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Tail Latency Matters 
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Two	second	slowdown	reduced	
revenue/user	by	4.3%.	[Eric	Schurman,	Bing]	

400	millisecond	delay	decreased	
searches/user	by	0.59%.	[Jack	Brutlag,	Google]	

 TOP PRIORITY  
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Servers in US datacenters 
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~ $30,000,000 Savings from 1% less work 
Lots more  by not building a datacenter 

Datacenter economics quick facts* 
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~ $500,000 Cost of small datacenter 
~3,000,000 US datacenters in 2016 

 ~ $1.5 trillion US Capital investment to date 
~ $3,000,000,000 KW dollars / year 

*Shehabi et al., United States Data Center Energy 
Usage Report, Lawrence Berkeley, 2016. 
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Efficiency  TOP PRIORITY  



Tail Latency 
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Efficiency  TOP PRIORITY  



Tail Latency 
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Efficiency BOTH ?! 
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Server architecture 

aggregator 

workers 

client 
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Characteristics of interactive services 
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What is in the tail? 
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Roadmap 

Diagnosing the tail with continuous profiling 
 Noise  systems are not perfect 
 Queuing   too much load is bad, but so is over provisioning 
 Work  many requests are long 

 
Insights  Use the CDF off line 

        Long requests reveal themselves, treat them specially 
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application 

worker OS / VM 

Java VM 

 

 

 

application 

worker OS / VM 

Java VM 

application 

worker OS / VM 

Java VM 

Simplified life of a request 

… 

  request response 



Prior state of the art 
 Dick Site, Google   https://www.youtube.com/watch?v=QBu2Ae8-8LM 
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@ Google 
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Hand instrument system 
1% on-line budget 
   sample – but tails are rare… 
Off-line schematics 
Have insight 
Improve the system 



Request profiling 
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Hand instrument system 
1% on-line budget 
   sample – but tails are rare… 
Off-line schematics 
Have insight 
Improve the system 



Request profiling 
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Automated instrumentation 
1% on-line budget 
continuous on-line profiling 
Off-line schematics 
Have insight 
Improve the system 
+ On-line optimization 

✗	Hand instrument system 
1% on-line budget 
   sample – but tails are rare… 
Off-line schematics 
Have insight 
Improve the system 

✗	



counters 
tags 

Automated cycle-level on-line profiling 

Insight   Hardware & software generate signals 
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[ISCA’15	(Top	Picks	HM),	ATC’16]	
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hardware signals software signals 
performance counters memory locations 

✓ 
✓ 

✓ 
✓ 



SHIM Design 
ISCA’15 (Top Picks HM), ATC’16 
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Observe global state from other core 
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LLC	misses	per	cycle	

while	(true):	
			for	counter	in	LLC	misses,	cycles:	
							buf[i++]	=	readCounter(counter)	



Observe local state with SMT hardware 
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HT1	

HT2	

0	

4	

HT1	IPC	

0	

4	

Core	IPC	

0	

4	
HT2	SHIM	IPC	

HT1	IPC		=	Core	IPC	–	HT2	SHIM	IPC	

while	(true):	
			for	counter	in	HT2	SHIM,	Core,	Cycles:	
							buf[i++]	=	readCounter(counter);	



Correlate hardware & software events 
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HT1	

HT2	

while	(true):	
			for	counter	in	HT2	SHIM,	Core,	cycles:	
							buf[i++]	=	readCounter(counter);	
			tid	=	thread	on	HT1	
			buf[i++]	=	tid.method;	



Fidelity 

25	



26	

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01
 0.1

 1  10  100
 1000

IPC	(log	scale)	

%	of	samples	
	(log	scale)	

Raw samples 



27	

!me	

		

R0	C0	

IPC1	 IPC2	 IPC3	

R1	C1	 R2	C2	 R3	C3	

IPC		=	(Rt	–	Rt-1)	/	(Ct	–	Ct-1)	

		
✗	✓	 ✓	

Counters				C:	cycles					R:	reUred	instrucUons	

Problem: samples are not atomic 
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!me	

		

IPC1	 IPC2	 IPC3	
		

✗	✓	 ✓	

Solution: use clock as ground truth 
CPC		=	(Cet	–	Cet-1)	/	(Cst	–	Cst-1)				this	should	be	1!	

CPC1	=	1.0	+/-	1%	 CPC2	=	1.0	+/-	1%	 CPC3	!=	1.0	+/-	1%	

Cs0R0C0Ce0	 Cs1R1C1Ce1	 Cs2R2C2Ce2	 Cs3R3C3Ce3	
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Filtering Lusearch IPC samples 
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top	10	methods	(74%	total	execuUon	Ume)	

IPC	
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IPC of individual methods in Lucene 
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Understanding Tail Latency 
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                SHIM signals 

Requests 
•  thread ids  
•  request id – configure 
•  time stamps, PC 
System threads 
•  thread ids  
•  time stamp, PC 
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All requests 
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The Tail   Longest 200 requests 
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Insight 
Long requests reveal themselves 
Regardless of the cause 
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Noise   Replicate & reissue 
The Tail at Scale, Dean & Barroso, CACM’13 

37	37	
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Probabilistic reissue  
Optimal Reissue Policies for Reducing Tail Latencies, Kaler, He, & Elnickety , SPAA’17 
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Single R   Probabilistic reissue  
Optimal Reissue Policies for Reducing Tail Latencies, Kaler, He, & Elnickety , SPAA’17 
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Work   Speed up the tail efficiently 
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Judicious parallelism 
[ASPLOS’15] 

DVFS faster on the tail 
[DISC’14, MICRO’17] 

Asymmetric multicore 
[DISC’14, MICRO’17]  
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Work Parallelism 
Parallelism	historically	for	throughput	

Parallelism	for	tail	latency	Idea		



Queuing theory 
 Optimizing average latency maximizes throughput 
But not the tail!   
Shortening the tail reduces queuing latency 
  42	
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Parallelism 

Insight	
Approach	

Long	requests	reveal	themselves	

Incrementally	add	parallelism	to		
long	requests		–	the	tail		–		
based	on	request	progress	&	load	

Parallelism	historically	for	throughput	

Parallelism	for	tail	latency	Idea		

Few-to-Many Dynamic Parallelism [ASPLOS’15] 
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Offline 

Profiles 
Sequential & parallel demand distribution  
Efficiency of parallelism 

Choose maximum target parallelism 
 Utilize available hardware resources 

Exhaustively explore parallelism given set of time 
         intervals t & load find best tail latency & parallelism  
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Interval	
Table	



Online self scheduling 

0	 0	

0	 0	

0	

0	

|requests|	 Interval0	=	0	 Interval1,2	=	50,	100	
	≤		2				 		@	0						parallelism	=	3	
						3	 		@	0						parallelism	=	1	 @	50,			parallelism	=	3	
4	-	6	 		@	50				parallelism	=	1	 @	100,	parallelism	=	3	
		≥		7	 		@	exit		parallelism	=	1	 @	100,	parallelism	=	3	



Evaluation  2x8 64 bit 2.3 GHz Xeon, 64 GB  
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Work  speed up the tail efficiently  
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[ASPLOS’15] 
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Work  speed up the tail efficiently 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  20  40  60  80  100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f 
re

q
u
e
st

s

Latency (ms)

work 

DVFS faster on the tail 
[DISC’14, MICRO’17] 

  
Asymmetric multicore 
(AMP) [DISC’14, MICRO’17]  

  
 
 

 
 

all requests 
@ 2.3 MHz 
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Speed up the tail efficiently 
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[DISC’14, MICRO’17] 

+ available in servers today 
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Speed up the tail efficiently 
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[MICRO’17] 

+ available in servers today 
Asymmetric multicore 
(AMP) [DISC’14, MICRO’17]  

+ much more energy efficient 
+ hyper-threading is a form 
-  core competition 
 
 

 
 

0	 0	

0	 0	

0	 0	

0	 0	

0	 0	



Adaptive Slow to Fast Framework 

Slow to fast migration is optimal [ICAC’13] 

Goal 
Minimize energy consumption and satisfy a tail latency target 

Challenges 
When to migrate? 
What if the core speed is not available? 

Insight 
Use big core just enough  th+(l99-th)/sp ≤ target 
Migrate oldest first and migrate early under load! 
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Controller design 
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Controller System 
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All-cores  
Pegasus adjust all-core frequencies for load  
[Towards Energy Proportional…, Google & Stanford, ISCA'14] 

Per-core approaches  
TL minimize tail latency using 0 threshold 
EETL  energy efficient with target tail latency 
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Policies 
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Lucene on emulated AMP and DVFS 
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Tail Latency 
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Efficiency BOTH ! 



Efficiency at scale for interactive workloads 

Diagnosing the tail with continuous profiling 
 Noise  replicate, systems are not perfect 
 Queuing   not today! 
 Work  judicious use of resources on long requests 

Request latency CDF is a powerful tool 
Tail efficiency ≠ average or throughput 
Hardware heterogeneity 
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Thank you 



 
Heterogeneous hardware dominates homogeneous 
hardware for throughput, performance, and energy 
with a fixed power budget & variable request demand 
 
Slow-to-Fast sacrifice average a bit to reduce energy 
& tail latency 
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Requirements pull for heterogeneity! 
                              [DISC’14, ICAC’13, submission] 
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Software & hardware 

Lucene open source enterprise search Wikipedia English 
10 GB index of 33 million pages 
10k queries from Lucene nightly tests 

Bing web search with one Index Serving Node (ISN) 
160 GB web index in SSD, 17 GB cache  
30k Bing user queries 

Hardware 2x8 64 bit 2.3 GHz Xeon, 64 GB Windows 
15 request servers, 1 core issues requests 
Target parallelism = 24 threads  
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Policies 
Sequential  
N way  single degree of parallelism for each 

 request 
Adaptive  Select parallelism degree when 
  request starts using system load       [EUROSYS’13] 
Request Clairvoyant  parallelizes long requests by  

 perfect prediction of tail 
FM  Few to Many incrementally add parallelism 
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Load variation 

Alternate	between	high	
&	low	load	
	
FM	adapts	to	bursts	
with	low	variance	
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Fewer servers: Total Cost of ownership 
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