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BUILDING CORRECT, EFFICIENT SYSTEMS THAT REASON ABOUT THE APPROXIMATIONS

PRODUCED BY SENSORS, MACHINE LEARNING, BIG DATA, HUMANS, AND APPROXIMATE

HARDWARE AND SOFTWARE REQUIRES NEW STANDARDS AND ABSTRACTIONS. THE

UNCERTAIN<T> SOFTWARE ABSTRACTION AIMS TO TACKLE THESE PERVASIVE

CORRECTNESS, OPTIMIZATION, AND PROGRAMMABILITY PROBLEMS AND GUIDE

HARDWARE AND SOFTWARE DESIGNERS IN PRODUCING ESTIMATES.

......Computing has entered the era of
uncertain data, in which hardware and soft-
ware generate and reason about estimates.
New hardware sensors, such as those found
in smartphones, fitness devices, cars, homes,
and games, observe the physical world
around them. Approximate computing delib-
erately exploits software robustness and unre-
liable hardware in the name of efficiency.
Analog and neuromorphic systems perform
computation on new hardware substrates.
Machine learning helps make sense of large,
complex data problems. Speech recognition,
natural language processing, and other
human–computer interactions face the ambi-
guity of human input. These data sources
already produce estimates that millions of
people rely on daily—but can we trust them?

Despite their ubiquity, economic signifi-
cance, and societal impact, building applica-
tions using these uncertain data sources is
surprisingly ad hoc. Most current software
and hardware abstraction layers ignore the
error in estimates, which leads to uncertainty

bugs. One potential solution that researchers
are exploring is probabilistic programming
languages,1 which provide abstractions for
reasoning about uncertainty, but these lan-
guages are intended for programmers with
statistical expertise. The richness and general-
ity of these languages poses a high barrier to
entry for programmers who lack such exper-
tise. More broadly, the wide ranging and
increasing use of estimates in modern soft-
ware pose correctness, optimization, and pro-
grammer productivity problems that current
programming languages do not adequately
address.

Here, we describe Uncertain<T>, a sim-
ple programming language abstraction that
lets programmers without statistics expertise
easily and correctly compute with estimates.
Uncertain<T>’s semantics automatically
propagate uncertainty in an estimate
through computation on that estimate and
define a statistical interpretation for condi-
tionals that compute with uncertain values.
The Uncertain<T> runtime lazily evaluates
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computations on estimates and uses hypoth-
esis tests to compute only as much precision
as necessary for a particular operation.

Uncertain<T> is less expressive than
other probabilistic programming languages,
because its goal is a simple API that abstracts
the complexities of generating, computing
with, and reasoning about estimates. We
carefully chose its features such that pro-
grammers need not have deep knowledge of
statistics when using it, thus improving
accessibility and programmer productivity.
Our programming model increases the
demands on hardware and software systems
that produce estimates, whose libraries and
APIs must now encode estimates as probabil-
ity distributions. In return, Uncertain<T>
delivers simplicity and accuracy to pro-
grammers who consume these estimates.

Three perils of uncertainty
Current APIs and programming lan-

guages encourage programmers to ignore
uncertainty and introduce errors in their pro-
grams. As a running example, we consider
GPS sensors. APIs for GPS typically return a
position and an estimated error radius (a con-
fidence interval for location):

public double Latitude,
Longitude; // location
public double Horizontal-
Accuracy; // error estimate

This interface, like many widely used
APIs for estimates, obscures the GPS esti-
mate’s uncertainty, encouraging three types
of uncertainty bugs:

" Using estimates as facts ignores random
noise in data and introduces errors.

" Computation compounds these errors
because computations on uncertain data
compose the uncertainty of their inputs.

" Conditionals ask Boolean questions of
probabilistic data, leading to false
positives and false negatives.

Uncertain<T> is a programming language
abstraction that helps programmers to identify,
reason about, and fix these common bugs.

Using estimates as facts
Current abstractions encourage pro-

grammers to ignore uncertainty. For GPS, a
lack of standardization makes results hard
to interpret. Consider the two smartphone
operating systems shown in Figure 1, both of
which depict GPS data with a point and a
horizontal accuracy circle for the confidence
interval. Intuitively, smaller circles should
indicate less uncertainty. However, the oper-
ating system in Figure 1a defines horizontal
accuracy as a 95 percent confidence interval
(widely used for statistical confidence),
whereas the operating system in Figure 1b
defines it as a 68 percent confidence interval
(one standard deviation of a Gaussian). So,

(a) (b)

Figure 1. GPS at the same location on two smartphone platforms. (a) One operating system defines horizontal accuracy as a

95 percent confidence interval. (b) Another operating system defines horizontal accuracy as a 68 percent confidence interval.

The larger circle is actually more accurate.
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the smaller circle has a higher standard devia-
tion and thus is actually less accurate! This
single horizontal accuracy number is insuffi-
cient to characterize uncertainty without
knowing statistical details of its definition.
Indeed, as our earlier work shows,2 a circle—
the standard visualization of GPS uncer-
tainty—obscures the fact that a person is not
uniformly likely to be at each point within
the circle.

Such common APIs obscure errors and
are often undocumented. Furthermore, the
lack of an API standard for each type of sen-
sor, much less a cohesive API for different
sensors, makes their results hard to interpret,
impeding portability and programmability.
Together, these factors make programming
sensors challenging and encourage pro-
grammers to ignore uncertainty completely.

The sidebar, “The Need for Standardization,”
discusses these issues in more detail.

Computation compounds errors
To show the practical implications of how

computation compounds error, we created a
simple GPS smartphone application that
computes speed from two GPS location read-
ings and prints the output. We took the
phone for a walk at speeds of less than 5
mph; Figure 2 shows the results. The applica-
tion reported an absurd speed of 59 mph in
one case, and often reported speeds of greater
than 7 mph (a running pace). Compounding
error causes these absurd results. Calculating
speed from two GPS location readings ampli-
fies the error in the result. Figure 3 illustrates
compounded error from calculations using
Gaussian error distributions. Summing two
Gaussians a and b produces a result c with
higher variance than either input.

Current programming models do not rep-
resent distributions as first-class values or
propagate compounding uncertainty through
computations, making it difficult for pro-
grammers to reason about and correct errors.
Programmers who want to improve applica-
tion accuracy are instead forced to implement
a wide range of ad hoc approaches, such as
averaging or imposing filters (for example,
Usain Bolt’s world record running speed is
24 mph, so no one is likely to walk faster
than 24 mph).

Conditionals
Programs eventually act on estimated data

with conditionals. As an example, consider
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Figure 2. Walking speed computation on GPS data. At one point, the data

presents an absurd 59 mph walking speed, and, for 35 seconds, the

calculated walking speed is greater than 7 mph (a running pace).

..............................................................................................................................................................................................

The Need for Standardization
As computer hardware diversified and proliferated in the early

1980s, software that used floating-point values was often incorrect,
unreliable, and not portable because hardware and software had not
agreed on their semantics. Codifying the IEEE Floating Point Standard
in 1985 was wildly successful in delivering programmability, reliabil-
ity, and portability of applications that reasoned and computed with
floating-point numbers.

Computing is at a similar point in its history for computing with
estimates. Hardware and software are increasingly producing, com-
puting, and reasoning about diverse estimates without the appropri-
ate specifications of error distributions and a corresponding

programming model. Uncertainty is increasingly exposed in emerg-
ing fields such as sensor processing, approximate computing,
machine learning, and neuromorphic engineering. The devices we
design and manufacture are increasingly complex, and yet depend
on a growing community of nonexpert programmers for their suc-
cess. The more programmable we make devices for nonexpert pro-
grammers who lack statistical expertise, the more likely we are to
see innovation that exploits computing with these devices. Much
previous work takes an ad hoc approach to programming these devi-
ces, which ignores uncertainty and error in the name of
convenience.

..............................................................................................................................................................................................
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using GPS to issue speeding tickets for a 60
mph speed limit with the conditional Speed
> 60. If your actual speed is 57 mph and
GPS accuracy is 4 meters, our GPS error
model shows this conditional has a 32 per-
cent probability of issuing a ticket due to ran-
dom noise alone. Figure 4 shows this
probability across speeds and GPS accuracies.
Naive conditionals ignore the potential for
random error, leading to false positives and
negatives. Applications instead should ask
probabilistic questions. In this example, we
might prefer to issue a ticket only if the prob-
ability is very high that the user is speeding
according to the available GPS evidence.

Uncertain<T>
To overcome the perils of uncertain data,

our earlier paper introduced Uncertain<T>, a
generic data type that expresses, propagates,
and manipulates uncertain data.2 Programmers
who consume estimates with Uncertain<T>
use familiar syntax, while the type’s semantics
(and implementation) make their programs
accurate and efficient. We implemented
Uncertain<T> in C#, as well as developing
prototypes in Cþþ and Python, and believe
most other high-level languages would also
support the abstraction. Figure 5 shows a sim-
ple GPS fitness application, GPS-Walking, in
C# without and with Uncertain<T>, illustrat-
ing the minor syntax differences.

Syntax
Uncertain<T> uses operator overloading

on a base type T to define an algebra over
random variables and to propagate uncer-
tainty through computations. Table 1 shows
Uncertain<T>’s basic operators and meth-
ods. Programmers write computations with
type Uncertain<T> as they would with type
T. The runtime computes how uncertainty in
an estimate flows through computations. For
example, in the program in Figure 5b, the
line Uncertain<double> Speed ¼
Distance / dt; computes an estimate of
speed from an estimate Distance of dis-
tance and time dt.

Defining distributions
Uncertain<T> represents uncertainty as

probability distributions that assign a proba-

bility to every possible value of a variable.
To represent distributions, Uncertain<T>
uses sampling functions, which approximate
distributions by random sampling. A sam-
pling function is a no-argument function
that returns a new random sample from the
distribution it represents on each invoca-
tion.3 In some cases, library writers might
instead write closed-form distributions for
their data, which can improve efficiency and
accuracy.

However, sampling functions make it pos-
sible to express complex data, such as maps
and machine-learning algorithms, which
have no closed form. Sampling functions
thus deliver both expressiveness and effi-
ciency benefits.

Library writers must modify their code by
first defining an error distribution for their esti-
mate and then returning an Uncertain<T>

(a) (b)

(c)

Figure 3. The compounding error using Gaussian error distributions. The

sum c ¼ a þ b is more uncertain than a or b.
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Figure 4. Error model for GPS-issued speeding tickets. Testing the

conditional Speed> 60 with a true speed 57 mph and GPS accuracy of 4

meters issues a speeding ticket 32 percent of the time.
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variable that encapsulates that error. For GPS,
we took on the role of expert library writer. We
analyzed the GPS sensor specification and
derived a model for its error (see our earlier
paper2 for details). The error model follows a
Rayleigh distribution; Figure 6 shows how we

implement a sampling function for this
distribution.

GPS.GetLocation returns an instance
of Uncertain<GeoCoordinate> by
implementing a sampling function that draws
samples from the distribution of GPS error.

..............................................................................................................................................................................................

Related Work on Probabilistic Languages
Probabilistic programming languages help experts build probabilis-

tic models in domains such as machine learning, cognitive science,
and robotics. None of this existing work, however, addresses the
needs of application programmers who lack statistical expertise. Our
earlier paper describes existing domain-specific approaches in
robotics, approximate computing, and databases,1 but those
approaches lack the generality of our work.

............................................................................................

Probabilistic programming
Various languages—such as Bayesian Inference Using Gibbs Sam-

pling (BUGS),2 Church,3 Fun,4 and Integrated Bayesian Agent Lan-
guage (IBAL),5—explore probabilistic programming, in which the
programs specify probabilistic models and the language provides
inference algorithms for querying these models. Using these lan-
guages requires programmers to carefully specify a model structure,
inputs, and appropriate inference strategies. Such delicate tasks
require a facility with statistics beyond what most programmers pos-
sess. However, for those with this expertise, probabilistic program-
ming languages deliver considerable productivity and efficiency
improvements by abstracting the details of implementing complex
statistical models.

Uncertain<T> is, by design, not as expressive as these probabil-
istic programming languages. It supports only tree-shaped Bayesian
networks, in contrast to the arbitrary joint-probability distributions
that other probabilistic languages support. This restriction is a feature
that we exploit to define an efficient implementation. Programs with
Uncertain<T> often have only minor syntactic differences from the
same program without Uncertain<T>, easing adoption by nonexpert
programmers while delivering concrete accuracy benefits.

We exploit sampling functions to represent probability distributions
in the same fashion as Park et al.,6 but add the semantics necessary to
use sampling functions in a mainstream imperative programming lan-
guage. We developed an automatic inference algorithm that uses
sequential hypothesis tests to dynamically choose a sample size. In con-
trast, Park et al. require the programmer to specify a sample size man-
ually and interpret the sampling results themselves.

............................................................................................

Probabilistic semantics
The semantics of a program operating on estimates are not the

same as the semantics of a program operating on exact data, because

the former program’s desirable correctness properties are often prob-

abilistic. For example, a smartphone application might obfuscate a

user’s location by adding Gaussian random noise, and then assert that

the obfuscated location is within 10 meters of the true location so the

results are still useful. There is a non-zero probability that this asser-

tion is violated. A more useful correctness property for this program is

probabilistic: there is a high probability the obfuscated location is

near the true location.
Sampson et al. show how to exploit Uncertain<T>’s Bayesian net-

work representation to verify such probabilistic assertions, as well as

optimize program execution by applying statistical transformations.7

These opportunities are available only because of the probabilistic

semantics that Uncertain<T>’s Bayesian network representation offers

programs. Given these results, future work could perform additional stat-

istical optimizations based on probabilistic semantics.

............................................................................................
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Although the Uncertain<T> runtime will
typically use this sampling function to draw
many samples from the error distribution, the
GPS sensor’s functions (GetHardwareLo-
cation and GetHardwareAccuracy)
are invoked only once, and their results are
captured by the SamplingFunction clo-
sure, so only one observation is taken from
the GPS sensor. Writing the GPS sampling
function is not onerous given a basic under-
standing of GPS, which most library writers
are likely to already possess.

Computing with distributions
Uncertain<T> propagates uncertainty by

dynamically constructing a Bayesian network
representation of computations involving
uncertain variables. A Bayesian network is a
probabilistic graphical model—a directed acy-
clic graph whose nodes are random variables
and whose edges are conditional dependences
between those variables.4 For example, Figure
7 shows the Bayesian network representation
for a single iteration of the main loop in Fig-
ure 5b. The shaded leaf nodes are known dis-
tributions, either provided by data sources (for
the locations L1 and L2) or by a standard set
of distributions (dt is a constant, which is a
point mass distribution). Each leaf must pro-
vide a sampling function for its distribution.
Computations do not evaluate eagerly; only
conditionals and expected value operators trig-
ger Bayesian network evaluation.

As we discussed earlier, instances of
Uncertain<T>must define a sampling func-
tion. The Bayesian network representation

defines sampling functions for computations
by using ancestral sampling. Consider again
the speed calculation in GPS-Walking
Uncertain<double> Speed¼ Distance/
dt; Figure 7 shows the Bayesian network.
The sampling function for Speed draws two
samples, one d from Distance and one t
from dt (a point mass distribution, so all sam-
ples are equal). To draw the sample d from
Distance, the process recurses, drawing a
sample each from L1 and L2 (which return
location samples), and applying the GPS.
Distance operation to the two sampled loca-
tions. Finally, at the root, the sampling function
applies the division operation to the samples,
returning d/t, a sample of Speed.

Making decisions under uncertainty
Uncertain<T>’s host languages require

concrete decisions at conditionals. In GPS-
Walking, the conditional if (Speed> 7) …
must decide whether or not to enter this
branch based on Speed, a probability distri-
bution of type Uncertain<double>.
The possible values of Speed may include
values both less than and greater than 7.
Should we enter the branch?

To give meaningful semantics to condition-
als involving probability distributions,
Uncertain<T> conditionals evaluate evidence
for a conclusion. The Uncertain<T> runtime
compares the probability (Pr) that Speed is
greater than 7—that is, Pr½Speed > 7&—to a
threshold a. We choose a default threshold of
0.5. The conditional given above enters the
branch if Pr½Speed > 7& > 0:5 or, in other

Table 1. Uncertain<T> (U<T>) operators and methods.

Language construct Type

Operators

Math (þ - * /) op :: U<T>! U<T>! U<T>

Order (<>'() op :: U<T>! U<T>! U<Bool>

Logical (& j) op :: U<Bool>! U<Bool>! U<Bool>

Unary (!) op :: U<Bool>! U<Bool>

Pointmass Pointmass :: T! U<T>

Conditionals

Explicit Pr :: U<Bool>! [0,1]! Bool

Implicit Pr :: U<Bool>! Bool

Evaluation

Expected value E :: U<T>! T 6 95 percent confidence

.............................................................
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words, if it is more likely than not that Speed
is greater than 7.

Programmers can override the threshold,
which controls the tradeoff between false posi-
tives and false negatives. The right tradeoff is
application-dependent. To override the default
threshold, a programmer writes if ((Speed
> 7).Pr(0.9))… to compare the probability
to 0.9 (90 percent). Higher thresholds require
stronger evidence to say yes, reducing false posi-
tives at the expense of more false negatives.

Implementing accurate and efficient evaluation
To decide conditionals, Uncertain<T>

must evaluate probabilities such as
Pr½Speed>7&. This evaluation turns random
samples from the Uncertain<T> variable’s

sampling function into a concrete value,
which will necessarily be approximate due to
sampling error. Conventional approaches in
probabilistic programming languages do not
abstract away the details of when and how to
do this evaluation. For example, some sys-
tems require a programmer to fix a sample
size n for each evaluation, or to select an
appropriate inference engine. Uncertain<T>
automates these delicate statistical choices.

When evaluating an inequality of the form
Pr½Speed>7&>0:5, we need to compute the
left side only to a level of precision high enough
to be confident it is significantly different from
the right side. This precision level could be
very low if, for example, Speed were a Gaussian
with mean 20 and variance 1. Uncertain<T>
exploits this context sensitivity using sequential
hypothesis tests, which are hypothesis tests that
take only as many samples as necessary to
answer the particular conditional.

The Uncertain<T> runtime performs
the hypothesis test using Wald’s sequential
probability ratio test (SPRT).5 We specify a
step size, say k ¼ 10, and start by drawing
n ¼ k samples from the Bernoulli distribu-
tion Speed > 7. The runtime applies the
SPRT to these samples to decide if the proba-
bility Pr½Speed > 7& is significantly different
from 0.5. If so, it terminates immediately
and branches accordingly. If the result is not
significant, the runtime draws an additional k
samples and repeats the test. The runtime
continues this process until either a signifi-
cant result is achieved or a maximum sample
size is reached (to ensure termination).

We can’t apply the same sequential testing
approach to the expected value operator E
because there are no alternatives to compare
against. Instead, we report the sampling error
of the mean, which is Gaussian for large
enough n by the central limit theorem. Cap-
turing the sampling error ensures pro-
grammers understand that the mean of the
distribution is approximate and subject to
error, while allowing them to cast away uncer-
tainty if necessary for a particular use (such as a
library that expects a concrete value of type T).

Uncertain<T> in practice
We now offer two case studies—GPS sen-

sors and approximate computing with machine
learning—to illustrate how programming with

double dt = 5.0; // seconds

GeoCoordinate L1 = GPS.GetLocation();  

while (true) {

 Sleep(dt); // wait for dt seconds 

 GeoCoordinate L2 = GPS.GetLocation();  

 double Distance = GPS.Distance(L2, L1);  

 double Speed = Distance / dt;  

 print(“Speed: “ + Speed);

 if (Speed > 7)  

  Alert(“You’re running!”);

 L1 = L2; // Last Location = Current Location

} 

(a) 

double dt = 5.0; // seconds

Uncertain<GeoCoordinate> L1 = GPS.GetLocation();  

while (true) {

 Sleep(dt); // wait for dt seconds

 Uncertain<GeoCoordinate> L2 = GPS.GetLocation();

 Uncertain<double> Distance = GPS.Distance(L2, L1);

 Uncertain<double> Speed = Distance / dt;  

 print(“Speed: “ + Speed.E());

 if (Speed > 7) 

  Alert(“You’re running!”);

 L1 = L2; // Last Location = Current Location

} 

(b) 

Figure 5. A simple GPS fitness application in C#. GPS-Walking computes

speed and warns users who are moving too fast. (a) Without Uncertain<T>.

(b) With Uncertain<T>.
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Uncertain<T> is accessible to nonexperts and
delivers accuracy and efficiency. Our earlier
work offers a third case study on digital sen-
sors.2 As both of the following case studies
show, Uncertain<T> helps programmers rec-
ognize that uncertainty’s effect on programs is
inevitably global, tainting all computations that
derive from uncertain values.

Smartphone GPS fitness
Thousands of smartphone applications

use the GPS sensor, and many compute dis-
tance and speed from GPS readings. For this
case study, we continue to use Figure 5’s GPS-
Walking with and without Uncertain<T>. As
Figure 6 shows, the version with Uncertain<T>
uses the modified GPS library. Here, we evalu-
ate GPS-Walking, showing how the
Uncertain<T> version improves application
correctness by eliminating uncertainty bugs,
while requiring little programmer effort.

GPS-Walking uses locations from the GPS
library to calculate the user’s speed, since
Speed ¼ DDistance=DTime. Because the loca-
tions are estimates, the distance and speed are
as well. The programmer must change the
line print(“Speed: “ þ Speed); from
Figure 5a’s original program because Speed
now has type Uncertain<double>. The
easiest change is to instead print the speed dis-
tribution’s expected value Speed.E(). It
might also be desirable to print the 95 percent
confidence interval.

Evaluation. We tested GPS-Walking by
walking outside for 15 minutes. Figure 8
shows the expected value Speed.E() (dark
blue line) and the confidence interval for
Speed (light blue ribbon) as measured each
second by the application. The speed calcula-
tion’s uncertainty, with extremely wide confi-
dence intervals, explains the absurd values
highlighted earlier in Figure 2.

Because GPS-Walking is for tracking
walking speeds, it warns users who are run-
ning by comparing the user’s speed to 7 mph.
The original implementation (Figure 5a) uses
naive conditionals, which are susceptible to
random error. On our test data, our user was
walking the entire time, yet the naive applica-
tion triggered this warning 30 times, repre-
senting a period of 30 seconds of false
positives due to random error.

The Uncertain<T> version of GPS-
Walking in Figure 5b evaluates evidence to
execute conditionals. When Speed has type
Uncertain<double>, the conditional

Uncertain<GeoCoordinate> GetLocation() { 

 // Get the estimates from the hardware 

 GeoCoordinate Point = GPS.GetHardwareLocation(); 

 double Accuracy = GPS.GetHardwareAccuracy(); 

 // Compute epsilon 

 double epsilon = Accuracy / Math.Sqrt(Math.Log(400));

 // Define the sampling function 

 Func<GeoCoordinate> SamplingFunction = () => { 

  double radius, angle, x, y; 

  // Sample the distribution in polar coordinates 

  radius = Math.RandomRayleigh(epsilon); 

  angle  = Math.RandomUniform(0, 2*Math.PI); 

  // Convert to x,y coordinates in degrees 

  x = Point.Longitude; 

  x += radius*Math.Cos(angle)*DEGREES_PER_METER; 

  y = Point.Latitude; 

  y += radius*Math.Sin(angle)*DEGREES_PER_METER; 

  // Return the GeoCoordinate 

  return new GeoCoordinate(x, y); 

 } 

 // Return the instance of Uncertain<T> 

 return new Uncertain<GeoCoordinate>(SamplingFunction);

} 

Figure 6. The Uncertain<T> version of GPS.GetLocation returns an

instance of Uncertain<GeoCoordinate>. The sampling function samples

the error distribution for a GPS reading, which follows a Rayleigh

distribution.

L1 L2

GPS
distance dt

/

Distance

Speed

Figure 7. Bayesian network for an iteration

of the Uncertain<T> version of Figure 5b’s

GPS-Walking. The leaf nodes L1 and L2
are from the GPS library in Figure 6, and the

leaf node dt is a constant.
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if (Speed > 7)
Alert(“You’re running!”);

asks if it is more likely than not that the
user is running. Even this simple semantics
improves the accuracy of GPS-Walking. On
our test data, this version triggers the warning
only four times. Programmers who want to
further limit false positives write

if ((Speed> 7).Pr(0.9))
Alert(“You’re running!”);

which asks if there is at least a 90 percent
chance the user is running faster than 7 mph.
This requirement is stricter than the first con-
ditional and never triggers the warning on
our test data. The tradeoff is that this condi-
tional is more likely to cause false negatives.
The right balance is application-specific.

Lessons. Uncertain<T>’s semantics for con-
ditionals that operate on estimates help pro-
grammers identify noisy, untrustworthy
results and thus substantially improve the
accuracy of their applications. The pro-
grammer need only make minimal changes
to the original application to be rewarded
with these benefits. Without Uncertain<T>,
this complex logic is difficult to implement,
because programmers must know the error
distribution for GPS, how to propagate error
through calculations, how to interpret condi-
tionals with uncertain data, and how many
samples to take.

Approximate computing with machine learning
The promise of approximate computing

is to improve efficiency by exploiting the
robustness of some applications to output
inaccuracies. Recent work on approximate
computing proposes neural acceleration, in
which a function is replaced with a neural
network created using a machine-learning
algorithm that approximates the function.6

The neural network executes on specialized
hardware, making the program faster and
more efficient.

Approximating Sobel. We studied the Sobel
benchmark,6 an image-processing operator
that calculates the gradient of image intensity
at a pixel. Esmaeilzadeh et al. trained a neural
network to approximate Sobel with an aver-
age error of 3.4 percent. Although this error
seems low, it can still adversely impact a pro-
gram’s correctness when used in computa-
tion. For example, edge detection compares
the output s(p) of the Sobel operator to a
threshold (say 0.1) to decide if pixel p is an
edge. Despite the low error in the approxima-
tion of s(p), our experiments show that when
the program computes with the result in the
conditional if (s(p) > 0.1) …, it suffers a
36 percent false-positive rate.

Machine-learning algorithms such as neu-
ral networks estimate a function’s true value.
One source of uncertainty in their estimates is
generalization: predictions might be good on
training data but suffer errors on unseen data.
To combat this, we use Bayesian machine
learning, which considers a distribution of esti-
mates rather than a single prediction.

We took the expert library writer’s role
and wrapped the neural acceleration of the
Sobel operator in Uncertain<T>. In particu-
lar, we trained a Bayesian neural network for
the Sobel operator, so that each input p to
s(p) produces a distribution of predictions
instead of a single one. Figure 9 shows this
predication distribution for a single output.
It also shows the single prediction from
Esmaeilzadeh and colleagues’ neural network
and ground truth. This example illustrates
the need to propagate error distributions
through approximate computations, rather
than simply trust a single estimate. However,
our Bayesian neural networks might not
deliver sufficient performance for use in
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approximate computing. Our earlier work
contains more details and suggests techniques
to trade off some accuracy to make Bayesian
neural networks fast enough to preserve neu-
ral acceleration’s performance benefits.2

Testing. We evaluated our approximate Sobel
operator by training it on 5,000 examples and
testing it on a separate set of 500 examples. For
each test example p, we compute the ground
truth sðpÞ > 0:1, then evaluate this same con-
ditional using the approximation of s(p) and
Uncertain<T>. The Uncertain<T> version
decides if sðpÞ > 0:1 by performing a hypoth-
esis test on the inequality Pr½sðpÞ > 0:1& > a,
where a controls the balance between false pos-
itives and false negatives.

Figure 10 shows the results of this condi-
tional as we vary the threshold a on the x-
axis. The y-axis plots precision and recall for
the test data. Precision is the probability that
a detected edge is actually an edge, and thus
it describes false positives. Recall is the proba-
bility that an actual edge is detected, and thus
it describes false negatives. The naive
approach using a single neural network locks
the programmer into a single balance
between precision and recall, decided once at
training time, which provides 100 percent
recall but only 64 percent precision. Thus,
on our application that uses the network on
new images, 36 percent of reported edges are
false positives.

With Uncertain<T>, programmers can
choose a precision and recall balance suitable
for their application. For example, Figure 10
shows that a threshold of a ¼ 0:8—that is, the
code if ((s(p)> 0.1).Pr(0.8)) …)—
results in 71 percent recall and 99 percent pre-
cision, trading more false negatives (missed
edges) for fewer false positives (wrongly
reported edges).

Lessons. Machine-learning techniques such as
neural networks are approximate functions and
thus introduce uncertainty. Applications com-
pute with these approximate functions, com-
pounding their uncertainty. Although Sobel’s
neural network had a low error rate, even a sim-
ple conditional compounded the error, generat-
ing a 36 percent false-positive rate. Using
Uncertain<T> lets programmers explicitly
express the right balance between false positives

and false negatives for their particular applica-
tion, without requiring any modifications to
the data source producing the estimate.

Discussion: expressiveness and
implications

Uncertain<T>’s simple abstraction gives
programmers access to a more expressive lan-
guage to write more sophisticated programs.
We envision extensions to Uncertain<T> to
further this expressiveness while maintaining
its accessibility. We are also excited about the
effects of a simple abstraction for uncertainty
on the design of future hardware and soft-
ware systems.

Expressiveness
Uncertain<T> identifies uncertainty in

data and helps programmers reason about its
effect on their programs. Often, applications
combine disparate data sources to achieve
novel features that data sources cannot achieve
in isolation. We believe Uncertain<T> can
help programmers combine these uncertain
data in a declarative way so that they need not
understand the statistical details behind the
composition. For example, programmers
should be able to write Location ¼ GPS þ
RoadMap þ Acceleration to improve
GPS estimates’ accuracy by including road
map data and accelerometer readings. To
personalize a restaurant recommendation,
programmers could write Restaurants ¼
Zagat(Seattle) þ Favorites þ Price
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and thereby combine general reviews with the
user’s preferences and a desired price range.

We believe that making it easy to compose
disparate data sources is a critical next step in
improving the programmability of systems that
compute with estimates. The challenge is to
take the well-known statistical problem of
Bayesian inference and abstract the implemen-
tation details so that programmers can benefit
from an accurate and efficient program without
needing to understand the inference details.

Implications for hardware and software
In this article, we have focused primarily

on an abstraction to meet the needs of soft-
ware that consumes estimates. However, such
an abstraction also has implications for esti-
mate producers and for negotiations between
producers and consumers.

The burden on producers is to describe the
distribution of error in their hardware or soft-
ware, which exposes information about the
estimation process. In the simplest case, con-
sumers will always benefit from better pro-
ducers, such as a new, more accurate and
efficient sensor. But because consumer applica-
tions that use Uncertain<T> are more robust
to errors, producers can more freely optimize a
range of accuracy and efficiency. For example,
the GPS library can degrade its accuracy by
contacting the satellites less frequently. Simi-
larly, approximate computing algorithms can
degrade their results, because they now

describe their error and require consumers to
explicitly reason about it. However, when esti-
mates are too inaccurate, they are useless; each
application requires some level of accuracy to
produce useful results. A robust interface
should communicate desirable levels of accu-
racy to producers, but consumers must none-
theless adapt when that level is not possible.

A rchitectural advances in sensing,
approximation, analog, and neuromor-

phic computing, and software advances in
machine learning, big data, and human-com-
puter interaction, increasingly introduce
uncertainty into applications. Uncertain data
poses correctness, optimization, and pro-
grammability challenges to these applications
and their programmers. Rather than ignore
these challenges and introduce uncertainty
bugs, Uncertain<T> embraces uncertainty,
helping programmers understand and con-
trol its effect on their applications without
demanding statistical expertise. Our experi-
ence with Uncertain<T> suggests that it has
the potential to change how programmers
think about and solve the growing variety of
problems involving uncertainty.
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