Debugging Probabilistic Programs

Chandrakana Nandi, Dan Grossman, Adrian Sampson, Todd Mytkowicz, Kathryn S. McKinley

What can go wrong in probabilistic programs?

- All the things that can always go wrong
- **Approximation errors**
- Dependence errors

Model errors

Image search for author names Approximation

Use top (k = 1) ranked image?

Search on Google and bing for author names **Combine results** Input dependence Google

Statistics for debugging

Approximation error

Sufficient samples? Correct hyper-parameters?

Dependence errors

Input correlation? Premature inference calls? Incorrect models

Are the distributions correct?

Programming model and representation Uncertain<T> + explicit inference

Uncertain <T>

Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double> Y = from x in X select x * 2; Uncertain<double> Z = from y in Y from x in X select y + x;

v=2x

Χ

z=y+x

Sampling Uncertain <T> Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double> Y = from x in X select x * 2; Uncertain<double> Z = from y in Y from x in X select y + x; v=2xif (Z < 6.0) { // Hypothesis test z=y+xΧ print("2-sigma rule holds for Z.");

Implicit inference

Uncertain <T>

Bayesian Network

Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double> Y = from x in X select x * 2; Uncertain<double> Z = from y in Y from x in X select y + x; if (Z < 6.0) { // Hypothesis test print("2-sigma rule holds for Z."); }

FLEXI: U<T> + explicit inference

Inference is first class

Programs can produce, compose, and externalize distributions

Pitfalls: where to put inference and is it correct?

Decorated Bayesian Network (DBN)

z.mcmc_sample(1000)

Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double>Y = from x in X select x * 2; Uncertain<double> Z = from y in Y from x in X select y + x; if (Z < 6.0) { // Hypothesis test print("2-sigma rule holds for Z.");

Decorated Bayesian Network

Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double> Y = from x in X select x * 2; Uncertain<double> Ys = Y.mcmc_sample(1200); Uncertain<double> Z = from y in Ys from x in X select y + x; y.mcmc_sample(1200) Ys

Helps identify dependence and approximation errors

z.mcmc_sample(1000)

Statistics for debugging

Approximation error Sufficient samples? Correct hyper-parameters? Dependence errors Input correlation? Premature inference calls? Incorrect models

Are the distributions correct?

Sample size

Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double> Y = from x in X select x * 2; Uncertain<double> Ys = Y.mcmc_sample(1200); Uncertain<double> Z = from y in Ys from x in X y.mcmc_sam_le(1200) Ys select y + x; if (Z < 6.0) { // Hypothesis test print("2-sigma rule holds for Z.");

z.mcmc_samp_e(1000)

Meta inference for hyper-parameters h

Sample size

Learning rate

Top k

Meta inference for h

- **p** probabilistic program
- **h** hyper-parameter
- c domain specific correctness requirement
- Pr(p is correct) = Pr(c is met & h is good)

= Pr (c is met | h is good) * Pr(h is good)

Pr(h is good): if h maximizes its likelihood function

Meta inference for sample size

 $\begin{array}{ll} h &= {\rm sample \ size \ (n)} \\ {\rm fix \ prior \ over \ n, \ f(n \mid p)} \\ {\rm find \ n \ as \ argmax_n \ L(p \mid n) \ / \ variance \ (s_n)} \\ {\rm where \ \ L(p \mid n) \ is \ the \ likelihood \ p \ and} \\ {\rm variance \ (s_n) \ is \ the \ variance \ of \ the \ sample} \end{array}$

Evaluation of meta inference (MI)

Benchmark	h	Time (sec) with MI	Time (sec) without MI	Default value
Linear regression	Learning rate	0.04	0.05	Same as MI
Search engine	Top-k	100.70	62.10	3
Exponential sampler	Sample size	17.40	0.10	1000

Statistics for debugging

Approximation error Sufficient samples? Correct hyper-parameters? Dependence errors Input correlation? Premature inference calls? Incorrect models

Are the distributions correct?

Data dependence (correlation) detection

Let v_1 , v_2 , ..., v_n be random variables in the program Let r_{ij} be the correlation coefficient between v_i and v_j Compute the correlation matrix for all i, j

If $|r_{ij}| > .7$ (default), then v_i and v_j are correlated, but if v_i and v_j are independent in the DBN, it is an error

Data dependence (correlation) detection

Uncertain<double> X = new read.distribution(temperature.year); Uncertain<double> Y = new read.distribution(humidity.year); Uncertain<double> Z = from x in X from y in Y select f(x, y);

• • •

Premature call to inference

Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double> Y = from x in X select x * 2; Uncertain<double> Ys = Y.mcmc_sample(1200); Uncertain<double> Z = from y in Ys from x in X select y + x; if (Z < 6.0) { // Hypothesis test print("2-sigma rule holds for Z.");

Premature call to inference

Given an inference node i in the DBN For all descendants k of i if E a path from an ancestor of i to k then inference is premature

Correct call to inference

Uncertain<double> X = new Gaussian (0.0, 1.0); Uncertain<double>Y = from x in X select x * 2; Uncertain<double> Z = from y in Y from x in X select y + x; if (Z < 6.0) { // Hypothesis test print("2-sigma rule holds for Z.");

Uncertain<double> Ys = Y.mcmc_sample(1200);

Statistics for debugging

Approximation error Sufficient samples? Correct hyper-parameters? Dependence errors Input correlation? Premature inference calls? Incorrect models Are the distributions correct?

Incorrect models

What is the program suppose to do? [PLDI 2014]

passert e,p,c

e must hold with probability *p* at confidence *c*

Probabilistic assertion

true_avg = average(salaries)
private_avg =
 average(obfuscate(salaries))
passert (true_avg - private_avg
 <= 10,000), 90, 99</pre>

Statistics for debugging

Sampling based approach If the passert fails or the inference does not terminate for large n then DePP reports poor data or model errors are likely

Probabilistic programming is in its infancy

Identify 3 classes of new statistical bugs New DBN program representation Decorated Bayesian Networks DePP debugger shows potential