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Electricity in US datacenters
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Datacenter economics quick facts*

~ $500,000 Cost of one datacenter

~3,000,000 US datacenters in 2016

~ $1.5 trillion US Capital investment to date

~ $3,000,000,000 KW dollars / year

~ $30,000,000 Savings from 1% less work

Lots more by not building a datacenter

*Shehabi et al., United States Data Center Energy
Usage Report, Lawrence Berkeley, 2016.



Improve efficiency!






400 millisecond delay decreased Two second slowdown reduced
Sea rChES/User by 0.59%. [Jack Brutlag, Google] revenUE/User by 4.3%. [Eric Schurman, Bing]
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Characteristics of interactive services
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Client side observations
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Client side observations
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Roadmap

What's in the tail?
Continuous profiling to diagnose the tail

Real problems
* Noise: replication
* Work: parallelism
« Other opportunities

Still poor utilization due to bursty diurnal workload
 Colocation for utilization without impacting tail latency

Opportunities in hardware/software codesign



Simplified life of a request

request g=elelpil client application / OS

network
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Prior state of the art

Dick Site's talk: https://www.youtube.com/watch?v=QBu2Ae8-8LM



Dick Sites & team
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Dick Sites & team

Hand instrument system
1% on-line budget

sample — but tails are rare...
Off-line schematics
Have insight

Improve the system



Dick Sites & team

Hde instrument system
1% on-line budget

saXpIe — but tails are rare...

Off-line schematics
Have insight

Improve the system

Automated instrumentation
1% on-line budget

continuous on-line profiling
Off-line schematics
Have insight
Improve the system

+ On-line optimization
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Automated cycle-level on-line profiling

[ISCA’15 (Top Picks HM), ATC’16]

Insight Hardware & software generate signals

N AV VA

hardware signals  software signals
performance counters memory locations

counters V4 v
tags v v/
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SHIM Design

ISCA'15 (Top Picks HM), ATC'16



Observe global state from other core

while (true):

for counter in LLC misses, cycles:
buf[i++] = readCounter(counter)

LLC misses per cycle

b0 8 Bah d o f ik B 1) |
Shared L3 Cache** }E '

x
" Memory ntro 10
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Observe local state with SMT hardware

while (true):
for counter in HT2 SHIM, Core, Cycles:
buf[i++] = readCounter(counter);

HT1 IPC
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Correlate hardware & software events

TEF N EE "R
Shared L3 Cache**

IEHI

ORNWHD ORLPNWRARORNWRA

C()
B()
A()

while (true):
for counter in HT2 SHIM, Core, cycles:
buf[i++] = readCounter(counter);
tid = thread on HT1
buf[i++] = tid.method;

HI1I1PC
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Raw samples
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Problem: samples are not atomic

Counters C:cycles R:retired instructions

IPC =(R,—R.;)/(C,—C,,)

PC, e X

PC, /
|

A

Ro C, R, C,

|

R, G

time



Solution: use clock as ground truth

CPC =(Ce,—C®. )/ (C5,—C° ) thisshould be 1!

CPC,= 1.0 +/- 1% CPC,= 1.0 +/- 1% CPC,!= 1.0 +/- 1%

‘ PC, / PC, \/ Wx'a J

I R

CSOROCOCeO Cislclcel CSZRZCZCeZ CS3R3C3Ce3
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Filtering Lusearch IPC samples

(]eas 80|) sajdwes jJo ¥

1 3

0.1 -
0.01
0.001
0.0001

1e-05 +

A
A
0~07 0'7 7 70 700
----raw |IPC
raw CPC

1 5

0.1 A+

—_

L

---- filtered IPC

filtered CPCin [0.99,1.01]

70 700

30

7000



IPC of individual methods in Lucene

M default 1 KHz - ‘num 100 KHz M SHIM 10 MHz

1.6

1.2

[EE

IPC 0.8

0.6
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0.2

1 2 3 4 >
top 10 methods (74% total execution time)
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Overheads from other core

113MHz: 3+ orders of magnitude 3MHz: 1+ order of magnitude
over interrupt ‘maximum’ over interrupt ‘maximum’
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Understanding Tail Latency



& SHIM signals

Requests

* thread ids

* request id (software configured)
* time stamps, PC

System threads

* thread ids
* time stamp, PC



All requests
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Longest 200 requests
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Parallelism

Parallelism historically for throughput

Idea Parallelism for tail latency

e Sequential 99th e 4 way 99th
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Harelldidvbany Dynamic Parallelism iseios+s

Parallelism historically for throughput
Idea Parallelism for tail latency
Insight Long requests reveal themselves

Approach Incrementally add parallelism to
long requests — the tail —
based on request progress & load
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Evaluation 2x8 64 bit 2.3 GHz Xeon, 64 GB
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Queuing theory

Optimizing average latency maximizes throughput
But not the tail!

Shortening the tail reduces queuing latency



Longest 200 requests
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Correlate bad requests with system state

Use time stamps to post-process traces

t, T, time t; t L
thread th, —
request CPUO
CPU, I
GC thread
ox V9
GC thread

CPU, —
GC thread



Recap & what's next

SHIM continuous profiling to diagnose the tail
* Noise: replication
* Work: parallelism
 Scalability bottlenecks

Continuous monitoring suggests dynamic optimizations

but... still poor utilization due to bursty diurnal workload
» Colocation

Looking forward
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Queuing theory

Over provision for maximum burst, otherwise
queuing delay degrades average and tail latency



High Responsiveness—Low Utilization
1 core, no SMT

Lucene alone 50%ile

LC

200
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2 Objective

<€ 100ms SLO

s WSCs

34% w/ SMT |

2125 67% no SMT 10 - 50% CPU utilization range.”

Luiz André Barroso, Urs Holzle

“The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines”
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Soak up Slack with Batch?

Goal No tail latency impact [TOCS'16, EuroSys’14]
requires idle cores in part because
OS descheduling is slow

shared cache shared cache
Co-running on different cores Co-running on different cores
SMT turned off SMT turned off

B8 Lucsns

8

Co-running on same core
in SMT lanes

__ ik

shared cache
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SMT Co-Runner

- 1 core, 2 SMT lanes —‘I while(1):

. —8—Lucene alone
2500 —e—with IPC 1.0 IPC1.0
> 400 —®with IPC 0.01
]I while(1) {
movnti();
mfence();
0 }

=1.75 Great utilization! IPC 0.01
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Simultaneous Multithreading OFF

Issue Load Store Functional

Lanes Logic Queue Units

)

T, (UNNNNNNESSENNNNNNNNNNANNNEEN

]
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Simultaneous Multithreading ON

Issue Load Store Functional

Lanes Logic Queue Units
Round-robin Statically Dynamically

shared partitioned shared

l time

Active SMT lanes share critical resources




Principled Borrowing

busy idle

i
I time

Batch borrows hardware when LC is idle
Batch releases hardware when LC is busy

Can we implement principled borrowing on current hardware?



Hardware is Ready — Software is Not

I T time

Batch lane calls “mwait”

Thread sleeps, releasing hardware to OS (~2K cycles)
OS schedules batch lane with any ready job .l.l

OS supports thread sleeping, but not hardware sleeping
release SMT hardware to other lane
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nanonap()

Thread invoking nanonap releases OS can interrupt & wakeup thread
SMT hardware without releasing  OS cannot schedule hardware context
SMT context

per_cpu_variable: nap_flag;
void nanonap() {
enter_kernel();
disable preemption();
my nap_flag = this cpu_flag(nap_flag);
monitor(my nap_flag);
mwait();
enable preemption();
leave _kernel();
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Elfen Scheduler

No change to Instrument batch workloads to
latency-critical threads detect LC threads & nap

EEEEHE]
—

Bind latency-critical threads to LC lane
Bind batch threads to batch lane
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Elfen Schedgler
!

l \

1 T 1 :
© @ nanonap()

Batch thread borrows resources,
continuously checks LC lane status

LC starts, batch calls nanonap() to
release SMT hardware resources

OS touches nap_flag to wake up
batch thread

/* fast path check injected into method body */
check:

a if (!request _lane idle)
slow path();

a slow path() {

nanonap(); }

/* maps Lane IDs to the running task */

exposed SHIM signal: cpu_task map

task _switch(task T) {
cpu_task map[thiscpu] = T;

}

idle task() {
// wake up any waiting batch thread
update _nap_flag of partner_lane();

54



Results: Borrow Idle

1 core, 2 SMT lanes 7 cores, 2x7 SMT lanes
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Exciting times



Hardware heterogeneity - opportunity & challenge

big DDR NVM flash
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Heterogeneous workload!
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Requirements pull for heterogeneity!
[DISC'14, ICAC'13, submission]

Heterogeneous hardware dominates homogeneous
hardware for throughput, performance, and energy
with a fixed power budget & variable request demand

Slow-to-Fast sacrifice average a bit to reduce energy
& tail latency
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Thank you



Extras



Online self scheduling

|requests| Interval, =0 Interval, , = 50, 100

—9 <2 @0 parallelism=3
— 3 @0 parallelism=1 @ 50, parallelism =3
—9 4-6 @ 50 parallelism=1 @ 100, parallelism =3
> 7 @ exit parallelism=1 @ 100, parallelism =3



Software & hardware

Lucene open source enterprise search Wikipedia English
10 GB index of 33 million pages
10k queries from Lucene nightly tests

Bing web search with one Index Serving Node (ISN)

160 GB web index in SSD, 17 GB cache
30k Bing user queries

Hardware 2x8 64 bit 2.3 GHz Xeon, 64 GB Windows

15 request servers, 1 core issues requests
Target parallelism = 24 threads



Policies

single degree of parallelism for each
request

Select parallelism degree when
request starts using system load [EUROSYS'13]

parallelizes long requests by
perfect prediction of tail

Few to Many incrementally add parallelism



Fixed interval

e Sequential

Add thread every X ms

a» 4 way

Fixed interval 20 ms

y ms

e Fixed interval 100 ms

@ Fixed interval 500 ms

Tail Ialenc

O

o

o
\

Long intervals good
at high load  ¢00 -

Shortintervals good , | &=
at low load 30 32 34 3

6 38 40 42 44 46 48

Lucene RPS



Load variation
= Sequential <2 way =4 way == FM

Alternate between high 60 |
& low load
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N
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800

FM adapts to bursts
with low variance

Tail latency ms
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Fewer servers: Total Cost of ownership
= Sequential == FM == Adaptive FM
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. 21%
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