
Programming the Internet of Uncertain <T>hings
James Bornholt

University of Washington
Na Meng

The University of Texas at Austin
Todd Mytkowicz
Microsoft Research

Kathryn S. McKinley
Microsoft Research

Abstract—The transformation from desktops and servers to
devices and cloud services—the Internet of things (IoT)—is
well underway. A key problem facing IoT applications is their
increasing reliance on estimated data from diverse sources, such
as sensors, machine learning, and human computing. Current
programming abstractions treat these estimates as if they were
precise, creating buggy applications. Existing approaches to miti-
gate noise in estimates either add naive ad-hoc filters or construct
sophisticated statistical models. They are either too fragile or
too complex for ordinary developers to use. IoT developers need
abstractions that help them (1) reason about estimates, because
they are noisy and inherently inaccurate; (2) trade accuracy for
energy efficiency on battery limited devices; and (3) compose data
from disparate sources on devices and in the cloud.

In prior work, we proposed a new programming abstraction
called Uncertain〈T 〉 to help developers reason about noise in
estimates. This abstraction embeds statistical reasoning into pro-
gramming language semantics for commonly used languages, such
as C++, C#, and Java, instead of making developers program their
own statistics. This paper further improves programmability and
accuracy for estimates by (1) providing two program constructs
to specify context—application-specific domain knowledge—and
showing how improving estimates requires such context; and
(2) implementing a runtime which automatically composes con-
text with estimates. A case study shows that developers easily use
our constructs to add context and improve application accuracy.
This paper motivates the need for programming abstractions
for estimates to build correct IoT applications, and shows how
they make IoT programming more accessible to a wider class of
developers.

I. CALL TO ACTION
We believe that hardware and software that produce estimates
and the systems that consume them are in desperate need
of a standard for describing estimates. Put another way,
what good is a sensor if a programmer cannot reason about
whether their use of that sensor is correct? Consider the IEEE
Floating Point standard as an analogy. As computer hardware
proliferated in the late 1970s and early 1980s, software that
computed and reasoned about floating point values was often
incorrect, unreliable, and not portable. Codification of the IEEE
Floating Point Standard in 1985 for hardware and software was
wildly successful in delivering programmability, reliability, and
portability of applications that reasoned and computed with
floating point numbers.

Computing is at a similar point in its history for uncertain
data, and this inflection point is being accelerated by IoT
systems. Hardware and software are producing, computing
with, and reasoning about estimates without the appropriate
specifications of error distributions and programming models.
This paper suggests one programming model the industry could
standardize on, in which all systems that produce estimates
should produce both the estimate and a model of error in
that estimate. We believe this standardization will accelerate
innovation in IoT and other applications that consume estimates.

II. INTRODUCTION
The explosion of the Internet of Things (IoT) has driven
adoption of new estimated data sources—both big (machine

learning and cloud applications) and small (mobile and sensors).
For example, navigation applications turn maps and location
estimates from hardware GPS sensors into driving directions;
speech recognition turns an analog signal into a likely sentence;
search turns queries into information; survey results from
sources such as Mechanical Turk must account for human
error; and recent research promises approximate hardware and
software will trade result quality for energy efficiency. Millions
of people rely in their daily lives on these new, connected,
ubiquitous IoT applications that use estimates.

Despite their ubiquity, economic significance, and soci-
etal impact, the handling of estimates in such applications
is surprisingly poor. Most current software and hardware
abstraction layers simply ignore or obscure errors in their
estimates. Some developers define ad-hoc filters that ignore
data beyond a reasonable range of values, such as discarding
negative speed readings on a mobile phone or forcing the
GPS user interface to draw points only on roads. Such ad-
hoc approaches are fragile and inflexible, forcing upon each
developer the tedium of manually choosing and tuning their
own filters, often without much success. A few sophisticated
developers create statistical models to reason about errors. For
example, Newson et al. use map data and a probabilistic model
to correct noisy GPS readings in navigation applications [9]. For
these developers, researchers are exploring augmenting existing
languages with probabilistic primitives to deliver significant
productivity benefits [5, 6, 8]. Though probabilistic modeling
is effective, it requires considerable statistics expertise from
developers, a significant barrier to entry for many developers
attracted by the potential for real-world impact with new
IoT applications and devices. There has been little focus on
the programming model needs of this much larger class of
developers.

We believe the right programming model can deliver the
effectiveness of probabilistic modeling to this much larger class
of developers without requiring statistical expertise. To reduce
noise in estimates, probabilistic models generally add context—
application-specific domain knowledge which describes rules to
distinguish signal from noise in estimates. Data sources cannot
exploit this context automatically because it is application-
dependent; for example, a driving navigation application wants
GPS data restricted to roads, but a fitness application does
not. The right abstraction can provide developers the ability to
specify context without needing to build their own probabilistic
model. Such an abstraction also needs to automate probabilistic
inference, which often requires hand-tuning by experts.

In this paper, we propose two programming language
constructs for exploiting context, and present their compiler
and runtime support. The constructs build on our prior work on
Uncertain〈T 〉, a type system for uncertain data in mainstream
languages such as C# and Java, which automatically propagates
uncertainty through computation and performs automated
hypothesis tests to decide conditionals. The two constructs
are a conditional probability operator for specifying context
and a Bayesian composition operator for composing context

with estimates. Developers specify context declaratively from
variables specific to their domain. The compiler and runtime
implement simple probabilistic inference algorithms that they
automatically tune to the specific estimate when it is evalu-
ated in conditional expressions. While previous probabilistic
programming languages include these constructs [2, 4, 5],
developers who use them must explicitly build probabilistic
models and decide on Bayesian inference approaches. Our
abstraction takes a middle ground, delivering simple statistical
models without requiring developers to reason about statistical
details.

This paper describes a three-step recipe for developers to
improve application accuracy by exploiting context. First, we
rely on expert developers to summarize noisy estimates as
probability distributions, information they often already have.
Second, when application developers consume estimates, they
use the conditional probability construct to encode context—
their domain knowledge about the constraints of their specific
application. For example, a navigation application would use a
road map as context, marking GPS readings on roads as more
likely to be accurate than those off-road. Third, application
developers use the Bayesian composition construct to combine
estimates with context.

We evaluate our approach using a real-world Windows
Phone application, Time of my Life, which automatically assigns
semantic labels such as “at work” and “at home” to users’
GPS locations using a machine learning model. The original
application has poor accuracy because the estimates generated
by the machine learning model are often too noisy. We improve
the application by leveraging our language constructs to express
sophisticated reasoning in a handful of lines of intuitive code.
The new application is easy to understand, efficient, and
substantially more accurate than directly using noisy data. The
programming language extension in this paper is the first to
make Bayesian inference accessible to a much larger class of
developers, and portend exciting future applications that reason
about diverse estimated data.

III. REASONING ABOUT NOISE WITH UNCERTAIN<T>
This section provides background on the motivation, type
system, and conditional operator in Uncertain〈T 〉 from prior
work [3].

Applications that sense and reason about the complexity of
the world use estimates. The difference between an estimate
and its true value is uncertainty. Every estimate has uncertainty
due to random or systematic error. Random variables model
uncertainty with probability distributions, which assign a
probability to each possible value.

For example, GPS sensors produce estimates of a user’s true
location and most modern hardware exposes that estimate as a
probability distribution. Figure 1 depicts GPS data with a point
and a horizontal accuracy circle. Smaller circles should indicate
less uncertainty, but the left larger circle is a 95% confidence
interval (widely used for statistical confidence), whereas the
right is a 68% confidence interval (one standard deviation of a
Gaussian). The smaller circle has a higher standard deviation
and so is less accurate; this level of reasoning is too detailed
for most programmers. The lack of a standard meaning for
estimates and the computations on them is a problem for the
systems and humans that consume them.

To explicitly represent and propagate errors in
Uncertain〈T 〉, libraries that generate estimates wrap

(a) 95% CI, σ = 33m (b) 68% CI, σ = 39m

Fig. 1. GPS samples at the same location on two smartphone
platforms. Although smaller circles appear more accurate, the
sample in (a) is actually more accurate.

their data in the Uncertain〈T 〉 type and define a sampling
function that describes the error in the estimate (e.g., wrapping
a single GPS reading [3]). For example, a Gaussian distribution:

Uncertain<double> a = new Gaussian(4, 1);

The burden on library writers is low as they often already
know the distribution when producing their outputs (e.g., as in
GPS). The point of this abstraction is to deliver a familiar and
intuitive interface for application developers, i.e., computing
with the base type, while under the hood, the compiler and
runtime correctly propagate and compute with estimates.

Uncertain〈T 〉 correctly computes with estimates using lazy
evaluation, which is triggered when the program acts on an
estimate in a conditional. Conditionals represent hypothesis tests
for the runtime to evaluate. An object of type Uncertain〈T 〉
encapsulates a random variable of the numeric type T . As
computation proceeds, the runtime uses the type’s overloaded
operators to construct a Bayesian network, a directed acyclic
graph in which nodes represent random variables and edges
represent conditional dependences between variables. The leaf
nodes of the Bayesian network are data from libraries. Inner
nodes represent the sequence of operations that compute on
these leaves. For example, the following code
Uncertain<double> a = new Gaussian(4, 1);
Uncertain<double> b = new Gaussian(5, 1);
Uncertain<double> c = a + b;

results in the simple Bayesian network on the right, with two
leaf nodes and one inner node representing the computation
c = a + b. Uncertain〈T 〉 evaluates this Bayesian network
only when the program acts on the distribution of c.

+

a

c

b

Programs act on estimated data with
conditionals. Consider using GPS to issue
tickets for a 60 mph speed limit with the
conditional Speed > 60. If your actual
speed is 57 mph and GPS accuracy is 4 m,
this conditional gives a 32% probability of
a ticket due to random noise alone. To solve this problem,
Uncertain〈T 〉 defines the semantics of conditionals on esti-
mates as evidence for a conclusion. Rather than asking “is
speed faster than 60 mph?” Uncertain〈T 〉 asks “how much
evidence is there that speed is faster than 60 mph?”

When the developer writes a comparison
if (Speed > 60), the program applies a lifted operator

> :: Uncertain〈T 〉 → Uncertain〈T 〉 → Uncertain〈Bool〉

to create a Bernoulli distribution. The Uncertain〈T 〉 runtime
computes a concrete boolean from this Bernoulli by using a
hypothesis test, drawing only as many samples as necessary to
decide whether Pr[Speed > 60] > 0.5, computing if it is more
likely than not that speed is faster than 60 mph.

To control false positives and negatives, developers may

specify a threshold for conditionals:
if ((Speed > 60).Pr(0.99)) ...

This conditional evaluates whether it is at least 99% likely that
speed is faster than 60 mph. Higher thresholds reduce false
positives at the expense of more false negatives; in this case,
we are unlikely to falsely issue a ticket. The Uncertain〈T 〉
abstraction simplifies how developers control this trade-off,
without involving them in the implementation of the statistics.

IV. EXPLOITING CONTEXT
Using a pedagogical example, Bushranger, this section es-
tablishes the need for context and inference when using
estimates, introduces our language constructs, and describes
their probabilistic semantics.
Example: Bushranger is an Xbox Kinect game that takes
a photo of a player and then decides whether the player has
beard. The game uses a BeardRecognizer API that indirectly
exposes the output of a well trained machine learning model.
Actually, in Kinect SDK, there are many such APIs defined to
indirectly expose outputs of machine learning models, showing
that the problem we are attacking is widespread and important.

We design a three-step recipe for developers to improve
application accuracy by exploiting context:

1) Note what you have. Expert developers describe noisy
estimated data as probability distributions. Compared to
random values generated from data sources, probability
distributions provide global information about the value
set to generate and the likelihood of each value, which
we use to exploit statistical expertise to improve accuracy
of applications.

2) Encode what you believe. Application developers en-
code their understanding of application-specific domain
knowledge—context, using our new conditional probability
construct <|. The context describes strategies to decide
whether an estimate is noise. Some context is static, i.e.,
general rules applicable to all estimates, such as “The
possibility of a beard on females is 1%, and 29% for
males”. The context may combine static and dynamic
knowledge. Dynamic knowledge describes facts or ob-
servations that customize static knowledge for specific
application scenarios, such as “The player is female”. With
the combination of dynamic and static knowledge, our
context is refined as “It is 99% unlikely this female player
has a beard” and we can treat most “beard” estimates as
noise for that player.

3) Compute what you want. Application developers specify
how to compose estimates with context using our new
Bayesian composition operator #. The specification de-
scribes how to calibrate incorrect estimates and how to
enhance correct estimates. Under the hood, our runtime
implementation performs Bayesian inference, to compose
estimates and context as specified, and to sample estimates
sufficiently and efficiently for more accurate computation.
The application developer thus declaratively specifies
simple inference problems, but the compiler and runtime
automate the statistics, so application developers never
explicitly codes the statistics, reason about Bayesian
models, or choose sample sizes.

A. The Need for Context and Inference
A naive BeardRecognizer API implementation compares
the probability output by a machine learning model against a

predefined probability threshold, like 0.5. If the probability is
greater than 0.5, the API returns true; otherwise it returns false.
The implementation is problematic, because it assumes that the
model can perfectly report a value above 0.5 for any bearded
person. However, the model may perform poor for people for
whom it is not well trained. As a result, the application will
always make wrong judgments and frustrate those players.

Training better models may help reduce noise in estimates,
and furthermore improve application accuracy. However, ap-
plication developers usually do not have sufficient expertise to
retrain the models themselves, and most do not have the massive
computing resource required by the training task. On the other
hand, although model developers can improve models, without
knowing how the outputs of models get used and interpreted
by applications, model builders have no idea how their model
improvement affects application accuracy. Machine learning
models are just one type of estimated data source; others include
sensors, cloud computing, and human computing.

Given that noise in data sources is difficult to reduce, our
approach requires the BeardRecognizer implementation to
directly expose the probability calculated by its underlying
model. In this way, developers obtain the flexibility to imple-
ment their own strategies of interpreting estimates for better
beard recognition.

B. Exposing Estimates
Developers represent estimates by a data source as a probability
distribution variable of type Uncertain〈T 〉. The variable
encapsulates a likelihood function, f : T → R, which assigns
a likelihood to each possible value of the estimates. For
Bushranger, the function assigns a probability to True (that the
user does have a beard) and to False (that the user does not).

C. Declaring Domain Knowledge
Developers use our conditional probability construct to define
context—their domain-specific knowledge about what estimates
are invalid or what is the distribution of estimate errors. The
knowledge can be defined based on their personal experience,
or specifications of data sources, like hardware sensors and
machine learning models. Developers define static and dynamic
context.
Static Knowledge: Static knowledge describes general prin-
ciples to judge whether an estimate is noisy or reasonable
that the developer knows and wants to add to the application
to improve its accuracy. Given the same estimate, different
applications may require different context to decide whether an
estimate is valid. For example, in Bushranger, the developer
may believe that 15% of their users have beards (perhaps due
to demographic information). This knowledge is static: it refers
to an average instance of the problem rather than to a concrete
instance.

Developers may specify static knowledge as probability
distributions directly, such as
var populationBeard = new Bernoulli(0.15);

In the language of Bayesian statistics, this prior distribution
declares a belief about the value of a variable. While directly
declaring static knowledge is sufficient for removing some
noise, it is inaccessible to many developers, because it requires
them to write down a marginal distribution directly, which they
may not know.

Developers may prefer instead to build a distribution using
variables they understand more intuitively. In machine learning,

Photo photo = Kinect.CapturePhoto();
Func<bool, double> BeardLikelihood

= Kinect.BeardRecognizer(photo);
Uncertain<Gender> genderPrior = Uniform(Male, Female);
Func<Gender, Bernoulli> Beard_Gender = (gender) => {
new Bernoulli(gender == Male ? 0.29 : 0.01);

Bernoulli populationBeard = Beard_Gender <| genderPrior;
GenderPrior.Value = Male;

Bernoulli hasBeard = BeardLikelihood # populationBeard;
if (hasBeard.Pr(0.95)) AddBeardToAvatar();

Fig. 2. Bushranger using our new language constructs.

these variables are referred to as hidden variables. Developers
use our conditional probability construct to declare hidden
variables. In Bushranger, rather than declare that 15% of users
have beards, it is more intuitive for developers to express a
beard likelihood for each gender. The developer first defines a
hidden variable for gender
Uncertain<Gender> genderPrior = Uniform(Male, Female);

This statement encodes that males and females are equally
likely. Next the developer declares the relationship between
this hidden variable and the likelihood the user has beard:
Func<Gender, Bernoulli> Beard_Gender = (gender) =>
new Bernoulli(gender == Male ? 0.29 : 0.01);

This function says that the average male has a 29% chance to
have a beard, while the average female has a 1% chance. Finally,
the developer applies the conditional probability operator <|
to define a populationBeard variable:
var populationBeard = Beard_Gender <| genderPrior;

Introducing the hidden variable makes this final distribution
more intuitive. Note that this conditional probability operator
is similar to the bind operation of the probability monad [10].
Below we show how hidden variables help exploit dynamic
knowledge as well.
Dynamic Knowledge: Dynamic knowledge augments static
knowledge to refine context by customizing the general static
domain knowledge to a specific application scenario. This
context applies to a particular input or instance of the problem.
To define dynamic knowledge, developers must first encode
their static knowledge and then fix a concrete value for one
or more hidden values. In Bushranger, the hidden variable
is the current user’s gender, which can be recorded in the
user’s profile. If we know the user is male, we specify dynamic
knowledge as follows:
genderPrior.Value = Male;

The resulting context is therefore refined to express a 29%
chance to detect a beard for the user. In Bayesian infer-
ence terms, dynamic knowledge observes a value of the
variable genderPrior, and changes the posterior distribution
of populationBeard that depend on genderPrior.

A clear benefit of our abstraction is that the developer need
not understand the details of (i) expressing a generative model,
nor (ii) how to implement Bayesian inference over that model.
The Uncertain〈T 〉 abstractions hide that complexity, as we
detail in subsequent sections.

D. Composing Estimates and Context
With both an estimate and context in hand, developers define
how to integration the two using our new] Bayesian com-
position construct. While context delivers principles to judge
whether estimates are noisy or not, integration delivers how
to weaken erroneous estimates and enhance correct ones to
improve the accuracy of applications.

The Bayesian composition construct implements Bayes’
theorem, which describes how to combine a prior hypothesis
with evidence to form a new posterior hypothesis. For example,
Bushranger first retrieves an estimate from the Kinect API
Func<bool, double> BeardLikelihood =

Kinect.BeardRecognizer(photo);

and defines populationBeard as above. The developer next
specifies the composition of the estimate with context:
Bernoulli hasBeard = BeardLikelihood # populationBeard;

This operation completes lazily. The runtime system only
evaluates the distribution hasBeard when the program acts on
the data in a conditional (e.g., if (hasBeard.Pr(0.95)))
or performs an expected value operation. See Bornholt et al. for
additional details on the semantics and implementation of
conditionals and expected value without the new operators [3].
With and without the new operators, the runtime determines how
many samples are necessary to correctly evaluate conditionals
and expected value. Figure 2 shows Bushranger implemented
using the additional language constructs. Though concise,
under the hood this program performs Bayesian inference
to improve the accuracy of the application. The developer
does not implement the statistics, but instead expresses their
intent declaratively. The compiler and runtime automate simple
inference.

The net effect is that the variable hasBeard reweighs
the different possible values based on context. For example,
if BeardLikelihood indicates a 75% chance of a beard,
but dynamic context indicates the user is female, hasBeard
specifies a much lower probability of a beard. The results
clearly depend both on estimate quality and context accuracy.
If the estimate is perfect, nothing can make it better, and if the
context is incorrect, it will not improve accuracy. Empirically
in our case studies and other real-world applications, estimate
quality is not perfect and available context improves accuracy,
making our technique useful.

E. Semantics
We define a probabilistic semantics for our language constructs
in terms of Bayesian networks. A Bayesian network is a directed
acyclic graph in which nodes are random variables and edges
are dependences between variables [1].
Static Knowledge: In the Bayesian network, static knowledge
is a single node. For example,
var populationBeard = new Bernoulli(0.15);

indicates 15% of users have a beard. We introduce a single
node

B

HasBeard
The HasBeard node is the target variable we wish to reason
about. The static knowledge applies a prior distribution to
this target variable. The conditional probability construct <|
provides static context by introducing hidden variables. The
developer defines a hidden variable as follows
Uncertain<Gender> genderPrior = Uniform(Male, Female);

and then uses it to define their knowledge of HasBeard
Func<Gender, Bernoulli> Beard_Gender = (gender) =>
new Bernoulli(gender == Male ? 0.29 : 0.01);

var populationBeard = Beard_Gender <| genderPrior;

These operations create a Bayesian network with two nodes

G B

Gender HasBeard

Pr[B | G]

The edge from Gender to HasBeard reflects that the latter
depends on the former. The edge label Pr[B|G] that defines
that relationship is the function Beard_Gender, which declares
a distribution of HasBeard for each possible value of Gender.
The conditional probability construct has type

(T → Uncertain〈R〉) → Uncertain〈T 〉 → Uncertain〈R〉.

The operation Q <| Z says that given a distribution Z for the
hidden random variable of type T , and a specification Q of
how that hidden variable relates to a random variable O of
type R, the result is a new distribution of type R that accounts
for that relationship. The function Q maps each value z of Z
to a distribution Oz of type R, so Q defines the conditional
probability distribution P [O|Z]. The result of Q <| Z is the
marginal distribution

∫
Pr[O|Z] Pr[Z] dZ. In this way, <| is

similar to the bind operation of the probability monad.
Dynamic Knowledge: When the developer provides dynamic
knowledge that the user is male,
genderPrior.Value = Male;

the runtime updates the genderPrior variable and constrains
its value. In the language of Bayesian networks, this operation
observes the value of the variable, which we denote by shading
the node:

G B

Gender HasBeard

Pr[B | G]

This example illustrates why dynamic knowledge is defined
based on static knowledge: static knowledge reveals hidden
variables which can influence the target variable, while dynamic
knowledge specifies observations of those hidden variables to
actually influence the target variable.
Bayesian Composition: When the developer composes context
with the estimate,

Bernoulli hasBeard = BeardLikelihood # populationBeard;

our Bayesian composition operator] creates a new graphical
model that implements Bayes’ theorem. The resulting Bayesian
network adds an observed random variable that depends on the
context:

G B

Gender HasBeard

Pr[B | G]
P

Photo

Pr[P | B]

For Bushranger we call this new node Photo because it reflects
the input to the data source (i.e., the machine learning model
which predicts whether the person in a photo contains a beard)
not the output. The edge between HasBeard and Photo reflects
the fact that the photo (and therefore the estimate) depends
on the underlying state of whether the person has beard. In
essence, whether the person in the photo has beard depends
on whether the person has beard. Though this statement seems
a tautology, it is the key to our technique.

The edge label Pr[P |B] relates to the probability density
function returned by the data source (Section IV-B). Formally,
that density function specifies Pr[B = b|P = p], the likelihood
that the person in photo p does (b = True) or does not (b =
False) have beard. This likelihood is the result of applying
Bayes’ theorem to B and P

Pr[B = b|P = p] =
Pr[P = p|B = b] Pr[B = b]

Pr[P = p]

if we assume the estimator used uniform priors for Pr[B] and
Pr[P]. Exploiting context replaces the uniform prior for Pr[B]

with a new prior Pr′[B], specified by the developer, to produce
a new posterior distribution Pr′[P = p|B = b]. By Bayes’
theorem and using the uniform prior:

Pr′[B = b|P = p] =
Pr[P = p|B = b] Pr′[B = b]

Pr[P = p]

=
Pr[B = b|P = p] Pr[P = p]

Pr[B = b]

Pr′[B = b]

Pr[P = p]

∝ Pr[B = b|P = p] Pr′[B = b]

where the proportionality on the last line follows since we
assumed Pr[B = b] was a uniform prior. If we write Q
as the function x 7→ Pr[B = x|P = p] and P the
distribution Pr′[B = b], the Bayesian composition operator
has a probabilistic semantics

Pr[P] Q = x] ∝ Q(x)P (x) (1)

which captures the composition of probability distributions,
rather than multiplication of the random variables.

V. IMPLEMENTATION
We implemented our language constructs in C# and C++. We
found that C#’s dynamic types simplified the implementation,
but our language constructs are general enough to add to many
other languages.

We overload arithmetic and other operators to construct
a Bayesian network representation of computations, which
the runtime evaluates lazily. Overloading means that from the
developer’s perspective, they are computing with values, not
distributions. When the program uses an estimate in a branch
condition or expected value statement (e.g., printing a value), the
runtime evaluates the value through a visitor pattern to sample
the Bayesian network by visiting each node in the graph and
performing that node’s Sample method. Unobserved nodes are
sampled using ancestral sampling, which simply samples each
parent of a node before sampling the node itself [1]. When the
visitor encounters an observed node created by the Bayesian
composition operator, it returns the observed value as the sample
and evaluates the likelihood function (the P argument in P]Q).
The final weight of the sample is the product of all such
likelihoods.

Existing sequential hypothesis tests do not support likeli-
hood reweighting as a sampling technique, because each sample
has an associated likelihood si. Samples are thus not “worth”
the same – a sample with weight 0.01 is much less informative
about the distribution than one with weight 0.9. We introduce a
new sequential likelihood reweighting (SLR) algorithm, which
we do not describe in detail here due to space constraints.
SLR is a sequential hypothesis test that accounts for weighted
samples by adapting Wald’s sequential probability ratio test
(SPRT) to deal with weighted samples.

VI. CASE STUDY: TIME OF MY LIFE
This section demonstrates with a case study that our abstraction
is (i) concise—modest amounts of code implement powerful
scenarios, (ii) efficient—the runtime takes only as many samples
as required to make judgments, and (iii) accurate—adding
context to estimates significantly improves application accuracy.

This case study improves Time of My Life, a popular
Windows Phone application with 50,000+ active users. Time
of My Life associates sequences of geolocations to semantic
places, such as ‘Home’ or ‘Work’, and profiles where users

// current geographic location from GPS
Point point = GetPointFromGPS();
string[] labels = GetAllSemanticLabels();
// Application Agnostic Placer
Func<string, double> Likelihood = lbl => Placer(point, lbl);
// Application Specific Placer#
Func<Point, Uncertain<string>> PlacerSharp = point => {
// Get closest semantic label as tuple
LabeledPoint userDefinedPoint = FindClosestLabel(point);
return new Uncertain<string>(() => {
// if distance between semantic label and GPS point
// is small, return the user’s semantic label
if (Distance(point, userDefinedPoint.point) <

Gaussian(20,4)) // model error in user placement
return userDefinedPoint.label;

// GPS is far from semantic label; bias away from it
return UniformlySelectFromSetExcept(labels,

userDefinedPoint.label);
}); };

Uncertain<Point> pointPrior = UniformPointPrior();
Uncertain<string> userPrior = PlacerSharp <| pointPrior;
pointPrior.SetValue = point; //constrain to current GPS
Uncertain<string> label = Likelihood # userPrior;

Fig. 3. Placer# implementation

spend time. A machine learning model creates semantic-label
estimates from user GPS locations. This user-agnostic model
is called Placer [7]. To improve these estimates, we add user-
defined priors, where the user tags one or more locations
with semantic labels. To exploit this context, we then combine
semantic-label estimates with the user-label priors using the
Bayesian composition operator. We call this version Placer#.
Improving Placer Estimates: The original Placer service does
not incorporate information from an individual user in that
user’s predictions. Instead, the global Placer model combines
labels, GPS, and data from public government surveys and
maps. The deployed Placer model then takes a user’s geographic
location history, clusters them into nearby groups, and produces
a multinomial likelihood over semantic labels. Figure 3 shows
how Placer# creates a new likelihood function for Placer’s
estimates, and then composes those estimates with nearby user-
defined labels to improve accuracy.

We believe user-defined labels are more likely correct than
what Placer infers when a user’s label is near the current
location. The function PlacerSharp specifies context. Given
a GPS point, Placer# (i) finds the closest user-labeled point to
that location and (ii) if the distance between them is small (less
than 20 m) Placer# assigns that label to the location, otherwise
(iii) Placer# uniformly selects from its semantic labels. We
assume Gaussian error in user label placements.

Placer# encodes static context by incorporating users’ labels
and their distance to GPS locations as a prior over labels. It
uses dynamic context by observing a new GPS location, and
combines this dynamic context with the machine learning model
using the Bayesian composition operator.
Evaluation: We randomly select 10 active Time of My Life
users, where each user has a minimum of 3 user-defined labels.
Time of My Life collects a minimum of 2,000 GPS locations
per user, but most have nearly 300,000. We split these GPS
locations into training and test sets (90%/10%) and use the
training set to build Placer’s model as normal.

A user-defined ‘Home’ label has two effects. First, new
GPS points close to the user label ‘Home’ are likely ‘Home’.
Second, new GPS points far from ‘Home’ are unlikely ‘Home’
(most users have one home) and so are more likely a different
semantic label. Figure 4 shows the labels assigned by both
Placer and Placer# to 1240 test-set GPS points for a single

0

0.2

0.4

0.6

0.8

1

Work Home School Recreation Other

P
r(

L
a
b
e
l)

Label

Placer Placer#

Fig. 4. Points near a user-label ‘Home’ are more than twice
as likely to be correctly labeled by Placer#.

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 128 256 512 1024 >1024

P
r(

P
o

in
t
g

e
ts

 u
s
e

r
la

b
e

l)

Distance(GPS Point, User Label) in meters

Placer Placer#

Fig. 5. The probability a GPS point is attributed to a user-label
as a function of distance between the two.

user, all within 20 m of the user label ‘Home’. The x-axis is
the set of labels and the y-axis the average probability a point
is given that label. The context that Placer# uses makes it much
more accurate. Points close to the user label ‘Home’ are more
than twice as likely to be labeled as such. All 10 users show
qualitatively similar results.

Figure 5 demonstrates the generality of our results. We take
all training GPS points from all 10 users. The x-axis is the
distance of a GPS point from the nearest user label, and the
y-axis is the likelihood the GPS point is attributed to that user
label. Placer is very inconsistent; for example, it is less than
50% likely to label a GPS point as ‘Home’ even if that point
is less than 2 m from a ‘Home’ label. In contrast, Placer# is
much more consistent, with close points labeled appropriately
over 80% of the time. For points far from the nearest label, the
results in Figure 5 are less meaningful, because the selection
of the “nearest” label is noisy.

VII. CONTEXT EXAMPLES
In previous sections of the paper, we described several examples
of context: the Time of My Life case study, avatar enhancement,
and GPS road snapping. A significant category of context
is personalization for a specific user, which should enhance
many IoT applications. For instance, the automated temperature
setting for your house may both respond reactively to your
movements at home (e.g., sleeping and cooking) and it can
proactively and automatically anticipate that when you leave
work, you always return home in about 30m on weekdays, but
not on Thursdays when Poker is on your calendar, and pre-
heat your house accordingly when you leave. In this case,
context includes your calendar and the probability of you
returning home, and the estimate is when you leave work
(an estimate from the GPS on your phone). Dynamic context
may be collected by combining observing your movements
over time.

VIII. CONCLUSION
As computer hardware proliferated in the late 1970s and early
1980s, software that computed and reasoned about floating

point values was often incorrect, unreliable, and not portable.
Codification of the IEEE Floating Point Standard in 1985 for
hardware and software was wildly successful in delivering
programmability, reliability, and portability of applications that
reasoned and computed with floating point numbers.

We contend that computing is at a similar point in its
history for probability distributions. Hardware and software
are producing, computing, and reasoning about estimates
without the appropriate specifications of error distributions
and programming models. Uncertainty is increasingly exposed
in emerging fields such as sensor processing, approximate
computing, machine learning, and neuromorphic engineering.
The devices we design and manufacture are more and more
complex and yet depend on a growing community of non-
expert developers for their success. Furthermore, the more
programmable we make devices for non-experts, developers
that lack statistical expertise, and even for non-programmers, the
more likely innovation that exploits computing will proliferate.
Previous work takes an ad-hoc approach to programming these
devices that often ignores uncertainty and error in the name of
convenience.

This paper identifies that the wide ranging use of estimates
poses application correctness, programmer productivity, and
optimization problems. We are the first to propose a sound,
principled, and accessible programming language abstraction
to address the increasing pervasiveness of uncertainty. In the
spirit of hardware-software co-design, a key contribution of this
paper is recognizing that the hardware problem of noise and
non-determinism has a software solution. The Uncertain〈T 〉
abstraction balances the competing needs of experts and non-
experts. Uncertain〈T 〉 gives expert developers a programming
model for complex problems that compute with noisy data.
This abstraction requires hardware and software experts define
a richer API that exposes the uncertainty in their estimates.
The developers who consume these APIs are protected from
understanding or writing any statistics by the programming
model, yet the resulting programs are statistically correct. The
benefit to all developers is that they may ask more sophisticated
questions of their data and correctly combine estimates from
multiple sources. The Uncertain〈T 〉 abstraction is general
enough to describe hardware and software estimates and to
include in most programming languages. It therefore has
the potential to improve programmability, correctness, and
portability across a wide range of systems.

REFERENCES
[1] Christopher M Bishop. Pattern Recognition and Machine

Learning. Springer, 2006.
[2] Johannes Borgström, Andrew D. Gordon, Michael Green-

berg, James Margetson, and Jurgen Van Gael. Measure
transformer semantics for Bayesian machine learning. In
European Symposium on Programming (ESOP), pages
77–96, 2011.

[3] James Bornholt, Todd Mytkowicz, and Kathryn S. McKin-
ley. Uncertain<T>: A First-Order Type for Uncertain
Data. In Proceedings of the 19th international conference
on Architectural support for programming languages and
operating systems, ASPLOS 2014, Salt Lake City, UT,
USA, March 1 - 4, 2014. ACM, 2014.

[4] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A
language and program for complex Bayesian modelling.

Journal of the Royal Statistical Society. Series D (The
Statistician), 43(1):169–177, 1994.

[5] Noah D. Goodman, Vikash K. Mansinghka, Daniel M.
Roy, Keith Bonawitz, and Joshua B. Tenenbaum. Church:
A language for generative models. In Conference in
Uncertainty in Artificial Intelligence (UAI), pages 220–
229, 2008.

[6] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori,
and Sriram K. Rajamani. Probabilistic programming. In
Proceedings of the Future of Software Engineering, FOSE
2014, Hyderabad, India, May 31 - June 7, 2014, 2014.

[7] John Krumm and Dany Rouhana. Placer: Semantic place
labels from diary data. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiq-
uitous Computing, UbiComp 2013, Zurich, Switzerland,
September 8 - 12, 2013, 2013.

[8] Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov.
Venture: a higher-order probabilistic programming plat-
form with programmable inference. CoRR, abs/1404.0099,
2014.

[9] Paul Newson and John Krumm. Hidden Markov map
matching through noise and sparseness. In ACM Interna-
tional Conference on Advances in Geographic Information
Systems (GIS), pages 336–343, 2009.

[10] Norman Ramsey and Avi Pfeffer. Stochastic lambda
calculus and monads of probability distributions. In ACM
Symposium on Principles of Programming Languages
(POPL), pages 154–165, 2002.

	Call to Action
	Introduction
	Reasoning About Noise With Uncertain<T>
	Exploiting Context
	The Need for Context and Inference
	Exposing Estimates
	Declaring Domain Knowledge
	Composing Estimates and Context
	Semantics

	Implementation
	Case Study: Time of My Life
	Context Examples
	Conclusion

