
The Good Block: Hardware/Software Design for Composable,
Block-Atomic Processors

Bertrand A. Maher
Intel Corporation

bertrand.a.maher@intel.com

Katherine E. Coons Kathryn McKinley
University of Texas at Austin

{coonske,mckinley}@cs.utexas.edu

Doug Burger
Microsoft Research

dburger@microsoft.com

Abstract

Power consumption, complexity, and on-chip latency are
forcing computer systems to exploit more parallelism effi-
ciently. Explicit Dataflow Graph Execution (EDGE) archi-
tectures seek to expose parallelism by dividing programs
into blocks of efficient dataflow operations, exposing inter
and intra-block concurrency. This paper studies the bal-
ance of complexity and capability between EDGE archi-
tectures and compilers. We address three main questions.
(1) What are the appropriate block granularities for achiev-
ing high performance efficiently? (2) What are good block
instruction selection policies? (3) What architecture and
compiler support do these designs require?

Our results show that the compiler requires multiple
block sizes to adapt applications to block-atomic hardware
and achieve high performance. Although the architecture
for a single size is simpler, the additions for variable sizes
are modest and ease hardware configuration. We propose
hand-crafted and learned compiler policies for block for-
mation. We find the best policies provide significant advan-
tages of up to a factor of 3 in some configurations. Policies
vary based on (1) the amount of parallelism inherent in the
application, e.g., for integer and numerical applications,
and (2) the available parallel resources. The resulting con-
figurable architecture and compiler efficiently expose and
exploit software and hardware parallelism.

1. Introduction
Limits on chip power consumption require that future

improvements in computer system performance will come
from efficient exploitation of parallelism, using a combi-
nation of hardware and software techniques. By providing
support for coarse-grained atomic regions a processor can
take advantage of parallelism at the level of regions rather
than instructions. To gain this advantage, Explicit Dataflow
Graph Execution (EDGE) architectures rely on the compiler
to statically divide programs into blocks of dataflow instruc-
tions, which execute on parallel hardware [1, 4].

The compiler’s ability to form large, effective blocks of
instructions is critical to the performance of an EDGE ar-

chitecture. Using 128-instruction blocks as in the TRIPS
design, we find that even aggressive compiler algorithms
fail to consistently fill large blocks because of fundamental
structural constraints of programs [12]. While the compiler
is sometimes able to fill large blocks, the total ratio of in-
structions to capacity at runtime remains relatively low and
thus the system wastes time and resources on partially full
blocks.

Given the difficulty of filling large blocks, we explore the
design space of architectures with smaller block sizes, in-
cluding the possibility of mapping multiple smaller blocks
in place of large blocks. These experiments reveal two
trends: (1) large blocks significantly improve the perfor-
mance of compute intensive applications. These improve-
ments come from parallelism within and between blocks
due to the large window of execution presented in an EDGE
design, and (2) smaller blocks generally outperform larger
blocks on control intensive benchmarks. To take advan-
tage of this dichotomy, we propose microarchitectural sup-
port for variable-size blocks, which enables “best-of-both-
worlds” performance.

Because the compiler’s optimization strategy changes
with the introduction of variable-size blocks, we apply ma-
chine learning techniques to to construct optimized heuris-
tics. We find that the best compiler policies are a function
of core count. For one or two cores, the best performing
policy does not use predication, thus conserving scarce re-
sources. With more cores, the best policies aggressively
predicate. These compiler policies together with variable-
size block support support result in a performance improve-
ment of up to a factor of 3 on single core configurations
for microbenchmarks, over a factor of 2 on multiple cores
compared to fixed-size blocks, and general purpose heuris-
tics improve SPECINT programs by 35%.

2. Related Work
Related work exploits a combination of hardware and

software techniques to increase the granularity of atomic-
ity. Block-structured ISAs improve instruction fetch and
issue bandwidth by aggregating instructions into atomic re-
gions [5, 17, 16]. The compiler constructs enlarged blocks
that contain a single path of control [15]. If an early exit

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Thread 1

Thread 2

T3
T4

T5

readmovstorestorestorestore
store

Blocks
Instructions

Cores

Figure 1. Mapping blocks to composable TFlex
cores.

is taken from a block, the processor aborts and begins ex-
ecuting at the target of the early exit. While the goals of
block-structured ISAs are similar to EDGE architectures,
predication and dataflow in EDGE are significant architec-
tural differences. Side exits from EDGE blocks do not abort
execution, but predicate-out work. A side exit in a block-
structured ISA causes the processor to squash the entire
block and fetch a new block. EDGE relies less on dynamic
branch prediction, but requires a wider machine to tolerate
the overhead of predication.

VLIW compilers group independent instructions into
atomic words [3]. Trace scheduling and superblock
scheduling find instructions across basic block boundaries,
which is useful when filling VLIW words [2, 7]. Another
compiler approach for VLIW architectures is to form hy-
perblocks, single-entry, multiple-exit regions of predicated
instructions [14]. Hyperblocks provide a scheduling region
and framework for compiler heuristics to decide on the util-
ity of predication. Both VLIW and EDGE are constrained
by the number and type of instructions in a block [13, 22].
Because VLIW words however issue statically and in-order,
the compiler must balance dependence chains. Instructions
in EDGE blocks issue in dataflow order, which eases the
compilation problem and makes large block sizes an effec-
tive design option.

3. EDGE Background
An EDGE processor fetches, issues, and commits blocks

atomically. At least one block is non-speculative. Next-
block prediction speculates subsequent blocks and multiple
blocks are typically in flight. Blocks either commit entirely,
or are flushed from the pipeline on misprediction. Each
block contains a header that summarizes global commu-
nication and a body of instructions. The header indicates
which global registers the block reads and writes. The pro-
cessor uses the register information at the block level to re-
name registers when multiple blocks are in flight.

Within a block, instructions communicate directly us-
ing a target dataflow format. Dataflow communication
is key to scalability. Because the ISA uses specula-
tion to execute multiple blocks at once and a hierarchi-
cal namespace—global registers between blocks and tem-

porary dataflow names within blocks—the processor effi-
ciently supports a large number of instructions in flight.
Register reads and writes are the global communication
mechanism between blocks. RISC and CISC ISAs glob-
ally communicate with registers, but at the granularity of a
single instruction and each access is through a shared reg-
ister file and rename table. Point-to-point communication
within a block eliminates all shared structure accesses and
provides scalability to block-atomic architectures.

Prior EDGE designs have used fixed-size blocks simplify
instruction cache and issue queue design. Each block is
fully cache-resident or not and occupies a fixed set of lines
indexed by a single tag. The header and instructions are
at fixed known locations. Since a single cache tag corre-
sponds to an entire block, hit detection is fast. On a miss,
the cache evicts the entire victim block and fetches the new
block from a lower level of the memory hierarchy. In the is-
sue queue, each core has sufficient slots to accommodate all
the instructions in a block. Instructions within the queue are
located simply by offset. Register renaming is performed at
the block granularity, indexed by block, which reduces the
amount of renaming hardware to a function of the maximum
number of blocks in flight.

3.1. EDGE Support for Composability
Dynamic multicore processors, which adapt their paral-

lel resources to the workload at hand, provide the best per-
formance tradeoff given a mix of sequential and parallel
work [6]. EDGE allows dynamic composition of cores at a
block granularity—one or multiple cores can execute a sin-
gle block [10, 19]. Software configures the number of cores
to match the workload: more cores per thread can accelerate
blocks of sequential code, while fewer cores per thread with
multiple threads in flight can accelerate parallel workloads.
While composability can be achieved using a RISC or CISC
ISA, as in Core Fusion [8], fine-grain register communica-
tion and frequent control decisions limit composability to a
small number of cores. Coarse-grain block communication
makes EDGE architectures more scalable.

This paper evaluates performance using the TFlex mi-
croarchitecture simulator, which models a composable
EDGE chip multiprocessor consisting of moderately pow-
erful cores [10]. Figure 3 shows how TFlex composes mul-
tiple cores to accelerate the execution of a single thread,
e.g., Thread 1, and executes multiple threads in parallel.
Within a thread, TFlex dynamically maps blocks to one
or more cores. Each core’s instruction queue has a fixed
size, and can accommodate an entire block or a fraction of
a block. Robatmili shows mapping one block to each core
often performs best and we use this configuration as our
baseline [19]. For example, Thread 1 has 16 participating
cores. The default maps one block to each core, and thus up
to 16 blocks are in flight, which exploits medium-grain con-
currency between blocks. For a fixed-size block, the num-

32 64 96 128
Max block size

0

32

64

96

128

A
v
g
.
in

s
tr

u
c
ti
o
n
s
 p

e
r

b
lo

c
k

Useful

Total

Ideal

(a) SPECINT

32 64 96 128
Max block size

0

32

64

96

128

A
v
g
.
in

s
tr

u
c
ti
o
n
s
 p

e
r

b
lo

c
k

Useful

Total

Ideal

(b) SPECFP

Figure 2. Dynamic average total and useful instruc-
tions per block with various maximum block sizes.

ber of participating cores defines the number of instructions
per block on each core.

3.2. EDGE Compilation
The compiler’s block formation strategy exposes con-

currency and amortizes overheads by forming large blocks.
Prior work shows that iterative block formation solves phase
ordering problems between if-conversion, loop transforma-
tions, and scalar optimizations to produce high-performing
blocks [13]. Iterative block formation includes scalar opti-
mizations, such as global value numbering [21], predicate
minimization [23], and peephole optimizations.

During block formation the compiler repeatedly decides
which (if any) of the successors blocks to merge. The com-
piler uses a heuristic function that selects the most desirable
next block. When merging blocks the compiler performs if-
conversion as necessary, adding predication, and code du-
plication, ensuring the block has a single entry point. The
compiler performs scalar optimizations after each merge
and then ensures it meets the architectural constraints on
block size, register reads and writes, loads, and stores. If
the block exceeds the constraints, the compiler discards the
merge and chooses another next block, if one exists.

4. Block Size Analysis
To generate high-performance code for an EDGE pro-

cessor, a compiler must construct large blocks of instruc-
tions. Larger blocks allow the processor to form a larger
instruction window, which increases available instruction-
level parallelism and improves latency tolerance. Further-
more, if the processor caches fixed-size blocks, small blocks
can worsen L1 instruction cache pressure. The TRIPS pro-
cessor, which caches fixed-size, 128-instruction blocks, suf-
fers upwards of ten instruction cache misses per 1,000 in-
structions on several SPECINT benchmarks [4, 10].

Setting a smaller architectural block size reduces, but
does not eliminate this underutilization problem. As Fig-
ure 2 shows, the dynamic average number of instructions
per block does increase almost linearly with increasing ar-
chitectural block size. On SPECINT, average block full-
ness declines slightly as the architectural size increases, and

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 3. Distribution of block sizes in SPEC
CPU2000 integer benchmarks, weighted by exe-
cution frequency. The categories indicate why the
compiler could not merge that block with the next
one in the execution trace.

on SPECFP, fullness remains unchanged regardless of size.
The fraction of useful instructions—those which contribute
to the block output—decreases somewhat with larger block
sizes, owing to the larger number of speculative instructions
the compiler includes to fill larger blocks.

To explain the observed block sizes, we examine the dis-
tribution of block sizes at runtime. Figure 3 shows a dy-
namically weighted histogram of block sizes for the SPEC
CPU2000 benchmarks compiled with a maximum block
size of 128 instructions. Small blocks less than 16 instruc-
tions constitute over 35% of total blocks; blocks between
16 and 72 instructions constitute 25% of the total; and large
blocks over 72 instructions are the remaining 40%. This
skewed distribution is explained by the compiler’s condi-
tions for block termination:

Calls. Function calls end EDGE blocks because blocks
cannot be re-entered upon return. While aggressive inlin-
ing reduces the frequency of calls, they remain a significant
obstacle. The results in Figure 3 allow up to 100% code
growth from inlining, which is large for typical compilers.

Libraries. We treat calls into libraries separately, since
they are not candidates for inlining in our compiler. Library
calls constitute a significant fraction of the smallest blocks,
with over 8% of dynamic blocks being library calls with
fewer than eight instructions.

Full Blocks. The compiler cannot merge blocks if doing
so would violate an architectural constraint, such as block
size or number of memory operations.

Loops. Similarly, unrolling or peeling a loop cannot ex-
ceed the block constraints. While loops could be unrolled
past a single block to better align with the block size, we
do not include this optimization because it achieves limited
speedup in practice [18] and increases the implementation
complexity of block formation.

The high proportion of small blocks that cannot be
merged due to fundamental structural constraints in the
code indicates that the compiler cannot solve this problem
alone. The most viable approach is architecture and com-
piler support for variable-size blocks because the compiler
can, and in many cases does, form large block. However,

the benefits of these large blocks are offset by scenarios in
which the compiler is fundamentally limited due to struc-
tural constraints. Variable-size blocks allow the compiler to
exploit the advantages of large blocks when possible, but
without wasting resources when it cannot fill a large block.

5. Variable-Size Block Architecture
The TFlex microarchitecture as originally designed maps

one block per core, which requires each core to have control
and renaming logic for only one block at a time. Support-
ing multiple blocks on a single core requires additional sup-
port from the instruction queue, renaming logic, block con-
trol logic, and instruction cache. The renaming and block
control logic must be larger and more associative, but are
similar in design. The instruction cache and issue queue,
however, must be modified as described below.

Instruction Cache. The original TFlex microarchitec-
ture uses an instruction cache design that was highly spe-
cialized for the large, fixed-size blocks. The design em-
ployed separate structures for block headers and a block’s
instructions, and tuned block size to hold entire blocks,
replacing blocks at a single-block granularity [10]. With
variable-sized blocks, handling variable sizes and small
blocks efficiently works poorly in the TFlex I-cache, so we
returned to a more conventional I-cache design, where a
block’s header and body are split into 32-byte cache lines,
and are managed independently by the cache control logic.
When a block is fetched, the header line is accessed in the I-
cache to find the block’s size, at which point the body cache
lines (aside from the first, which is fetched with the header)
are fetched, decoded, and dispatched to the issue window.
If a body line misses, the cache blocks until the miss re-
turns from the shared L2. At that point the instructions of
the block are dispatched and can be executed.

Issue Queue. Since multiple blocks reside in the is-
sue queue simultaneously, the issue queue and decode logic
must encode and decode queue offsets. This logic tracks
and adds the offset of the start of the new block to write
instructions into the correct buffers. The wakeup logic re-
quires more complexity. In the single-block case, the target
bits that identify a producer’s consumer instruction also in-
dex to the issue queue. With multiple blocks in flight, the
base of each block must be stored and added to the target
ID to compute the actual instruction target in the issue win-
dow. By restricting block starting points to eight-instruction
alignment boundaries, only the high-order four bits of an
instruction’s target ID must be added to the four-bit num-
ber identifying the starting eight-instruction segment of this
particular block, reducing this computation to a four-bit ad-
dition per intra-block producer/consumer communication.

Parameter Configuration
Instruction cache 32 KB; 1-cycle hit; 4-way set associative
Branch predictor Local/Gshare tournament predictor (8K+256

bits, 3-cycle latency). Entries: Local: 64(L1)
+ 128(L2), Global: 512, Choice: 512, RAS:
16, CTB: 16. BTB: 128, Btype: 256

Data cache 32 KB; 2-cycle hit; 2-way set associative; 1
read/1 write port; 44-entry LSQ

Issue width Limited dual issue (up to 2 integer and 1
floating-point)

Issue window Depends on block size
L2 cache 4 MB S-NUCA [9]; 5–27 cycle hit latency

depending on address
Main memory Average unloaded latency: 150 cycles

Table 1. Microarchitectural parameters of each
TFlex core

6. Architectural Results
We evaluate the effects of block size and variability using

a cycle-level simulator based on TFlex, which we extend to
support multiple, variable block sizes and to map multiple
blocks per core. We measure performance using one to 32
cores, where each core has the microarchitectural parame-
ters described in Table 1. For each core count, we use a
different block size: 32, 64, or 128 instructions. Given a
maximum block size the compiler attempts to produce the
largest possible blocks. Because we vary the core count and
block size, the total instruction window size depends on the
number of cores, the block size, and the number of blocks
mapped per core.

We measure performance on the SPEC CPU2000 bench-
marks using early SimPoint methodology [20]. In the re-
sults we separate integer from floating point benchmarks,
as these suites show significantly different trends. We
use these single-threaded workloads, rather than multipro-
grammed or multithreaded workloads, to explore the design
space of each individual core, the composition of cores, and
their interactions for a single thread.

6.1. One Block Per Core
The baseline TFlex design maps one block to each core.

To isolate the effect of block size on performance we vary
the block size from 32 to 128 instructions while mapping
only one block per core. Smaller block sizes thus are at a
disadvantage in terms of total window size: the maximum
possible instruction window size is the block size multiplied
by the number of cores.

Figure 4 shows the geometric mean speedup of the
SPECINT and SPECFP benchmarks, normalized to the
cycle count of a single TFlex core with support for 32-
instruction blocks. The performance trends differ markedly
between SPECINT and SPECFP. For all block sizes, float-
ing point performance improves as core count increases,
whereas integer performance reaches a maximum between
four and eight cores, depending on block size.

On SPECFP, the difference between 32 and 128-

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
Max block size:

(a) SPECINT

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
Max block size:

(b) SPECFP

Figure 4. Performance with one fixed-size block
per core and maximum fixed block size of 32, 64,
and 128 instructions. Fewer hardware resources
are required with smaller maximum block sizes.

instruction blocks ranges from a factor of 1.6 at one core
to a factor of 2.2 at 32 cores. While 32-instruction blocks
achieve a speedup of 4.4 at 32-cores on SPECFP, 128-
instruction blocks achieve an 11x speedup.

On SPECINT the best-performing block size and core
combination is 64 instructions blocks with eight participat-
ing cores. The performance characteristics of integer bench-
marks are explained by the code characteristics described
in Section 4. Blocks in integer benchmarks are frequently
small, thus yielding no benefit for large architectural block
sizes. When integer benchmark blocks are large, they are
typically deeply predicated, which leads to the inclusion of
many useless instructions.

6.2. Multiple Blocks Per Core
Figure 5 shows performance when each core can map

multiple blocks of a fixed size. In these experiments the
maximum window size per core is fixed at 128 instruc-
tions, so the 32-instruction per block configuration exe-
cutes four blocks concurrently, while the 128-instruction
per block configuration executes only one block per core.
Compared to one block per core, the increased window
size improves performance, particularly at low core counts
where the speculation depth is low. The maximum perfor-
mance on SPECINT always occurs when a maximum of 16
blocks are in flight: four cores with 32-instruction blocks,
eight cores with 64, and 16 cores with 128.

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

1 per core
n per core

(a) SPECINT

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

1 per core
n per core

(b) SPECFP

Figure 5. Performance with 128 instructions per
core and fixed-size blocks. Thus, with maximum
block sizes of 32, 64, and 128 instructions, there
are 4, 2, and 1 blocks per core, respectively, and all
configurations require the same number of issue
queue slots.

Integer programs tend to have smaller blocks, so allow-
ing more small blocks in flight yields better performance
than fewer large blocks. For example, four 32-instruction
blocks in flight per core requires the same issue queue space
as a single 128-instruction block, but leads to better re-
source utilization. While supporting more blocks in flight
increases complexity, the additional performance may be
worth that cost.

SPECINT performance in this configuration saturates
quickly, achieving a maximum speedup of 3.1x with four
cores and 64-instruction blocks. Even one core with 32-
instruction blocks, however, yields a 2.2x speedup. At low
core counts, smaller blocks have an advantage because they
are less deeply predicated and instead take advantage of
branch prediction. Only once the machine has a large is-
sue width does it make sense to use larger blocks.

SPECFP benchmarks perform best with large blocks.
Even though these hardware configurations all provide a
128-instruction window per core, larger blocks still outper-
form smaller blocks, because intra-block communication is
much more efficient than inter-block communication. Since
SPECFP blocks are generally full of useful instructions with
very little predication, there is no downside to using large
blocks, and the lower communication latency produces a
significant performance win.

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

Fixed
Variable

(a) SPECINT

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

Fixed
Variable

(b) SPECFP

Figure 6. Performance with 8-instruction granular-
ity variability in the instruction window with vari-
ous maximum block sizes using 128 instructions
per core.

These results motivate the flexibility of the variable-
size blocks architecture. Ideally, a system should be able
to achieve the high floating-point performance of 128-
instruction blocks, while still achieving high performance
on integer benchmarks with smaller block sizes.

6.3. Variable-size Blocks
We measure performance with variable-size blocks at

an eight-instruction granularity as described in Section 5,
and with a maximum block size of 128-instructions. This
fine granularity enables performance improvements over
any of the three fixed block sizes evaluated in the previous
section. This performance improvement, however, is sec-
ondary to the increase in flexibility. By supporting variable-
size blocks, a single microarchitecture can achieve both
high integer performance using smaller blocks, and high
floating-point performance using larger blocks. With a flex-
ible microarchitecture, the compiler must use heuristics to
determine the appropriate block size for a benchmark.

Figure 6 shows the performance of this microarchitec-
ture with various maximum block sizes. Variable-size
blocks improve performance at small core counts, particu-
larly on SPECINT benchmarks with small blocks. Because
the baseline compiler is not aware of variable-size blocks,
it creates larger but less efficient blocks when given a larger
upper bound. This result motivates an investigation of com-
piler support for such architectures.

Figure 7. Speedup of learned heuristics on mi-
crobenchmarks normalized to the baseline heuris-
tic at the same core count.

7. Compiler Results
To take advantage of the flexibility provided by variable-

size blocks the compiler must apply effective policies.
Composability influences the choice of heuristics, as the
compiler can perform better if it knows the hardware config-
uration. To rapidly search the space of heuristics we employ
machine learning, and attempt to explain the heuristics that
it generates. We select a learning technique based on ge-
netic programming because the result is a heuristic function
that can be interpreted easily by humans.

We use meta-optimization, proposed by Stephenson et
al. [24], to learn hyperblock formation heuristics. Heuristic
functions are N-ary trees of operators, with a mix of code
features and constants at the leaves. Each generation con-
sists of 300 heuristics, with the first generation initialized
with a combination of hand-written and randomly generated
heuristics. We evaluate the performance of each heuristic in
a generation and use these scores to determine which organ-
isms will survive to the next generation. To form the next
generation, we apply crossover and mutation to introduce
variation into the population and probabilistically discover
higher performance heuristics [11].

Because simulation of full benchmarks is too time-
consuming for learning, we use a group of microbench-
marks for training and then apply the learned heuristics to
full benchmarks. We draw these microbenchmarks from
SPEC, signal processing, and high-performance computing
kernels. We train a group of heuristics on configurations
consisting of one, eight, and 32 processors to discover dif-
ferences in policy for these topologies.

We use a two-phase training methodology, which first
learns a specialized heuristic for each benchmark, and uses
those learned heuristics as a starting point for learning gen-
eralized heuristics. For specialized learning we seed the
population with our best hand-tuned heuristic and 299 ran-
dom heuristics, and use performance on that benchmark as
the fitness function. For generalized learning we seed the
population with the specialized heuristics plus randomly-
generated heuristics, and use geometric mean speedup over
the suite as the fitness function. For both specialized and
generalized learning we allow 50 generations.

(a) SPECINT

(b) SPECFP

Figure 8. Speedup of learned heuristics for 1, 8,
and 32-cores over baseline on one core.

Figure 7 shows the speedup compared to the base-
line heuristic using this technique. The “specialized” bar
shows the geometric mean performance improvement when
each benchmark is compiled with its best heuristic. The
“learned geomean” bar of Figure 7 shows the geometric
mean speedup achieved by the generalized heuristic. For
each core count, we normalize to the performance of the
baseline system using the same number of cores, so the bars
show only the speedup due to the changed heuristic, rather
than also reflecting the difference due to core count.

7.1. Learned Heuristics
The best overall heuristic for a one-core configuration

differs significantly from the best heuristic for eight- and
32-core configurations. The 1-core heuristic does not use
predication, but only merges blocks with unconditional
branches. The 8-core heuristic behaves very similarly to
the baseline heuristic described in Section generally favors
wide predication with limited tail duplication. The 32-core
heuristic demonstrates one of the weaknesses of machine
learning as a tool for gaining insight: the function generated
by the learner is too complex for us to extract meaningful
insight about the policy.

The one-core heuristic is significant because it avoids
predication, which is an important feature of an EDGE ISA,
and differs in this respect from the best heuristics for larger
topologies. A one-core configuration lacks the resources to
tolerate more widely predicated code as mispredicated in-
structions occupy scarce issue and execution slots that could
be put to better use. At the same time, the 128-instruction
window provided by a single core is small enough for ef-
fective branch predictor. Larger configurations, by con-
trast, suffer from geometrically increasing misprediction

rates without the use of predication.
While composability is an effective technique for im-

proving performance of the same binary executable by ag-
gregating cores, this result suggests that the compiler could
improve performance by targeting a particular configura-
tion. This capability could be useful to specialized code
for power-constrained systems, or in a dynamic optimiza-
tion system that could compile code differently based on
the microarchitectural configuration.

7.2. SPEC CPU Results
Figure 8 shows the performance of the learned heuris-

tics for one, eight, and 32-core configurations applied to
the SPEC benchmarks on all core counts, normalized to
the performance of a single core with the compiler’s base-
line heuristic. The one-core heuristic performs well in one-
core configurations, outperforming the baseline by 35% on
SPECINT and 27% on SPECFP, but tapers off at four or
more cores, performing roughly equivalently on INT, and
as much as 22% below the baseline on FP.

Results for eight and 32-core topologies achieve simi-
lar performance to the baseline on SPECINT, but fall short
on SPECFP with eight or more cores. Compared to the
eight-core heuristic, the baseline achieves 6% higher perfor-
mance at eight cores and 14% at 32-cores. This result shows
the performance fragility of learned heuristics: despite im-
provements on microbenchmarks, SPEC performance de-
clined with learned heuristics.

8. Conclusions
EDGE blocks expose fine-grain concurrency within a

single block, and medium grain concurrency between
blocks. The results show that a single, fixed-size block is
too rigid for most programs, given compiler capabilities.
Providing variable-size blocks adds architectural complex-
ity but provides the compiler with a better target. With this
flexibility, the compiler and processor can achieve improved
performance on both floating-point and integer programs.

The flexibility of variable-size blocks opens a new av-
enue for optimization. By exploiting small blocks and
knowledge about the microarchitectural configuration, the
compiler can improve performance via judicious use of
predication. Small configurations with this optimiza-
tion should prove attractive in power-constrained systems,
where some level of out-of-order performance is desired but
low power is imperative.

Integrating hardware and software design will become
increasingly necessary due to the slow down of device scal-
ing. This paper contributes an example of increasing a sys-
tem’s performance by simultaneously considering the unit
of atomicity together with the needs and capabilities of a
system’s hardware and software.

Acknowledgments
This work is supported by NSF SHF-0910818, NSF

CSR-0917191, NSF CCF-0811524, NSF CNS-0719966,
NSF CCF-0429859, Intel, IBM, CISCO, Google, Mi-
crosoft, and a Microsoft Research fellowship. Any opin-
ions, findings and conclusions expressed herein are the au-
thors’ and do not necessarily reflect those of the sponsors.

References
[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.

John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald,
W. Yoder, and the TRIPS team. Scaling to the end of silicon
with EDGE architectures. Computer, 37(7):44–55, 2004.

[2] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Transactions on Computers,
30(7):478–490, 1981.

[3] J. A. Fisher. Very long instruction word architectures and
the ELI-512. In ISCA ’83: Proceedings of the 10th Annual
International Symposium on Computer Architecture, pages
140–150, 1983.

[4] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz,
M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J. Bur-
rill, S. W. Keckler, D. Burger, and K. S. McKinley. An eval-
uation of the TRIPS computer system. In ASPLOS ’09: Pro-
ceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 1–12, 2009.

[5] E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt. Increasing the
instruction fetch rate via block-structured instruction set ar-
chitectures. In MICRO-29: Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 191–200, 1996.

[6] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore
era. Computer, 41(7):33–38, 2008.

[7] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery.
The superblock: an effective technique for VLIW and super-
scalar compilation. Journal of Supercomputing, 7(1–2):229–
248, 1993.

[8] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core
fusion: accommodating software diversity in chip multipro-
cessors. In ISCA ’07: Proceedings of the 34th annual inter-
national symposium on Computer architecture, pages 186–
197, 2007.

[9] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches. In ASPLOS ’02: Proceedings of the 10th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 211–222,
2002.

[10] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ran-
ganathan, D. Gulati, D. Burger, and S. W. Keckler. Com-
posable lightweight processors. In MICRO-40: Proceedings
of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 381–394, 2007.

[11] J. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
1992.

[12] B. A. Maher. Atomic Block Formation for Explicit Data
Graph Execution Architectures. PhD thesis, The University
of Texas at Austin, 2010.

[13] B. A. Maher, A. Smith, D. Burger, and K. S. McKinley.
Merging head and tail duplication for convergent hyperblock
formation. In MICRO-39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 65–76, 2006.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated exe-
cution using the hyperblock. In MICRO 25: Proceedings of
the 25th annual international symposium on Microarchitec-
ture, pages 45–54, 1992.

[15] S. W. Melvin and Y. N. Patt. Exploiting fine-grained par-
allelism through a combination of hardware and software
techniques. In ISCA ’91: Proceedings of the 18th Annual
International Symposium on Computer Architecture, pages
287–296, 1991.

[16] S. W. Melvin and Y. N. Patt. Enhancing instruction schedul-
ing with a block-structured ISA. International Journal of
Parallel Programming, 23(3):221–243, 1995.

[17] S. W. Melvin, M. C. Shebanow, and Y. N. Patt. Hard-
ware support for large atomic units in dynamically sched-
uled machines. In MICRO-21: Proceedings of the 21st An-
nual Workshop on Microprogramming and Microarchitec-
ture, pages 60–63, 1988.

[18] N. Nethercote, D. Burger, and K. S. Mckinley. Conver-
gent compilation applied to loop unrolling. Transactions on
High-Performance Embedded Architectures and Compilers
I, pages 140–158, 2007.

[19] B. Robatmili, K. E. Coons, D. Burger, and K. S. McKin-
ley. Strategies for mapping dataflow blocks to distributed
hardware. In MICRO-41: Proceedings of the 41st Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 23–34, 2008.

[20] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simula-
tion points in applications. In PACT ’01: Proceedings of
the 2001 International Conference on Parallel Architectures
and Compilation Techniques, pages 3–14, 2001.

[21] L. T. Simpson. Value-driven Redundancy Elimination. PhD
thesis, Rice University, 1996.

[22] A. Smith, J. Burrill, J. Gibson, B. A. Maher, N. Nethercote,
B. Yoder, D. Burger, and K. S. McKinley. Compiling for
EDGE architectures. In International Symposium on Code
Generation and Optimization, 2006.

[23] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald,
D. Burger, S. W. Keckler, and K. S. McKinley. Dataflow
predication. In MICRO-39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 89–102, 2006.

[24] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.
O’Reilly. Meta optimization: improving compiler heuris-
tics with machine learning. In PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language
design and implementation, pages 77–90, 2003.

