
Measuring and Optimizing Tail Latency
Kathryn S McKinley, Google
Xi Yang, Stephen M Blackburn,
Md Haque, Sameh Elnikety, Yuxiong He, Ricardo Bianchini

Tail Latency Matters

3	

Two	second	slowdown	reduced	
revenue/user	by	4.3%.	[Eric	Schurman,	Bing]	

400	millisecond	delay	decreased	
searches/user	by	0.59%.	[Jack	Brutlag,	Google]	

 TOP PRIORITY

4	
Photo:	Google/Connie	Zhou	

Servers in US datacenters

5	

Se
rv

er
s i

n
m

illi
on

s

 06 2008 2010 2012 2014 2016 2018 2020

20

0

4

8

16

12

Unbranded
2+ sockets

Unbranded
1 socket

Branded
2+ sockets

Branded 1 socket

*Shehabi et al., United States Data Center Energy
Usage Report, Lawrence Berkeley, 2016.

2010 trend
Current trend
Better
Bigger
B+B
Best Practices
BP + Bigger

Bi
llio

n
KW

 H
ou

rs
 /

Ye
ar

2010 trend
Current trend
Better
Bigger
B+B
Best Practices
BP + Bigger

200
175
150
125
100
 75
 50
 25
 0 2000 2005 2010 2015 2020

Actual
$1 to $6 billion	

Electricity in US datacenters

*Shehabi et al., United States Data Center Energy
Usage Report, Lawrence Berkeley, 2016.

~ $30,000,000 Savings from 1% less work
Lots more by not building a datacenter

Datacenter economics quick facts*

7	

~ $500,000 Cost of small datacenter
~3,000,000 US datacenters in 2016

 ~ $1.5 trillion US Capital investment to date
~ $3,000,000,000 KW dollars / year

*Shehabi et al., United States Data Center Energy
Usage Report, Lawrence Berkeley, 2016.

8	

Efficiency TOP PRIORITY

Tail Latency

9	

Efficiency TOP PRIORITY

Tail Latency

10	

Efficiency BOTH ?!

11	

Server architecture

aggregator

workers

client

12	

Characteristics of interactive services

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

LC	

Bursty,	diurnal	
CDF	changes	slowly	
Slowest	server	dictates	tail	
Orders	of	magnitude	diff			
			average	&	tail	-	99th	%Ule	

13	

What is in the tail?

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

?

Roadmap

Diagnosing the tail with continuous profiling
 Noise systems are not perfect
 Queuing too much load is bad, but so is over provisioning
 Work many requests are long

Insights Use the CDF off line

 Long requests reveal themselves, treat them specially

14	

15	

application

worker OS / VM

Java VM

application

worker OS / VM

Java VM

application

worker OS / VM

Java VM

Simplified life of a request

…

 request response

Prior state of the art
 Dick Site, Google https://www.youtube.com/watch?v=QBu2Ae8-8LM

16	

@ Google

17	

Hand instrument system
1% on-line budget
 sample – but tails are rare…
Off-line schematics
Have insight
Improve the system

Request profiling

18	

Hand instrument system
1% on-line budget
 sample – but tails are rare…
Off-line schematics
Have insight
Improve the system

Request profiling

19	

Automated instrumentation
1% on-line budget
continuous on-line profiling
Off-line schematics
Have insight
Improve the system
+ On-line optimization

✗	Hand instrument system
1% on-line budget
 sample – but tails are rare…
Off-line schematics
Have insight
Improve the system

✗	

counters
tags

Automated cycle-level on-line profiling

Insight Hardware & software generate signals

20	

[ISCA’15	(Top	Picks	HM),	ATC’16]	

20	

hardware signals software signals
performance counters memory locations

✓
✓

✓
✓

SHIM Design
ISCA’15 (Top Picks HM), ATC’16

21	

Observe global state from other core

22	

22	

LLC	misses	per	cycle	

while	(true):	
			for	counter	in	LLC	misses,	cycles:	
							buf[i++]	=	readCounter(counter)	

Observe local state with SMT hardware

23	

23	

HT1	

HT2	

0	

4	

HT1	IPC	

0	

4	

Core	IPC	

0	

4	
HT2	SHIM	IPC	

HT1	IPC		=	Core	IPC	–	HT2	SHIM	IPC	

while	(true):	
			for	counter	in	HT2	SHIM,	Core,	Cycles:	
							buf[i++]	=	readCounter(counter);	

Correlate hardware & software events

0	
1	
2	
3	
4	

HT1	IPC	

0	
1	
2	
3	
4	

Core	IPC	

0	
1	
2	
3	
4	

HT2	SHIM	IPC	

1	

2	

3	

A()	
B()	
C()	

HT1	

HT2	

while	(true):	
			for	counter	in	HT2	SHIM,	Core,	cycles:	
							buf[i++]	=	readCounter(counter);	
			tid	=	thread	on	HT1	
			buf[i++]	=	tid.method;	

Fidelity

25	

26	

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01
 0.1

 1 10 100
 1000

IPC	(log	scale)	

%	of	samples	
	(log	scale)	

Raw samples

27	

!me	

		

R0	C0	

IPC1	 IPC2	 IPC3	

R1	C1	 R2	C2	 R3	C3	

IPC		=	(Rt	–	Rt-1)	/	(Ct	–	Ct-1)	

		
✗	✓	 ✓	

Counters				C:	cycles					R:	reUred	instrucUons	

Problem: samples are not atomic

28	

!me	

		

IPC1	 IPC2	 IPC3	
		

✗	✓	 ✓	

Solution: use clock as ground truth
CPC		=	(Cet	–	Cet-1)	/	(Cst	–	Cst-1)				this	should	be	1!	

CPC1	=	1.0	+/-	1%	 CPC2	=	1.0	+/-	1%	 CPC3	!=	1.0	+/-	1%	

Cs0R0C0Ce0	 Cs1R1C1Ce1	 Cs2R2C2Ce2	 Cs3R3C3Ce3	

29	

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01
 0.1

 1 10 100
 1000

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01
 0.1

 1 10 100
 1000

----	raw	IPC	

			%
	of	sam

ples	(log	scale)	

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01
 0.1

 1 10 100
 1000

----	raw	CPC	
----	filtered	IPC	

----	filtered	CPC	in	[0.99,1.01]	

Filtering Lusearch IPC samples

30	

top	10	methods	(74%	total	execuUon	Ume)	

IPC	

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	
1.6	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

default	1	KHz		 maximum	100	KHz	 SHIM	10	MHz		

IPC of individual methods in Lucene

31	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

30	cycles	 1213	cycles	

method	and	loop	IDs	

N
or
m
al
ize

d	
to
		

w
ith

ou
t	S

HI
M	

Overheads	from	write	invalidaUons	

3MHz:	1+	order	of	magnitude	
over	interrupt	‘maximum’	

113MHz:	3+	orders	of	magnitude		
over	interrupt	‘maximum’	

Overheads from other core

Understanding Tail Latency

32	

 SHIM signals

Requests
•  thread ids
•  request id – configure
•  time stamps, PC
System threads
•  thread ids
•  time stamp, PC

33	

All requests

34	

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

la
te

n
cy

 (
m

s)

Request groups (from the slowest 1% to the fastest 1%)

Client latency

Average queueing time

The Tail Longest 200 requests

35	

 0

 20

 40

 60

 80

 100

 120

 0 50 100
 150

 200

la
te

nc
y

(m
s)

Top 200 requests

Network and networking queueing time

Idle time

CPU time

Dispatch queueing time

 lat
en

cy

Network & other
Idle
CPU work
Queuing at worker not noise

Network imperfections
OS imperfections
Long requests
Overload

} noise

}

Insight
Long requests reveal themselves
Regardless of the cause

36	

Noise Replicate & reissue
The Tail at Scale, Dean & Barroso, CACM’13

37	37	

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

All requests?

CFD for cost & potential

Fixed issue time

10 % reissued
5% reissued

noise

Probabilistic reissue
Optimal Reissue Policies for Reducing Tail Latencies, Kaler, He, & Elnickety , SPAA’17

38	38	

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

Adding randomness to
reissue makes one earlier
reissue time d (vs n) optimal

Probability is proportional to
reissue budget & noise in tail

1-3% reissue w/ prob. p

noise

5% reissued

39	

Single R Probabilistic reissue
Optimal Reissue Policies for Reducing Tail Latencies, Kaler, He, & Elnickety , SPAA’17

40	

Work Speed up the tail efficiently

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

work

Judicious parallelism
[ASPLOS’15]

DVFS faster on the tail
[DISC’14, MICRO’17]

Asymmetric multicore
[DISC’14, MICRO’17]

0	 0	

0	 0	

0	 0	 0	 0	

0	 0	

0	 0	

0	 0	 0	 0	

Work Parallelism
Parallelism	historically	for	throughput	

Parallelism	for	tail	latency	Idea		

Queuing theory
 Optimizing average latency maximizes throughput
But not the tail!
Shortening the tail reduces queuing latency
 42	

43	

Parallelism

Insight	
Approach	

Long	requests	reveal	themselves	

Incrementally	add	parallelism	to		
long	requests		–	the	tail		–		
based	on	request	progress	&	load	

Parallelism	historically	for	throughput	

Parallelism	for	tail	latency	Idea		

Few-to-Many Dynamic Parallelism [ASPLOS’15]

0	 0	

0	 0	

0	 0	 0	 0	

0	 0	

0	 0	

300

600

900

1200

1500

30 32 34 36 38 40 42 44 46 48

Ta
il l

ate
nc

y
m

s

Lucene RPS

 Sequential

 4 way

 Fixed interval 20 ms

 Fixed interval 100 ms

 Fixed interval 500 ms

Few to Many at fixed delay d
Add thread every d ms

0	 0	

0	 0	

0	 0	 0	 0	

0	 0	

0	 0	

Long delay good at
high load

Short delay good at
low load

best at
all loads?

Offline

Profiles
Sequential & parallel demand distribution
Efficiency of parallelism

Choose maximum target parallelism
 Utilize available hardware resources

Exhaustively explore parallelism given set of time
 intervals t & load find best tail latency & parallelism

 45	

Interval	
Table	

Online self scheduling

0	 0	

0	 0	

0	

0	

|requests|	 Interval0	=	0	 Interval1,2	=	50,	100	
	≤		2				 		@	0						parallelism	=	3	
						3	 		@	0						parallelism	=	1	 @	50,			parallelism	=	3	
4	-	6	 		@	50				parallelism	=	1	 @	100,	parallelism	=	3	
		≥		7	 		@	exit		parallelism	=	1	 @	100,	parallelism	=	3	

Evaluation 2x8 64 bit 2.3 GHz Xeon, 64 GB

300

600

900

1200

1500

30 32 34 36 38 40 42 44 46 48

Ta
il

la
te

nc
y

 m
s

Requests per Second

21% fewer servers

or reduce tail by 28%

Few to Many Sequential

48	

Work speed up the tail efficiently

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

work

Judicious parallelism
[ASPLOS’15]

✔	

49	

Work speed up the tail efficiently

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

work

DVFS faster on the tail
[DISC’14, MICRO’17]

Asymmetric multicore
(AMP) [DISC’14, MICRO’17]

all requests
@ 2.3 MHz

50	

Speed up the tail efficiently

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

2.3 MHz

0.5 MHz

DVFS faster on the tail
[DISC’14, MICRO’17]

+ available in servers today

51	

Speed up the tail efficiently

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
ta

g
e
 o

f
re

q
u
e
st

s

Latency (ms)

DVFS faster on the tail
[MICRO’17]

+ available in servers today
Asymmetric multicore
(AMP) [DISC’14, MICRO’17]

+ much more energy efficient
+ hyper-threading is a form
- core competition

0	 0	

0	 0	

0	 0	

0	 0	

0	 0	

Adaptive Slow to Fast Framework

Slow to fast migration is optimal [ICAC’13]

Goal
Minimize energy consumption and satisfy a tail latency target

Challenges
When to migrate?
What if the core speed is not available?

Insight
Use big core just enough th+(l99-th)/sp ≤ target
Migrate oldest first and migrate early under load!

52	

Controller design

53	

Controller System

Target

Error

Threshold

Tail latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s

Latency (ms) load

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

 0

 20

 40

 60

 80

 100

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

st
s

Latency (ms)

All-cores
Pegasus adjust all-core frequencies for load
[Towards Energy Proportional…, Google & Stanford, ISCA'14]

Per-core approaches
TL minimize tail latency using 0 threshold
EETL energy efficient with target tail latency

54	

Policies

55	

100	

125	

150	

175	

200	

225	

0	 25	 50	 75	 100	 125	

99
th
	p
er
ce
n?

le
	

la
te
nc
y	
(m

s)
	

RPS	

TL	 Pegasus	 EETL	

0.75	

1	

1.25	

1.5	

0	 25	 50	 75	 100	 125	N
or
m
al
iz
ed

	a
ve
ra
ge
	

en
er
gy
	

RPS	

TL	 Pegasus	 EETL	

Lucene with DVFS on Broadwell

Lucene on emulated AMP and DVFS

56	

100	
120	
140	
160	
180	
200	
220	
240	

0	 50	 100	 150	

99
th
	p
er
ce
n?

le
	

la
te
nc
y	
(m

s)
	

RPS	

TL_DVFS	 Pegasus	 EETL_DVFS	

TL_AMP	 EETL_AMP	

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	 50	 100	 150	N
or
m
al
iz
ed

	a
ve
ra
ge
	

en
er
gy
	

RPS	

TL_DVFS	 Pegasus	 EETL_DVFS	

TL_AMP	 EETL_AMP	

Tail Latency

57	

Efficiency BOTH !

Efficiency at scale for interactive workloads

Diagnosing the tail with continuous profiling
 Noise replicate, systems are not perfect
 Queuing not today!
 Work judicious use of resources on long requests

Request latency CDF is a powerful tool
Tail efficiency ≠ average or throughput
Hardware heterogeneity

58	

Thank you

Heterogeneous hardware dominates homogeneous
hardware for throughput, performance, and energy
with a fixed power budget & variable request demand

Slow-to-Fast sacrifice average a bit to reduce energy
& tail latency

59	

Requirements pull for heterogeneity!
 [DISC’14, ICAC’13, submission]

60	

61	

big	

lirle	

0	
0	
0	

0	
0	
0	

0	 0	

0	 0	

0	 0	

0	 0	

0	
0	
0	

0	
0	
0	

0	 0	

0	 0	

0	 0	

0	 0	

custom	

Hardware heterogeneity – opportunity & challenge

Processors Memory

DDR				NVM	 flash	

PIM	paired	

0	 0	

0	 0	

0	 0	 0	 0	

0	 0	

0	 0	

0	 0	 0	 0	

Parallelism

0
300
600
900

1200
1500

0 10 20 30 40 50

La
te

nc
y

 m
s

Lucene RPS

 Sequential 99th 4 way 99th

improves
at low load

degrades
at high load

Parallelism	historically	for	throughput	

Parallelism	for	tail	latency	Idea		

Software & hardware

Lucene open source enterprise search Wikipedia English
10 GB index of 33 million pages
10k queries from Lucene nightly tests

Bing web search with one Index Serving Node (ISN)
160 GB web index in SSD, 17 GB cache
30k Bing user queries

Hardware 2x8 64 bit 2.3 GHz Xeon, 64 GB Windows
15 request servers, 1 core issues requests
Target parallelism = 24 threads

63	

Policies
Sequential
N way single degree of parallelism for each

 request
Adaptive Select parallelism degree when
 request starts using system load [EUROSYS’13]
Request Clairvoyant parallelizes long requests by

 perfect prediction of tail
FM Few to Many incrementally add parallelism

64	

Load variation

Alternate	between	high	
&	low	load	
	
FM	adapts	to	bursts	
with	low	variance	

65	

0

400

800

1200

1600

Ta
il l

ate
nc

y
m

s

Lucene RPS

 Sequential 2 way 4 way FM

Low Low High High

Fewer servers: Total Cost of ownership

300

600

900

1200

1500

30 32 34 36 38 40 42 44 46 48

Ta
il

la
te

nc
y

 m
s

Lucene RPS

 Sequential FM

21%

30 32 34 36 38 40 42 44 46 48

Lucene RPS

 Adaptive FM

9%

