Tail Latency: Beyond Queuing Theory

Kathryn S McKinley

Xi Yang, Stephen M Blackburn,
Sameh Elnikety, Yuxiong He, Ricardo Bianchini

Servers in millions

20

0

Servers in US datacenters

| forecast -->

|) 1
06 2008 2010 2012 2014 2016 2018 20

*Shehabi et al., Unit

Unbranded
2+ sockets

Unbranded
1 socket

Branded
2+ sockets

Branded 1 socket
20

ed States Data Center Energy

Usage Report, Lawrence Berkeley, 2016.

Electricity in US datacenters

200 2010 trend
E 1:2 ---- Current trend
E 125 ---- Better
:Ié:’ 100 ---- Bigger
7 ez T B
s 50 /$1 t ?;téukanlillion R Best Practices
= 25 ---- BP + Bigger

02000 2005 2010 2015 2020

*Shehabi et al., United States Data Center Energy
Usage Report, Lawrence Berkeley, 2016.

Datacenter economics quick facts*

~ $500,000 Cost of one datacenter

~3,000,000 US datacenters in 2016

~ $1.5 trillion US Capital investment to date

~ $3,000,000,000 KW dollars / year

~ $30,000,000 Savings from 1% less work

Lots more by not building a datacenter

*Shehabi et al., United States Data Center Energy
Usage Report, Lawrence Berkeley, 2016.

Improve efficiency!

400 millisecond delay decreased Two second slowdown reduced
Sea rChES/User by 0.59%. [Jack Brutlag, Google] revenUE/User by 4.3%. [Eric Schurman, Bing]

client

"’ Server architecture

workers

10

Characteristics of interactive services

100

80

* Bursty, diurnal
60

* CDF changes slowly

40

e Slowest server dictates tail

20 * Orders of magnitude diff

Percentage of requests
N
6)]

average & 99+ %tile

<0 %0 60 S0 O

Latency (ms)

11

Client side observations

5 " 10
[%) 4.5
S 4- 80
> 35 -
(D)
% 3 - 60
o 25
g 2 40
§ 1.5 -
= 1 20
Q. o5 -

0 - 0

<0 %0 60 S0 O

Latency (ms)

12

Client side observations

Percentage of requests

5% of requests

% of requests

<0 2, =, S0 O

Latency (ms)

100 Solution to noise
g0 Replication

« All requests?

60
e CFD shows cost

¥ & potential

20

0

13

Client side observations

5 " 10
[%) 4.5
S 4- 80
> 35 -
(D)
% 3 - 60
o 25
g 2 40
§ 1.5 -
= 1 20
Q. o5 -

0 - 0

<0 %0 60 S0 O

Latency (ms)

14

Roadmap

What's in the tail?
Continuous profiling to diagnose the tail

Real problems
* Noise: replication
* Work: parallelism
« Other opportunities

Still poor utilization due to bursty diurnal workload
 Colocation for utilization without impacting tail latency

Opportunities in hardware/software codesign

Simplified life of a request

request g=elelpil client application / OS

network

l aggregator SW/ OS

network

S —————

lorker OS/VM worker OS /| VM = wurker OS / VM

NEVERA NEVERA ¥yy JaraVM
ap slication ap slication ap slication

16

Prior state of the art

Dick Site's talk: https://www.youtube.com/watch?v=QBu2Ae8-8LM

Dick Sites & team

Hand instrument system | ocks
0..22

1% on-line budget

. e A R ‘;&;Q
sample — but tails are rare... =54 ool e

bl) FRNY

|

-

Off-line schematics == SR L) T

Have insight 5 AR

Improve the system —

40613 117us

BTSched_50_q 140 503 0%us
e O Ous
AT 3Tdus A W (AL B AL LB [)
sanc 22005 3%us “y .y @

32712 552us, +
717 40108 e
600us

Dick Sites & team

Hand instrument system
1% on-line budget

sample — but tails are rare...
Off-line schematics
Have insight

Improve the system

Dick Sites & team

Hde instrument system
1% on-line budget

saXpIe — but tails are rare...

Off-line schematics
Have insight

Improve the system

Automated instrumentation
1% on-line budget

continuous on-line profiling
Off-line schematics
Have insight
Improve the system

+ On-line optimization

20

Automated cycle-level on-line profiling

[ISCA’15 (Top Picks HM), ATC’16]

Insight Hardware & software generate signals

N AV VA

hardware signals software signals
performance counters memory locations

counters V4 v
tags v v/

21

SHIM Design

ISCA'15 (Top Picks HM), ATC'16

Observe global state from other core

while (true):

for counter in LLC misses, cycles:
buf[i++] = readCounter(counter)

LLC misses per cycle

b0 8 Bah d o f ik B 1) |
Shared L3 Cache** }E '

x
" Memory ntro 10

23

Observe local state with SMT hardware

while (true):
for counter in HT2 SHIM, Core, Cycles:
buf[i++] = readCounter(counter);

HT1 IPC

0 ‘/\/\/‘-\A/‘/-\/\/W\—f
Core IPC

HT2 SHIM IPC

Y TTIT T m
Shared L3 Cache** g8 o
IEMIBIE i1l

= <
36 | ¢ 1 B 2 <" e
e E e E e
ajct jcd wl
x 1] .
B ! =0 wim
¥ S — "

<l

HT1 IPC = Core IPC—HT2 SHIM IPC

Correlate hardware & software events

TEF N EE "R
Shared L3 Cache**

IEHI

ORNWHD ORLPNWRARORNWRA

C()
B()
A()

while (true):
for counter in HT2 SHIM, Core, cycles:
buf[i++] = readCounter(counter);
tid = thread on HT1
buf[i++] = tid.method;

HI1I1PC

Fidelity

Raw samples

1 -

0.1 -

0.01 -

% of samples]
(log scale) 0.001 4

0.0001 -

1e-05 -+

IPC (log scale)

27

Problem: samples are not atomic

Counters C:cycles R:retired instructions

IPC =(R,—R.;)/(C,—C,,)

PC, e X

PC, /
|

A

Ro C, R, C,

|

R, G

time

Solution: use clock as ground truth

CPC =(Ce,—C®.)/ (C5,—C°) thisshould be 1!

CPC,= 1.0 +/- 1% CPC,= 1.0 +/- 1% CPC,!= 1.0 +/- 1%

‘ PC, / PC, \/ Wx'a J

I R

CSOROCOCeO Cislclcel CSZRZCZCeZ CS3R3C3Ce3

29

Filtering Lusearch IPC samples

(]eas 80|) sajdwes jJo ¥

1 3

0.1 -
0.01
0.001
0.0001

1e-05 +

A
A
0~07 0'7 7 70 700
----raw |IPC
raw CPC

1 5

0.1 A+

—_

L

---- filtered IPC

filtered CPCin [0.99,1.01]

70 700

30

7000

IPC of individual methods in Lucene

M default 1 KHz - ‘num 100 KHz M SHIM 10 MHz

1.6

1.2

[EE

IPC 0.8

0.6
0.4
0.2

1 2 3 4 >
top 10 methods (74% total execution time)

31

Overheads from other core

113MHz: 3+ orders of magnitude 3MHz: 1+ order of magnitude
over interrupt ‘maximum’ over interrupt ‘maximum’

B30 cycles M 1213 cycles

w
[BN

25
Ne) I2.5
v nv,
N o
— 315
©
£ 21
3 ."é‘o.s
P 0
5 K N N 0 $ N
&fo X @\5 \,bc, 'b& (’&b :\&o < @90 0 Q,’b
Q
N

O

& ‘?’ S

@Q

<,° Q

method and Ioop IDs

Overheads from write invalidations

32

Understanding Tail Latency

& SHIM signals

Requests

* thread ids

* request id (software configured)
* time stamps, PC

System threads

* thread ids
* time stamp, PC

All requests

120

Client latency I
100 Average queueing time Il |

80

60

latency (ms)

40

20

0 -
0 N7, <0 60 S 7 %5,

Request groups (from the slowest 1% to the fastest 1%)

Longest 200 requests

120

100

latency

m Network & other
m Idle
m CPU work

1 @ Queuing at worker

noise, bursts?
- I are ?

36

Parallelism

Parallelism historically for throughput

Idea Parallelism for tail latency

e Sequential 99th e 4 way 99th

1500 degrades
%) | :
S 1282 at high load
S w0 Improves
o low load
S 300 | at low loa
qv)
4 0

0 10 20 30 40 50
Lucene RPS

Harelldidvbany Dynamic Parallelism iseios+s

Parallelism historically for throughput
Idea Parallelism for tail latency
Insight Long requests reveal themselves

Approach Incrementally add parallelism to
long requests — the tail —
based on request progress & load

38

Evaluation 2x8 64 bit 2.3 GHz Xeon, 64 GB

1500 -

Sequential f Few to Many

—
N
(@)
(@)

900 -

buy fewer servers

Tail latency ms

o~
(@]
(@]

reduce tail latency

300 1 [[[[[[[I
30 32 34 36 38 40 42 44 46 48
Requests per Second

Queuing theory

Optimizing average latency maximizes throughput
But not the tail!

Shortening the tail reduces queuing latency

Longest 200 requests

m Network & other
m Idle
m CPU work

100 1 M Queuing at worker

120

noise, bursts?
- I are ?

latency

(0 41

Correlate bad requests with system state

Use time stamps to post-process traces

t, T, time t; t L
thread th, —
request CPUO
CPU, I
GC thread
ox V9
GC thread

CPU, —
GC thread

Recap & what's next

SHIM continuous profiling to diagnose the tail
* Noise: replication
* Work: parallelism
 Scalability bottlenecks

Continuous monitoring suggests dynamic optimizations

but... still poor utilization due to bursty diurnal workload
» Colocation

Looking forward

43

Queuing theory

Over provision for maximum burst, otherwise
queuing delay degrades average and tail latency

High Responsiveness—Low Utilization
1 core, no SMT

Lucene alone 50%ile

LC

200

—e—Lucene alone 95%ile Service Level LC ; ;
—~ 150 —®—|Lucene alone 99%ile . . ﬂ
2 Objective

<€ 100ms SLO

s WSCs

34% w/ SMT |

2125 67% no SMT 10 - 50% CPU utilization range.”

Luiz André Barroso, Urs Holzle

“The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”

0O 20 40 60 80 100 120 140 160 180
RPS

45

Soak up Slack with Batch?

Goal No tail latency impact [TOCS'16, EuroSys’14]
requires idle cores in part because
OS descheduling is slow

shared cache shared cache
Co-running on different cores Co-running on different cores
SMT turned off SMT turned off

B8 Lucsns

8

Co-running on same core
in SMT lanes

__ ik

shared cache

lﬁEZa[aZaZa}

SMT Co-Runner

- 1 core, 2 SMT lanes —‘I while(1):

. —8—Lucene alone
2500 —e—with IPC 1.0 IPC1.0
> 400 —®with IPC 0.01
]I while(1) {
movnti();
mfence();
0 }

=1.75 Great utilization! IPC 0.01

/

10 20 30 40 50 60 70 80 90 100
RPS

no SM
o S
= Ul Ul

Even IPC 0.01 violates SLO at low load!

Utilization /
o 2
n o

o
N
o u

Simultaneous Multithreading OFF

Issue Load Store Functional

Lanes Logic Queue Units

)

T, (UNNNNNNESSENNNNNNNNNNANNNEEN

]

48

Simultaneous Multithreading ON

Issue Load Store Functional

Lanes Logic Queue Units
Round-robin Statically Dynamically

shared partitioned shared

l time

Active SMT lanes share critical resources

Principled Borrowing

busy idle

i
I time

Batch borrows hardware when LC is idle
Batch releases hardware when LC is busy

Can we implement principled borrowing on current hardware?

Hardware is Ready — Software is Not

I T time

Batch lane calls “mwait”

Thread sleeps, releasing hardware to OS (~2K cycles)
OS schedules batch lane with any ready job .l.l

OS supports thread sleeping, but not hardware sleeping
release SMT hardware to other lane

51

nanonap()

Thread invoking nanonap releases OS can interrupt & wakeup thread
SMT hardware without releasing OS cannot schedule hardware context
SMT context

per_cpu_variable: nap_flag;
void nanonap() {
enter_kernel();
disable preemption();
my nap_flag = this cpu_flag(nap_flag);
monitor(my nap_flag);
mwait();
enable preemption();
leave _kernel();

52

Elfen Scheduler

No change to Instrument batch workloads to
latency-critical threads detect LC threads & nap

EEEEHE]
—

Bind latency-critical threads to LC lane
Bind batch threads to batch lane

53

Elfen Schedgler
!

l \

1 T 1 :
© @ nanonap()

Batch thread borrows resources,
continuously checks LC lane status

LC starts, batch calls nanonap() to
release SMT hardware resources

OS touches nap_flag to wake up
batch thread

/* fast path check injected into method body */
check:

a if (!request _lane idle)
slow path();

a slow path() {

nanonap(); }

/* maps Lane IDs to the running task */

exposed SHIM signal: cpu_task map

task _switch(task T) {
cpu_task map[thiscpu] = T;

}

idle task() {
// wake up any waiting batch thread
update _nap_flag of partner_lane();

54

Results: Borrow Idle

1 core, 2 SMT lanes 7 cores, 2x7 SMT lanes
140 w antlr 140
@ 120 w bloat 120
o w eclipse =
;100 w fop 100
>
8 80 w hsqldb @]
8 W jython EI:) 80
< 60 w luindex T 60
2 40 w lusearch ;
Se w pmd %’ 40 @o— ®
& o0 —wawn Same latency! X
o o 20
—®—Lucene alone
0
0
=175 . - . = 1.75
= increas tilization =
3 s creased utilizatio 5 1
c - c
£1.25 10x - 1.5x £1.25 4x - 0.19x
b " *E ==
S 1 e T - E 1 b ————
5 075 g 07
= 0.5 = 0.5
))
D 0.25 D 0.25
0 0
10 20 30 40 50 60 70 80 90 100 200 400 600 800 1000

RPS RPS

Exciting times

Hardware heterogeneity - opportunity & challenge

big DDR NVM flash

ol

Bt B B H B DEBH B
it ot Dt 4 B4 4] O ..
little custom) = . =
O PIM paired
Processors Memory

Heterogeneous workload!

100
%
O 80
-
O
(]
- 60
@)
(D)
< 40
e
3
5 20
al

0

0 2 2 8p S 700
Latency (ms)

58

Requirements pull for heterogeneity!
[DISC'14, ICAC'13, submission]

Heterogeneous hardware dominates homogeneous
hardware for throughput, performance, and energy
with a fixed power budget & variable request demand

Slow-to-Fast sacrifice average a bit to reduce energy
& tail latency

59

60

61

Thank you

Extras

Online self scheduling

|requests| Interval, =0 Interval, , = 50, 100

—9 <2 @0 parallelism=3
— 3 @0 parallelism=1 @ 50, parallelism =3
—9 4-6 @ 50 parallelism=1 @ 100, parallelism =3
> 7 @ exit parallelism=1 @ 100, parallelism =3

Software & hardware

Lucene open source enterprise search Wikipedia English
10 GB index of 33 million pages
10k queries from Lucene nightly tests

Bing web search with one Index Serving Node (ISN)

160 GB web index in SSD, 17 GB cache
30k Bing user queries

Hardware 2x8 64 bit 2.3 GHz Xeon, 64 GB Windows

15 request servers, 1 core issues requests
Target parallelism = 24 threads

Policies

single degree of parallelism for each
request

Select parallelism degree when
request starts using system load [EUROSYS'13]

parallelizes long requests by
perfect prediction of tail

Few to Many incrementally add parallelism

Fixed interval

e Sequential

Add thread every X ms

a» 4 way

Fixed interval 20 ms

y ms

e Fixed interval 100 ms

@ Fixed interval 500 ms

Tail Ialenc

O

o

o
\

Long intervals good
at high load ¢00 -

Shortintervals good , | &=
at low load 30 32 34 3

6 38 40 42 44 46 48

Lucene RPS

Load variation
= Sequential <2 way =4 way == FM

Alternate between high 60 |
& low load

—_
N
(@)
(@)

800

FM adapts to bursts
with low variance

Tail latency ms

400

High Low High Low
Lucene RPS 8

Fewer servers: Total Cost of ownership
= Sequential == FM == Adaptive FM

1500

. 21%
9%

300
30 32 34 36 38 40 42 44 46 48 30 32 34 36 38 40 42 44 46 48

Lucene RPS Lucene RPS

Tail latency ms

o~
(]
o

