
Work Stealing for Interactive Services to Meet Target Latency1

Jing Li∗

Yuxiong He† Sameh Elnikety† Kathryn S. McKinley†

Kunal Agrawal∗ I-Ting Angelina Lee∗ Chenyang Lu∗
∗Washington University in St. Louis †Microsoft Research

{li.jing, kunal, angelee, lu}@wustl.edu, {yuxhe, samehe, mckinley}@microsoft.com

Abstract
Interactive web services increasingly drive critical business work-
loads such as search, advertising, games, shopping, and finance.
Whereas optimizing parallel programs and distributed server sys-
tems have historically focused on average latency and throughput,
the primary metric for interactive applications is instead consis-
tent responsiveness, i.e., minimizing the number of requests that
miss a latency target. This paper is the first to show how to gen-
eralize work-stealing, which is traditionally used to minimize the
makespan of a single parallel job, to optimize for a target latency in
interactive services with multiple parallel requests.

We design a new adaptive work stealing policy, called tail-
control, that reduces the number of requests that miss a target
latency. It uses instantaneous request progress, system load, and a
target latency to choose when to parallelize requests with stealing,
when to admit new requests, and when to limit parallelism of large
requests. We implement this approach in the Intel Thread Building
Block (TBB) library and evaluate it on real-world workloads and
synthetic workloads. The tail-control policy substantial reduces
the number of requests exceeding the desired target latency and
delivers up to 58% relative improvement over various baseline
policies. This generalization of work stealing for multiple requests
effectively optimizes the number of requests that complete within
a target latency, a key metric for interactive services.

1. Introduction
Delivering consistent interactive latencies is the key performance
metric for interactive cloud services, such as web search, stock
trading, ads, and online gaming. The services with the most fluid
and seamless responsiveness incur a substantial competitive advan-
tage in attracting and captivating users over less responsive sys-
tems (Dean and Barroso 2013; DeCandia et al. 2007; He et al. 2012;
Yi et al. 2008). Many such services are deployed on cloud systems
that span hundreds or thousands of servers, where achieving inter-
active latencies is even more challenging (Jeon et al. 2013; Apache
Lucene 2014; Mars et al. 2011; Ren et al. 2013; Zircon Computing
2010; Yeh et al. 2006; Raman et al. 2011). The seemingly infre-
quent occurrence of high latency responses at one server is signif-
icantly amplified because services aggregate responses from large

[Copyright notice will appear here once ’preprint’ option is removed.]

number of servers. Therefore, these servers are designed to mini-
mize tail latency — the latency of requests in the high percentiles,
e.g., 99th percentile latency (Dean and Barroso 2013; DeCandia
et al. 2007; Haque et al. 2015; He et al. 2012; Yi et al. 2008). This
paper studies a closely related problem, optimizing for a target la-
tency — given a target latency, the system minimizes the number
of requests whose latency exceeds this target.

We explore interactive services on a multicore server with mul-
tiple parallelizable requests. Interactive service workloads tend
to be computationally intensive with highly variable work de-
mand (Dean and Barroso 2013; He et al. 2012; Jeon et al. 2013;
Kanev et al. 2015; Haque et al. 2015; Zircon Computing 2010). A
web search engine, for example, represents, partitions, and repli-
cates billions of documents on thousands of servers to meet respon-
siveness requirements. Request work is unknown when it arrives at
a server and prediction is unappealing because it is never perfect
or free (Lorch and Smith 2001; Hsu et al. 2015; Jalaparti et al.
2013; Kim et al. 2015b). The amount of work per request varies
widely. The work of the median and the 99th percentile requests
often differ by orders of magnitude, ranging from 10 to over 100.
Moreover, the workload is highly parallelizable — it exhibits inter-
request parallelism (multiple distinct requests execute in parallel)
and fine-grain intra-request parallelism (Jeon et al. 2013; Haque
et al. 2015; Zircon Computing 2010). For instance, search could
process every document independently. More generally, the paral-
lelism of these requests may change as the request executes.

Such workloads are excellent candidates for dynamic multi-
threading, where the application expresses its logical parallelism
with spawn/sync, fork/join, or parallel loops, and the runtime
schedules the parallel computation, mapping it to available pro-
cessing resources dynamically. This model has the following ad-
vantages. 1) It separates the scheduling logic from the applica-
tion logic and thus the runtime adapts the application to different
hardware and number of processors without any changes to the
application. 2) This model is general and allows developers to
structure parallelism in their programs in a natural and efficient
manner. 3) Many modern concurrency platforms support dynamic
multithreading, including Cilk dialects (Intel 2013; Frigo et al.
1998; Danaher et al. 2006; Leiserson 2010; Lee et al. 2013), Ha-
banero (Barik et al. 2009; Cavé et al. 2011), Java Fork/Join (Lea
2000; Kumar et al. 2012, 2014), OpenMP (OpenMP 2013), Task
Parallel Library (Leijen et al. 2009), Threading Building Blocks
(TBB) (Reinders 2010), and X10 (Charles et al. 2005; Kumar et al.
2012, 2014).

Most of these platforms use a work-stealing scheduler, which
is efficient both in theory and in practice (Blumofe et al. 1995;
Blumofe and Leiserson 1999; Arora et al. 2001; Kumar et al. 2012,
2014). Work-stealing uses a distributed scheduling strategy with
low scheduling overheads. The goal of traditional work-stealing is

1 2016/1/12

to deliver the smallest possible makespan for one job. In contrast,
interactive services have multiple requests (jobs) and the goal is
to meet a target latency. To exploit the benefits of work-stealing’s
dynamic multithreading for interactive services, we modify work-
stealing so it can optimize for target latency.

While work-stealing has not been explored for interactive ser-
vices, researchers have considered parallelizing requests for the
related problem of minimizing tail latency in interactive ser-
vices (Jeon et al. 2013; Kim et al. 2015a; Haque et al. 2015). This
work applies higher degrees of parallelism to large requests that
perform significantly more work than other small requests. They
assume that small requests will meet the target latency even with-
out parallelism. In contrast, we show when the system is heavily
loaded, a large parallel request can monopolize many cores, im-
posing queuing delays on the execution of many small requests
and thus increase their latencies much more than necessary. In this
work, we investigate a different strategy — under heavy instanta-
neous load, the system explicitly sacrifices a small number of large
requests. We execute them serially so they occupy fewer resources,
enabling smaller waiting requests to make the target latency.

Designing such a strategy faces several challenges. (1) When a
request arrives in the system, the request’s work is unknown. (2)
Which requests to sacrifice depends on the request’s progress, the
target latency, and current load. When inter-request parallelism is
exploited to lower tail latencies, serialized large requests will al-
most certainly miss the target latency and thus we must not unnec-
essarily serialize large requests. (3) In interactive services, we know
the expected average system load and workload distribution, but
the instantaneous load can vary substantially due to unpredictable
request arrival patterns. Whether a particular request should be se-
rialized depends on its progress and the instantaneous load. If the
system is heavily loaded, even a moderately large request may in-
crease the waiting time of many small requests. Therefore, we must
be more aggressive about serializing requests. When the system is
lightly loaded, we should be less aggressive and execute even very
large requests in parallel so they can meet the target latency. In
short, there is no fixed threshold for classifying a request as large
and serializing it; rather, the runtime should adapt the threshold
based on instantaneous system load.

Based on these intuitions, we introduce the tail-control work-
stealing scheduling strategy for interactive workloads with multi-
ple simultaneous requests. Tail-control continuously monitors the
system load, estimated by the number of active requests. It ag-
gressively parallelizes requests when the system is lightly loaded.
When the system is momentarily overloaded, it identifies and seri-
alizes large requests to limit their impact on other waiting requests.
Specifically, the contributions of this paper are as follows:

1. We design an offline threshold-calculation algorithm that
takes as input the target latency, the work demand distribu-
tion, and the number of processors on the server and calculates
a large request threshold’ for every value of the instantaneous
load. It generates offline a table indexed by system load that the
online scheduler uses to decide which requests to serialize.

2. We extend work-stealing to handle multiple requests simulta-
neously and incorporate the tail-control strategy into the steal-
ing protocol. We perform bookkeeping to track a) the instanta-
neous system load; and b) the total work done by each request.
We perform most bookkeeping in a distributed fashion, which
amortizes its overhead with steal attempts. Our modified work-
stealing scheduler does not add any constraints on the program-
ming model and thus can schedule any workload with dynamic
multithreaded jobs.

3. We implement a tail-control work-stealing server in the In-
tel Thread Building Block (TBB) runtime library (Reinders

0	

0.2	

0.4	

0.6	

5	 55	 105	 155	 205	

Pr
ob

ab
ili
ty
	

Request	 Total	 Work	 (ms)	

Bing	 Search	 Server	
Request	 Work	 DistribuEon	

(a) Bing search

0	

0.1	

0.2	

0.3	

0.4	

0.5	

4	 12	 20	 28	 36	 44	 52	

Pr
ob

ab
ili
ty
	

Request	 Total	 Work	 (ms)	

Finance	 Server	
Request	 Work	
DistribuEon	

(b) Finance server
Figure 1: Work distribution of two interactive services: Bing search
server (Kim et al. 2015a) and an option pricing finance server (Ren
et al. 2013). Note that in Bing search server the probabilities of
requests with work between 55ms to 200 are small but larger than
zero and total probability of these requests is around 3.5%.

2010) and evaluate the system with several interactive server
workloads: a Bing search workload, a finance server work-
load (He et al. 2012), and synthetic workloads with long-tail
distributions. We compare tail-control with three baseline work-
stealing schedulers, steal-first, admit-first, and default TBB.
The empirical results show that tail-control significantly out-
performs them, achieving up to a 58% reduction in the number
of requests that exceed the target latency.

2. Background and Terminology
This section characterizes interactive services and available intra-
request parallelism. We review work stealing basics and start with
some terminology.

Terminology. The response time (latency) of an interactive ser-
vice request is the time elapsed between the time when the request
arrives in the system and the time when the request completes.
Once a request arrives, it is active until its completion. A request
is admitted once the system starts working on it. An active request
is thus either executing or waiting. Since the service may perform
some or all of the request in parallel to reduce its execution time,
we define request work as the total amount of computation time
that all workers spend on it. A request is large or small according
to its relative total work. A request misses a specified target latency
if its latency is larger than the target.

Characteristics of Interactive Services. Three important charac-
teristics of interactive services inform our scheduler design. First,
many interactive services, such as web search, stock trading, online
gaming, and video streaming are computationally intensive (Dean
and Barroso 2013; He et al. 2012; Jeon et al. 2013; Kanev et al.
2015). For instance, banks and fund management companies eval-
uate thousands of financial derivatives every day, submitting re-
quests that value derivatives and then making immediate trading
decisions — many of these methods use computationally intensive
Monte Carlo methods (Broadie and Glasserman 1996; Cortazar
et al. 2008). Second, the work demand per request can be highly
variable. Figure 1 shows representative workload distributions for
Bing and a finance server requests executing sequentially. Many
requests are small and the smallest are a factor of 40 smaller than
the largest requests for Bing and 13 for the finance server. Third,
the requests often have internal parallelism and each request can
potentially utilize multiple cores.

Work-Stealing Baseline for a Single Job. In a work-stealing
scheduler for a single job, there is typically one worker (software
thread) for each hardware context (core). Each job has multiple

2 2016/1/12

tasks that may execute in parallel and are created by the workers
working on that job. Each worker manages its tasks in a double
ended work queue, called a deque. When the task a worker p is
currently executing spawns additional tasks, it places these tasks at
the bottom of its own deque. When a worker p finishes executing its
current task, it pops a task from the bottom of its own deque. If p’s
deque is empty, then p becomes a thief. It picks a victim uniformly
at random from the other workers, and steals work from the top
of the victim’s deque. If the victim’s deque is empty, p performs
another random steal attempt.

Given a single job, work stealing attains asymptotically optimal
and scalable performance with high probability (Blumofe and Leis-
erson 1999; Arora et al. 2001) and performs well in practice (Blu-
mofe et al. 1995; Kumar et al. 2012, 2014). The following proper-
ties of work stealing contribute to making it efficient. (1) It requires
little synchronization — workers are generally working on their
own deques. (2) Even when steals occur, it is unlikely that multi-
ple workers will steal from the same victim due to randomization.
(3) It often has good cache performance, again since workers work
on their own deque. 4) It is mostly work-conserving — workers
mostly perform useful work. The only time they are not doing use-
ful work is when they steal and most systems bounded number of
steal attempts.

3. Intuitions for Tail-Control
This section describes intuitions for reducing the number of re-
quests that miss a target latency. We first review results from
scheduling sequential requests to derive inspiration and then show
how to adapt them to work stealing for parallel requests.

Theoretical Results on Minimizing Tail Latency. The theoreti-
cal results for online scheduling of sequential requests on multiple
processors indicate that no single scheduling strategy is optimal
for minimizing tail latency (Borst et al. 2003; Wierman and Zwart
2012). When a system is lightly loaded or when all requests have
similar execution times, a first-come-first-serve (FCFS) strategy
is asymptotically optimal (Wierman and Zwart 2012). The intuition
is that under these circumstances, the scheduler should minimize
the execution time of each request and FCFS does exactly that.
However, under heavily loaded systems and when requests have
high variability in work, FCFS is not optimal, since under high
loads, large requests can delay many small requests by monop-
olizing processing resources. Under these circumstances, sched-
ulers that prevent large requests from monopolizing processing
resources perform better. Examples include a processor sharing
scheduler (Kleinrock 1967) that divides up the processing resources
equally among all requests and an SRPT-like (shortest remaining
processing time) scheduler (Schroeder and Harchol-Balter 2006)
that gives priority to small requests.

In interactive services, the request variability in terms of work is
often high and the instantaneous load varies as the system executes.
When the instantaneous load is low, an approximation of FCFS
will work well. However, when the instantaneous load is high, the
system should prevent large requests from delaying small requests.

Baseline Variations of Work Stealing for Interactive Services.
Since traditional work-stealing does not handle multiple requests,
we first make a simple modification to work stealing to handle
dynamically arriving multiple requests. We add a global FIFO
queue that keeps all the requests that have arrived, but have not
started executing on any worker. A request is admitted when some
worker removes it from the global queue and starts executing it.

Now consider how to achieve FCFS in work stealing for multi-
ple parallel requests. To minimize execution time, we want to ex-
ploit all the parallelism — which leads to the default steal-first
work-stealing policy. We modify steal first for the server setting as

follows. When a worker runs out of work on its deque, it still ran-
domly steals work from a victim, but if it cannot find a victim, then
it admits a new request. Intuitively, steal-first minimizes the execu-
tion time of a request, because it executes requests with as much
parallelism as the application and hardware support and only ad-
mits new requests when fine-grain parallelism of already admitted
requests is exhausted. However, we find it has the same weakness
as FCFS — when the system is heavily loaded, a large request can
delay many small requests. In fact, this effect is amplified since in
steal first for the server setting because a large request with ample
parallelism may monopolize all of the processors.

A simple and appealing strategy for high load is admit-first,
where workers preferentially admit new requests and only steal
if the global queue is empty. Intuitively, admit first minimizes
queuing delay, but each request may take longer, since the system
does not fully exploit available fine-grain parallelism.

Motivating Results. We perform a simple experiment that con-
firms these intuitions. We create two workloads with only small
and large requests, both with ample software parallelism (more
inter-request parallelism than cores). The first workload, named
“short tail,” contains two kinds of requests: 98% are small requests
and 2% medium requests with 5 times more work than the small
requests. The second workload, named “long tail,” contains 98%
small requests and 2% large requests with 100 times more work
than the small requests. Both systems have an average utilization
of 65% and the request arrival rate follows the Poisson distribu-
tion. Therefore, even though the average utilization is modest, on
occasion, the system will be under and over subscribed due to the
variability in arrival patterns. We run both workloads 10,000 re-
quests on a 16-core machine (see Section 5 for hardware details).

Figure 2 shows the results. When all requests are about the same
length, the short-tail workload shown in hashed red bars, steal first
works better since it approximates FCFS and processes requests as
quickly as it can. On the other hand with the long-tail workload,
steal-first perform poorly due to the relative difference in large and
small requests — large requests delay many small requests.

0.12	

0.35	

0.69	

1.96	
2.80	

3.46	

0.1	

1	

1013	 1515	 1904	 51.83	 76.93	 85.48	
AF:	 Admit-‐First	 miss	

ra8o	 5.0%	 1.0%	 0.5%	 9.8%	 2.8%	 1.7%	

SF:	 Steal-‐First	 miss	
ra8o	 40.7%	 2.9%	 0.7%	 5.0%	 1.0%	 0.5%	

Rela8ve	 performance	
=	 AF	 /	 SF	 0.12	 0.35	 0.69	 1.96	 2.80	 3.46	

Re
la
8v

e	
pe

rf
or
m
an

ce
	 o
f	 	

ad
m
it-‐
fir
st
	 o
ve
r	 s
te
al
-‐fi
rs
t	

in
	 lo
g	
sc
al
e	

Target	 latency	 (ms)	

long	 tail	 	 	 	 	 	 short	 tail	

Figure 2: Neither steal-first nor admit-first always perform best.
Each bar plots a target latency and the ratio on a log scale of
requests that miss the target latency under admit-first over the
requests that miss the target latency under steal first. When the bar
is above 1, steal first is better. Below 1, admit-first is better.

Tail-Control Algorithm Overview. Since the workloads for inter-
active services have a range of time varying demand, we design a
scheduler that adapts dynamically based on the instantaneous load.
Under low load, we use steal-first to maximize parallelism, execut-
ing each request as fast as possible. Under high load, we wish to

3 2016/1/12

minimize the impact of large requests on the waiting time of small
requests. Therefore, we execute large requests sequentially (thereby
giving up on them, making them unlikely to achieve the target la-
tency) and use steal first for the other requests. At any moment, say
k requests of length greater than l are serialized. Given m work-
ers, the remaining m − k workers execute all remaining requests
of current length smaller than l in parallel. Therefore, the policy
effectively converts a high-load, high-variable-work instance on m
workers into a low-variable-work instance on m−k workers. Since
steal-first is a good policy for low-variable-work instances, we get
good performance for the requests that were not serialized.

Note that we have been playing fast and loose with the term
large request. There is no fixed threshold which determines if a
request is large or not — this threshold is a function of system load.

A key insight of this paper is that the higher the load, the
more aggressively we want to serialize requests by lowering
the large request threshold.

The challenges for implementing such a policy include (a) iden-
tifying large requests dynamically, because the individual request
demand is unknown at arrival time and hard to predict; (b) deter-
mining how much and when requests are imposing queuing delay
on other requests — thereby determining large requests as a func-
tion current load; and (c) dynamically adjusting the policy.

Since we cannot determine the work of a request when it arrives,
tail-control conservatively defaults to a steal-first policy that paral-
lelizes all requests. We note that the large requests reveal them-
selves. Tail-control keeps track of the total work done so far by all
active requests. Therefore only later, when a request reveals itself
by executing for some threshold amount of work and when sys-
tem load is high, do we force a request to execute sequentially. As
mentioned earlier, the higher the load, the smaller the threshold at
which we serialize requests. This approach also has the advantage
that higher the load, the earlier we serialize large requests, thereby
reducing the amount of parallel processing time we spend on hope-
less requests.

The next section presents our offline algorithm, threshold-
calculation, that calculates the large request threshold for each
value of system load based on the probabilities in a given work dis-
tribution. The higher the load, the lower the large request threshold
calculated by this algorithm. It also shows how tail-control uses
this information, load, and request progress to dynamically control
parallelism.

4. Tail-Control Scheduler
This section describes the tail-control scheduler which seeks to re-
duce the number of requests that exceed a target latency. At run-
time, the scheduler uses the number of active requests to esti-
mate system load and continuously calculates each request’s work
progress. Tail-control serializes large requests to limit their impact
on the waiting time of other requests. The scheduler identifies large
requests based on when its work exceeds a large request thresh-
old, which is a value that varies based on the instantaneous sys-
tem load and the target latency. The higher the load, the lower the
threshold and the more large requests tail-control serializes, such
that more small requests make the target latency.

The tail-control scheduler has two components: (1) an offline
threshold-calculation algorithm that computes a table containing
large request thresholds indexed by the number of active requests,
and (2) an online runtime that uses steal-first work stealing, but
as needed, it serializes large requests based on the large request
threshold table.

1 for each number of active request qt from 1 to qmax

2 for each large request threshold candidate l ∈ L
3 calculate the length of pileup phase T
4 calculate the number of large request exceeding target missl
5 calculate the number of small request exceeding target misss
6 lqt is the l minimizing total misses missl + misss for given qt
7 Add (qt, lqt) to large request threshold table

Figure 3: Algorithm for calculating large request threshold table

4.1 The Threshold-calculation Algorithm
We first explain how we compute the large request threshold table
offline. The table is a set of tuples {qt : 1 to qmax | (qt, lqt)}
indicating the large request threshold lqt indexed by active requests
qt. Figure 3 presents the pseudo code for calculating the table. For
each qt, the algorithm iterates through the set of candidate large
request thresholds l and calculates the expected number of requests
that will miss the target latency if the threshold is set as l. It sets lqt
as the l that has the minimum expected requests whose latency will
exceed the target.

The algorithm takes as input: (a) a target latency, target; (b)
requests per second, qps; (c) the number of cores in the server
m; and (d) the work distribution, such as the examples shown in
Figure 1. We derive the maximum number of active requests qmax

from profiling or a heuristic such as twice the average number of
active requests based on qps using queuing theory.

The work distribution is a probability distribution of the work
per request, which service providers already compute to provision
their servers. Here we use it for scheduling. We represent it as a
set of non-overlapping bins: {bin i : 1 to n | (pi, wi)} where
each bin has two values: the probability of a request falling into
this bin pi and the maximum work of the requests in this bin
wi. Note that the sum of the probability of all bins is one, i.e.∑

bin i pi = 1. For each bin in the work distribution, we only know
the maximum work of requests falling in this bin. Therefore, we
only need consider these discrete values for large request thresholds
l, since we pessimistically assume any request that exceeds wi will
definitely execute until wi+1.Therefore, formally the set of large
request threshold candidate set L is:

L = {i : 1 to n | wi}

We define an instantaneous pileup as a short period of time
when the system experiences a high load. To reduce the number of
requests that miss the tail latency constraint during a pileup, our
scheduler limits the processing capacity spent on large requests, to
prevent them from blocking other requests.

The key of this algorithm is thus to calculate the expected
number of requests that will exceed the target latency during a
pileup if the system load is qt and the large request threshold is
l, for every candidate l ∈ L given the other parameters. We first
calculate the expected work, summing the expected work in small
requests, expected parallel work, and expected sequential work due
to requests that exceed l. We then use these quantities to calculate
the expected length of a pileup phase and the approximate number
of requests whose latency will exceed the target during this pile-up
phase. Table 1 defines all the notations for this calculation.

Basic Work Calculation. To start, consider the simple expected
work calculations that depend only on the work distribution and a
large request threshold candidate l. First, we calculate the expected
work of a request w̄ =

∑
bin i piwi. Next, we can calculate the

probability that a particular request is large: pl =
∑

wi>l pi; and
the probability that a request is small: ps = 1 − pl. Additionally,
the expected work per small request can be derived as w̄s =
(
∑

wi≤l piwi)/(1− pl).

4 2016/1/12

Symbol Definition
target Target Latency
qps Query per second of a server
m Number of cores of a server machine
pi Probability of a request falling in bin i
wi Work of a request falling in bin i
qt Instantaneous number of active requests at time t
l Large request threshold
L Set of potential large request thresholds
w̄ Average work per request
pl Probability of a request being a large request
w̄s Expected work per small request
w̄f Expected superfluous work per large request
w̄e Expected essential work per request

Table 1: Notation Table
Now consider the expected essential work per request — the

work that tail-control may execute in parallel. In tail-control, the
entire work of small requests may execute in parallel. In addition,
because a large request is only detected and serialized after it has
been processed for l amount of work, hence every large request’s
initial l amount of work will execute in parallel given sufficient
resources. We call this essential work since processing this work
quickly allows us to meet target latency and detect large requests.
It is calculated as w̄e:

w̄e =
∑
wi≤l

piwi +
∑
wi>l

pil

The remaining work of a large request exceeding l is serialized. We
deem this work superfluous since these requests are very likely to
miss the target latency and therefore this work will not contribute to
the scheduling goal. We calculate the expected amount of work that
is serialized per large request, formally denoted as the expected
superfluous work per large request w̄f :

w̄f =

∑
wi>l pi(wi − l)∑

wi>l pi

Pileup Phase Length. Now we are ready to calculate the length
of a pileup phase when the number of active requests is qt and the
large request threshold is l. We define the pileup start time as the
time when a large request is first detected in the non-pileup phase.
The pileup phase ends when the large request that caused the pileup
is completed, all the work that has accumulated in the server due
to this overload is also completed, and the system reaches a steady
state again.

We can approximately calculate the amount of accumulated
work at the start of a pileup phase. First, let us look at the first large
request that was detected. This request has the essential work of l
and the remaining expected superfluous work of w̄f , it has a total
of w̄f + l work in expectation. In addition, each of the remaining
qt − 1 active requests has an expected work of w̄. Thus, the total
accumulated work at the start of a pileup phase is estimated by
w̄f + l + (qt − 1)w̄.

We also need to account for work that arrives during the pileup
phase. We define the average utilization of the server as U =
w̄ × qps. We assume that U < m since otherwise the latency
of the requests will increase unboundedly as the system gets more
and more loaded over time. In expectation, the new requests that
arrive during the pileup phase have utilization of U , which means
that we need U cores to process them. Therefore, tail-control has
m − U remaining cores with which to execute this accumulated
work. Thus, to entirely finish the accumulated work, it will take
about (w̄f+l)+(qt−1)w̄

m−U
time.

Now consider the first large request in a pileup: it executes in
parallel for l amount of work and then executes sequentially for w̄f

time. Its minimum completion time would be l/m + w̄f , which
assumes that it runs on all the cores before being detected and
serialized. Thus, the expected length of the pileup phase T is the
maximum of the time to entirely finish the accumulated work and
the time to finish the first large request:

T = max

(
(w̄f + l) + (qt − 1)w̄

m− U
, l/m + w̄f

)
Large Request Target Misses. Once we know the length of the
pileup phase, we can trivially derive the number of requests that
are expected to arrive during this window, which is qps× T . Now
we can calculate the expected number of large requests during the
pileup phase. Since the probability of one request being large is pl,
we expect pl(qps× T + q − 1) + 1 large requests in total, includ-
ing the first large request and the other potential large requests that
become active or arrive in the interim. In the calculation, we pes-
simistically assume that large requests always exceed the latency
requirement, as we will serialize them. This assumption enforces
the serialization of requests to be conservative. Hence, the number
of large requests exceeding the target latency missl is

missl = pl(qps× T + q − 1) + 1

Small Request Target Misses. We now calculate the number of
small requests, misss, that will exceed the target latency, given a
particular value of active requests qt and large request threshold l.
We optimistically assume that small requests always run with full
parallelism. Therefore, if a small request starts executing as soon
as it arrives, it will always meet the target latency. Thus, we first
calculate how long a small request must wait to miss the target
latency. Then we calculate x, which is how many requests must be
ahead of this request in order to have this long of a wait. Finally, we
calculate how many requests could have x requests ahead of them
during a pileup phase.

We first calculate the average number of cores that are spent
on executing the superfluous work of large requests. There are
missl large requests, each in expectation has w̄f superfluous work.
Therefore, the total amount of superfluous work in the pileup is
missl × w̄f . Hence, on average, missl × w̄f/T cores are wasted
on working on the superfluous work since the pileup lasts for
time T . Note that this quantity is very likely to be less than m
assuming the system utilization U < m.2 Thus, the remaining
ms = m−(missl×w̄f/T) can work on the essential work of both
small and large requests. Since we now only consider the essential
work, we can think of it as scheduling on a new system with ms

cores, the same qps as the original system, but the expected work
per request is now w̄e.

For a small request with total expected work w̄s, its minimum
execution time on the remaining ms cores is w̄s/ms. Given the
target latency target, it will exceed the target if its waiting time is
more than target− w̄s/ms. Given x requests ahead of this request
in addition to the first large request that triggered the pileup, then
the essential work that needs to execute on these ms cores before
we get to the small request in consideration is l+w̄ex. Therefore, its
waiting time can be estimated as (l + w̄ex)/ms. A request misses
the target latency if there are at least x requests ahead of it where
x = (target×ms − w̄s − l)/w̄e .

Among the qt requests that are active when we detect the large
request, there are y1 = max(qt − 1 − x, 0) requests that have at
least x requests in addition to the first large request that are ahead
of it. These y1 requests (where y1 can be 0) will likely overrun
the target latency. In addition, we must account for the additional
requests that arrive while the queue is still longer than x. Assuming

2 If missl × w̄f/T is greater than m, this configuration of l would lead to
system overrun, which means that this particular l is not a good candidate
for lqt . Thus, we simply set misss to be∞.

5 2016/1/12

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	

La
rg
e	
Re

qu
es
t	 T

hr
es
ho

ld
	 (m

s)
	

Number	 of	 AcAve	 Requests	

25.63ms	

21.34ms	

14.77ms	

Figure 4: Large request threshold table output by threshold-
calculation with input of a lightly loaded work distribution with
qps of 1200 and three different target latencies. The x-axis is the
number of active requests, and the y-axis is the large request thresh-
old. Each curve plots the output for a given latency.

optimistically that requests run one by one in full parallelism,
then requests leave at the rate of 1/(w̄e/ms) = ms/w̄e. On the
other hand, the system has a request arrival rate of qps. Hence
the number of requests in the system decreases with a rate of
ms/w̄e − qps.3 This time is how long it takes for the number of
active requests to decrease from qt to x+ 1 is y1/(ms/w̄e− qps).
During this time, the number of newly arrived requests is then
y2 = y1/(ms/w̄e − qps)× qps .

Therefore in total, we have y1 + y2 requests that will wait for
more than x requests. Since a request is small with probability
(1−pl), the expected number of small requests that miss the target
latency is

misss = (y1 + y2)(1− pl)

= max(qt − 1− x, 0)× ms/w̄e

(ms/w̄e − qps)
× (1− pl)

Thus, we get the expected total number of requests exceeding the
target latency for qt number of active requests and l large request
threshold is miss = misss + missl.

Discussion. The complexity of the offline algorithm is O(qmax×
n2), where n is the number of bins in the request work distribution.
Note that we are conservative in serializing large requests. We esti-
mate the execution time for a small request to be w̄s/ms, which is
minimum by assuming that it can occupy all available cores ms

and execute with linear speedup However, some requests (espe-
cially small requests) may not have enough parallelism to use all
m cores. The system is thus conservative in serializing large re-
quest, because this calculation may overestimate the waiting time
before the small requests miss the target latency. However, if the
system profiler also profiles the average parallelism of requests in
all bins (or average critical-path length of requests in all bins; these
are equivalent), we can incorporate this information into the cal-
culation easily to perform more accurate calculations, potentially
leading to more aggressive parallelization of large requests.

Example Output. Figures 4 shows the output from threshold-
calculation with input of a lightly loaded work distribution with
qps of 1200 and three different target latencies. Let’s first exam-
ine a single curve, say the one with 14.77ms target latency. As the
number of active requests increases (i.e., higher instantaneous sys-
tem load), the large request threshold grows smaller, indicating that
the system serializes requests more aggressively. When examining
all three curves collectively, Figure 4 illustrates how the relation-
ship between the threshold and active number of requests varies

3 Note that this rate is positive in order for the l in consideration to be a
good candidate for lqt . Thus if the rate is not positive, we again set misss
to be∞

according to the target latency. As the target latency increases, the
curves shift towards the right, showing that when given the same
number of active request, the system can increase the large request
threshold because of the longer target latency. In other words, given
the same instantaneous load, the system is less aggressive about se-
rializing requests when the target latency is longer.

4.2 Extending Work-Stealing with Tail-Control
This section describes how to use the large request table to imple-
ment the tail-control strategy in a work-stealing runtime. While we
implemented our system in TBB (Reinders 2010), this approach is
easy to add to other work-stealing runtimes.

Scheduler Overview. As with the basic work-stealing scheduler,
tail-control is a distributed scheduler, and each worker maintains
its own work deque. A shared global FIFO queue contains requests
that have arrived but not yet being admitted. For the most part,
the tail-control behaves like a steal-first. Only when the system
identifies a large request, does its behavior diverge from steal-
first with respect to the identified large request — it serializes
the large request’s remaining execution. Specifically, tail-control
performs the following additional actions: 1) it tracks the number
of active requests in the system to estimate system load; 2) it tracks
processing time spent thus far on each executing request; 3) it
identifies a large request based on processing time and serializes
its remaining execution.

Tail-control performs actions 1) and 2) in a distributed fashion.
Each worker accumulates processing time for its active request.
Whenever a worker finishes a request completely, it decrements
a shared global counter that maintains the number of executing
requests in the system. Overhead for action 1) is minimal since it
occurs infrequently. Overhead for action 2) is amortized against the
cost of steals, since it needs to be done only between steals.

Action 3) requires more coordination. To identify a large re-
quest, it is necessary to collect processing time scattered across all
the workers that are executing a request, which can incur overhead.
Ideally, we would like to check each request’s processing time fre-
quently so that a request does not execute any longer once it ex-
ceeds the large request threshold. On the other hand, we do not
want to burden executing workers with the overhead of frequent
checks. Thus, we piggyback the execution of action 3) on a thief
looking for work to do. Whenever a worker runs out of work, be-
fore it steals again, it first computes processing time of executing
requests on all other workers, computes the accumulated process-
ing time for each request, and marks any requests that exceed the
threshold. Once a request is marked as large, it needs to be serial-
ized. We modify the stealing protocol to mark large requests lazily.
If a thief tries to steal from a deque with tasks that belong to a large
request, the thief simply gives up and tries to steal somewhere else.
Again, the overhead is amortized against the cost of steals.

Implementation of Tail-Control. Figure 5a shows the pseudo
code for the top-level scheduling loop that a worker executes in tail-
control. The bold lines mark the code that is only necessary for tail-
control but not steal-first. During execution, a worker always first
tries to pop tasks off its local deque as long as there is more work
in the deque (lines 5–8). When a worker’s deque becomes empty,
it tries to resume the parent of its last executed task if it is ready to
be resumed (lines 9–12). In short, a worker always executes tasks
corresponding to a single request for as long as work can be found
locally (lines 5–12). As part of the bookkeeping in tail-control, if
the last executed task has no parent (i.e., root), the worker checks
for the completion of a request and decrements the active-request
counter if appropriate (lines 13–16).

Once the control reaches line 18, a worker has exhausted all its
tasks locally, and it is ready to find more work. Before performing

6 2016/1/12

1 void scheduling_loop(Worker *w) {
2 Task *task, *last_task = NULL;
3 while (more_work_to_do()) {
4 if (task != NULL) {
5 do {
6 execute(task);
7 last_task = task;
8 task = pop_deque(w);
9 } while(task != NULL);
10 if (last_task->parent() != NULL) {
11 task = last_task->parent();
12 if (task->ref_count() == 0) continue;
13 } else if (last_task->is_root() &&
14 last_task->is_done()) {
15 global_queue->dec_active_request_count();
16 }
17 }

// about to switch request; update bookkeeping info
18 long long proc_time = get_time() - w->start_time;
19 w->last_request = w->curr_request;
20 w->curr_request = NULL;
21 w->last_request->accum_process_time(proc_time);
22 } //end of if (task != NULL)
23 check_pileup_phase();
24 task = try_random_steal();
25 if (task == NULL)
26 task = global_queue->admit_request();
27 if (task != NULL) {
28 w->start_time = get_time();
29 w->curr_request = task->get_request();
30 }
31 } // end of while (more_work_to_do())
32 } // end of scheudling_loop

(a) The main loop. Tail-control adds only the bold lines to steal-first.

1 Task * try_random_steal() {
2 Task *task = NULL;
3 while (has_stealable_victims()) {
4 Worker *vic = choose_random_victim();
5 task = try_steal_deque_top(vic);
6 }
7 return task;
8 }

9 void check_pileup_phase() {
10 int active = global_queue->get_active_request_count();
11 int req_thresh = large_request_table[active];
12 long long added_time, new_proc_time,
13 long long curr_time = get_time();
14 hashtable req_map;

// update the processing time for each executing request
15 for (Worker *w : worker_list) {
16 Request *req = w->curr_request;
17 if (req == NULL) continue;
18 added_time = curr_time - w->start_time;

// find returns 0 if req is not found
19 if (req_map.find(req) == 0)
20 new_proc_time = req->get_proc_time() + added_time;
21 else
22 new_proc_time = req_map.find(req) + added_time;
23 req_map.insert(req, new_proc_time);

// mark a request that exceeds threshold
24 if (new_proc_time > req_thresh) {
25 if (req.is_valid()) req->set_stealable(false);
26 }
27 }
28 }

(b) Helper routines. Tail-control adds only the bold lines to steal-first.

Figure 5: The pseudo code for tail-control in a work-stealing runtime system.

a random steal, a worker performs the necessary bookkeeping to
accumulate the processing time it spent on last request lines 18–21).
It updates its curr request field to reflect the fact it is not working
on a request. This field keeps tracks of the worker’s current request,
and is read by a thief in check pileup phasewhen it accumulates
processing time of an executing request.

Then the worker calls check pileup phase (line 23) to iden-
tify large requests and mark them as not stealable. It then becomes
a thief and tries to steal randomly (line 24). If no currently ex-
ecuting requests are stealable, try random steal returns NULL,
and tail-control admits a new request (line 26) and assigns it to the
worker. Regardless of how the worker obtains new work, it updates
its curr request and the start time for this request (lines 27–30).
When it completes this work, it loops back to the beginning of the
scheduling loop to perform book keeping and find more work. In a
server system, this scheduling loop executes continuously.

The tail-control implementation has the same high-level control
flow as in steal-first, since except for the pileup phase, it follows the
steal-first policy. Moreover, the difference between steal-first and
admit-first is simply in the order in which a thief finds new work.
By switching the sequence of stealing and admitting, i.e., switching
line 24 and line 26, one trivially obtains admit-first.

Figure 5b shows the pseudo code for subroutines invoked by
the main scheduling loop. Again, the differences between tail-
control and steal-first are few and are highlighted in bold. Specif-
ically, in tail-control, a thief gives up on the steal if the task on
top of the victim’s deque is a not-stealable large request. The
try random steal (line 5) and the has stealable victims
(line 3) implement this difference. This implementation causes the
marked large request to serialize lazily; the parallelism dissolves
when all workers working on that request exhaust their local tasks.
One could enforce that the marked request serialize immediate with
additional overhead, but we serialize lazily to avoid such overhead.

The check pileup phase function implements the detection
and marking of large requests. When a thief executes this function,
it first evaluates the current load by getting the active-request count,
and uses it to index the large request threshold table (lines 10–
11). With the given threshold, it then examines all workers and
accumulates the processing time of all executing requests into a
local hashtable (lines 15–27). The hashtable uses requests as keys
and stores their processing time as values. A hashtable is needed
because there could be multiple workers working on the same
request. The processing time of an executing request is essentially
the time accumulated on the request thus far, and the additional
processing time elapsed on an executing worker since the last time
it updated its start time. lines 16–23 does exactly that calculation.

Note the pseudo code simply shows the high-level control flow,
abstracting many operations, including synchronization. Shared
fields in a request object and the global queue are protected
by locks. The locks are acquired only when concurrent writes
are possible. One notable feature is that when a thief executes
check pileup phase, it does not acquire locks when reading
shared fields, such as w->start time, w->curr request, and
req->get proc time. We intentionally avoid this locking over-
head at the cost of some loss in accuracy in calculating the requests’
processing time due to potentially stale values of these fields the
thief may read. In this way, the processing time calculation hap-
pens entirely in a distributed manner and a thief will never interfere
workers who are busy executing requests.

5. Experimental Evaluation
We now present an empirical evaluation of the tail-control strategy
as implemented in the TBB work-stealing scheduler. We compare
tail-control to steal-first and admit-first, and show that tail-control
can improve over all baselines. Our primary performance metric is
the number of requests that exceed the latency target.

7 2016/1/12

Experimental Setup. Experiments were conducted on a server
with dual eight-core Intel Xeon 2.4Ghz processors with 64GB
main memory. The server runs Linux version 3.13.0. When running
experiments, we disable processor throttling, processor sleeping,
and hyper-threading. The tail-control algorithm is implemented in
the Intel Thread Building Block (TBB) library (Reinders 2010),
version 4.3.

We evaluate our strategy on several different workloads that
vary along three dimensions: (1) different work distributions (two
real-world workloads and several synthetic workloads), (2) differ-
ent inter-arrival time distributions (Poisson distribution with dif-
ferent means and long-tail distributions with varying means and
standard deviations), and (3) different request parallelism degrees
(embarrassingly parallel requests and requests with parallelism less
than the number of cores).

First, we evaluate requests with different work distributions.
The two real-world work distributions are shown in Figure 1.
Henceforth, we shall refer to them as the Bing workload and
the finance workload, respectively. In addition, we also evalu-
ate synthetic workload with log-normal distributions, referred as
log-normal workload. A log-normal distribution generates ran-
dom variables whose logarithm is normally distributed. Thus, it
has a longer tail than a normal distribution and represents the char-
acteristics of many real-world workloads. For all the workloads, we
use a simple program to generate work — the program performs
a financial calculation which estimates the price of European-style
options with Black-Scholes Partial Differential Equation. Each re-
quest is parallelized using parallel-for loops. Note that the particu-
lar computation performed by the workload is not important for the
evaluation of our strategy; any computation that provides the same
workload distribution should provide similar results.

Second, we evaluate requests with different arrival distributions.
In particular, to randomly generate the inter-arrival time between
requests, we use two distributions: a Poisson distribution with a
mean that is equal to 1/qps, and a log-normal distributions with
a mean equal to 1/qps and varying standard deviations. In other
words, for all the distributions, the requests are generated in an
open loop at the rate of qps (queries per second). We use 100, 000
requests to obtain single point in the experiments.

In addition, we evaluate the effect of requests with different par-
allelism degrees. In addition to the embarrassingly parallel requests
generated by parallel-for loops of Black-Scholes, we also intention-
ally insert sequential segments to make requests less parallel. In
particular, for each request, we add sequential segments with total
length of 10% of its work. By doing so, the parallelism of requests
is less than 10, which is smaller than the 16 available cores.

Finally, we explore some additional properties of tail-control.
We test its performance when the input work distribution is inaccu-
rate and differs from the actual work distribution. We also present
the improvement of tail-control in terms of system capacity. We
conduct comparison with two additional baseline algorithms to po-
sition the performance of steal-first, admit-first, and tail-control.
Lastly, we present a result trace to unveil the inner workings of
tail-control.

5.1 Different Work Distributions
We first compare the performance of tail-control to the admit-first
and steal-first baseline work-stealing policies described in Sec-
tion 3, with varyious loads and target latencies. For all the experi-
ments in this subsection, requests arrive according to Poisson dis-
tribution with varying mean inter-arrival times. Figures 6, 7 and 8
show the results on work distribution for finance, Bing, and log-
normal workload distribution respectively, where each bar graph in
a figure shows the result for one setting (light, medium or heavy
when going from left to right). Within each graph, we compare the

policies for five latency targets. As we go from left to right, the tar-
get latency increases,4 and thus all policies improve in performance
from left to right. Now we can look at the specific results for each
workload.

Bing Workload. From Figure 6, we can make three observations.
First, for the Bing workload, admit-first performs better than steal-
first in most cases. The reason is, as seen in Figure 1a, the Bing
workload has high variability between the work of the largest vs.
the smallest requests. As discussed in Section 3, steal-first is likely
to perform worse in this situation since it allows very large requests
to monopolize the processing resources, potentially delaying a high
number of small and medium requests. Second, as target latency in-
creases, steal-first strategy’s performance in comparison to admit-
first improves, finally overtaking it slightly for the longest latency
target. As the target latency increases, the impact on waiting time
due to executing large requests reduces and steal-first starts reap-
ing the benefits of exploiting intra-request parallelism; therefore, it
starts performing better than admit-first. This observation reflects
the trade-off between steal-first and admit-first and confirms that
they cannot perform well in all settings. Finally, tail-control pro-
vides consistently fewer missed requests across the three load set-
tings and target latencies — it has a relative improvement of 35%
to 58% over admit-first and of 24% to 65% over steal-first in all
settings. In particular, tail-control has higher improvement at the
harsher setting — when the system load is heavier and the target
latency is shorter. It limits the impact of large requests by serial-
izing the large requests. However, it still reaps the benefit of intra-
request parallelism since it parallelizes short and medium requests
and processes them quickly.

Finance Workload. Figure 7 shows the results for the finance
workload, and the results reinforce the observations made above.
The finance workload has less variability in its work distribution
compared to the Bing workload; therefore, as our intuition indi-
cates, steal-first performs better than admit-first. Since large re-
quests are not that much larger than other requests, they do not
impact the other requests as significantly. Therefore, steal-first is
a good strategy for this workload. In the settings under the heavy
load and the two longest target latencies, tail-control provides ex-
actly the same schedule as steal-first, since the calculated thresh-
olds from threshold-calculation are high resulting in no request be-
ing serialized. This result indicates that when steal-first is the best
strategy, tail-control essentially defaults to it and does not gratu-
itously increase target latency misses by serializing requests unnec-
essarily. In addition, even though tail-control has a higher overhead
due to book-keeping, the overhead is lightweight and not significant
enough to affect performance and increase miss ratio. Moreover,
even on this workload where steal-first is already a good strategy,
tail-control still significantly improves the miss ratio in some cases.
For instance, under medium load with the longest target latency,
tail-control provides 36% improvement. These results indicate that
tail-control performs well under different types of workload char-
acteristics and loads.

Log-normal Workload.
In Figure 8, we generate the work of a request using a log-normal
distribution with mean of 10 ms and standard deviation of 13 ms.
We selectively choose the mean of 10 ms in order to directly
compare the results with that of Bing workload, as the mean work
of Bing workload is also 10 ms. The standard deviation is chosen,
such that the log-normal work distribution has a slightly shorter tail

4 The target latencies are chosen as the 97.5%, 98.5%, 99%, 99.5% and
99.75% tail latencies of steal-first in order to provide evidence that tail-
control performs well under varying conditions.

8 2016/1/12

Target (ms) 13.10 15.40 17.18 18.30 20.00
Imp. over SF 46.7% 40.9% 34.7% 40.1% 39.2%
Imp. over AF 24.1% 24.7% 25.5% 39.5% 46.9%

Figure 6(a)

Table 6(a)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

13.10 15.40 17.18 18.30 20.00

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Bing workload
Light load

(QPS 800, Util 46%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Target (ms) 18.61 21.34 23.82 25.63 28.15
Imp. over SF 53.8% 46.3% 43.1% 55.5% 54.4%
Imp. over AF 32.8% 33.3% 34.7% 52.4% 57.3%

Figure 6(b)

Table 6(b)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

18.61 21.34 23.82 25.63 28.15

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Bing workload
Medium load

(QPS 1000, Util 57.5%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

31.28 36.57 40.80 43.56 46.76

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Bing workload
Heavy load

(QPS 1200, Util 68.8%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Target (ms) 31.28 36.57 40.80 43.56 46.76
Imp. over SF 51.5% 48.7% 52.1% 55.7% 58.4%
Imp. over AF 31.3% 33.6% 45.1% 54.3% 65.1%

Figure 6(c)

Table 6(c)

Figure 6: Bing workload with three different load settings and Poisson arrival. The x-axis shows different target latencies from shorter to
longer from left to right. The y-axis shows the target latency miss ratio. The table below each figure shows tail-control’s relative improvement
over steal-first and admit-first for a given latency.

Target (ms) 10.85 12.25 13.31 13.95 14.97
Imp. over SF 4.6% 3.0% 9.1% 1.3% 18.8%
Imp. over AF 28.7% 38.6% 50.5% 52.5% 66.7%

Figure 7(a)

Table 7(a)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

10.85 12.25 13.31 13.95 14.97

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Finance workload
Light load

(QPS 800, Util 56%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Target (ms) 14.23 16.06 17.34 18.28 19.55
Imp. over SF 17.9% 36.3% 1.5% 13.9% 36.2%
Imp. over AF 38.5% 60.6% 48.9% 60.4% 76.1%

Figure 7(b)

Table 7(b)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

14.23 16.06 17.34 18.28 19.55

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Finance workload
Medium load

(QPS 900, Util 63%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Target (ms) 19.53 22.10 23.91 25.26 27.37
Imp. over SF 30.5% 14.8% 28.9% -3.5% -1.2%
Imp. over AF 48.7% 47.0% 62.8% 51.9% 58.3%

Figure 7(c)

Table 7(c)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

19.53 22.10 23.91 25.26 27.37

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Finance workload
Heavy load

(QPS 1000, Util 70%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Figure 7: The finance workload results with the same figure and table configuration as in Figure 6.

Target (ms) 8.85 9.98 11.23 12.00 13.20
Imp. over SF 24.9% 24.7% 22.5% 24.3% 17.0%
Imp. over AF 20.5% 26.1% 29.4% 34.6% 33.9%

Figure 8(a)

Table 8(a)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

8.85 9.98 11.23 12.00 13.20

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Log-normal workload
Light load

(QPS 800, Util 46%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Target (ms) 12.41 14.38 15.93 16.91 18.34
Imp. over SF 33.0% 40.1% 35.1% 28.3% 22.4%
Imp. over AF 26.4% 42.5% 43.7% 42.8% 48.5%

Figure 8(b)

Table 8(b)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

12.41 14.38 15.93 16.91 18.34

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Log-normal workload
Medium load

(QPS 1000, Util 57.5%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Target (ms) 20.64 23.28 25.27 25.68 28.34
Imp. over SF 42.0% 27.0% 37.2% 18.3% 41.0%
Imp. over AF 36.5% 32.2% 50.0% 48.6% 66.1%

Figure 8(c)

Table 8(c)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

20.64 23.28 25.27 25.68 28.34

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Log-normal workload
Heavy load

(QPS 1200, Util 68.8%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Figure 8: The log-normal workload results with the same figure and table configuration as in Figure 6.

than the Bing workload, but a longer tail than finance workload.
For a log-normal workload, steal-first performs better than admit-
first when target latency is long and slightly worse when the target
latency is short. In this setting, tail-control consistently outperforms
steal-first and admit-first with improvement from 17% up to 66%.

5.2 Request with Sub-Linear Speedup
Due to space limitations, henceforth, we focus on one load (the
heavy load of qps 1200) and two work distribution (Bing and log-
normal workloads). In all the previous experiments, requests are
embarrassingly parallel with near linear speedup. Here we evalu-
ate how well tail-control performs, when increasing the span and
decreasing the parallelism degree of requests. In particular, in Fig-

9 2016/1/12

Target (ms) 32.94 39.19 43.13 45.48 48.65
Imp. over SF 39.8% 43.9% 38.7% 34.9% 30.6%
Imp. over AF 17.3% 26.6% 32.6% 37.8% 46.0%

Figure 10

Table 10

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

32.94 39.19 43.13 45.48 48.65

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Bing workload
with sub-linear speedup

Heavy load
(QPS 1200, Util 68.8%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Figure 9: The Bing workload and a Poisson arrival distribution with
mean qps of 1200 for requests with long sequential segments and
sub-linear speedup.

ure 9 we intentionally add sequential segments with a total length
of 10% work into each request, resulting a parallelism degree less
than 10 and smaller than the total 16 cores. As discussed in Section
4.1, we incorporate the span into the tail-control threshold calcula-
tion. Note that this experiment has almost the same parameters as
Figure 6(c), except for a smaller parallelism degree. By comparing
the two experiments, we can see that the relative trend among dif-
ferent algorithms remains the same. However, tail-control has less
improvement over steal-first and admit-first from 17% to 46%. The
results for log-normal workload is similar to that of Bing workload.
Tail-control improves less in this setting, because small requests are
not able to utilize all the available core, even when large requests
are serialized. Moreover, the large request is also not going to mo-
nopolize the entire system due to its sequential segments. Note that
in the extreme case where all requests are sequential, all the three
algorithms will be the same. The improvement that tail-control pro-
vides depends on the parallelism of requests. As request parallelism
degree increases, tail-control provides more benefit.

5.3 Different Arrival Distributions
Note that in all the previous experiments, requests arrive accord-
ing a Poisson arrival process. In this set of experiments, we vary
the inter-arrival time distribution and select one with larger vari-
ance than Poisson distribution, namely log-normal distribution.
Figure 10 shows an experiments with log-normal workload and
log-normal arrival distribution with mean inter-arrival time of 0.83
ms (qps of 1200) and standard deviation of 1.09 ms. Note that this
experiment is constructed such that it has almost the same parame-
ters as that of Figure 8(c), except that the latter’s inter-arrival time
has a smaller standard deviation of 0.91 ms. By comparing the two
experiments, we can see that the relative trend remains the same.
In particular, steal-first is better than admit-first, while tail-control
outperforms the best of them from 25% to 44%. The compari-
son between Poisson and log-normal arrival distribution with Bing
workload are similar too. The results indicate that request arrival
distribution does not impact the relative performance much.

5.4 Inaccurate Input Work Distribution
Note that tail-control calculates large request threshold using re-
quest work distribution as input. Hence, it is natural to ask how
tail-control performs when the workload distribution differs from
the input workload distribution for the threshold-calculation al-
gorithm. That is, we experimentally evaluate how brittle the tail-
control scheduler is when provided with a somewhat inaccurate

Target (ms) 21.97 24.49 26.60 28.09 30.47
Imp. over SF 45.0% 24.7% 42.2% 31.1% 43.8%
Imp. over AF 38.2% 28.9% 53.3% 50.9% 64.9%

Figure 9

Table 9

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

21.97 24.49 26.60 28.09 30.47

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Log-normal arrival distribution
Log-normal workload

Heavy load
(QPS 1200, Util 68.8%)

steal-first (SF)
admit-first (AF)
tail-control (TC)

Figure 10: The log-normal workload and log-normal arrival distri-
bution with mean qps of 1200.

input workload distribution. The experiment in Figure 11 has the
same setting as Figure 8(c) with target latency of 28 ms. In addi-
tion to the tail-control with the correct input work distribution, we
also run tail-control using inaccurate input work distributions. In
particular, we slightly alter the input work distribution by chang-
ing the standard deviation while keeping the same mean work. Be-
cause the input distribution is inaccurate, the calculated thresholds
are also inaccurate.

From Figure 11, we can see that when the input inaccuracies are
small, for example standard deviation of 10 ms and 17 ms instead
of the true 13 ms, tail-control still has comparable performance.
However, the improvement of tail-control decreases when the error
increases. Moreover, tail-control is less sensitive to a larger inaccu-
rate standard deviation than a smaller one. This is because when the
standard deviation of the profiling workload is small, tail-control
less aggressively serialize requests and becomes closer to steal-
first. In contrast, when the standard deviation of the profiling work-
load is large, tail-control is slightly more aggressive than it should
be. But this only causes a few larger requests unnecessarily serial-
ized. Since the probability of large requests are small, it affects the
performance of tail-control only slightly. However, when the input
is significantly different from the actual work distribution (for ex-
ample when the mean work is significantly inaccurate), tail-control
could have worse performance than steal-first and admit-first. This
happens when tail-control very aggressively serialize requests, even
when the number of requests is less than the number of cores.

In summary, tail-control does require a relatively accurate work
distribution, but it does not need to be exact. If the system load
changes significantly over time, the system operator needs to profile
the new work distribution or qps. In fact, because the calculation
of tail-control is very fast, an interactive service could sample its
workload and let tail-control to calculate large request thresholds
and to perform scheduling adaptively in real-time.

5.5 Increased System Capacity
The benefits of tail-control can be used to increase server capacity,
thereby reducing the number of servers needed to run a particular
aggregate workload as each server can run a higher number of
requests per second. For instance, say we have m servers and for
a particular workload, steal-first enables 99.5% of the requests to
meet the target latency. Here, tail-control can provide the same
guarantee (99.5% requests meet the same latency target) with a
higher system load. Figure 12 provides evidence for this claim. It
shows the maximum load for several target latencies at the 99.5-

10 2016/1/12

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

28.34

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
latency (ms)

Log-normal workload
Heavy load

(QPS 1200, Util 66%)

steal-first (SF)
admit-first (AF)
TC* std. 13ms
TC std. 4ms
TC std. 7ms
TC std. 10ms
TC std. 17ms
TC std. 24ms
TC std. 34ms

Figure 11: The Log-normal workload and Poisson arrival distri-
bution with mean qps of 1200 and a target latency of 28 ms. We
compare tail-control when using inaccurate input distributions with
smaller to larger standard deviation from left to right.

750	

800	

850	

900	

950	

1000	

1050	

1100	

1150	

1200	

1250	

20.00	 22.28	 28.16	 36.57	 46.76	

Q
PS
	

Target	 Latency	 (ms)	

Affordable	 Capacity	 with	 	
Varying	 Target	 Latency	

steal-‐first	
admit-‐first	
tail-‐control	

Figure 12: The Bing workload. Tail-control increases system ca-
pacity for different target latencies compared to steal-first and
admit-first.

percentile. For instance, at target latency 20.00 ms, tail-control
sustains 880 qps compared to 800 for steal-first and 775 for admit-
first, showing 10% capacity increase over the best of the two.

5.6 Comparison with Additional Baseline Algorithms
Now we provide comparison with two additional baseline algo-
rithm. The first one is denoted as detaul-TBB, as it is the algo-
rithm of the default TBB implementation. Note that in both steal-
first and admit-first, requests are first submitted to a global FIFO
queue and workers explicitly decide whether and when to admit re-
quests. In contrast, default-TBB implicitly admit requests by sub-
mitting requests to the end of a random worker’s deque. After doing
so, workers can act as if there is a single request and they only need
to randomly steal when running out of work. This strategy may
have smaller overhead than the global FIFO queue. However, now
requests are admitted randomly instead of in the FIFO order, so it
may cause a waiting request starve in the worst case.

We measure the performance of default-TBB for all three work-
loads with Poisson arrival and observe that default-TBB has com-
parable or worse performance than admit-first in most settings. This
is because default-TBB acts similar to admit-first, but it admits re-
quests with a random order. A request that has waited for a very
long time could potentially be admitted later than a request that
just arrives. This could significantly increases the latency of some
requests when the system is busy, which increases the request tar-
get miss ratio. On the other hand, without any global queue default-

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

20.64 23.28 25.27 25.68 28.34

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
Latency (ms)

Log-normal workload
Heavy load

(QPS 1200, Util 68.8%)
default-TBB (TBB)
steal-first (SF)
admit-first (AF)
tail-control (TC)
TC-Clairvoyant

Figure 13: The Log-normal workload. The figure is the same as
Figure 6(c), except it adds default-TBB and TC-Clairvoyant.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

31.28 36.57 40.80 43.56 46.76

Ta
rg

et
 la

te
nc

y
m

is
s

ra
tio

Target
Latency (ms)

Bing workload
Heavy load

(QPS 1200, Util 68.8%)
default-TBB (TBB)
steal-first (SF)
admit-first (AF)
tail-control (TC)
TC-Clairvoyant

Figure 14: The Bing workload. The figure is the same as Figure
8(c), except it adds default-TBB and TC-Clairvoyant.

TBB has smaller overheads. This allows system to process requests
slightly faster and hence reduce the length of pileup phase. Thus,
in such cases, default-TBB performs slightly better than admit-first.
Even in these settings, tail-control still outperforms default-TBB by
at least 21.4%. Due to space limit, we present two representative
settings in Figure 13 and Figure 14.

The second baseline algorithm marked as TC-Clairvoyant in
Figure 13 and Figure 14 shows the lower bound of tail-control,
because this scheduler utilizes the exact work of each request to
perform tail-control strategy. More specifically, we modified TBB
and application server to mark each request with its actual work,
when it is submitted to the global FIFO queue. For threshold cal-
culation, we adjust the threshold calculation algorithm described in
Section 4 for TC-Clairvoyant to account for the fact that a serialized
large request under TC-Clairvoyant is never executed on more than
one processor. During online execution, the TC-Clairvoyant sched-
uler knows the exact work of each request even before its execu-
tion (thus clairvoyant). Hence, unlike tail-control, TC-Clairvoyant
knows whether a request is a large request and can directly serial-
ize it without any parallel execution. Thus, TC-Clairvoyant plays
the lower bound of non-clairvoyant tail-control, as it can more ef-
fectively limit the impact of large request if the actual work of each
request is clairvoyant to the scheduler.

From Figure 13 and Figure 14, we can see that TC-Clairvoyant
and tail-control have comparable performance when the target la-
tency is long, while TC-Clairvoyant improves much more when the
target latency is short. This is because to minimize for long target

11 2016/1/12

latency, only the very large requests need to be serialized. Because
the work distribution has a relatively long tail, we can more eas-
ily distinguish very large requests from other medium or small re-
quests. However to minimize for short target latency, we may need
to serialize some medium requests as well and it takes medium re-
quest to execute for most of its work before we can distinguish
them from small requests. The TC-Clairvoyant also shows that our
tail-control strategy can take advantage of request work and further
improves the performance, if this information is available or if there
is a efficient algorithm to predict request work.

5.7 The Inner Workings of Tail-Control

-‐100	

-‐80	

-‐60	

-‐40	

-‐20	

0	

20	

40	

60	

80	

100	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

110	

120	

130	

140	

0	 0.2	 0.4	 0.6	 0.8	

Re
qu

es
t	 l
at
en

cy
	 (m

s)
	

N
um

be
r	 o

f	 a
cA
ve
	 re

qu
es
ts
	

Current	 Ame	 in	 seconds	

tail-‐control	

steal-‐first	

Figure 15: Number of active requests (lower part) and request
latency (upper part) traces of the same workload under steal-first
and tail-control in a 0.8 seconds window (Bing workload).

We now look a little deeper into the inner workings of tail-
control. Figure 15 shows the trace of the execution of the same
workload under both steal-first and tail-control. The x-axis is time t
as the trace executes. The lower y-axis is the queue length at time t.
Recall that tail-control works in the same way as steal-first, except
that under highly loaded conditions, it serializes large requests so
as to reduce the waiting time of small requests in the queue. This
figure shows that tail-control succeeds in this stated goal — when
the instantaneously system load is high (for instance, at time 0.2s
and 0.6s), the queue length is shorter under tail-control than under
steal-first, but otherwise they follow each other closely.

The top part of the figure is even more interesting. For the same
experiment, the upper y-axis shows the latency of each request re-
leased at time t along the x-axis. We can see clearly that tail-control
sacrifices a few requests (e.g. the ones with over 60ms latency),
increasing their latency by a large amount in order to reduce the
latency of the remaining requests. For the high instantaneous load
at time 0.2s for instance, tail-control has a few requests that have
very large latencies, but the remaining requests have smaller la-
tencies than steal first. In particular, under steal-first, 183 requests
have latencies that exceed the target latency of 25 ms, while only
42 requests exceed the target under tail-control.

6. Related Work
Parallelizing Single Job to Reduce Latency. We build on work
stealing and related techniques that adapt parallelism to run-time
variability and hardware characteristics (Blagojevic et al. 2007;
Curtis-Maury et al. 2006; Jung et al. 2005; Ko et al. 2002; Lee
et al. 2010; Pusukuri et al. 2011; Suleman et al. 2008; Wang and
O’Boyle 2009). Prior work focuses on reducing the execution time
of a single job; our work in contrast focuses on reducing the number
of requests whose latency exceeds a predefined target in a server
environment with multiple jobs.

Multiprogrammed Parallelism for Mean Response Time. For
multiprogrammed environments, most prior work has looked into
reducing mean response time (Feitelson 1994; McCann et al. 1993;
Agrawal et al. 2006, 2008; He et al. 2008) or some other fairness
metric. In this work, the characteristics of the jobs are unknown
in advance; the scheduler learns job characteristics and adjusts
the degree of parallelism as jobs execute. For example, Agrawal
et al. (Agrawal et al. 2006, 2008) and He et al. (He et al. 2008)
use dynamic parallelism demand and efficiency feedback in work-
sharing and work-stealing. In contrast, data center environments
collect extensive telemetry data on interactive services, including
the workload distribution, latencies, and load, which they use for
server provisioning. Our offline analysis exploits this information
in order to make online decisions about which requests to serialize.

Interactive Server Parallelism for Mean Response Time. Ra-
man et al propose an API and runtime system for dynamic par-
allelism (Raman et al. 2011), in which developers express paral-
lelism options and goals, such as reducing mean response time. The
runtime dynamically chooses the degree of parallelism to meet the
goals at admission time, but does not change it during request exe-
cution. Jeon et al. (Jeon et al. 2013) propose a dynamic paralleliza-
tion algorithm to reduce the average response time of web search
queries. The algorithm decides the degree of parallelism for each
request at admission time, based on the system load and the average
speedup of the requests. Both use mean response time as their opti-
mization goal, and neither differentiates large requests from small
requests.

Interactive Server Parallelism for Tail Latency. Jeon et al. (Jeon
et al. 2014) and Kim et al. (Kim et al. 2015a) predict the service
demand of web search requests using machine learning to execute
the (predicted) small requests sequentially to save resources, and
to parallelize large requests to reduce their tail latency. This prior
work exploits the large variance of request service demand to re-
duce tail latency, but they have two limitations: (1) request service
demand for many interactive services may not be predictable, thus
is unknown to the scheduler a priori; (2) their request parallelism
decision is made regardless of the system load and workload char-
acteristics.

Haque et al. (Haque et al. 2015) present a few-to-many paral-
lelism technique which dynamically increases request parallelism
degree during execution. Their system completes small requests se-
quentially to save resources, parallelizes large requests to reduce
tail latency, and uses the use system load and workload character-
istics to decide how to increase request parallelism degrees. Their
work differs from ours in three ways. (1) The scheduling objective
is different: they reduce tail latency while we reduce the number of
requests that miss a target latency. (2) Because the scheduling ob-
jectives differ, the key techniques differ substantially: They provide
more parallelism to large requests to reduce their latency, at the cost
of increasing latency of small requests. In contrast at high load, we
sacrifice few large requests to increase the chance that other re-
quests meet the latency target. (3) They embed the scheduler in the
application, whereas we adapt a work-stealing runtime that works
for any dynamic multithreaded programs.

7. Conclusion
This paper presents the design and implementation of the tail-
control work-stealing scheduler for optimizing the number of re-
quests that meet a target latency for multiple concurrent requests.
Our experiments indicate that our prototype work-stealing sched-
uler using TBB is very effective for highly parallel interactive
workloads. Although no current interactive service uses work steal-
ing, as far as we are aware, the work stealing framework is appeal-
ing because it supports the most general models of both static and

12 2016/1/12

dynamic parallelism. To use our framework, services need only to
express the parallelism in individual requests. The benefits of the
tail-control scheduling strategy include improved user experience
with more consistent responsiveness and increased system capacity
for interactive services.

Acknowledgment
This research was supported in part by NSF grants CCF-1527692,
CCF-1337218, CCF-1218017 and CCF-1150036, and by ONR
grants N000141310800. The authors thank anonymous reviewers
for their suggestions on improving this paper.

References
K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson. Adaptive scheduling

with parallelism feedback. In PPoPP, pages 100–109, 2006.
K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu. Adaptive work-stealing

with parallelism feedback. ACM Transactions on Computer Systems
(TOCS), 26(3):7, 2008.

Apache Lucene. http://lucene.apache.org/, 2014. Retreived July
2014.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for
multiprogrammed multiprocessors. Theory of Computing Systems, 34
(2):115–144, 2001.

R. Barik, Z. Budimlić, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto, R. Ra-
man, J. Shirako, S. Taşırlar, Y. Yan, Y. Zhao, and V. Sarkar. The Ha-
banero multicore software research project. In ACM Conference Com-
panion on Object Oriented Programming Systems Languages and Ap-
plications (OOPSLA), pages 735–736, Orlando, Florida, USA, 2009.

F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D. Antonopoulos,
and M. Curtis-Maury. Runtime scheduling of dynamic parallelism on
accelerator-based multi-core systems. Parallel Computing, 33(10-11):
700–719, 2007.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations
by work stealing. Journal of the ACM, 46(5):720–748, 1999.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system. In PPoPP,
pages 207–216, 1995.

S. C. Borst, O. J. Boxma, R. Núñez-Queija, and A. Zwart. The impact of
the service discipline on delay asymptotics. Performance Evaluation, 54
(2):175–206, 2003.

M. Broadie and P. Glasserman. Estimating security price derivatives using
simulation. Manage. Sci., 42:269–285, 1996.

V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: the new
adventures of old X10. In International Conference on Principles and
Practice of Programming in Java (PPPJ), pages 51–61, 2011.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: An object-oriented approach to non-
uniform cluster computing. In ACM Conference on Object–Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages
519–538, 2005.

G. Cortazar, M. Gravet, and J. Urzua. The valuation of multidimensional
american real options using the lsm simulation method. Comp. and
Operations Research., 35(1):113–129, 2008.

M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopoulos.
Online power-performance adaptation of multithreaded programs using
hardware event-based prediction. In ACM International Conference on
Supercomputing (ICS), pages 157–166, 2006.

J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson. Programming with
exceptions in JCilk. Science of Computer Programming, 63(2):147–171,
Dec. 2006.

J. Dean and L. A. Barroso. The tail at scale. Communications of the ACM,
56(2):74–80, 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In ACM Symposium on
Operating Systems Principles (SOSP), pages 205–220, 2007.

D. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems.
Research report. IBM T.J. Watson Research Center, 1994.

M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the
Cilk-5 multithreaded language. In PLDI, pages 212–223, 1998.

M. E. Haque, Y. hun Eom, Y. He, S. Elnikety, R. Bianchini, and K. S.
McKinley. Few-to-many: Incremental parallelism for reducing tail la-
tency in interactive services. In ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 161–175, 2015.

Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient online nonclair-
voyant adaptive scheduling. Parallel and Distributed Systems, IEEE
Transactions on (TPDS), 19(9):1263–1279, 2008.

Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: Scheduling interactive ser-
vices with partial execution. In ACM Symposium on Cloud Computing
(SOCC), page 12, 2012.

C. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, L. Tang,
J. Mars, and R. Dreslinski. Adrenaline: Pinpointing and Reining in Tail
Queries with Quick Voltage Boosting. In IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 271–282,
2015.

Intel. Intel CilkPlus v1.2, Sep 2013. https://www.cilkplus.org/
sites/default/files/open_specifications/Intel_Cilk_
plus_lang_spec_1.2.htm.

V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan.
Speeding up distributed request-response workflows. In SIGCOMM ’13,
2013.

M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. Adaptive parallelism
for web search. In ACM European Conference on Computer Systems
(EuroSys), pages 155–168, 2013.

M. Jeon, S. Kim, S.-W. Hwang, Y. He, S. Elnikety, A. L. Cox, and S. Rixner.
Predictive parallelization: taming tail latencies in web search. In ACM
Conference on Research and Development in Information Retrieval (SI-
GIR), pages 253–262, 2014.

C. Jung, D. Lim, J. Lee, and S. Han. Adaptive execution techniques for
SMT multiprocessor architectures. In PPoPP, pages 236–246, 2005.

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G. Wei,
and D. Brooks. Profiling a warehouse-scale computer. In ACM
SIGARCH International Conference on Computer Architecture (ISCA),
pages 158–169, 2015.

S. Kim, Y. He, S.-w. Hwang, S. Elnikety, and S. Choi. Delayed-dynamic-
selective (DDS) prediction for reducing extreme tail latency in web
search. In WSDM, pages 7–16, 2015a.

S. Kim, Y. He, S.-W. Hwang, S. Elnikety, and S. Choi. Delayed-Dynamic-
Selective (DDS) prediction for reducing extreme tail latency in web
search. In ACM International Conference on Web Search and Data
Mining (WSDM), 2015b.

L. Kleinrock. Time-shared systems: A theoretical treatment. Journal of the
ACM (JACM), 14(2):242–261, 1967.

W. Ko, M. N. Yankelevsky, D. S. Nikolopoulos, and C. D. Polychronopou-
los. Effective cross-platform, multilevel parallelism via dynamic adap-
tive execution. In IPDPS, pages 8 pp–, 2002.

V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and O. Tardieu. Work-
stealing without the baggage. In ACM Conference on Object–Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages
297–314, 2012.

V. Kumar, S. M. Blackburn, and D. Grove. Friendly barriers: Efficient
work-stealing with return barriers. In ACM International Conference
on Virtual Execution Environments (VEE), pages 165–176, 2014. doi:
http://dx.doi.org/10.1145/2576195.2576207.

D. Lea. A Java fork/join framework. In ACM 2000 Conference on Java
Grande, pages 36–43, 2000.

I.-T. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and Z. Zhang.
On-the-fly pipeline parallelism. In ACM Symposium on Parallelism in
Algorithms and Architectures, pages 140–151, 2013.

J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread tailor: dynamically
weaving threads together for efficient, adaptive parallel applications. In
International Symposium on Computer Architecture (ISCA), pages 270–
279, 2010.

D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In ACM SIGPLAN Notices, volume 44, pages 227–242, 2009.

C. E. Leiserson. The Cilk++ concurrency platform. J. Supercomputing, 51
(3):244–257, 2010.

J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms
with PACE. In ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), pages 50–61, 2001.

J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: in-
creasing utilization in modern warehouse scale computers via sensible
co-locations. In IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 248–259, 2011.

C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation
policy for multiprogrammed shared-memory multiprocessors. ACM
Transactions on Computer Systems, 11(2):146–178, 1993.

OpenMP. OpenMP Application Program Interface v4.0, July 2013. http:
//http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Thread reinforcer: Dynami-
cally determining number of threads via OS level monitoring. In IEEE
International Symposium on Workload Characterization (IISWC), pages

13 2016/1/12

116–125, 2011.
A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August. Parallelism orches-

tration using DoPE: The degree of parallelism executive. In ACM Con-
ference on Programming Language Design and Implementation (PLDI),
volume 46, pages 26–37, 2011.

J. Reinders. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. O’Reilly Media, 2010.

S. Ren, Y. He, S. Elnikety, and K. S. McKinley. Exploiting processor
heterogeneity in interactive services. In ICAC, pages 45–58, 2013.

B. Schroeder and M. Harchol-Balter. Web servers under overload: How
scheduling can help. ACM Trans. Internet Technol., 6(1):20–52, 2006.

M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven thread-
ing: power-efficient and high-performance execution of multi-threaded
workloads on CMPs. In ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (AS-
PLOS), pages 277–286, 2008.

Z. Wang and M. F. O’Boyle. Mapping parallelism to multi-cores: a machine
learning based approach. In ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 75–84, 2009.

A. Wierman and B. Zwart. Is tail-optimal scheduling possible? Operations
research, 60(5):1249–1257, 2012.

T. Y. Yeh, P. Faloutsos, and G. Reinman. Enabling real-time physics
simulation in future interactive entertainment. In ACM SIGGRAPH
Symposium on Videogames, Sandbox ’06, pages 71–81, 2006.

J. Yi, F. Maghoul, and J. Pedersen. Deciphering mobile search patterns: A
study of Yahoo! mobile search queries. In ACM International Confer-
ence on World Wide Web (WWW), pages 257–266, 2008.

Zircon Computing. Parallelizing a computationally intensive financial R
application with zircon technology. In IEEE CloudCom, 2010.

14 2016/1/12

