallelization
tool, to systematically apply the transformations in ttgoogathm to the sequential programs. ParaScope imple-
ments dependence analysis, interprocedural analysissatadapplication of the loop transformations (tiling,
interchange, fusion, and distribution), but not the intecgdural optimizations, nor the optimization algorithm
itself. Sections 4 and 5 detail this experiment.

In Section 6, we show that the algorithm matched or improtedperformance of seven of nine programs
on a shared-memory, bus-based parallel machine with lachles. In addition to dependence analysis, many of
the programs require interprocedural and symbolic aralgsfind parallel loops. We also analyze which parts
of the algorithm are responsible for the improvements. Mdghe improvements occur in cases where data



locality and parallelism intertwine. The programmers weokable to exploit both when they conflict, but our
algorithm does. This result suggests a combination of #hgoic parallelism and compiler optimization will
yield the best performance.

To explore whether a machine-independent parallel prograg style exists, we also examined program-
ming styles in light of the algorithm’s successes and fasuin Section 6. We found that for the most part,
these parallel programmers use a clean, modular stylegfznhénable to compiler analysis and optimization.
Although the test suite is small, we believe this result addke evidence that programmers can write portable,
parallelizable programs for scientific applications fromieh compilers can achieve very good performance.

The remainder of this paper is organized as follows. SeQitmiefly reviews the technical background.
Section 3 describes the parallelization algorithm. Sadii@resents our experimental framework and the pro-
gram test suite and its characteristics. Section 4 measiueesffectiveness of our algorithm at parallelizing
and optimizing the programs in our test suite. Section 7 @egour work to other research in this area, and
Section 8 summarizes our approach and results.

2 Technical Background

This section overviews the technical background on deperedand reuse that is need to understand the paral-
lelization algorithm.

Data Dependence. We assume the reader is familiar witlhita dependencfl8, 29]. Throughout the paper,

5 = {8, ...6;} represents a hybrid direction/distance vector for a dajeemigence between two array refer-
ences. Each entry in the vector describes the distanceemtidin in loop iterations between references to the
same location. Dependence vectors are written left to fight the outermost to innermost loop enclosing the
references. Data dependenceslaop-independenif the references to the same memory location occur in the
same loop iteration anibop-carried if they occur on different iterationsParallel loopshave no loop-carried
dependences arsmquential loopsave at least one.

Sources of Data Reuse. The two sources of data reuse daeenporalreuse, multiple accesses to the same
memory location, andpatial reuse, accesses to nearby memory locations that sharealoeelr a block of
memory at some level of the memory hierarchy. (Spatial resiIsemetimes referred to as stride 1 or unit stride
access.) Spatial reuse may result freelf-reuseconsecutive accesses by the same array reference to the sam
cache line, or frongroup-reuse multiple array references accessing the same cache linglafy, temporal
reuse may arise from multiple accesses to the same memeajolody a single array reference or by multiple
array references. Without loss of generality, we assumgdfis column-major storage.

Augmented Call Graph. We use araugmented call grapit,. to describe the calling relationships among
procedures and loop nest structures in the program [20]s fltiv-insensitive call graph contains procedure
nodes and call nodes. For each procegutkat makes a procedure call at sitean edge connects nogeto
nodes. For each call site to procedurey, an edge connects nodeo nodeg. The G, also adds loop nodes for
every loop and edges to represent nesting. For each oufet Ingrocedurep, the G,. contains an edge from
nodep to nodel. Aninner loop is also connected to its outer loop with an edigeop [ in procedure surrounds

a call to a procedure, the usual edge from nodeto the call tog is replaced by an edge from noge¢o node

[ and an edge from nodeto the call node;. If an outer loop surrounds all the other statements in agohoe,

it is markedenclosing Note that call and loop nodes will have only one predecessmmprocedure nodes may
have multiple predecessors. For example, Figure 1(b}rititess the G, for the program in Figure 1(a).

3 TheParallelization Algorithm

This section describes a new algorithm for parallelizinggpams. The algorithm is unique in its ability to exploit
both data locality and parallelism, to increase the graitylaf parallelism, and to optimize across procedure
boundaries. Section 3.1 begins by presenting the basutsiteuof the driver, an overview of each component of



Figure 1: Two Adjacent Calls tdmxpyfrom Linpackd

(a) original program (b) Augmented Call Graph (Ggc)
subroutine dmxpy(n1, y, n2, Idm, x, m)

double precision y(*), x(*), m(ldm, *) main
doj=1,n2
doi=1,n1 dot
y(0) = y(i) +x() * m(i.j)
enddo /

enddo call dmxp@ /O call dmxpy

dmxpy
program main
dot=1, timesteps doj
call dmxpy(n1, y, n2, Idm, x, m)
call dmxpy(nl, a, n3, Idm, b, r) )
enddo doi
(c) optimized kernéel (d) optimized program
subroutine dmxpy(n1, y, n2, ldm, x, m) subroutine dmxpyE(n1, y, n2, Idm, x, m, ii, tile)
double precision y(*), x(*), m(ldm, *) double precision y(*), x(*), m(ldm, *)
parallel do ii = 1, n1, tile doj=1,n2
doj=1,n2 do i =ii, min(ii + tile - 1,n1)
do i =ii, min(ii + tile - 1,n1) y(i) = y(i) + x() * m(,j)
y(i) = y(0) +x() * m(i.j) enddo
enddo enddo
enddo

end parallel do program main

program main do t=1, timesteps

dot =1, timesteps parallel do ii = 1, n1, tile
call dmxpyE(n1, y, n2, Idm, x, m, ii, tile)
call dmxpy(nl, y, n2, Idm, x, m) call dmxpyE(n1, a, n3, Idm, b, r, ii, tile)
call dmxpy(ni, a, n3, I[dm, b, r) end parallel do

enddo enddo

the algorithm, and an example. The subsequent sectionslétaihthe individual components of the algorithm.
3.1 Driver

The basic structure of the driver for the parallelizatiogoaithm appears in Figure 2. Theriver algorithm
proceeds top down recursively from the root of thg ,Guch that a node is only visited once all its predecessors
have been visited. All nests and procedures nodes ardizgtizounvisitedandunoptimized Notice thatDriver

is fairly specialized to the node type. For a call node, itsdbeok keeping fowisited andoptimizedand then
recurses further down the call chain. Notice the sedbrafatement. If all the predecessors of a procedure
p are markedptimized then parallelism has been introduced in all the callingtexts and the procedure is
not optimized further. Otherwise for a procedure, it caliethe outer loop nodes that are adjacent, and calls
Parallelize Parallelizeuses a variety of transformations that act individually antlectively on the nests. If
Parallelizedoes not introduce parallelisiriver recurses further down the call chain. This algorithm pentor



Figure 2:Driver: Driver for Parallelization Algorithm

INPUT: n is a procedure or call node in the,Gloop nodes are handled withidriver
ALGORITHM:
procedure Driver (n)
if nis a procedure and any predecessat ¢f not visitedreturn
markn visited
if n is a procedure and all predecessors affe markeaptimized eturn
if n is a call node to procedugeDriver (p) {skip over call nodes
if nis a procedure node
partition the outer loops nodés= {4, ...,[;} of n into sets of adjacent outer loops
Ri = {{ll,...,lj},...,{lr,...,lk}}
forall i Parallelize(R;)
forall I,
if I;, now contains a parallel loop
mark it and call nodes nested within the parallel leppimizedandvisited
forall s, call nodes nested i} not surrounded by a parallel lo@river (s)
endforall
endif

only intraprocedural loop transformations. In Section, 3v&@ extendDriver to produce multiple optimized
versions of a procedure for different calling contexts, haddle interprocedural transformations. For purposes
of explanation, we divide the components of our algorithio the following steps.

Optimize - uses loop permutation and tiling on a single nest to exgii& locality and parallelism.

Fuser - performs loop fusion and distribution to enakletimizeon a single nest and to increase the granularity
of parallelism across multiple nests.

Parallelize - combinesOptimizeand Fuserresulting in an effective intraprocedural parallelizatiagorithm
for loop nests.

Enabler - uses interprocedural analysis and transformations tblertae Parallelize to be applied across
procedure calls. In particular, it parallelizes and optisi loop nests containing calls and spanning calls.
It uses the interprocedural transformatiofmp embedding, loop extractipandprocedure cloninyas
needed to enable loop transformations.

Example. To introduce the algorithm, we overview how the algorithnimzes the program in Figure 1(a) for
a shared-memory multiprocessor. Ideally, we want to omgathie computation such that each processor only
uses data in its private cache. The computation would thhiBigiocality, and would never need to get data from
main memory or another processor’s cache. To achieve tpcak want the references in the loop to the same
memory location or adjacent locations to occur within a speriod of time. The shorter the period of time,
the more likely the cache line on which the item resides wiilllse in the cache. Irdmxpyin Figure 1(a), the
references tg (i) have spatial locality on theloop and invariant, temporal locality on thidoop, the reference
x(j) has spatial locality on th¢ loop and temporal invariant locality on thdoop, and the reference.(s, )
has spatial locality on theloop and no locality on thé loop. The original loop ordering, with thdoop in the
inner position varying most rapidly, thus achieves tembparagpatial locality for all the references.

Parallelism is usually most effective when it achieves #rgdst possiblgranularity, the largest amount of
work per parallel task. Imdimxpyin Figure 1(a), the outef loop carries a recurrence and the inadoop is
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parallel. Maximizing the granularity of this nest thus gmsfthes loop in the outer position, but as we showed
above, exploiting locality prefersin the inner position. If we choose to permute iHeop to the outer position
and parallelize it, we can ruin locality in two ways:

1. If the runtime system assigns adjaceiterations to different processors, multiple processatssivare
cache lines. For example, each processor will update omeeekeofy(i), causing consistency traffic
between the local caches that sha(é¢) and memory. This effect is callefdlse sharing since each
processor is actually only using and updating independentants in each cache line. This effect can
dramatically degrade performance [24].

2. Evenif the runtime system assigns adjacent elements o the same processor, each pair of processors
may share cache lines. Also, because the reusg@ oére further apart in time than with an inndpop,
it is more likely thatm(, j) or z(j) will map to the same cache line causing additional cacheeasiskhis
effect also degrades performance [24].

To achieve locality and parallelism, we thus strip-mine artdrchange thé loop as shown in Figure 1(c).
The outerii loop is parallel, and the innérloop still attains spatial and temporal locality given agkenough
tile. The Optimizealgorithm drives this process with a cache model.

Notice also that irmainthere are two adjacent, independent calldnoxpy. In Figure 1(c), processors must
wait for the previous call t@imxpyto complete before proceeding. Our analysis uses thea@d interproce-
dural array section analysis to detect independence apdskoacture. The algorithreRnablerthen extracts the
outer loop from each call anffluserputs them into one loop, as illustrated in Figure 1(d). Thassformation
eliminates barrier synchronization and can also improgality. The next section describes each of these steps
in detail.

3.2 Optimize: Data Locality and Parallelism

The most effective and essential component of our parzdiiétin algorithm uses a simple memory model to
drive optimizations for data locality and parallelism [24]. We employ loop permutation to improve data
locality and tiling to introduce parallelism. Using a memanodel and loop transformations, our algorithm
places the loops with the most reuse innermost and paratglsl outermost, where each is most effective. It
also balances tradeoffs between the two when they conflict.

To simplify locality analysis, we concentrate on reuse thaturs between small numbers of inner loop
iterations. Our memory model assumes there will be no cowiticapacity cache misses in one iteration of the
innermost loop. The algorithm performs the following five steps.

1. It puts array references that exhibit group-temporal@mgroup-spatial locality into the sameference
group.
2. It determines the cost of loop nest organizations in texfitike number of cache lines accessed.

3. It determinesnemory orderthe permutation of the loops in the nest that yields the @iatst locality in
terms of the fewest cache lines accessed.

4. It achieves memory order omgarbyloop nest order through loop permutation.

5. Itintroduces outer loop parallelism biing the nest to to maintain locality on individual processorthas
computation is divided among multiple processors. Thegilitep strip-mines and if necessary, permutes
the nest to position an outermost parallel loop.

McKinley and Temam support this assumption [35], and Mceynét al. demonstrate that this memory model works well for
uniprocessor caches [34].



Figure 3:Optimize: Data Locality and Parallelization Algorithm

INPUT: Aloop nestl = {ly,...,Il}
OuTPUT: An optimized loop nespP
ALGORITHM:

procedure Optimize(L)
computeRefGroup for all references irC
MO =MemoryOrder (L)
P = NearbyPer mutation(£, MO)
for j = 1, m { outermost to innermost loop &f }
if p; parallel
strip minep; and parallelize-;, the resulting outer loop
if (j # 1) permuter; into the outermost legal position A
mark nest optimized
break
endif
endfor

The first four steps determine the amount of reuse for the qmstidering each loop as if it were innermost.
Based on this measure, the algorithm then permutes themashieve the lowest possible cost over the entire
nest while preserving correctness. Figure 3 contains theepural version of th®ptimizealgorithm, which we
explain in detail below.

3.21 Reference Groups

The goal of theRefGroupalgorithm is to avoid over counting cache lines accessed Uipte references that
generally access the same set of cache liRefGroupfinds references with group-spatial and group-temporal
locality with respect to a candidate inner loop and placesitintoreference groupsFor every loopl in the
nest, it considerg as a candidate for the innermost position.

RefGroup: Reference®ef andRef, belong to the same reference group with respect to labp

1. 3 Ref § Ref, , and

@) §isa loop-independent dependence, or
(b) ¢; is a small constant (|d| < 2) and all other entries are zero,

2. or,Ref andRef; refer to the same array and differ by at mdsh the first subscript dimension,
whered’ is less than or equal to the cache line size in terms of arayents. All other
subscripts must be identical.

Condition 1 accounts for group-temporal reuse and comdfidetects most forms of group-spatial reuse. Note
that a reference can only belong to one group.

3.22 Loop Costintermsof CacheLines

Step 2 determines the cost in cache lines of each referenop.gtsing a representative array reference from
each group, the algorithinoopCostin Figure 4 determines for each candidate inner loop, thebeurof cache
lines the reference will access. Intuitively, given a cdatk inner loog with trip iterations and a cache line
sizeclsin array elements, an array reference is classified andreskim cost as follows.

Loop invariant - (temporal locality) if the subscripts of the reference @6 vary withl, then it requires only
one cache line for all iterations 6{these references should end up in registers). Loop imianéderences
have temporal locality.



Figure 4:LoopCost: LoopCost Algorithm

INPUT:
L = {ly,...,l,} aloop nest with headets;, ub;, step
R = {Ret,...,Ref,} representatives from each reference group
tripp = (ub — lb + step)/step
cls = the cache line size,
coef{f,i;) = the coefficient of the index variablgin the subscripff
stride( f1,4;,1) = | step * coeff fi,4;)]
OuTPUT:
LoopCostl) = number of cache lines accessed wids innermost loop
ALGORITHM:
LoopCost(l) = (RefCost(Ref,(fi(i1,-.-,in),- .-, fi(i1, .- in)), 1) [ trips
k=1 he#l
RefCost(Ref,, I) = 1 if ((coefffi,i)) =0)A...A Invariant
, (coefff;, i) = 0))
‘22 if ((stride(f1,i,1) < CIS)A Unit
(strlaeul.i,,n) (coefl f2,i1) = 0) A
(coefff;, i) = 0))
trip; otherwise None

Consecutive - (spatial locality) if only the first subscript dimensiométcolumn) varies witt, then it requires
a new cache line evewms iterations, resulting irip/cls number of cache lines accessed. (The algorithm
in Figure 4 adjusts for non-unit strides less than the caicleesize.) Consecutive references have spatial
locality.

No Reuse — if the subscripts vary within any other manner, then the array reference is assumeduoeea
different cache line every iteration, yielding a totaltop number of cache lines accessed.

To determine theeference cosbver the entire nest when lodds innermost,LoopCostmultiplies the above
cost by the trip counts of the remaining loops. These loopsldvenclosd if [ is innermost. Sinc&oopCost
only measures reuse in the innermost loop, the order of thairéng loops does not affecbopCost LoopCost
then sums the cost over all the reference groups for a caediaiaer loopl. The next section shows how we
useLoopCostto find the best loop order for the entire nest. This methoduates imperfectly nested loops,
complicated subscript expressions, and loops with symibalunds.

Example. Consider again the subroutirdinxpy from Linpackdin Figure 5. In this example, the reference
groups are the same for thendj loops. Since there is only one reference to the ariagadm, RefGroup
place each in a reference group by itself. Since the twoerters toy are connected by a loop-independent
dependence, they make a single group. We assume for the kexdrap4 elements of each array fit on a cache
line. As illustrated by the table in Figure 5, the referep¢g has spatial locality and is thus consecutive in the
i loop, and has temporal locality because it is invariant @ytloop. The reference(;) has spatial locality on
the j loop and has temporal invariant locality on thiwop. The reference:(i, j) has spatial locality on the
loop and has no reuse on tlidoop. Notice when the loop is the candidate inner loop, thidoop must be the
outer loop and thereforeoopCostmultiplies the reference costs b, the 5 loop’s trip count. Similarly, when

4 is the candidate inner looppopCostmultiplies the reference costs by, thes: loop’s trip count.
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Figure 5: Subroutineimxpyfrom Linpackd

Cost in Cachelines, cls =4

) reference candidateinner loop
doj=1,n2 group || loopi loop j
doi=1,n1 iy y() |[ 1/4 n1xn2 1+nl
endd{)(') =0+ xQ) *mp x() | T#n2 U4 n2x nl
enddo m(i,j) || 1/4nlxn2 n2xnl
loopcost | 1/2n1lxn2+n2| 5/4nlxn2+nl

3.23 Memory Order

Even though_oopCostdoes not directly measure reuse across outer loops, we eahtasdetermine the loop

permutation for the entire nest which accesses the fewekedames by relying on the following observation:
If loop [ promotes more reuse than lodpwhen both are considered for the innermost lobwill
promote more reuse thdhat any outer loop position.

We therefore simply rank the loops using their loop costedrd) the loops from outermost to innermost
{l1 ...1,} such that the loop cost &fis less than or equal #_,. We call this permutation of the nest with the
least costnemory order Although contrived counterexamples exist to the abovemasion for 3 or more levels

of loop nesting, previous work demonstrates that in practise model is extremely accurate and always gets
the inner loop right [34]. We assume that each of the loop Gsusmgreater than 1, which is the only interesting
case. If the constants are comparable with the number ofdtaims on a line, this model loses accuracy. In
this case however, reuse across outer loops is likely, amttis algorithm still produces good results. If the
bounds are symbolic, we compare the dominating terms. ddneinating term is a function of all loop bounds,
then regardless of the relative sizes of the loop boundsntidel is accurate.

Example. Assumingnl,n2 > 1 in dmxpy loop i accesses fewer cache lines thhaand should be placed
innermost, yielding a memory order ¢f;, [;}.

3.24 Achieving Memory Order

Memory order specifies the permutation of the nest with tlastleost. To determine if the order is a legal
one for a perfect nedtwe permute the corresponding entries in the distancefiiregector. If the result is
lexicographically positive (the majority of the time it i34]), the permutation is legal and we transform the nest.
If not, we use the algorithmlearbyPermutatiorn Figure 6.

Given a memory ordering = {i,,, sy, -- -, iy, Of the loops{iy,is, ..., i, } Wherei,, has the least reuse
andi,, has the most, the algorithm builds up a legal permutatioR oy first testing to see if the loof,, is
legal in the outermost position. Ifitis legal, it is added?@nd removed front. If it is not legal, the next loop
in £ is tested. Once a lodgs positioned, the process is repeated starting from thmbieg of £ — {/} until £
is empty. The following theorem holds for tiNearbyPermutatiomlgorithm.

Theorem: If there exists a legal permutation wherg is the innermost loop, theMearbyPermuta-
tion will find a permutation where,, is innermost.

*Determining memory order does not depend on a perfect nesthdds exist for permuting imperfect nests [49], but we only
permute perfect nests or nests that fusion or distributiakenperfect (see Section 3.3.1).



Figure 6:Near byPermutation: NearbyPermutation Algorithm

INPUT:
O ={i,io,...,i,}, the original loop ordering
L ={ig,ipy;s---,ic, ), apermutation o
OUTPUT:

P = {p1,...,pn} @anearby permutation @

ALGORITHM:
procedur e Near byPermutation (O, £)
P=0; k=0; m=n

while £ # ()
forj=1,m
l =i,, € L{listhej" loopinL}
if direction vectors fopy, ..., pk,(} are legal

P=A{p,...,pr, 1}
L=L—-{l}; k=k+1;, m=m-1
break for
endif
endfor
endwhile

The proof by contradiction of the theorem proceeds as falo@iven an original set of legal direction vectors,
each step of the “for” is guaranteed to find a loop which resulta legal (lexicographically positive) direction
vector, otherwise the original was not legal [3, 9]. In aidif if any loopo, througho,, | may be legally
positioned prior tar,, it will be.

NearbyPermutatiortherefore places the loops carrying the most reuse as ims¢ras possible. If the
desired inner loop cannot be obtained, it places the next dessrable inner loop in the innermost position if
possible, and so on. This characteristic is important leeawost data reuse occurs on the innermost loop(s), so
positioning it correctly yields the best data locality.

3.25 Tiling for Parallelism

This step introduces a single level of outer loop paraheligshich is all the outer loop parallelism that typical
bus-based shared memory parallel processors can effgaaoit. At this point in the algorithm, the nest is
structured such that it accesses the fewest cache linescaesgsas to the same cache line occur close together
in time. In addition, if a loop carries temporal invariantgmatial locality, it has been identified. The two goals
during the introduction of parallelism are:

1. To place a parallel loop in the outermost legal positioaximizing the granularity of parallelism.

2. Ifthe parallel loop carries reuse, to tile it such thategkine reuse will fall locally on a processor, reducing
or eliminating communication between processors.

The algorithm therefore selects a loop for parallelizatidrich is either already parallelizable in the outermost
position or if not, can be legally permuted and parallelizgd an outermost position. If this loop carries either
temporal or spatial reuse, the algorithm strip-mines itileysize Strip-mining is always safe and it produces two
loops, a parallel outdterator and an inner contiguoustrip. If the iterator is not in the outermost position, the
optimizer permutes it to the outermost legal positiofihe algorithm strip-mines by the number of processors,

3 Additional register and cache tiling for the individual pessors should also be performed when applicable, but @dee scope
of this paper.
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assigning one iteration to each processor with the largess $ossible. We discuss this choice in more detail
after an example.

Example. Considerdmxpy again. Note that only thé loop is parallel. It can be safely interchanged and
parallelized in the outermost position. Since it carrieageral invariant and spatial locality, we tile the nest.
The optimizer strip-mines theloop by the number of processors, permutes the iterating todhe outermost
position, and parallelizes it. Figure 1(c) illustratestbsult. Because this loop structure maximizes data lgcalit
it reduces communication of data between iterations angfive between processors. In experiments on the
Sequent, this version afmxpyresults in speed-ups of up to 16.4 on 19 processors. Thisithligoalso attains
linear speed-ups for kernels such as matrix multiply [24].

Previous work also experiments with different versiongmmixpy, and shows the version in Figure 1(c) is the
best [24]. For example, parallelizingn the outermost position and assigning adjadatdrations to different
processors instead causes the cache ling(fgrto be shared among multiple processors. When compared with
the version our algorithm produces, this sharing resulelititional bus traffic when the line is sent to multiple
processors instead of one processor, and additional culeeteaffic since every write or an invalidate must
go to all the caches which contain the line. Previous work atestrates that these costs degrade performance
significantly [24].

Constantsand Tile Sizes. In the experiments reported in Section 4, the optimizergjitae parallel iterator one
iteration for each processor, producing strips as largeoasilple. If the parallel loop carries spatial reuse and
has enough iterations, reuse is attained and this strategyswvell [24]. If the parallel loop has spatial locality
and fewer iterations than the number of processors timesuheber of items on a cache line, then previous
work shows that to achieve the best performance, we shotilghlpcreduce the number of parallel iterations
such that the cache lines are not shared between proce24pré [runtime test could differentiate these cases.
In this work for unknown loop bounds of parallel loops, welsse the number of iterations is greater than the
number processors times the cache line $ize.

3.26 Summary and Discussion

To review, the complet®©ptimizealgorithm appears in Figure 3. We first compute BefGroupfor all the
references in the loop. Next we find memory order, and ajdplgrbyPermutatioto achieve memory order when
possible. The final step parallelizes the outermost p&talhg, and if necessary permutes it to the outermost
position.

In our experiments, memory order is usually a legal perrartaif the nest [34]. The complexity of the entire
algorithm in this case is dominated by the time to sort th@doo the nest and the corresponding dependence
vectors. The algorithm is thuS(n log(n)) in time to sort and linear in space, wheses the depth of the
nest. In the worst case, when the desired outermost loop lmeusinermostNearbyPermutatios complexity
dominates((n?) time. The parallelization step of the algorithm is lineare Wave previously shown the data
locality algorithm effective for uniprocessors [34]. Wevbalso demonstrated that the parallelization algorithm
effective for kernels [24], and in Section 4 we show that #igorithm is effective for application programs on
shared-memaory multiprocessors.

3.3 Fuser: Improving the Granularity of Parallelism

This section describes an approach for incorporating fuai@ distribution into th©ptimizealgorithm. Loop
fusion and distribution have several purposes in our algori The foremost purpose is fusing parallel loops
together to increase the granularity of parallelism andettuce communication of shared data. Fusion and
distribution may also create perfect nests whgbtimizecan improve.

“An alternative approach would give the runtime schedulerfligxibility to balance irregular work loads. For examplg,rbaking
the strips the same size as the cache line, there would bepaoabel iterations than processors, and thus the runtahedsuler could
assign iterations to processors dynamically.
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Figure 7: Loop Distribution and Parallelization Example

paralleldoj=1, m

doi=1,n doi=1,n

ai—1,1)=... = b(, j) = a(i, j)

doj=1,m distribution enddo

b(, j) = a(, j) end parallel do

enddo parallel do ii = 1, tile

enddo do i =i, minii + tile -1, n)
ai—1,1)=...
enddo

end parallel do

3.3.1 Loop Digtribution

If aloop nest cannot be parallelized effectively usiytimize then dividing the statements in the nest using dis-
tribution may enable parallelization of some subset of thements by either creating perfect nests or isolating
dependences that prevent loop permutation. For exampiee ileft loop nest in Figure 7, there is a loop-carried
dependence between the two assignment statements thahtsreélre nest from being performed correctly in
parallel. Distribution exposes parallelism, and resultthe two parallel nests on the right in FigureQptimize
then interchanges the resulting doubly nested loop to eelgjeod inner loop locality and parallelizes the outer
loop. Optimizealso tiles the singly nested loop to exploit spatial logadind parallelism. Both nests now execute
efficiently and correctly in parallel.

Distribution algorithm. Beginning with the innermost loof, in a nest{ly, .. .,1,}, the algorithmDistribute
divides the statements into strongly connected regsansbased on the dependences. Eschis then placed
in a loop by itself which divides the statements up into thedtrgranularity possible. In the style of Allen
et al. [2], the process is repeated for the next outermost loopl smine loop cannot be distributed over the
statements (this loop may of coursell If new nests are created as in Figure 7, these become edeslitbr
parallelization byOptimize This algorithm is not optimal because combining distiitmutvith loop permutation
may uncover deeper distributions that in turn may be moectifely parallelized [4, 33]. This flexibility was
not required in our experiments and is not explored furtleee h

After distribution and parallelization, there may be a ssge of parallel and sequential nests, some of
which may be fused back together. We showed that the probiéusiag a set of loops is the same, regardless if
they resulted from distribution or were written that way][25usion is desirable between parallel loops because
it may reduce communication of shared data and it reducesiuheber of barrier synchronization. Barrier
synchronization is often costly on multiprocessors.

3.3.2 Loop Fusion

Loop fusion merges multiple loops wittonformable headermto a single loop. Two loop headers are con-
formable if they have the same number of iterations and atte dither sequential or parallel loops. Two loop
nests are conformable at levelif each is perfectly nested and the headers at level 1 thrbige conformable.
For example, in Figure 8(a) all four nests are conformable\al 2. Fusion eliminates unnecessary barrier
synchronization and reduces communication of shared dateelen loops. It is safe if it does not reverse any
dependences between candidate loops. We only perform gsitsng. Our goal is to maximize parallelism.
Subiject to this constraint, we then minimize the number ddlfe loops. Fusion does not combine two parallel
loops when dependences would force the resulting loop toutesequentially.

Fusion algorithm. When there is a group of adjacent loop nests with conformiadsdelers which are differen-
tiated only by their parallel and sequential status amandidate nests, we have @tn?) time and space algo-
rithm that minimizes the number of parallel loops [25]. (Mayeneral fusion problems are NP-hard [25, 26].)
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Figure 8: Fusion Example from Subroutine tridvpi in Erlefaic

(a) original program (b) fused program

do k =1, kmaxd parallel do k = 1, kmaxd
doj=1, jmaxd doj=1, jmaxd

(1) f(Ljk) =1f(1,j,k) = b(1) f(1,j,k) = f(1,},k) * b(1)

dok = 1, kmaxd doi=2n-l .
doj=1, jmaxd f(l,J,k) = (f(i,j,k) - a(i) = f(i-1,j,k)) = b(i)

doi=2,n-1 tot(j,k) =0

2)  f(i.j.k) = (f(i,j.K) - a) * f(i-1,j,K)) * bi doi=2n-1

((jo)k _ 1(kjm;xd( (k) -ad) « 1(-1.} k) « &) tot(j,k) = tot(j,k) + d(i) = f(i,j,k)
doj=1, jmaxd .

(3) tot(,k)=0 (c) fusion DAG

do k =1, kmaxd

Cdoizom O—0o G—O

@) tot(j,k) = tot(j,k) + d(i) = f(i,j.k)

This restricted case however arises frequently in practtagccurs when the fusion candidates result from dis-
tribution. Programmers also write these types of adjacedtfasible nests and several occur in programs in our
test suite.

The fusion algorithm works by building a fusi@maG where nodes are nests, edges represent dependences
between nests, and fusion-preventing edges are speciatkech A dependence is fusion preventing if fusion is
not safe or inhibits parallel execution. The algorithm fipstedily merges nodes representing parallel nests such
that the graph remainsmG and no nodes connected by a fusion-preventing edge are dndtdieen greedily
merges sequential nodes. This merge respects the originalraints, any constraints introduced by the fusion
of parallel nests, and insures thabac results [25]. The original order of the nests may change &g & no
dependence constraints are violated.

Example. Figure 8(c) illustrates theAcG for the code in Figure 8(a). Since all the outeloops are parallel
and the number of iterations are the same up to level 2, theslage conformable at level 2. There are no
fusion-preventing dependences and thus all the nodes ctusée into one parallel doubly nested loop. The
resulting code appears in Figure 8(b). Notice that staténmeendering would enable an additional fusion of the
inner loops and thus further improve locality. This stepagdnd the scope of this paper [34, 25].

3.4 Intraand Inter-Nest Parall€elization

We combineOptimizeand Fuserin Figure 9 to optimize loop nests within a single proceduvée call this
algorithmParallelize It combines fusion and distribution witBptimizeto introduce effective parallelism and
to improve the granularity of parallelism achieved. It tals input a set of adjacent loop ne®ts= {/1,...,[,}

in a procedure and produces an optimized version of the.rfésteach negt;, it begins by applyingptimize
Optimizefirst improves locality and then detects and introducesligdisan at the outermost possible level as
described above. Dptimizeintroduces parallelismParallelize goes on to the next loop nelst, ;. Otherwise,
Parallelizetries to fuse the inner loops &f, in order to enable permutation and tiling, and tii@stimizeagain.

If it is still unable to introduce parallelism, the algomthdistributes to the finest granularity. If distribution is
able to form new loop nests:;, they may be parallel at some inner level or the outermost.léw; may be
inner nests or outer nests in teseof Figure 9. The algorithm applig®ptimizeto eachin;. These resultant
nests are candidates for fusion. Similarly, after it optiesi each outer loop, the algorithm fuses the resultant
nests when safe and profitable.
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Figure 9:Parallelize: An Intraprocedural Parallelization Algorithm

INPUT: R ={l,...,ly} 1 adjacent nests in a procedure
OuTPUT: an optimized version oR

ALGORITHM:
procedure Parallelize (R)
forall [;

if Optimize(l;) introduces parallelisroontinue

elseif Fuseall inner loops of; forming F andOptimize(F) introduces parallelism
continue

ese
{ln1,Ins,...,Iny} = Distribute(;)
if m =1 continue
forall In; Optimize (In;)

Fuse (Ing,Ins, ..., Ing)
endif
endfor
Fuse(Ly,...,L,)

3.5 Enabler: Interprocedural Analysis and Transformation

Striving for a large granularity of parallelism has a nataemnsequence: the compiler must look for parallelism
in regions of the program that span multiple procedures. dpproach to interprocedural optimization differs
fundamentally from previous research that uses inlininginihg is typically performed instead of interprocedu-
ral analysis and without knowing if it yields any optimizatiopportunities. Our approach adds to the complexity
of the individual loop optimizations, but avoids performinnnecessary inlining. We restrict the application of
interprocedural transformations to cases where it end&digsoptimizations and is therefore expected to be prof-
itable. This strategy is callegbal-directedinterprocedural optimization. We introduce two new inteqedural
transformations: (1).oop embedding which pushes a loop header into a procedure called witkitottp, and

(2) loop extractionwhich extracts an outermost loop from a procedure body mtacalling procedure. We also
useprocedure cloningo make specialized versions of procedures. The followirgssctions first review the
interprocedural analysis we need, and then describe tleasghs to the loop transformations, and our use of
interprocedural transformations.

3.5.1 Interprocedural Analysis

This section describes the interprocedural array sectialysis that enables interprocedural optimization. This
analysis is part of dependence testing in ParaScope, andhisuted before optimization [22]. We include this
description as technical background.

We usesectionanalysis to analyze interprocedural side effects to arffi&y20, 21, 22]. Sections represent
the most commonly occurring array access patterns; sirlghlaents, rows, columns, grids, and their higher
dimensional analogs. The various approaches to intergupakarray side-effect analysis must make tradeoffs
between precision and efficiency [8, 11, 22, 30, 45]. Sediwalysis loses precision because it only represents
a selection of array structures and it merges sections lfoefakences to a variable in a procedure into a single
section. However, these properties make it efficient. Brofivorks as well as more precise techniques [22, 30].

Sections reduce the dependence problem on loops contginicgdure calls to the problem on ordinary
statements. For example, Figure 10 illustrates the twaosector arraya that result from each of the two calls
to Q. The sections are in terms of constants and parametersdpassiee call. The superscript indicates a
Read and/oifite access and their relative order. The sections contitiheainformation necessary to perform
dependence testing in the calling procedure without farithepecting the called procedure [22]. Since we also
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Figure 10: Interprocedural Parallelization Example

(a) before optimization (b) loop extraction (c) fusion, interchange, &
parallelization
subroutine P(a) subroutine P(a) subroutine P(a)
real a(n,n) real a(n,n) real a(n,n)
integer i integer i, integer i,
doi=1,7
doi=1,7 doj=1, 100 parallel doj=1, 100
call Q(a,i) SEW: a[i,j=1:100] call Q(a,i,j) doi=1,7
call Q(a,i+1) SEW: a[i+1,j=1:100] enddo call Q(a,i,j)
enddo doj=1, 100 call Q(a,i+1,))
call Q(a,i+1,)) enddo
enddo end parallel do
enddo
subroutine Q(f,i) subroutine Q(f,i,j) subroutine Q(),i,j
real f(n,n) real f(n,n) real f(n,n)
integer i,j integer i, integer i,
doj=1,100
fa)=fip+ ... fi,p="fGjp)+ ... fa.)="fGjp+ ...
enddo

test for loop interchange and fusion between loops in tHercaihd the call, we require sections that are slightly
more precise thadata access descriptof8]. We need to know if the sections are precise. For examyen
section analysis merges information for two read accesseayi lose precision. At a section merge, we record
whether the new section is still precise or if it becomes &wj@e. We also use the augmented call grapht®
reveal the call and the loop nesting structure as describ&ection 2.

The next paragraph uses an example to demonstrate depertdstiag and motivate testing across calls for
intraprocedural loop fusion and interchange. We then distioe transformation tests in more detail, and finally
we show how to move loops across calls to effect these tranatons.

Example. Consider Figure 10(a) where the calls(doare annotated by, precise sections of array In this
example, the first call reads and modifies rivand the second call reads and modifies fow1 of arraya.
Using the sections, ParaScope’s dependence testing selieadlependence between the two calls; {1,0},
carried by the loop in P, and a that thg loop in subrouting) is parallel. Notice we have the distance for jhe
loop, even though it results from code in subroutip¢hat we have not inspected. If the loops were in the same
procedureParallelizewould fuse thej loops and then interchange thand; loops. Fusing thg loops would
create a perfect nest. The interchange would place lttap in the innermost position yielding the best locality
and thej at the outermost position yielding the largest granulasftparallelism, as in Figure 10(c). To perform
the required test®arallelize Optimize andFusemust use the ¢ to look across procedure calls and deal with
sections as well as references. This process is very sitnid&pendence testing with sections.

3.5.2 Extending Loop Optimizations across Procedures Boundaries

Parallelize. Consider again thBarallelizealgorithm in Figure 9Parallelizebegins with a set of adjacent nests
R ={ly,...,l,} and simply passes loop nests@ptimize Fuse andDistribute. Figure 11 containg&nabler,
the modified, interprocedural version Bérallelize To avoid the barriers of procedure calls, we generakize
to sets of adjacent nests and/or calls. Consider for exaomimizing procedur€’ in Figure 12. Since the call
to Q and thes loop are adjacent, we pass the call node and the loop nogarédielize Similarly, we extend
OptimizeandFuseas described below. THeriver procedure also needs slight modifications: the partitignin
step now creates sets of adjacent nests and calls, anddrdtealling Parallelize Driver callsEnabler.
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Figure 11:Enabler: An Interprocedural Parallelization Algorithm

INPUT: R ={l,...,l,}, ; adjacent nests and calls in a procedure
OUTPUT: an optimized version oR

ALGORITHM:
procedure Enabler (R)
forall [;
if {; is a call to procedurg Driver (p)
elseif /; nests around callg to p;, and sections fop;, are not exact
forall py Driver(pg)
elseif Optimize(l;) introduces parallelisroontinue
elseif I; contains no calls
Fuse all inner loops of ; forming 7 andOptimize(F) introduces parallelism
continue
elseif /; contains only adjacent calls to p;, with outer enclosing nests
if Fuse (¢;) forming F andOptimize(F) introduces parallelism
continue
elseif I; does not contain calls
{ln1,Ins,...,Iny} = Distribute(l;)
if m = 1 continue
forall In; Optimize (In;)

Fuse(Ini,ins, ..., In.,)
endif
endfor
Fuse(ly, ..., 1)

Testing for distribution into a procedure requires mor@infation than interprocedural sections provide,
therefore we do not generalize the parameteiBistribute Enablerensures arguments Ristribute are nests.

Optimize. Enableronly calls Optimizewith a loop nest that contains no calls, or that containssocatiose
actions are represented by exact sections. The origingioveof Optimize of course, works for the first case.
For a nest containing one or more calBptimizeuses any array references in the nest and the sectionssat call
to determine loop order of the loops in the calling proceddrkis case only looks at the nests in the calling
procedure, and the only change is to use sections in additimferences upon encountering the call statement.

If the nest contains a single procedure call, and an outdramedoses the entire body of this procedure,
Optimizecomputes memory order for each loop in the caller, and eamgh ilo the outer enclosing nest of the
called procedure as well. The sections identify these |laops all array references. As we showed in the
example above, dependence testing on the exact sectiafis fiesa direction vector that includes the loops in
the called procedureDptimizesimply uses this direction vector to determine if the loogewrit wants is legal.
Optimizedoes not have to compute any additional dependence infammat Optimizespecifies an interchange
of nests that cross procedure boundaries, it clones theguoe and moves the nest out of the callee and into
the caller (see Section 3.5.3).

Fuser. Enabler(Figure 11) calld~usein 3 places. In the first call, it passes outer loop nests thaiod contain
calls. In the second, it passes a group of adjacent callsex#lt sections and an enclosing loop nest. In this
case Fuseapplies the fusion test to the sections for a candidate Ealleuses the exact sections to determine
if the loop nest headers are conformable, to test for depmedebetween the sets of conformable headers, and
then builds and partitions the fusion graph in the usual Wayusefinds a fusion, it extracts the loop nests from
the calls and clones the called procedure (see Section).3.6f@imizethen tries again on the resulting loop
structure. In the final call tuse Fusemay see inexact sections, nests and/or calls, and it musk ¢hese
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parameters.

Example. For Figure 10,Driver calls Enabler with the i loop from procedure”. Enabler determines the
sections for all calls in thé loop are exact, and callSptimizethe first time.Optimizedetermines the loop is

not parallel, and since there is more than one call in the itesturns, failing to introduce parallelisrEnabler
then determines that all calls are adjacent, and that thedcatocedures contain an outer loop nest, and calls
Fuseon these calls.Fusetests the sections for fusion, finds they can be fused, @gtthe nests, and fuses
them. Enablersends the result t®ptimizewhich now can interchange tlidoop to exploit spatial locality, and
parallelize thej loop in the outermost position.

3.5.3 Interprocedural Code Mation: Loop Embedding and L oop Extraction

OptimizeandFusethus may specify that two loops in different procedures &hbe interchanged or fused. We
use loop embedding and loop extraction to place the loopkdarsame procedure and enable the loop trans-
formation. Loop embeddingushes a loop header into a procedure called within the kgloop extraction
extracts an outermost loop from a procedure body into tHsggrocedure. These transformations expose the
loop structure to optimization without incurring all thests of inlining. Just as inlining is always safe, these
transformations are always safe. Note, a similar analysitdadecide when to perform inlining.

The choice between embedding and extraction is made bagsbe desired optimizing transformation. All
things being equal, embedding loop nests into the calledepiare is preferable because it reduces procedure
call overhead by the number of iterations in the nest. If g@loest optimization needs loops that originate
inside a call site, extraction is required, as illustrate&figures 1(d) and 10(b). An implementation could handle
this in two ways. (1) Wher©Optimizedecides to do an interprocedural interchange, it would ydwaerform
embedding. IfFuselater detected a fusion involving the same nest, the loopgdime extracted and fused. The
disadvantage of this option is that the compiler would neeididrementally update the, G (2) Alternatively,
OptimizeandFusecould just record their desired loop transformations andmsformation phase could decide
between embedding and extraction as it performed the lamgfiormations. This method separates mechanisms
from policy and is consistent with good software enginegpractices.

3.5.4 Procedure Cloning

Procedure cloning generates multiple copies of a proceshrh tailored to its calling environment [13]. Even
without embedding or extraction, cloning is necessary riterprocedural parallelization because multiple ver-
sions of a procedure are required if a procedure is calleadror more settings that require different paralleliz-
ing optimizations. For instance, there are two call§tin Figure 12(a); one is surrounded by a loop and one
is not. Both thel andj loops are parallel, but we only want to introduce one levgdartllelism. We therefore
produce a version tailored to each call site, as illustratddgure 12(b).

355 Summary

The judicious application of interprocedural optimizagodoes not change the basic structure of the kernel
parallelization algorithm, but it complicates testing gafety and profitability of the individual loop transfor-
mations, as described above. Our strategy separatestyegadi profitability tests from the mechanics of the
transformations [33]. The safety tests depend on the poecis the dependence information and section anal-
ysis. For permutation, the dependences must be precisgleniouhe caller to determine if they would be
reversed after permutation. Since fusion requires additidependence testing, the sections must be precise. If
they are not precise, the algorithms conservatively asshateéransformation is unsafe.

4 Experiment

For our experimental validation, we measure our algorighatility to match or exceed performance on parallel
programs written by programmers who thought and cared giavatlel performance, not dusty deck sequential
programs. Our baseline measurement is thus a hand-codalielised program. We assembled programs
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Figure 12: Cloning Example

procedure C procedure C
call Q call Qclone
doi=1,n paralleldoi=1,n
cal Q cal Q
enddo end parallel do
procedure Q procedure Q
doj=1,m doj=1,m
enddo enddo

procedure Qclone
paralleldoj=1, m

end parallel do

(a) original (b) parallelized with cloning

written for a variety of parallel machines. We eliminatetthé parallel loops and synchronization to create
sequential versions of each program. We then applied ooritign to these sequential versions. The compiler
was required to use its analysis and algorithms to paradl@lie program. We do not recommend that users
eliminate their directives, but we use use this version t@asuee the compiler’s ability to find and further
optimize parallelism we know exists. Since the focus of gfaper is the optimization algorithm, in a few cases
we assume more advanced analysis than was implemented. t&/@lhthese exceptions. We executed and
compared the original hand-parallelized version, the egfigl version, and the hand-optimized parallel version
on a 20 processor Sequent Symmetry S81. Our results areapplito other symmetric multiprocessors. Our
results are very encouraging. Our algorithm exceeds orlmatcand-coded parallel programs for seven of nine
programs in our suite. Based on our successes and failueespmvment on a parallel programming style from
which compilers are more likely to achieve or improve hamaet performance for shared-memory, bus-based
parallel machines.

5 Methodology

In this section, we describe the experimental setup of tlhgram versions, the implementation status, the
execution environment, and the program test suite.

5.1 Creating Program Versions

For each Fortran program we obtained, we measured threeapnogersionsthe original parallel versionthe
sequential versignandthe hand-optimized parallel versionEach Fortran program was then compiled and
executed on the Sequent. The original parallel version iiallelized according to the user’s original intent.
For each of the programs that were originally written for 8exjuent, the original program version is simply
the user’s parallel program. For the programs written foeparchitectures, we modified all the parallelization
directives to reflect the equivalent Sequent directive® gitegrams used parallel loop directives which include
declarations for private variables, and critical sectiomsErlebacherthe parallelism is not explicit. Here, we
performed a naive parallelization of outer loops to crelagehiand parallelized version.

We created the sequential version of each program simplgyring all the parallel directives. We opti-
mize the sequential version using the advanced analysig@msformations available in our interactive parallel
programming tool, the ParaScope Editoe@} [12, 27], and also use&® to hand-apply our parallelization
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algorithm. FED is a source-to-source transformation tool which providgsethdence and section analysis, loop
parallelization, and loop transformations. Although thdividual loop transformations were automated, the
parallelization algorithm and interprocedural transfatimns were not. We discuss the implementation of the
analyses and transformations below.

5.2 Paralldization

Analysis. PED uses a range of dependence tests that start with simplék tsits and then, if necessary, uses
more powerful and expensive tests [18]. If a dependenceotd&@disproved, ED produces distance and direc-
tion vectors. It also performs analysis to determine soaaiables that can be made private in parallel loops.
To improve the precision of dependence testing, it usesragasymbolic dependence tests, interprocedural
constants, interprocedural symbolics, and interpro@duoD andREF array sections [22]. All of this testing

is implemented.

Transformations. PED’s selection of source-to-source transformations indudep parallelization with pri-
vate variable declarations, loop interchange, fusiortridigion, and tiling. It does not include loop embedding,
extraction, or procedure cloning.EP produces a variety of parallel Fortran outputs, one of wigcBequent
Parallel Fortran. We used the transformations availableein to apply our parallelization algorithm. Ing®
transformations have two phases. The mechanics of a tramation are separated from its test for correctness.
Users select a transformation and in respong® #etermines the safety of the transformation using depen-
dence analysis. If it is safe, the user decides to apply ibborlha transformation is applied,B@® carries out the
mechanics of changing the program and incrementally upgldtie dependence information to reflect the new
source. We did not implement our algorithm ie® We instead performed the transformations as specified by
the algorithm in D, and applied them only whereB assured their correctness. We kept optimization diaries
for each program [33].

5.3 Execution Environment

We ran and compared all three versions on a Sequent Symmngtryvigh 20 processors. We validated each

program using its output. For each of the programs, all theimes produced the same correct output. The
Sequent has a simple parallel architecture, allowing opeements to focus solely upon medium and large
grain parallelism. Each processor has its own 64Kbyte tag-get-associative cache with a cache line size of 4
words. Each processor and one shared, main memory is cedrtedhe bus. The Sequent compiler introduces
parallelism based on parallel loop and fork directives [39]

We used the parallel loop directives with private variatdeldrations to introduce parallelism. We compiled
with version 2.1 of Sequent’s Fortran ATS compiler usingdbmpiler options that specify multiprocessing, the
Weitek 1167 floating-point accelerator, and optimizatioitsahighest level (03). In a few programs, Sequent
compiler bugs prevented the highest level of optimizatiod ase of the Weitek chip at the same time. In these
programs, we used the Weitek 1167 floating-point accelesittioe it achieves better performance.

54 ThePrograms

To our knowledge, no test suites of explicitly parallel Fant programs currently exist. To obtain parallel
programs, we solicited scientists at Argonne National lratawy and users of the Sequent and Intel iPSC/860
at Rice. We present all the programs that users submitted.fildt 9 applications programs in Table 1 were
volunteered and were written to run on the following patatechines: the Sequent Symmetry S81 with 20
processors, the Alliant FX/8 with 8 and 16 processors, aeditel iPSC/860 with 32 processors. Table 1
enumerates the programs, their total number of non-comiimes, their authors and affiliations. 9 programs
out of all 10 are dense matrix coddsterioris a sparse matrix code. The authors are all numerical sstieand

6 of the 9 programs are state-of-the-art parallel versi®tepers have been published about them and a lot of

5Qur algorithm is automatable, and much of the algorithm febmplemented since these experiments were performed.
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Table 1: Program Test Suite

Name Description lines Authors Affiliation
1. Seismic 1-D Seismic Inversion 606 | Michael Lewis Rice
2. BTN BTN Unconstrained Optimizatior] 1506 | Stephen Nash, Ariela Sofer [36, 3] George Mason
3. Erlebacher| ADI Integration 615 | Thomas Eidson ICASE
4. Interior Interior Point Method 3555 | Guangye Li, Irv Lustig [31] Cray Research, Princetoh
5. Control Optimal Control 1878 | Stephen Wright Argonne
6. Direct Direct Search Methods 344 | Virginia Torczon [14] Rice
7. ODE Two-Point Boundary Problems | 3614 | Stephen Wright [51] Argonne
8. Multi Multidirectional Search Methods| 1025 | Virginia Torczon [14] Rice
9. Banded Banded Linear Systems 1281 | Stephen Wright [50] Argonne
10. Linpackd | Linpackd benchmark 772 | Jack Dongarra [15] Tennessee

attention was paid to their performance. It is thereforékehyl that large amounts of additional parallelism are
available without significant algorithm restructuring.€lprograms are described in more detail elsewhere [33].

The discussion will focus on the first 8 programs. We includégpackdsince it is well known and it
contains parallelism, but we did not use a hand-paraliélizrsion. The ninth coddBanded did not execute
correctly on the SequentBandedwas written for an Alliant FX/8 and converting three paraleps to the
equivalent Sequent parallel loop directives resulted inrdime error. Because of this error, we do not present
results for this program, but we did examine and try to palial it. Our techniques could not discover any of the
parallelism inBanded The parallel loops contained procedure calls that extjlidivided a linearized array on
to 8 processors. The program used offsets into a logical falimearized array at a call site and then subscripted
it with negative indices. This practice is not legal Fortraiil thwart even advanced dependence analysis, and is
most likely responsible for the runtime error on the Sequénir inability to analyze or parallelize this program
was due to two poor programming styles: linearization ofdabarrays, and using a fixed number of processors
to divide the work. These practices illustrate a prograngnstyle that is not portable to a different machine
or even to different numbers of processors. SiBemdeddid not execute, we exclude it from the rest of the
discussion.

By collecting programs rather than writing them ourselvesawvoided the pitfall of writing a test suite to
match the abilities of our techniques and architecture. él@ny many of the problems inherent to any program
test suite also arise here. Maybe only authors of easy tdiglam, well structured codes volunteered. Maybe
the authors of poorly structured ones did not want to exposie todes to a critical eye.

6 Resaults

We measured execution times for:
seq: the sequential version of the program,

hand:the hand-coded, user parallelized program, and
opt: the version obtained using our optimization algorithm.

The elapsed times for the entire applications were measusEtonds using the system csdicndsFrom these
times, we computed speed-ups for the parallel programs.|8¥e@easured subparts of a program if there were
differences between the hand-optimized parallel versimhthe user parallelized version. We separate those
differences into the following categories.

The Entire Application:execution time of the application.

Optimization: execution times in subparts of the program where our opétiga algorithm generated a dif-
ferent parallelization strategy than the hand-coded @ersi

Analysis: execution times in subparts where the optimized versiodcoat detect parallelism specified by
the hand-coded version.
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Table 2: Speed-ups over Sequential Program Versions

|| Speed-ups over the sequential version on a 19 Processaer8eq()

Optimization || Analysis Entire Application

Name hand| opt || hand| opt || hand| opt A

Seismic 3.0 7.9 9.1 123 35%
BTN 2.0 39| 61| 1.0 32| 41 28%
Erlebacher|| 13.8 | 15.0 13.2 | 142 7%
Interior 69| 104| 69| 5.2 69| 6.9 0%
Controlf 38| 38 0%
Direct 24| 24 0%
ODE 34| 34 0%
Multi 15.1| 1.0 53| 1.0 -530%
Linpackd 16.5 9.2 NA

Table 3: Program Execution Times

l Execution Times in seconds |

Optimization Analysis Entire Application
seq hand | opt seq hand | opt seq hand opt
Seismic 2114 | 7.14| 2.69 155.97| 17.05| 12.59
BTN 13.97| 7.045| 357|| 0.14| 085| 0.14 44.01| 13.93| 10.73
Erlebacher|| 87.83| 6.36 | 5.86 88.22 6.67 6.20
Interior 19.50| 2.00| 1.87 | 24.12| 3.47| 4.64| 1044.16| 151.16| 151.53
Controlf 17.44| 461| 461
Direct 151.28| 63.65| 63.65
ODE 4196 | 12.22| 12.22
Multi 75.45| 4.98 | 75.45 87.60| 16.32| 87.60
Linpackd 517.87 31.43 547.59 59.43

t : 8 processors

We used the microsecond clodetusclk to measure execution times for the differing program sttbpd-or
differences on inner loops, we measured the performancleecbiutermost enclosing loop in order to disrupt
execution as little as possible. The speed-ups of thesmizgetil subparts are under reported.

Table 2 contains speed-ups over the sequential prograrnondos the entire application and subparts. The
execution times in seconds of all the program and programastiversions appear in Table 3. In both tables,
a blank entry means that no program or program subpart fehdh category. Since we did not use a hand
parallelized version ofinpackd those columns are empty in Tables 2 and 3Cbmntro| Direct and ODE, the
optimized version and the user parallelized version didlifter and therefore we did not measure any subparts.

6.1 Interpretation and Analysis of Results

As can be seen in the percent change coluthif Table 2, the optimized programs either performed as well
or better than the hand-coded parallel versions excepMiglti. These programs are complete applications
that contain 1/0 and computation. The speed-ups were threrefot linear and ranged from 2.4 to 14.2 on
19 processors. Consider tlptimizationcategory. Every time our algorithms chose an optimizatioategy
different from the user’s, it was an improvement. The improent was at least a factor of 1.9 and at best a
factor of 4.9.
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In the following sections, we discuss the program analysisogtimizations that achieved our improvements
in more detail. We include analysis because good optinozas intimately tied to good analysis. Since our
focus is optimization, we assumed better analysis than magemented in a few cases. These caveats are
detailed as well.

6.1.1 Program Analysis

The 8 programs contained 923 loops. There were 445 nestptif fl@r deeper. Dependence analysis detected
551 parallel loops at all levels of nesting out of the 923 B(0%) and 271 out of 445 (61%) parallel loops in
the outermost position of a néstCompared with the programmers, dependence analysis tailddtect user
parallelism in about 3% of the loops and found parallelismrsifhiad missed in about 2% of the loops. When
users introduced parallelism, the compiler was usuallg &ibfind it. Compilers are generally more thorough and
meticulous than the average user, but users often havddughknowledge the compiler cannot ascertain. The
improvements experienced by the optimized versions werdumto analysis, but were due to our optimization
strategy which differed from the user’s strategy (see 8rdil.2). All the degradations in Tables 2 and 3 result
from analysis failing to find parallelism.

In three programsBTN, Interior, andMulti, users found more parallelism than our analysis did Athalysis
column in Tables 2 and 3). Fdnterior, these degradations did not have much effect on overallutioectime.
If we look at the execution times in Table 3, it is apparent th&s program subpart only affects the overall
execution time by less than 3%. Each®fN andMulti contain parallel loops with critical sections that update
shared variables. Analysis techniques exist that can gyojakentify the parallelism [44], but since it was not
part of our algorithm, we did not use them. BTN, the benefit of parallelism was actually overwhelmed by the
overhead of the critical section, resulting in better penfance when the loop executed sequentiallyMim'ti,
there was a single outer loop with a critical section. Thigael loop accounted for 86% of the sequential
running time and 30% of the parallel running time. The altyoni did not parallelize this loop because of the
critical section, and thudulti’'s performance degraded.

Interprocedural Sections. Interprocedural section analysis proved to be a very inapbrtOnly one program,
Erlebacherdid not have one or more parallel loops containing a calk da total of 246 procedure calls made
by the first 8 programs in the tables, 119 (48%) of these cadlg@sted inside loops and 48 (20%) of these loops
were parallel. Section analysis detected parallel loophk ealls as well as programmers. ParallelizBgN

and ODErequired flow-sensitive section analysis.Bift N and ODE, we determined the array kill by hand since
it is a very simple case that a reasonable implementatioddagaich. To effectively analyze and optimize the
modular parallel programming style found in these progragagiires both flow-sensitive and flow-insensitive
interprocedural section analysis.

Index Arrays. Five of the 10 programs use index arrays that are permusatibtne index set. Several of these
are monotonic non-decreasing with a regular, well defingtépa Ininterior, Contro| andDirect, paralleliza-
tion would not have been possible without using user assertand the testing techniques developed in our
earlier research [32]. The other two programs used them iayathat did not affect parallelization. When the
user asserts that an index variable used in a subscript isyatoric non-decreasing permutation array, depen-
dence testing can then eliminate dependences and detatteplmops. We used this information to parallelize
loops ininterior, Control andDirect

Linearized Arrays. ODE and Bandedcontain linearized arrays and use symbolics to index theorder to

simulate multiply dimensioned arrays. A symbolic test isaexd when the symbolic term is unknown, but loop
invariant. This feature would enable precise dependenalysia of many symbolic references into linearized
arrays. However, a better solution is to reward well stmedunultidimensional array references with excellent

5The statistics in this section do not incluBandedsince it did not execute on the Sequent, hémpackdsince we did not use a
hand parallelized version.
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Figure 13: Extracting, Fusing, and Cloning in Seismic

subroutine setvel subroutine setvel

call setvz(..) paralleldoi=1, np

call ftau(..) call setvzExt(..)
paralleldoi=1, np call ftauExt(..)

call chgvar(..) call chgvar(..)
end parallel do call fzetaExt(..)
call fzeta(..) end parallel do
(a) original (b) parallelization, extraction, & fusion

performance. Programmers will then have an incentive tonudéply dimensioned arrays when appropriate. If
array linearization improves performance, as it often doethe Cray YMP, then the compiler should perform
it.

Summary. Forthe most part, we used the existing interprocedural nairocedural dependence and symbolic
analysis. Since our focus is on the optimization strategyassumed better analysis than was implemented in
a few straight-forward cases: flow-sensitive analysisH®N (6 loop nests) an@DE (2 loop nests), and index
variable analysis fointerior, Control andDirect

6.1.2 Program Optimization

Three programsSeismi¢ BTN, and Erlebacherexperience significant improvements due to our optinorati
strategy. InSeismi¢the majority of the improvement comes from fusing 4 loopsthk original program, part of
which appears in Figure 13(a), each of the subroutss#gz ftau, andfzetacontains an outer, enclosing parallel
loop withnpiterations. Our parallelization algorithm, using the aegwed call graph, detects that these parallel
loops are candidates for fusion. The fusion is safe, solitietd them and performs the fusion in the subroutine
setvel as illustrated in Figure 13(b). The optimized version altjuhas more procedure call overhead, but the
benefits of reduced synchronization and communication dameigh this cost. None of the other optimized
programs use interprocedural transformations.

BTN'’s improvements are due to improved parallelization of 3dngnt nests that accounted for 50% of
the hand-coded parallel execution time. Thptimizeportion of our algorithm improves the locality of the
nests with permutation and then tiles to introduce outep lparallelism. In this case, tiling uses permutation
to move the parallel loop out and leaves a strip in place téo&dpcality. This optimization cuts the execution
time of the 3 nests in half and improves overall performanc@8%. These nests need to balance locality and
parallelism. The users successfully parallelized 24 dotgys in which locality and parallelism did not conflict,
but failed to achieve parallelism and data locality on thee8ts when they conflicted. This result implies users
are capable of detecting parallelism and locality, but @ss proficient at combining them.

Similarly, most of the improvement tBrlebacheresults from the use of permutation and tiling ®ptimize
to balance locality and parallelisnkrlebacherlso benefits from the application of fusion to 8 groups ofsies
The number of nests fused in a group varied from 2 to 5 nesth, am average of 3 nests fuseliterior also
benefits from fusion.

Except for distribution and embedding, the programs egectall of the transformations in the paralleliza-
tion algorithm. Every time our algorithms chose an optiti@astrategy that differed from the users, it was an
improvement.

"Fusion of sequential loops i@ontrolalso improves its performance, but scalar improvementbayend the scope of this work.
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7 Redated Work

Not many studies of parallelizing optimizers have beenighbd. Many commercial parallelizing compilers
do not reveal their optimization strategies to maintain aketaadvantage. The IBM PTRAN project, an in-
dustrial research compiler, has published parallelimagilgorithms that use control and data dependence, and a
wide selection of transformations, but without results4Q, 41]. Below, we compare this study with those of
parallelizing compilers from lllinois and Stanford [10,,118, 43].

The lllinois studies are traditional; they evaluate thezhiniques on dusty deck programs [10, 16, 28, 17].
They extend Kap, an automatic parallelizer, and then usegatallelize the Perfect Benchmarks. Their target
architecture is Cedar, a shared-memory parallel machitieclister memory and vector processors. Their work
focuses on detecting parallelism via array and scalar aisakather than improving locality. Their interprocedu-
ral analysis results de facto from inlining or is performgohiand. In some cases, they do not measure program
performance, but rather number of parallel loops found. @sults demonstrate that performance is dependent
on locality and granularity, not just parallelism. The altdons Kap uses are unpublished, which limits what
can be learned from these papers. The resulting programestiven further improved manually by ‘automat-
able’ transformations. It is not clear that even if eachvittlial transformation they propose is automatable,
that a practical decision procedure exists that could ctyrepply them. The most recent work on Polaris [17]
demonstrates that they have come closer to finding such ai@egrocedure, but they still do not specify it.
In contrast, our study uses a more clearly defined algoritBoth studies however would benefit greatly from
complete implementations.

Singh & Hennessy used the Alliant FX/8, the Encore Multimaxg their Fortran compilers [42, 43]. The
compiler algorithms are again unpublished. The FX/8 hasteiunemory instead of local caches, which means
all data accesses are slow. Since caches are not availdbiprimve performance, the parallelization algorithm
is simplified. On the Encore, the slow processors minimizedimpact of its small local caches. Singh &
Hennessy considered dusty deck programs. By inspectien, ftlund interprocedural analysis, user assertions,
and symbolic analysis to be useful. Our results offer a figanit step towards providing these analyses, as well
as going a step further to optimize for a more complex archite. The main result in these papers is that suc-
cessful parallelization requires many programs to be tewi We start with this premise. However, the ability
of our techniques to find further improvements reveals thahafter users perform algorithm restructuring for
parallelism, there is performance to be gained.

Our core techniqueptimize bears the most similarity to Wolf & Lam’s research [47, 4Beir algorithm
is potentially more precise and uses skewing and reversat. a@@orithm can take advantage of known loop
bounds to more precisely compute locality and granulafifyamallelism, and is more efficient. When a nest of
depthn is fully permutable our algorithm experiences it's besteo@$n log(n)) time complexity while Wolf
& Lam’s algorithm experiences exponential behavior in thptt of the loop nest. The most expensive step
in both algorithms is determining the reuse. Our algoritherfgrms this step only once, and then chooses an
optimization to achieve the reuse. Their algorithm evasatuse for every legal permutation. Their work
includes very few experimental results for the paralleéigra algorithm, and they do not perform fusion, dis-
tribution, or any interprocedural analysis and transfaroms. More recent work on the SUIF system includes
extensive interprocedural analysis and data and contstiueturing between nests to further improve locality
and parallelism [5, 19]. This work demonstrates importamtriovements over our approach, and some success
on dusty deck programs. However, they do not perform fusrodigiribution, and our approach is effective in
many cases.

Instead of using fusion to eliminate barrier synchronaatirecent work has focused on replacing barrier
synchronization between nests with explicit data placaraad finer grain communication [6, 7, 38, 46]. The
data placement yields locality on the processor and the §reen communication enables the processors to
overlap more computation and communication rather thawaiting at a barrier. When fusion is legal, fusion
can be more effective because references to the same foocattar more closely together in time, making the
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cache more likely to exploit the locality. For example, ddestwo adjacent loops that access the same array. If
the working set of the first loop exceeds the cache, fusiodyieuse. However when fusion is not legal, these
techniques can be used instead to improve performance.

Jeremiassen and Eggers [23] improve locality in expligtlyallel programs by restructuring the data layout.
We instead focus on restructuring the program control flove algo transform the program into a sequential
equivalent and therefore do not analyze parallel progréyasa transformations [23] and combining data trans-
formations with control transformations [5] can succelgfparallelize programs that the techniques presented
in this paper can not.

8 Conclusions

This paper presents a new parallelization algorithm thédrnoas parallelism and data locality. We use an
effective strategy to introduce locality, exploit parfien, and maximize the granularity of parallelism. In-
terprocedural section analysis is an important componEoupbsuccesses. We evaluated the parallelization
algorithm against hand-parallelized programs with pramgigesults. The algorithm improves performance
over hand-parallelized programs whenever it applied dpétions, significantly improving performance in 3 of
the 9 programs. It matches or improves parallel performdoicprograms written in Fortran 77 with a clean,
modular parallel programming style. The successes angtdailindicate that many parallel programmers are
using a portable programming style and an advanced congateanalyze and optimize these programs. The
compiler improvements come from balancing locality ancai@lism, and increasing the granularity of paral-
lelism. The compiler also improves on user-parallelizedesobecause it is inherently more methodical than a
user. Most importantly, these results suggest that we net#dgdarallel algorithms and compiler optimizations
to effectively utilize parallel machines.
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