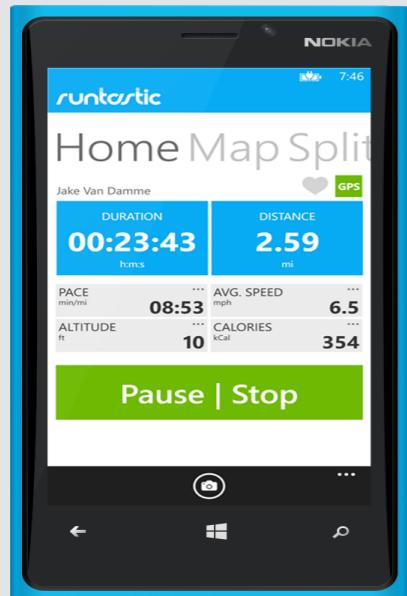


Uncertain<T> Programming with Estimates

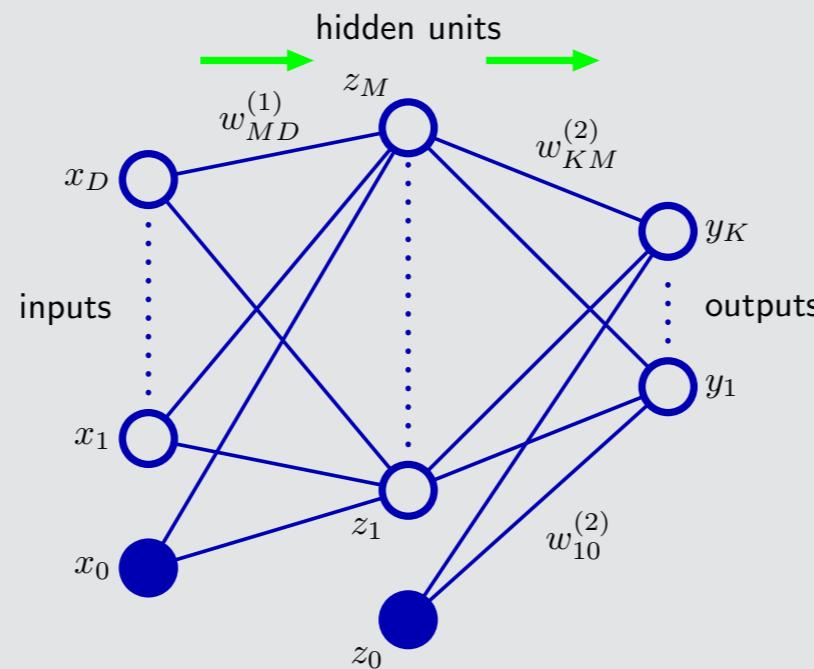
Kathryn S McKinley
Microsoft Research

Uncertainty is everywhere

Sensors

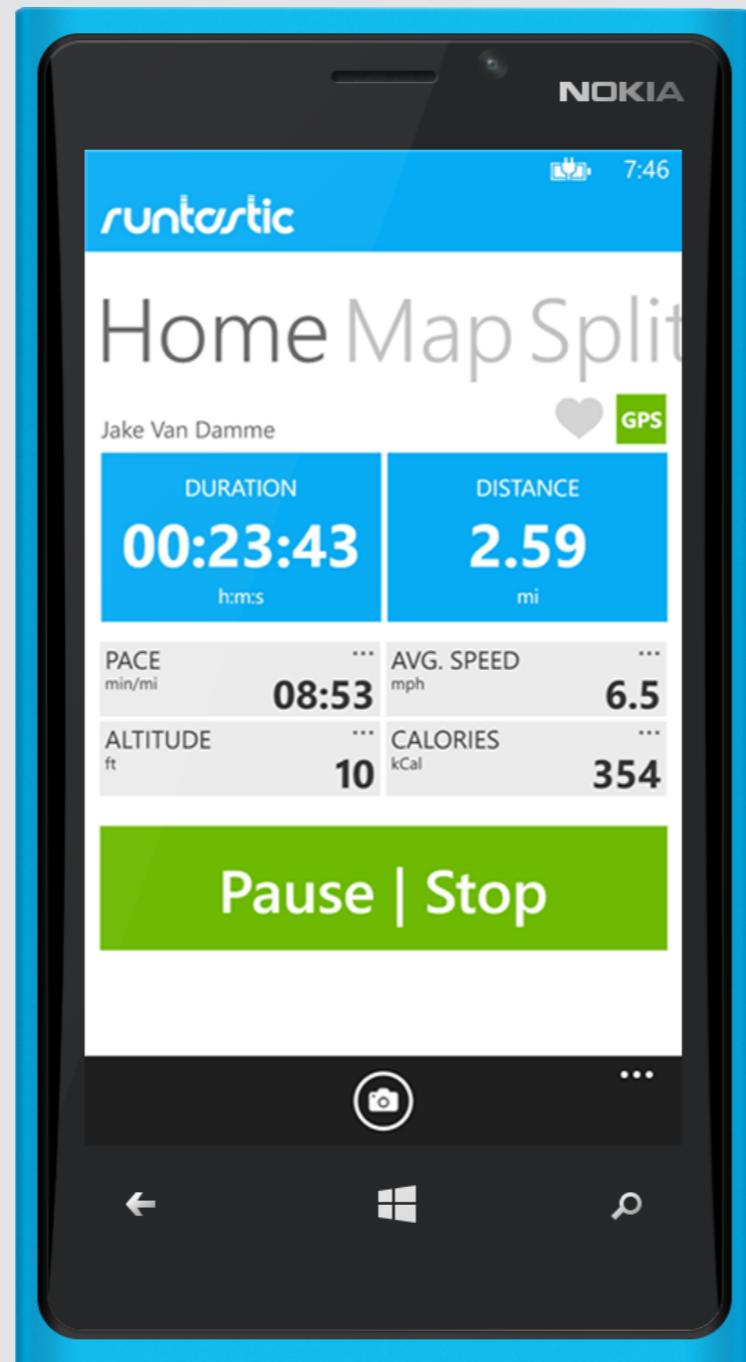


Machine learning



Approximate computing

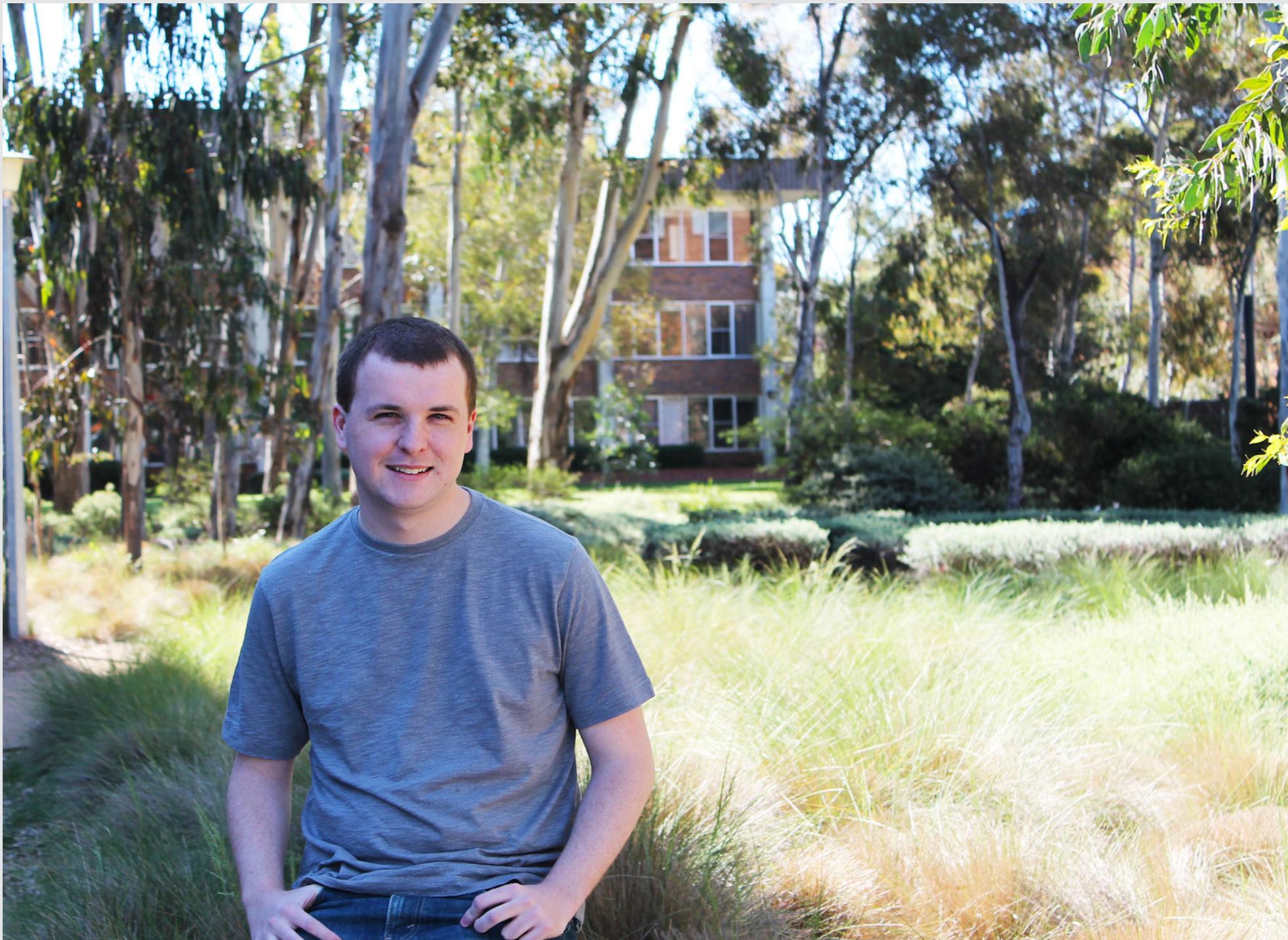
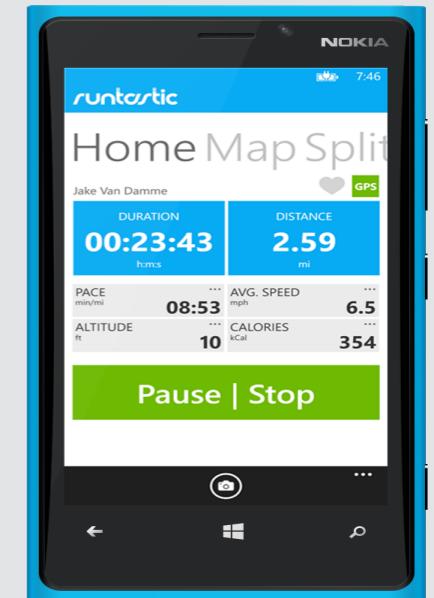
But we lack abstractions to help developers reason about uncertainty



Usain Bolt is fast

24 mph

But James is faster...



59 mph

Programming with Estimates: Challenges

Estimates are noisy

Improving estimates requires domain knowledge

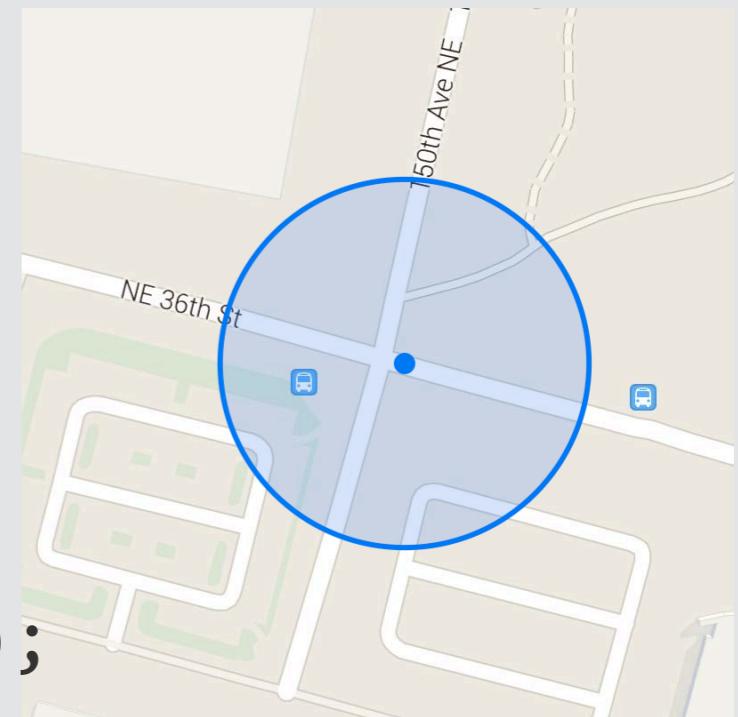
What do these programs mean?

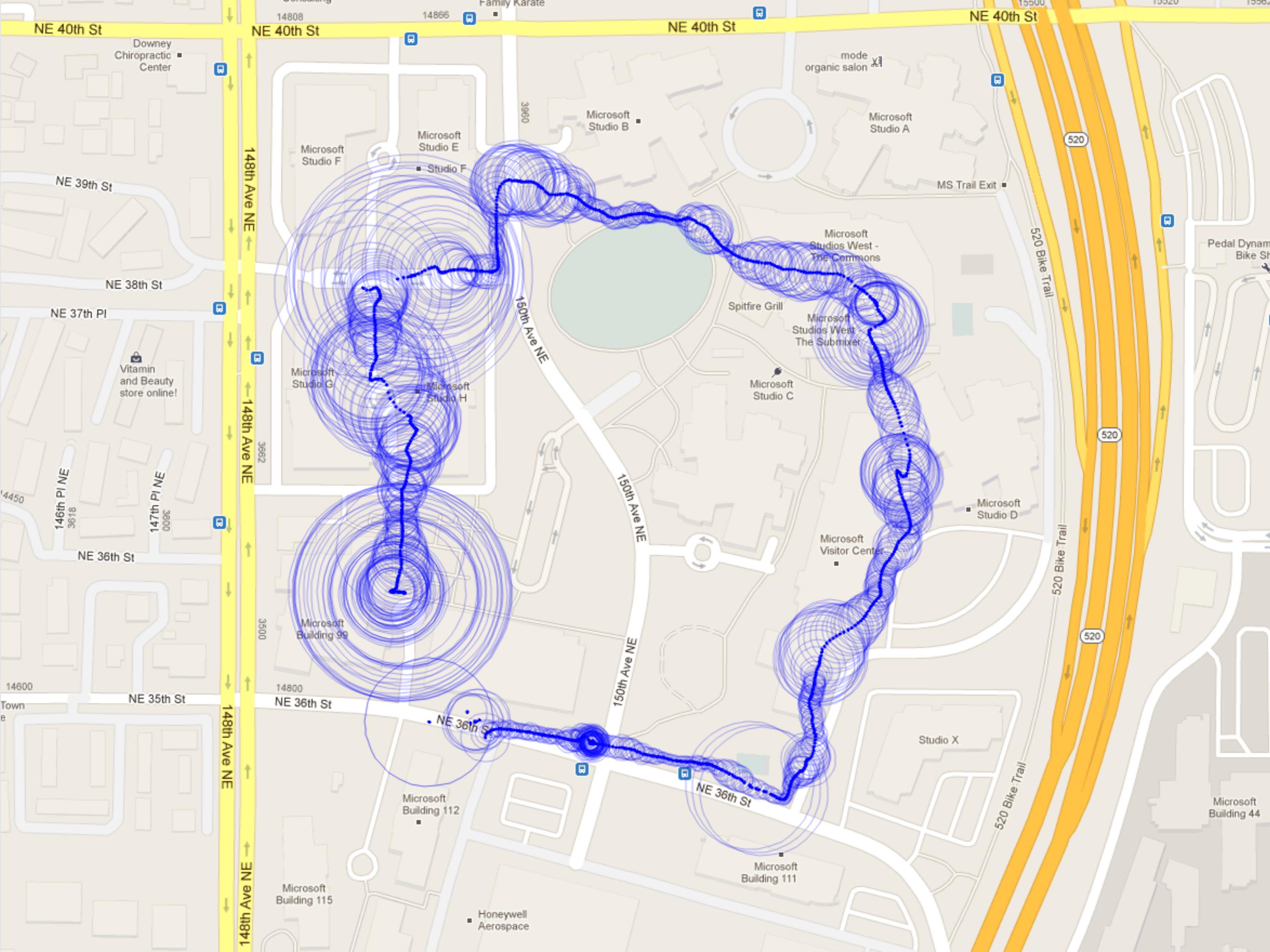
GPS locations

```
Loc lastloc = GPS.GetLocation();
```

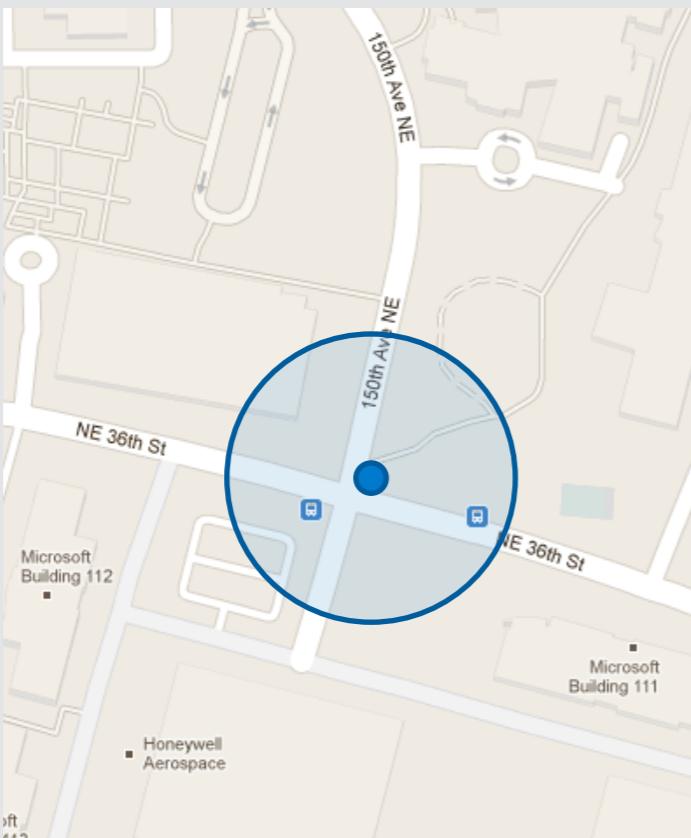
```
double accuracy = GPS.GetAccuracy();
```

```
Map.DrawCircleWithCenter(lastloc, accuracy);
```

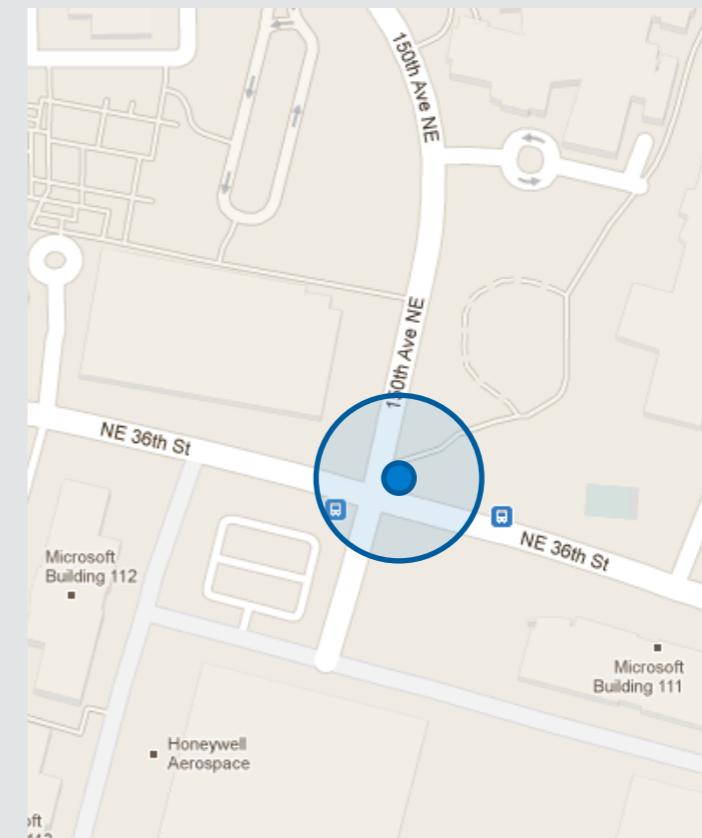




Which is more accurate?



**Windows
Phone**
95% confidence interval
 $\sigma = 33 \text{ m}$



Android
68% confidence interval
 $\sigma = 39 \text{ m}$

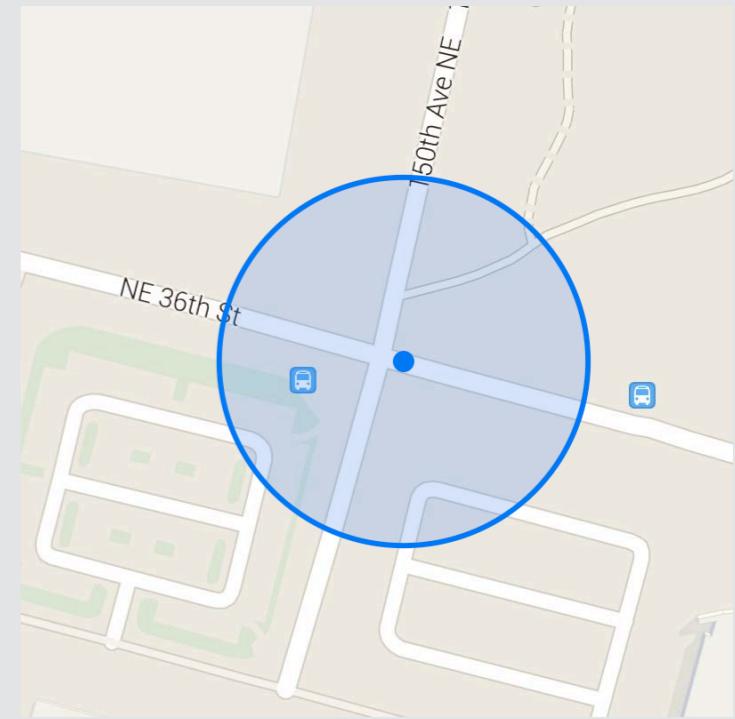
Computing Speed from GPS

```
Loc lastloc = GPS.GetLocation();
Sleep(5);
Loc currloc = GPS.GetLocation();

double dist = GPS.Distance(currloc, lastloc);
double speed = dist / 5;

if (speed > 4) print("Great job!");

print(speed, accuracy);
```



Problems

Using estimates as facts introduces errors

Computation compounds error

Boolean conditionals on probabilistic data introduce false positives and false negatives

Adding domain knowledge is adhoc and fragile

Uncertain<T>

Programming Model

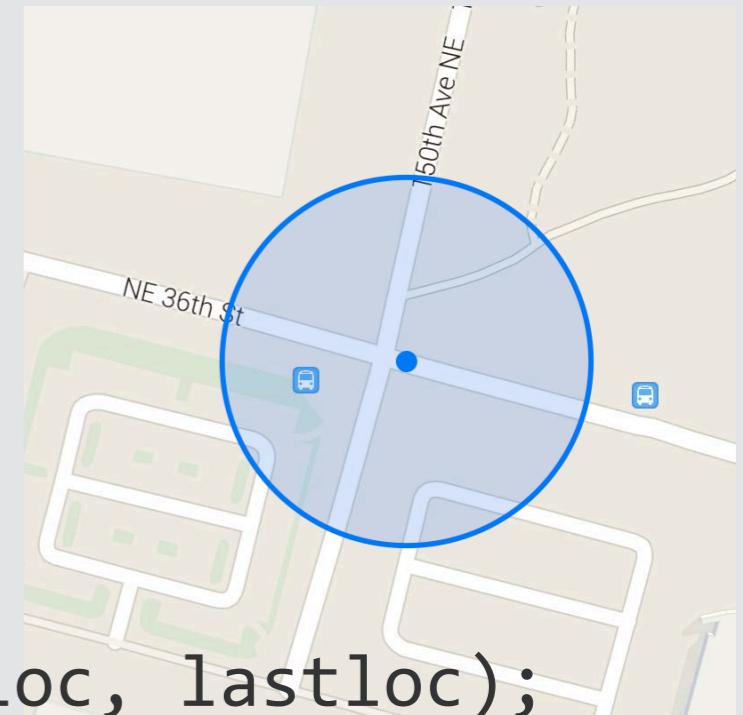
Speed with Uncertain<T>

```
Uncertain<Loc> lastloc = GPS.GetLocation();
Sleep(5);
Uncertain<Loc> currloc = GPS.GetLocation();

Uncertain<double> dist = GPS.Distance(currloc, lastloc);
Uncertain<double> speed = dist / 5;

if ((newSpeed > 4).Pr(0.9)) print("Great job!");

print(speed, accuracy);
```



Speed with Uncertain<T>

```
Uncertain<Loc> lastloc = GPS.GetLocation();
Sleep(5);
Uncertain<Loc> currloc = GPS.GetLocation();
```

```
Uncertain<double> dist = GPS.Distance(currloc, lastloc);
Uncertain<double> speed = dist / 5;
```

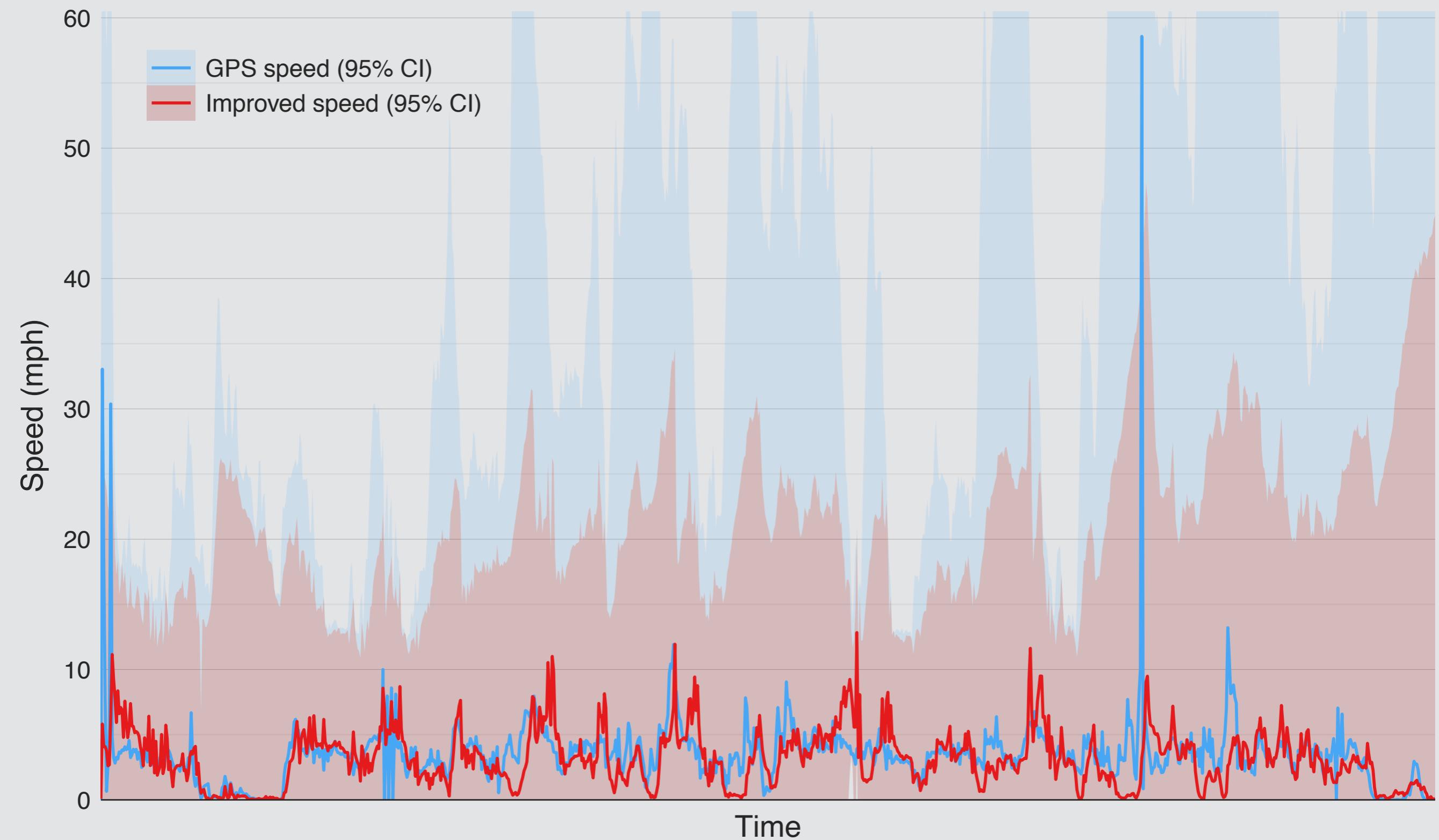
```
Uncertain<double> walkPrior = new Uncertain<double> (()=>
    SamplePrior(0 mph, 10 mph, accuracy));
```

```
Uncertain<double> newSpeed = speed # walkPrior;
```

```
if (newSpeed > 4).Pr(0.9)) print("Great job!");
```

```
print(speed, accuracy);
```





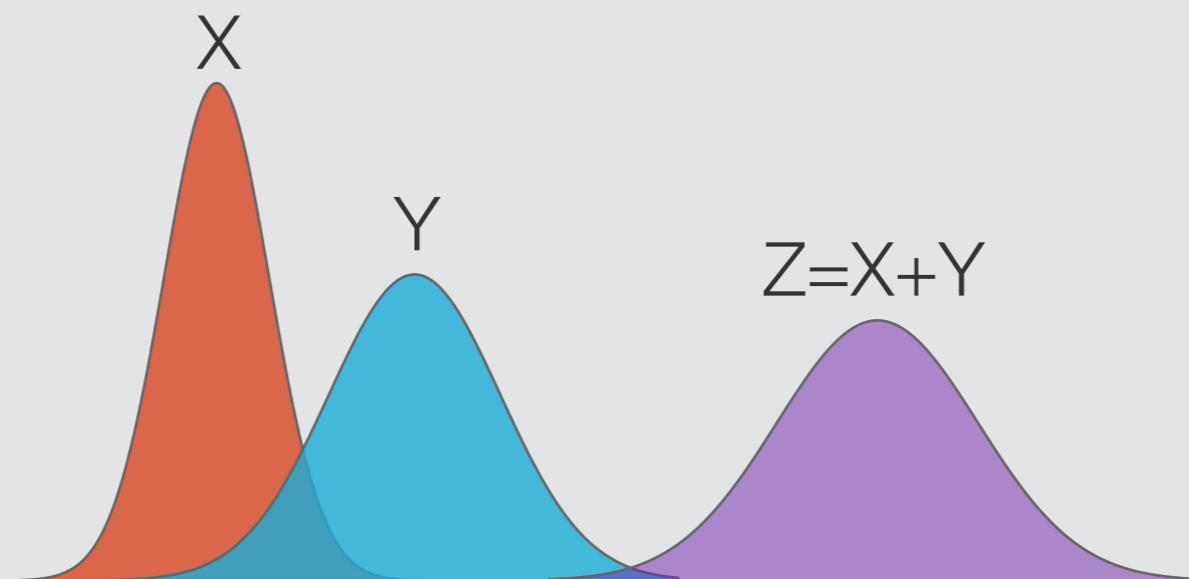
Uncertain<T>

Implementation

Semantics

Uncertain<double> $Z = X + Y$

Z is a random variable we represent as a distribution



If x is a sample of X
and y is a sample of Y
then $x+y$ is a sample of $X+Y$ *

* if X and Y are independent

Sampling functions return random samples

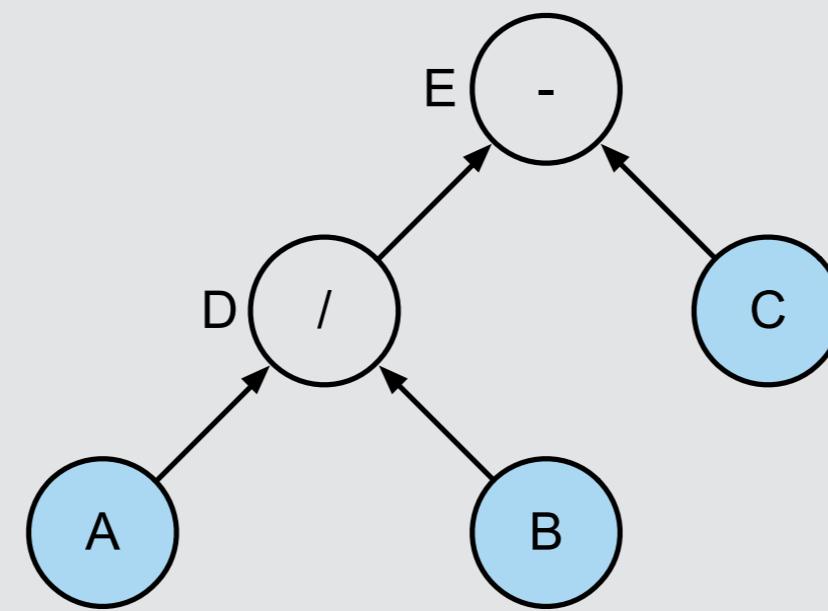
- ✓ Simple computations
- ✓ Represent arbitrary distributions
- ✗ Sampling is approximate

Later: how Uncertain< T > learned to love approximation,
and you can too

$$D = A / B$$

$$E = D - C$$

Bayesian network representation



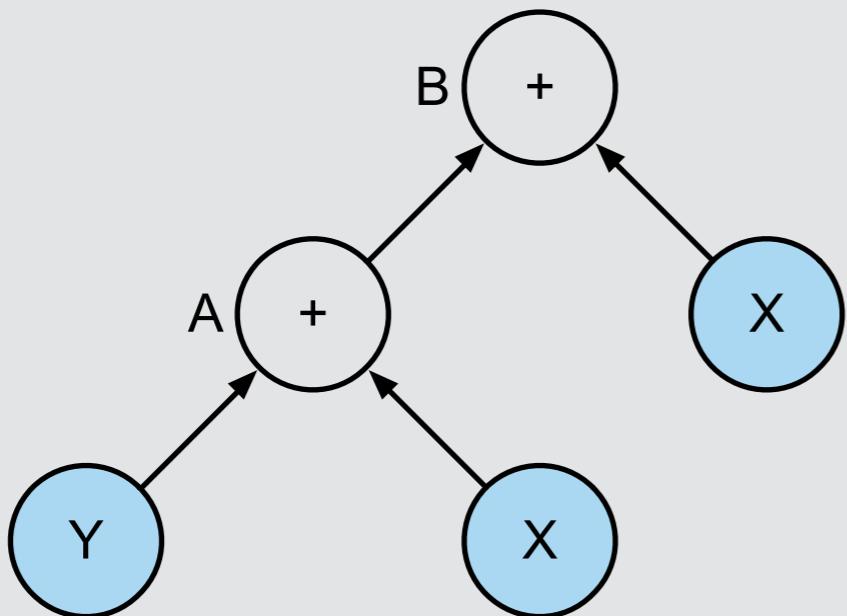
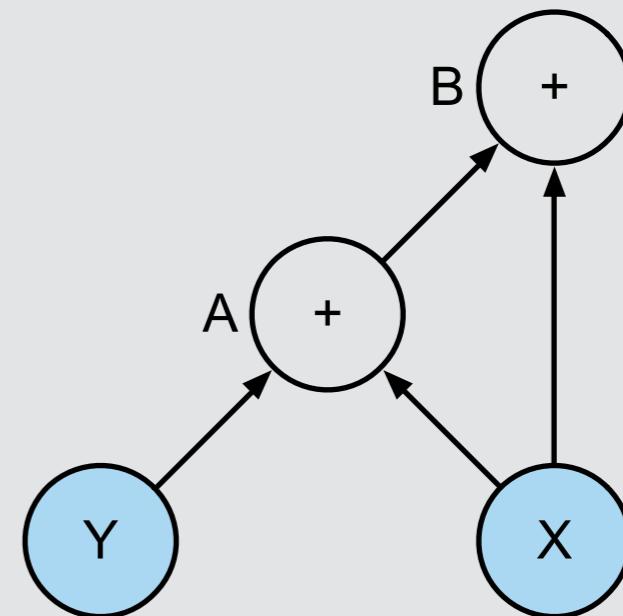
Sampling function for E recursively samples children

If x is a sample of X
and y is a sample of Y
then $x+y$ is a sample of $X+Y$ *

* Only if X and Y are **independent**.

$$\begin{aligned} A &= X + Y \quad (X, Y \text{ independent}) \\ B &= A + X \end{aligned}$$

A and B depend on X – not independent!



Speed with Uncertain<T>

```
Uncertain<Loc> lastloc = GPS.GetLocation();
Sleep(5);
Uncertain<Loc> currloc = GPS.GetLocation();
```

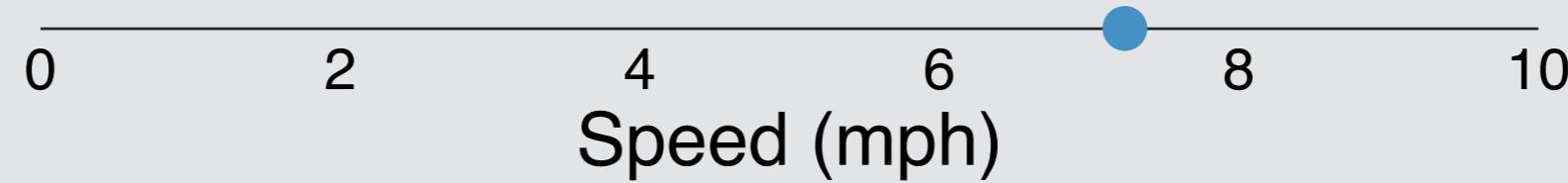
```
Uncertain<double> dist = GPS.Distance(currloc, lastloc);
Uncertain<double> speed = dist / 5;
```

```
if (speed > 4) print("Great job!");
```

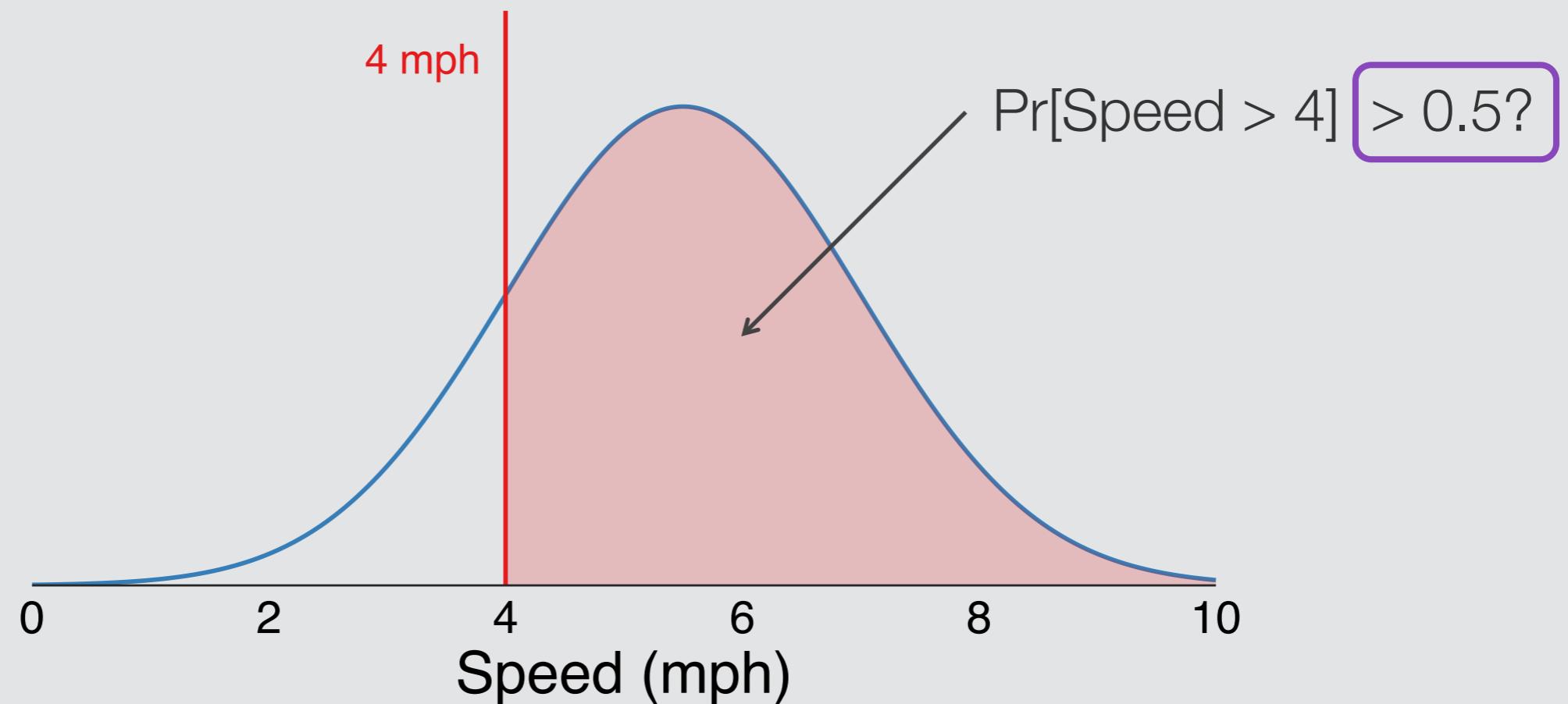


Hypothesis Test

```
if (speed > 4) print("Great job!")
```

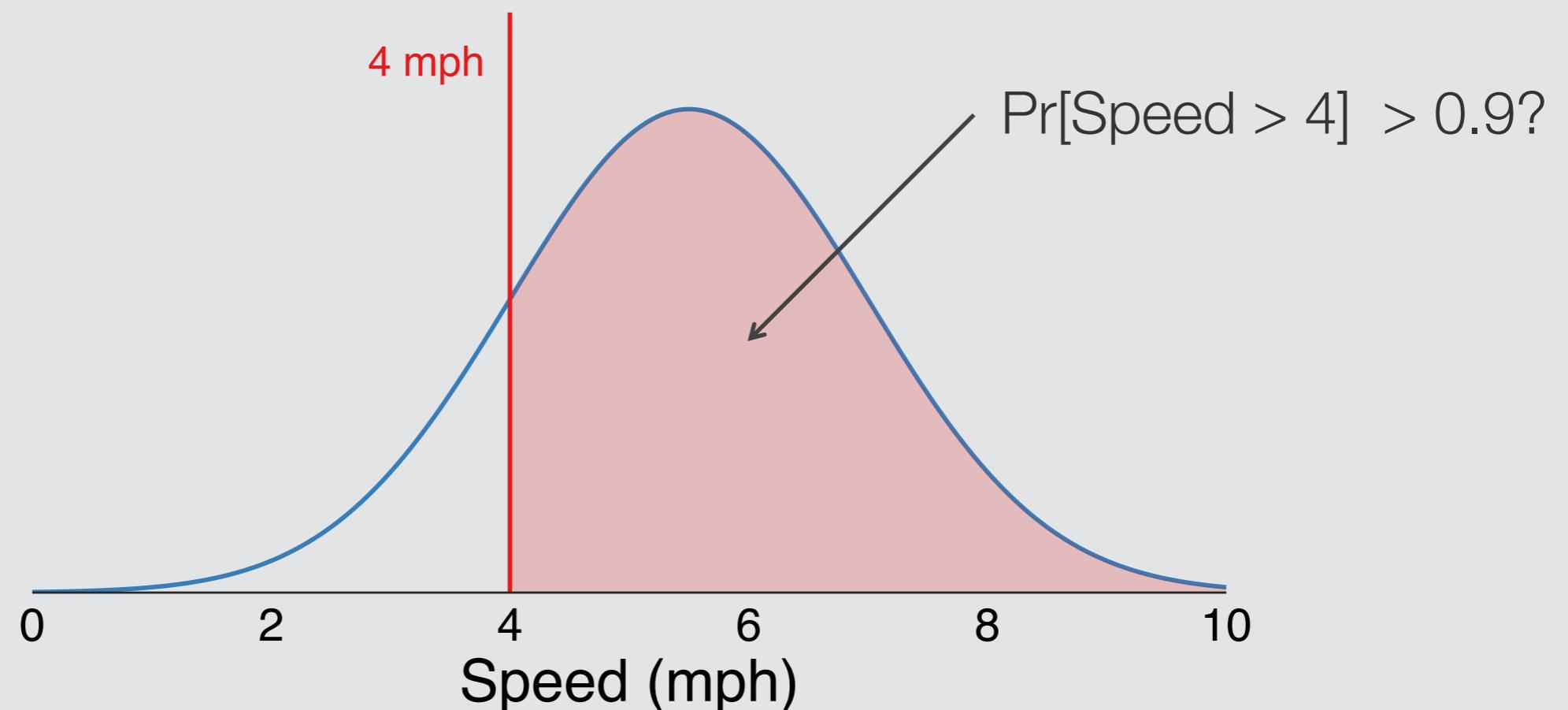


```
if (speed > 4) print("Great job!")
```



More likely than not that $\text{Speed} > 4$?

```
if (speed > 4).Pr(0.9)  
    print("Great job!")
```



At least 90% likely that Speed > 4?

```
if (speed > 4) print("Great job!")
```

null hypothesis $H_0: \Pr[\text{Speed} > 4] \leq 0.5$

alternate hypothesis $H_A: \Pr[\text{Speed} > 4] > 0.5$
approximate

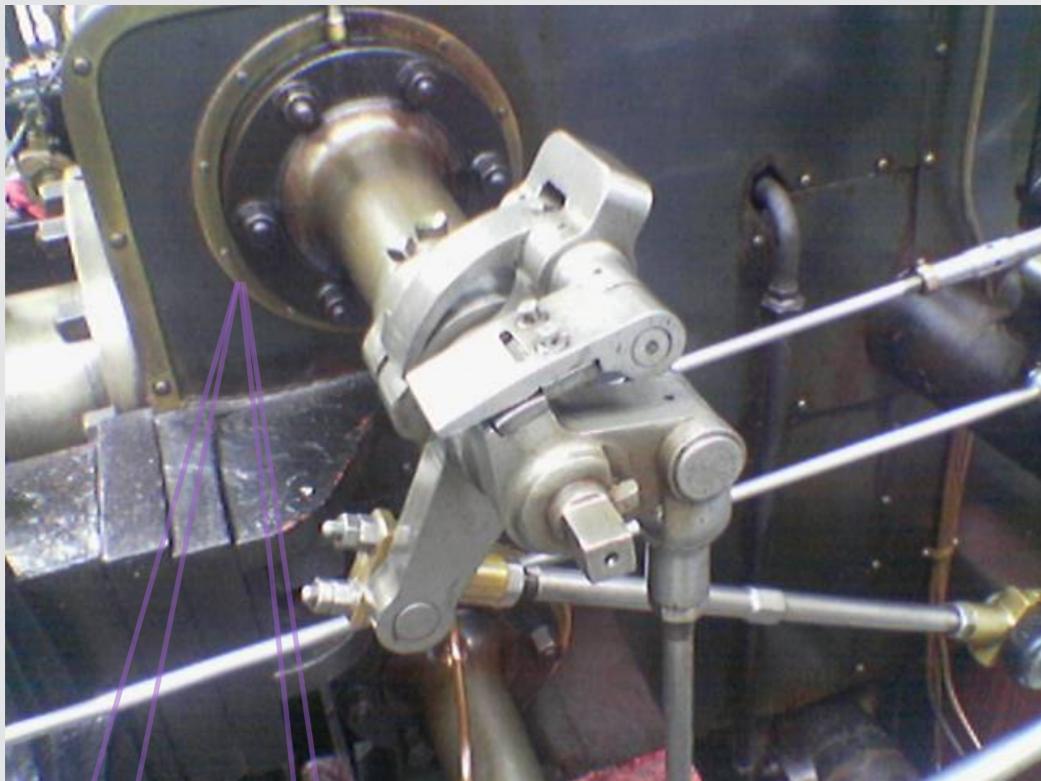
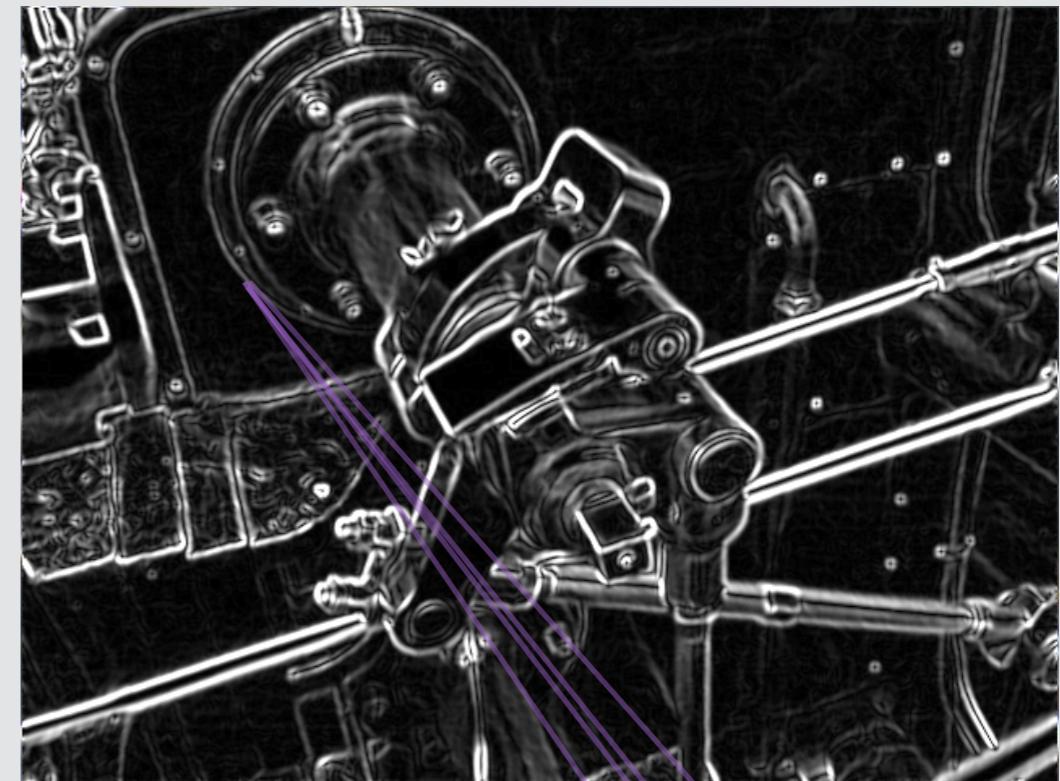
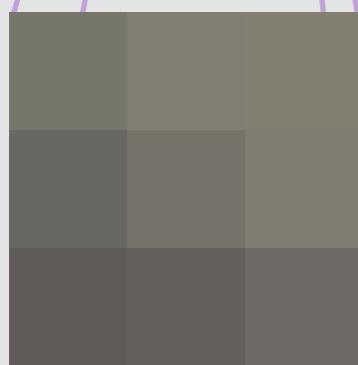
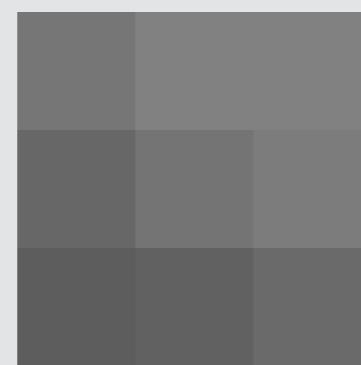
How many samples? Too many = too slow
 Too few = too noisy

Sequential sampling: sample size depends on progress

Uncertain<T>

Mitigates Bugs from Random Error

Edge detection

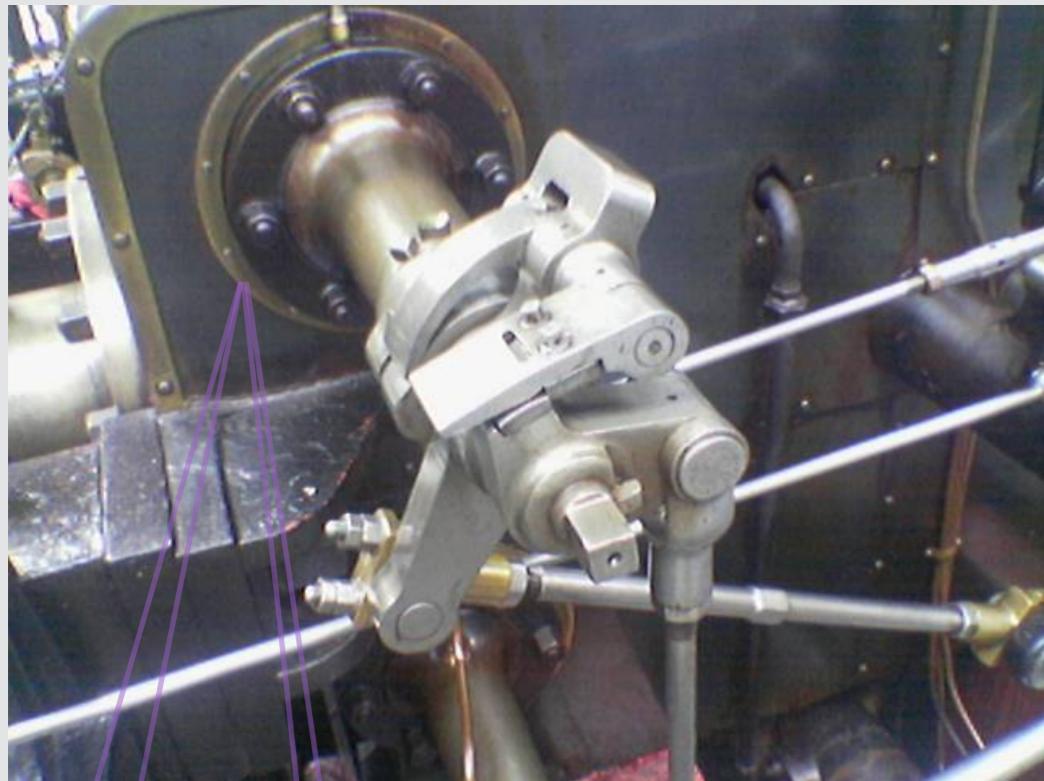
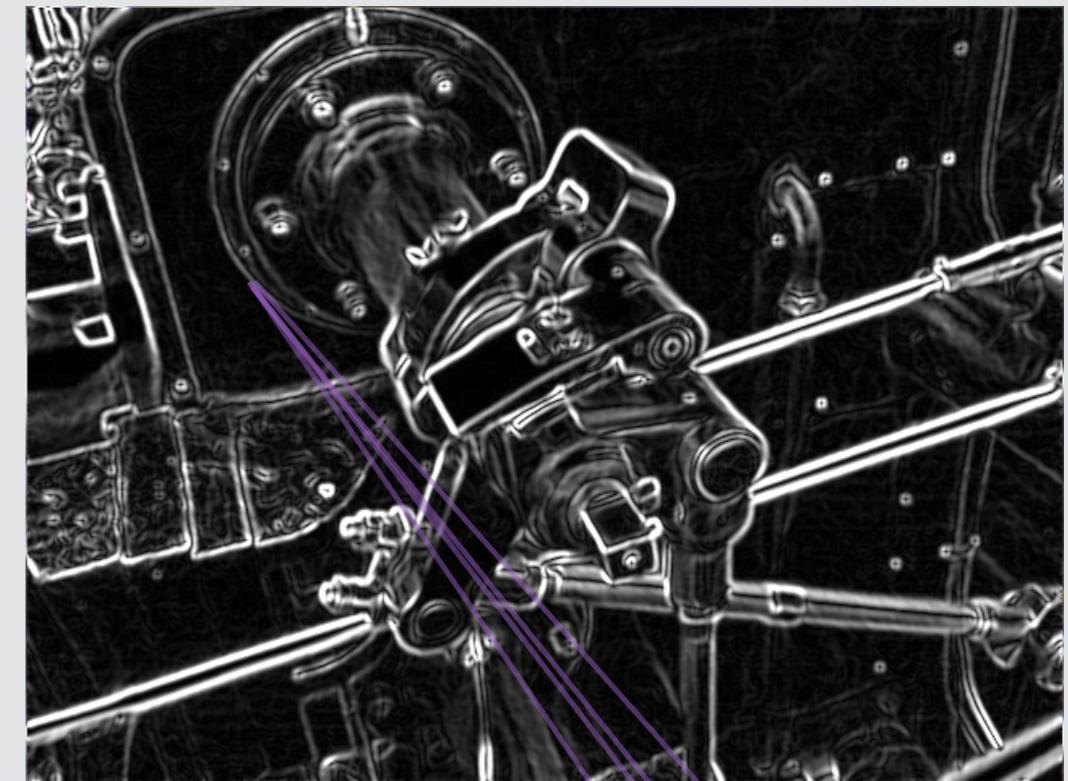
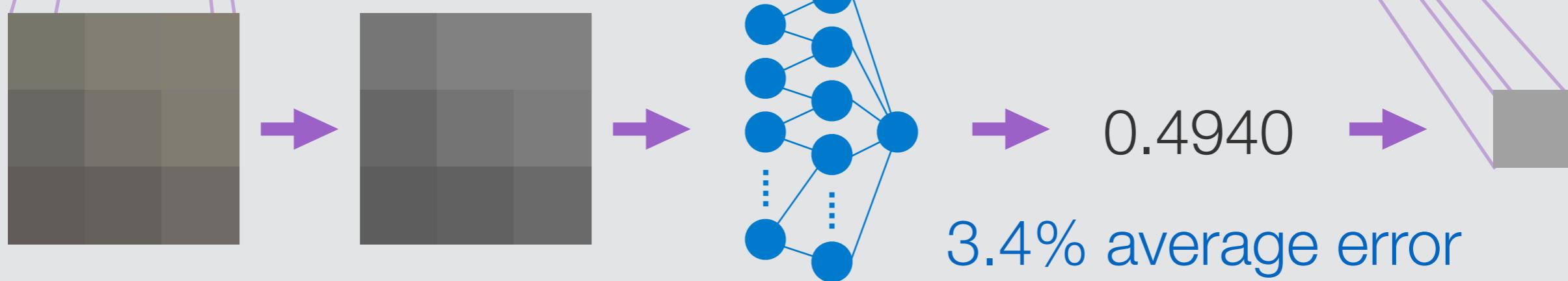


$\text{Sobel}(p)$



0.4940

Approximate edge detection



Approximate edge detection

What is the gradient at pixel p ?

`Sobel(p)`

3.4% average
training error

Is there an edge at pixel p ?

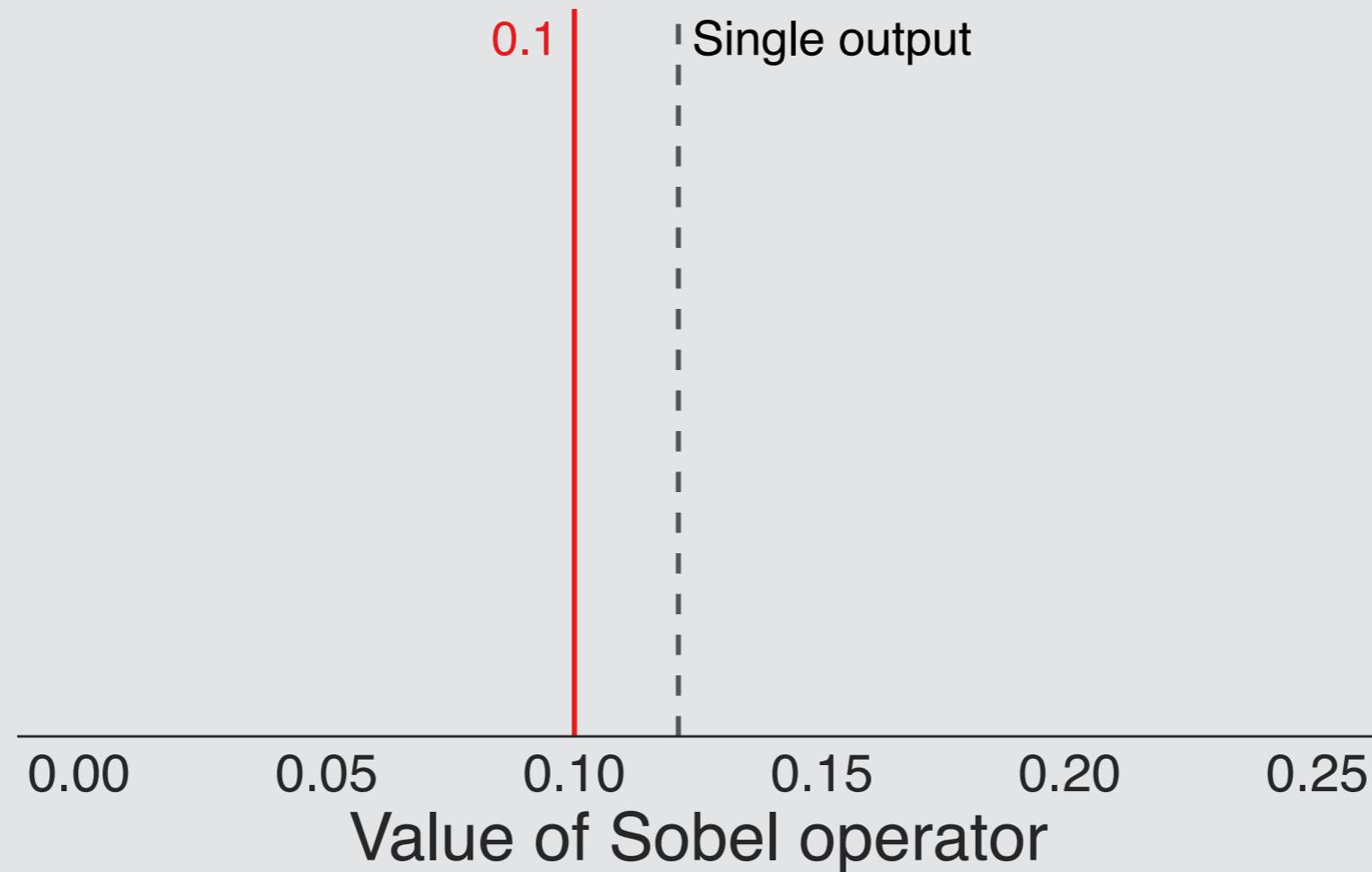
```
if (Sobel(p) > 0.1)  
    EdgeFound();
```

36% false positives
on the same data!

Computation compounds uncertainty!

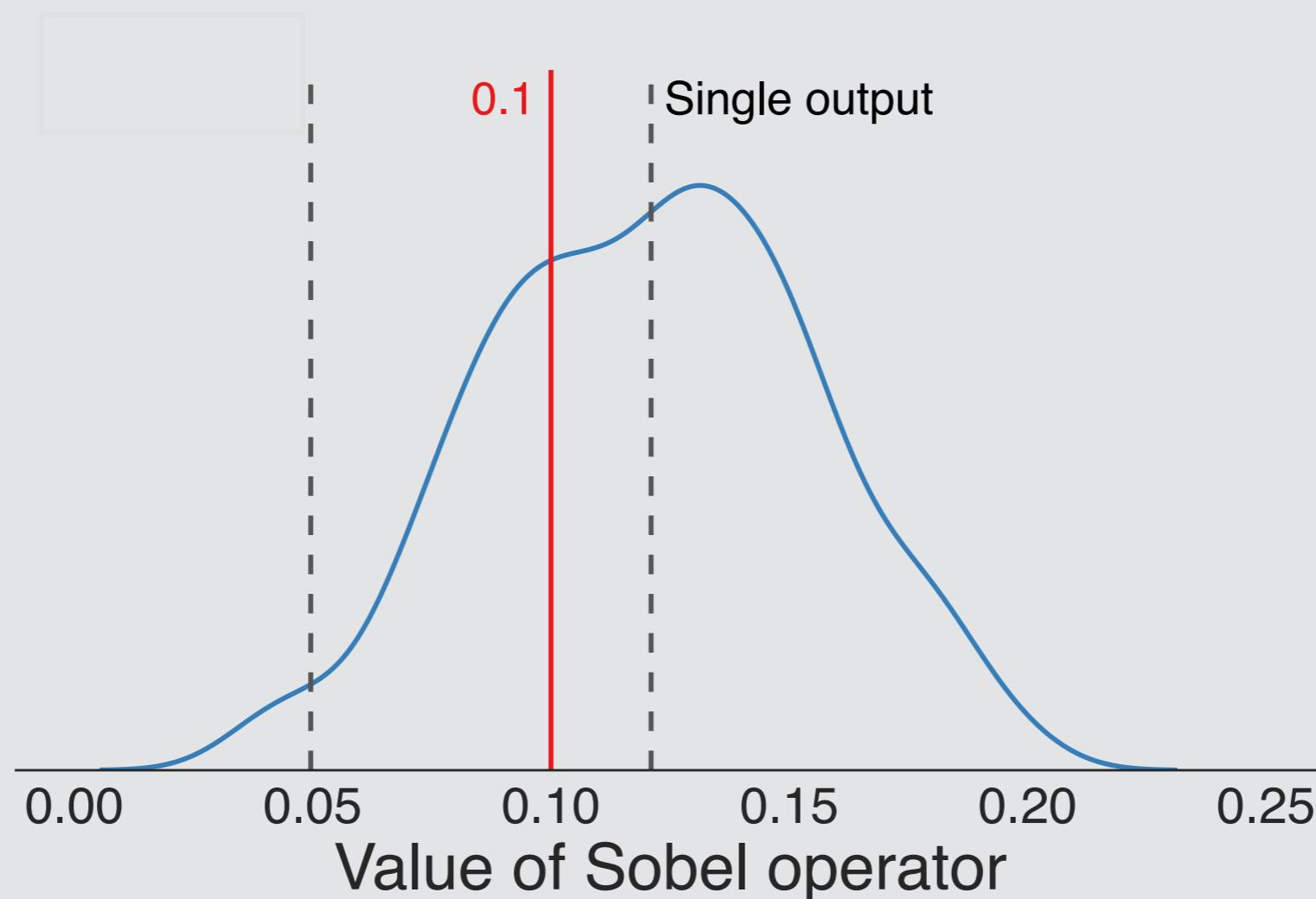
Is there an edge at pixel p?

```
if (Sobel(p) > 0.1)    36% false positives!  
    EdgeFound();
```



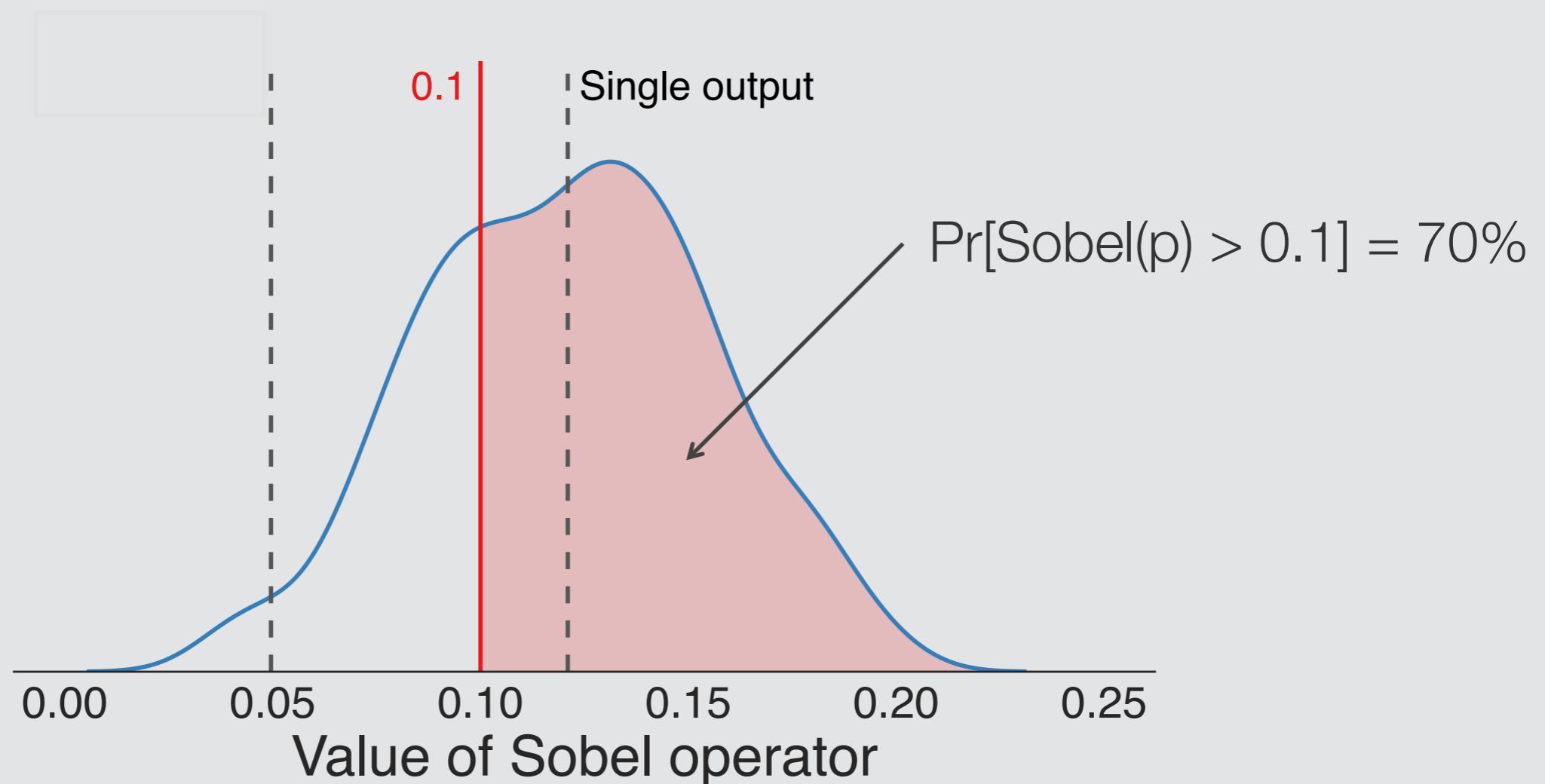
Is there an edge at pixel p?

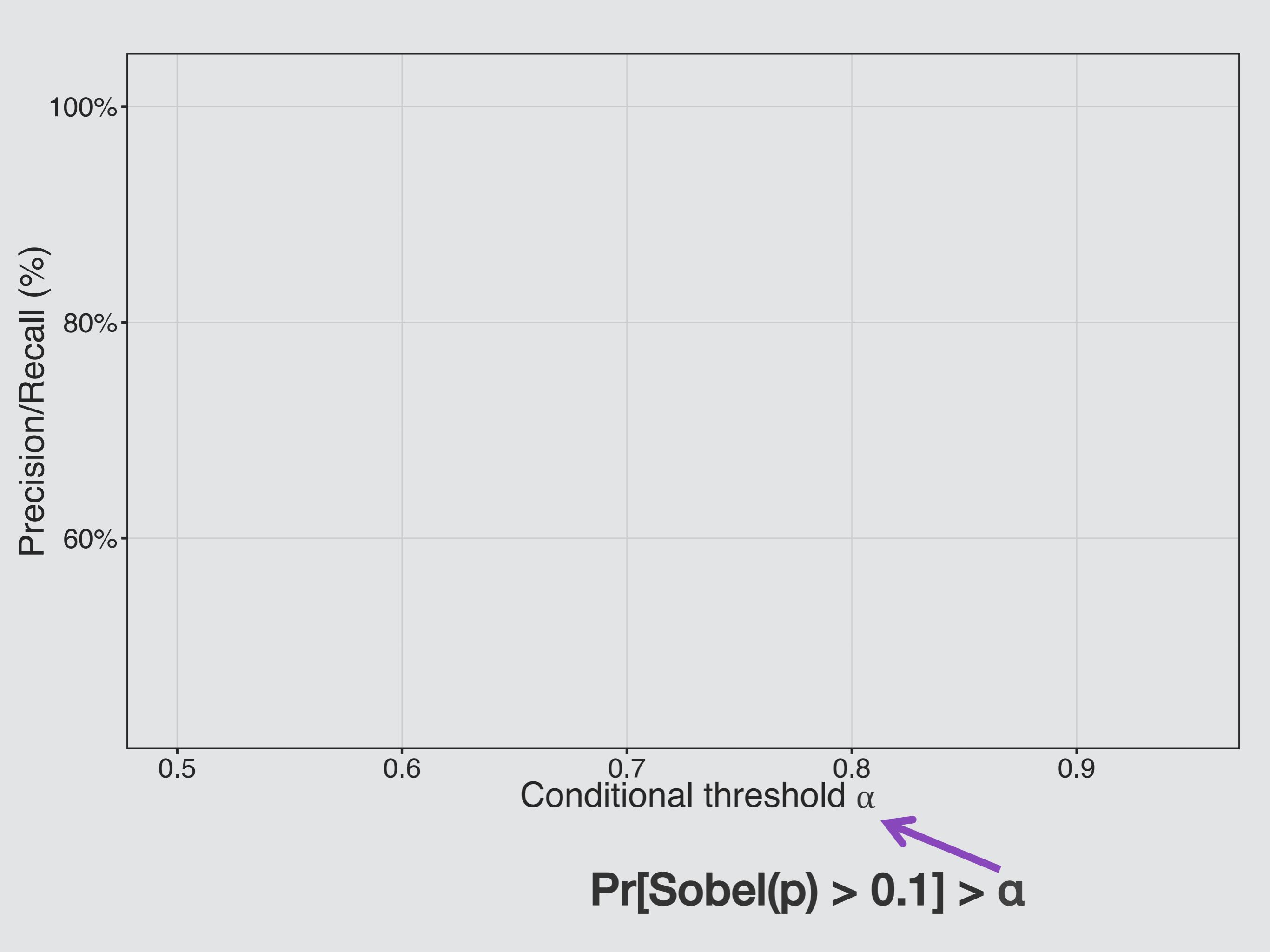
```
if (Sobel(p) > 0.1)    36% false positives!  
    EdgeFound();
```

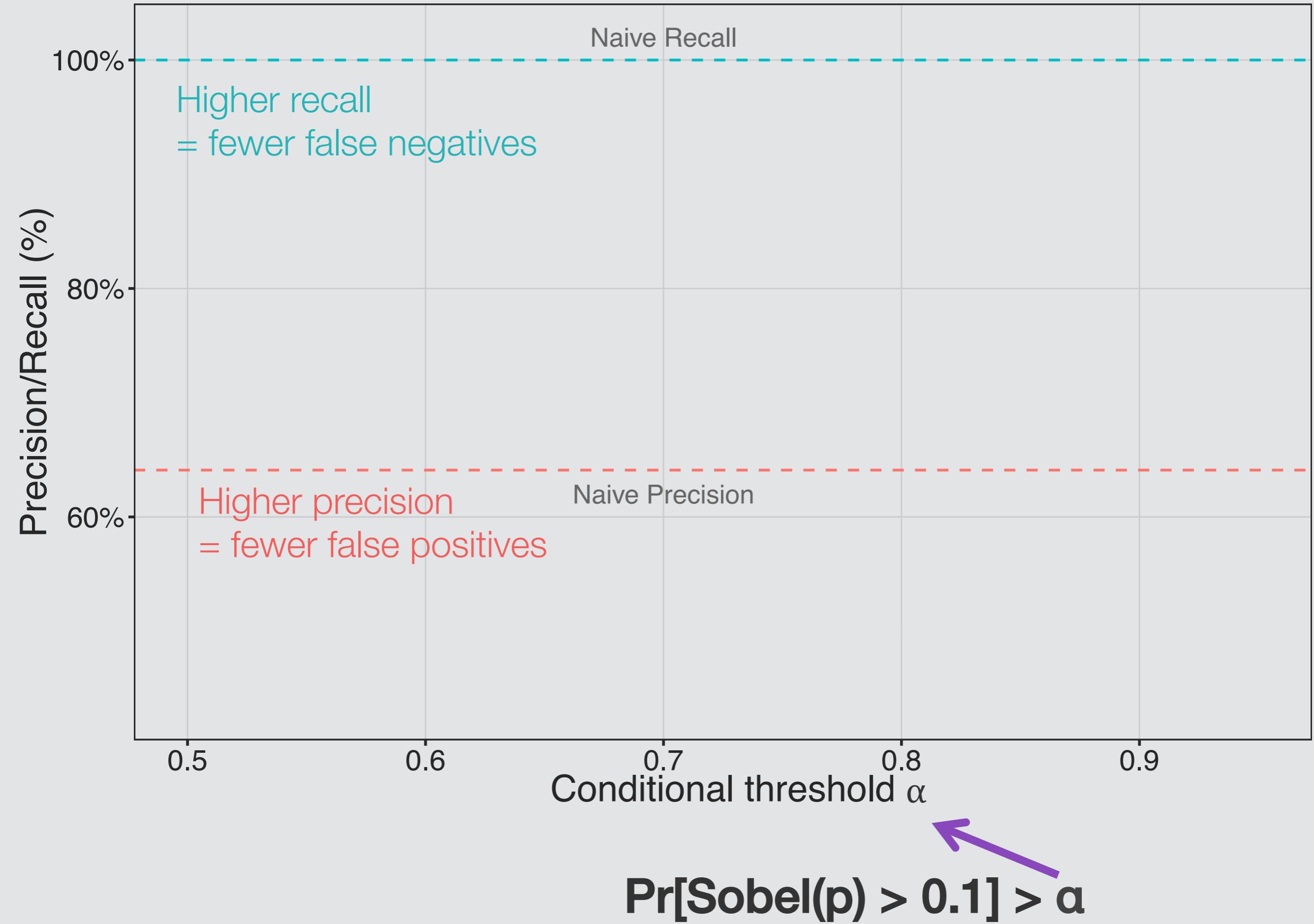


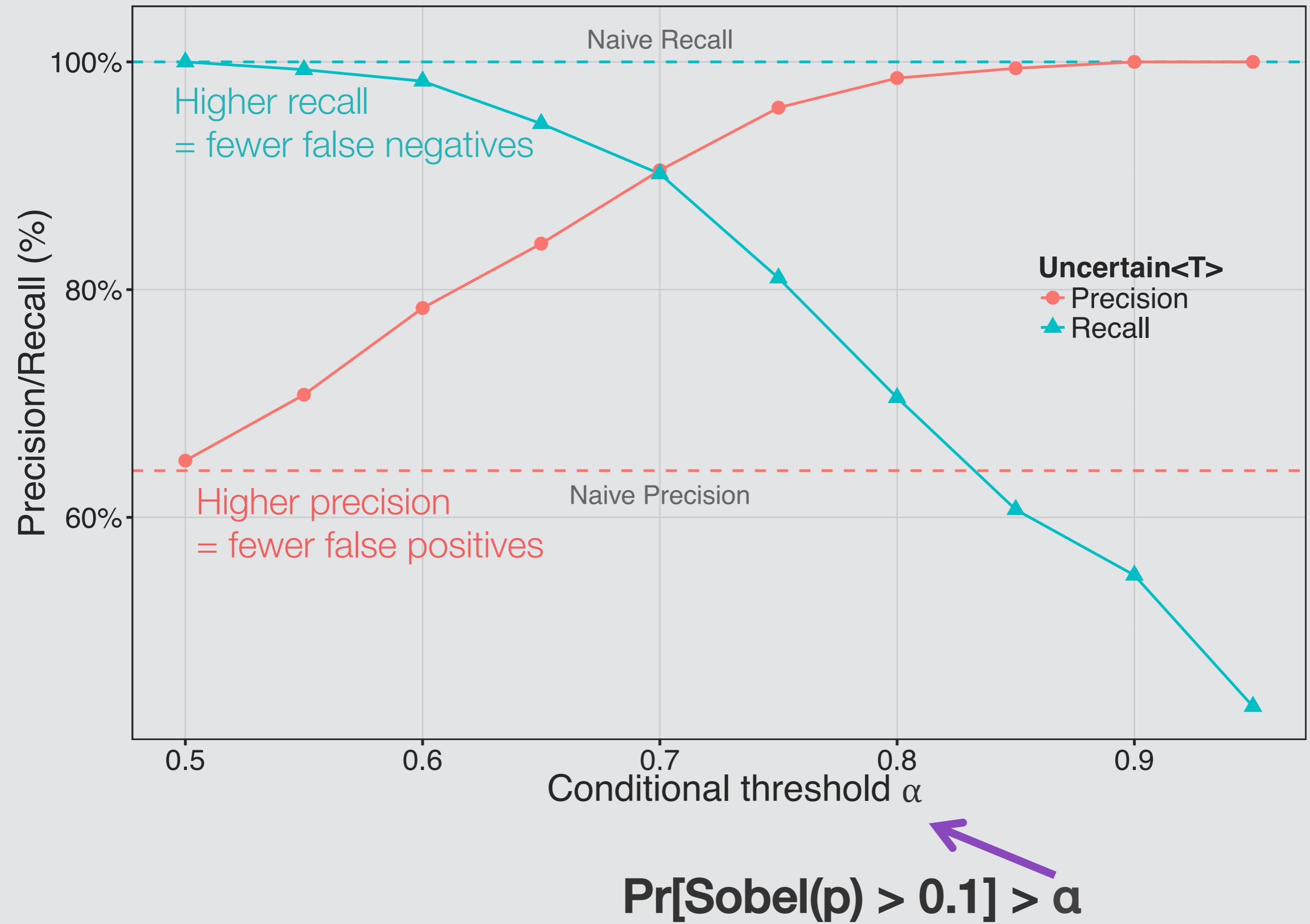
Is there an edge at pixel p?

```
if (Sobel(p) > 0.1)    36% false positives!  
    EdgeFound();
```









Uncertain<T>

Mitigates Bugs from Random Error

Many Estimates are Inherently Noisy!
Add Domain Knowledge

GPS Navigation

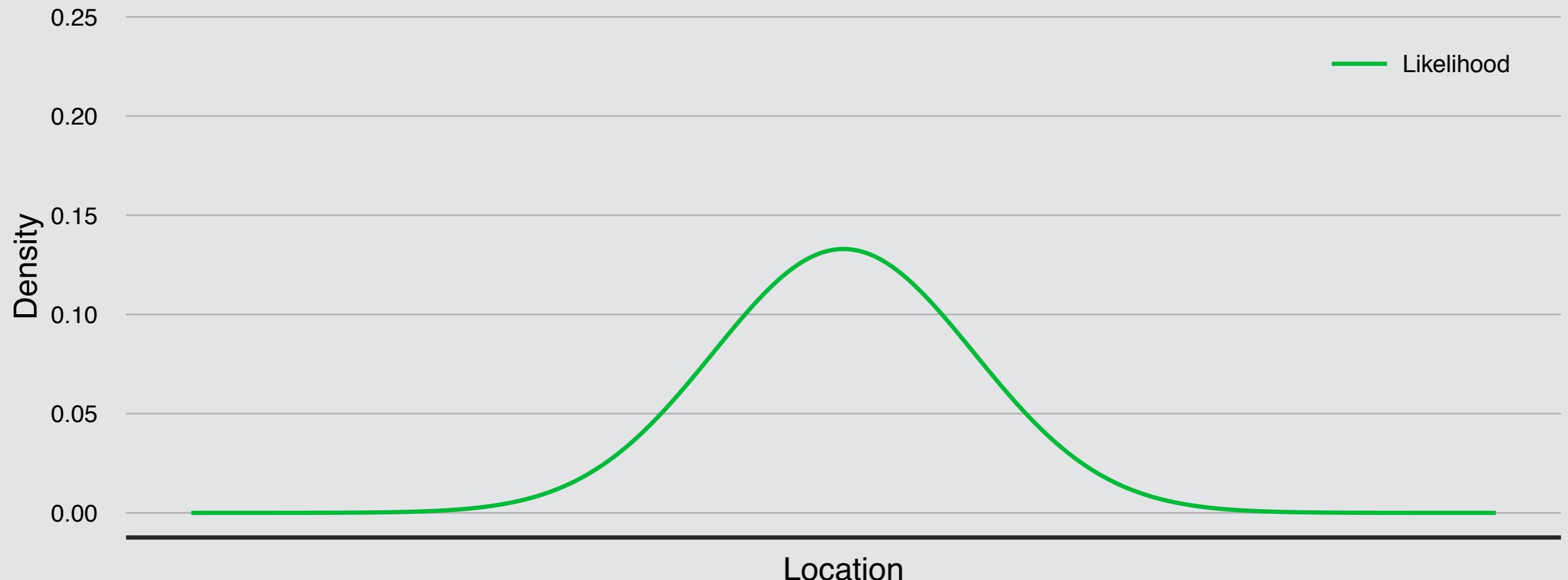
Driver is *likely* on a road!

Driving on a road (or not!)

● GPS

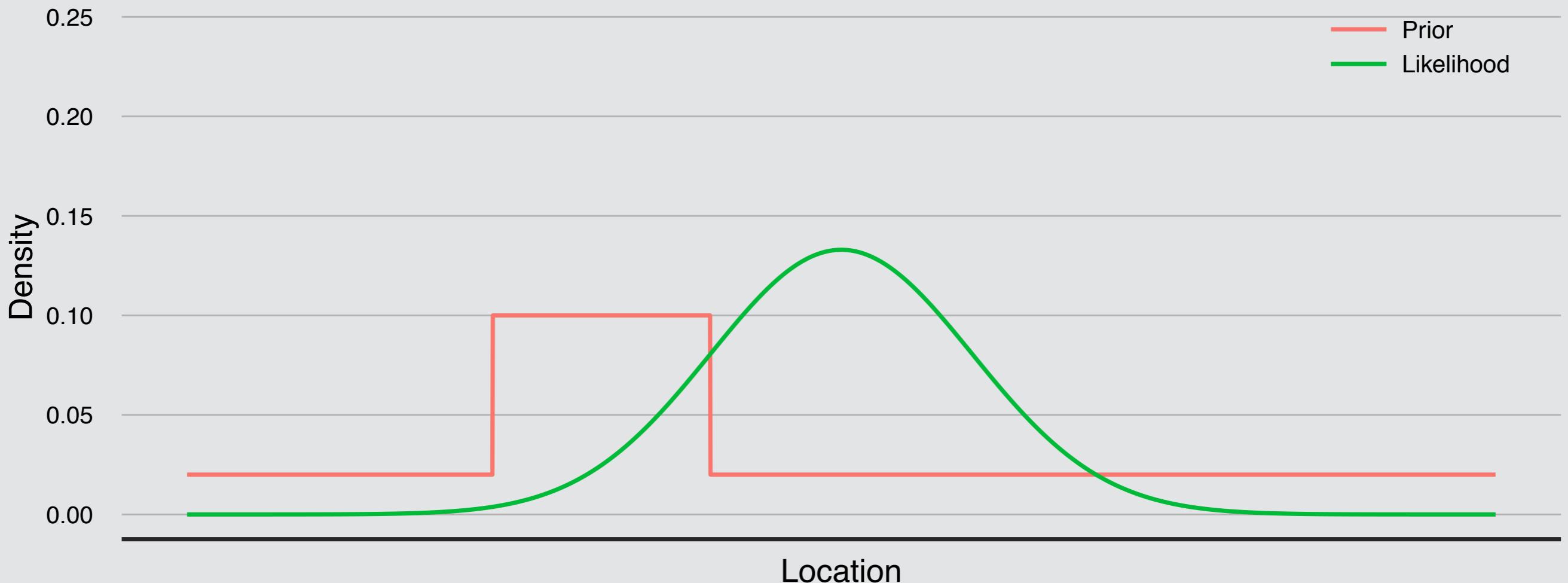
● GPS + road snapping

Incorporate Domain Knowledge



Incorporate Domain Knowledge

I am on a road



$$\Pr[H|E] = \frac{\Pr[E|H] \Pr[H]}{\Pr[E]}$$

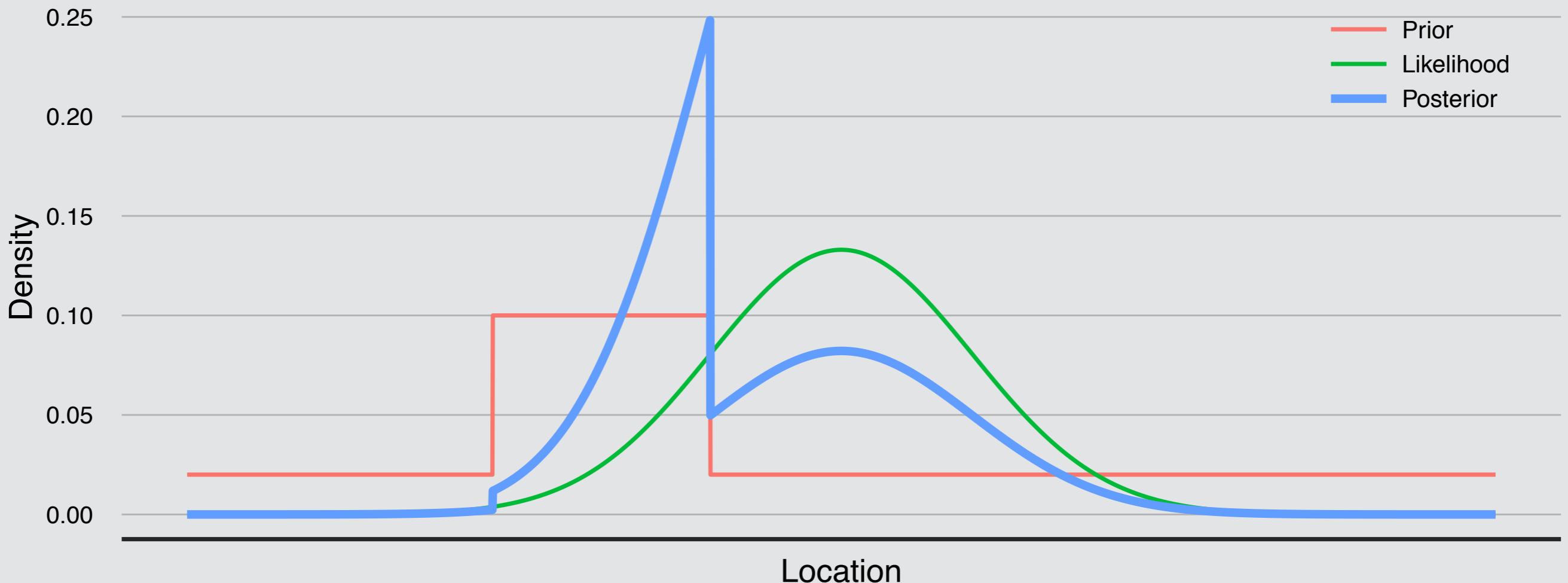
posterior

likelihood

prior

Incorporate Domain Knowledge

I am on a road



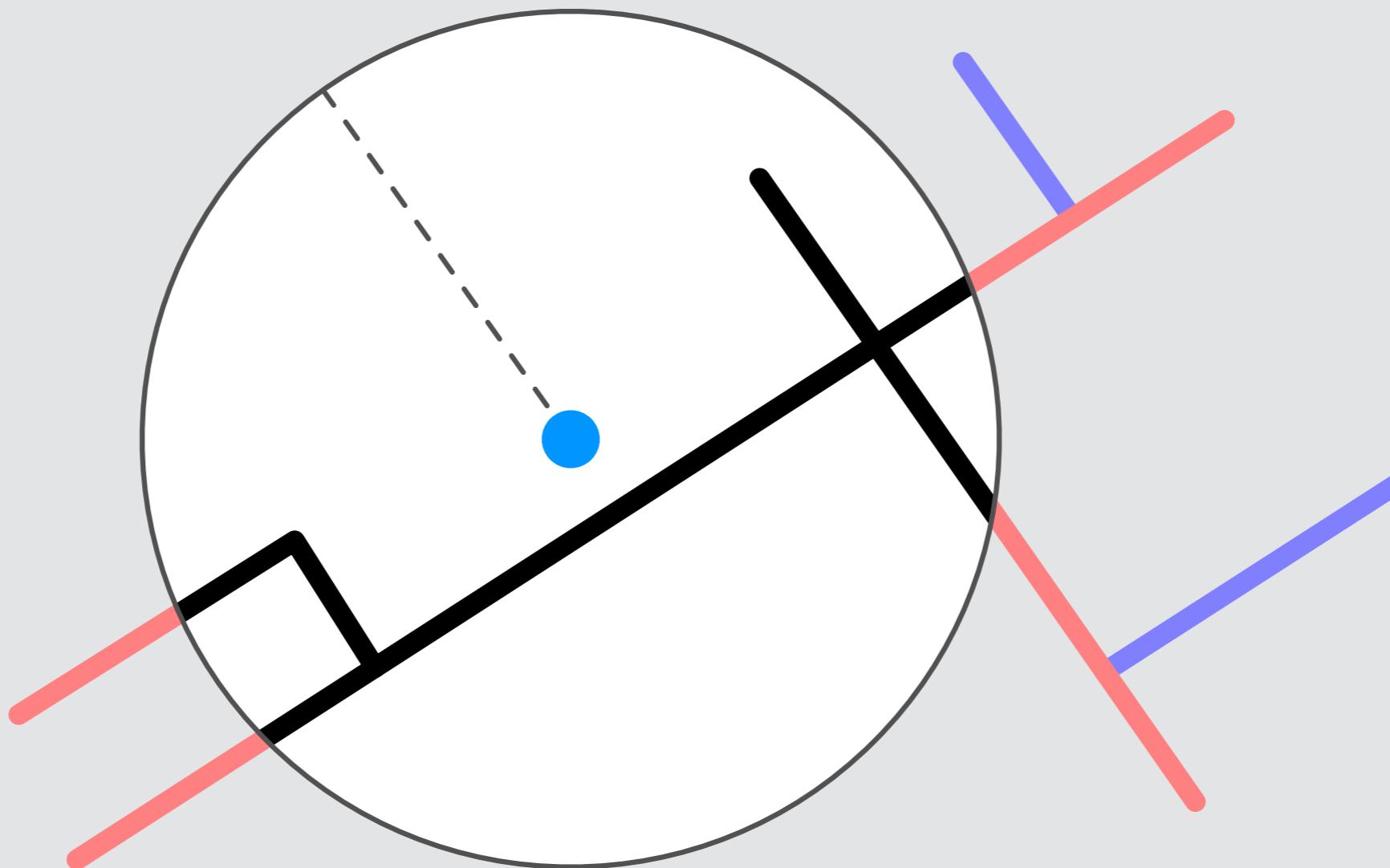
$$\Pr[H|E] = \frac{\Pr[E|H] \Pr[H]}{\Pr[E]}$$

posterior

likelihood

prior

Incorporate Domain Knowledge



Adding Context

New operators and semantics

`>!` Conditional distribution operator

`#` Bayes operator

Implementation

Sequential likelihood reweighting (new)

Automatically picks sample size!

**Forward inference for imperative
programming languages!**

Road Snapping Adding Context

```
// find relevant roads
Uncertain<Point> roadPrior = new uncertain<Point>(()=>
SamplePrior(location, accuracy, radiusFactor, weight))

// improve location estimate
Uncertain<Point> NewLocation = GPSLikelihood #
roadPrior
```

Road Snapping Sampling

```
Point SamplePrior (Point location, double accuracy,
                  double radiusFactor, double weight) {
    // find relevant roads
    Double radius = radiusFactor * accuracy;
    Road[] segments = NearbySegments(roads, location,
radius)
    // Generate random sample according to weight
    If (Random.NextDouble() < 1 - 1/(1+wieght))
        return SamplePoint(segments)
    else return SampleUniform(location, accuracy);
}

Point SamplePoint(Road{} segments) {
    Road segment = WeightedSample(segments, (s) =>
s.length)
    Return SampleUniform(segment);
```

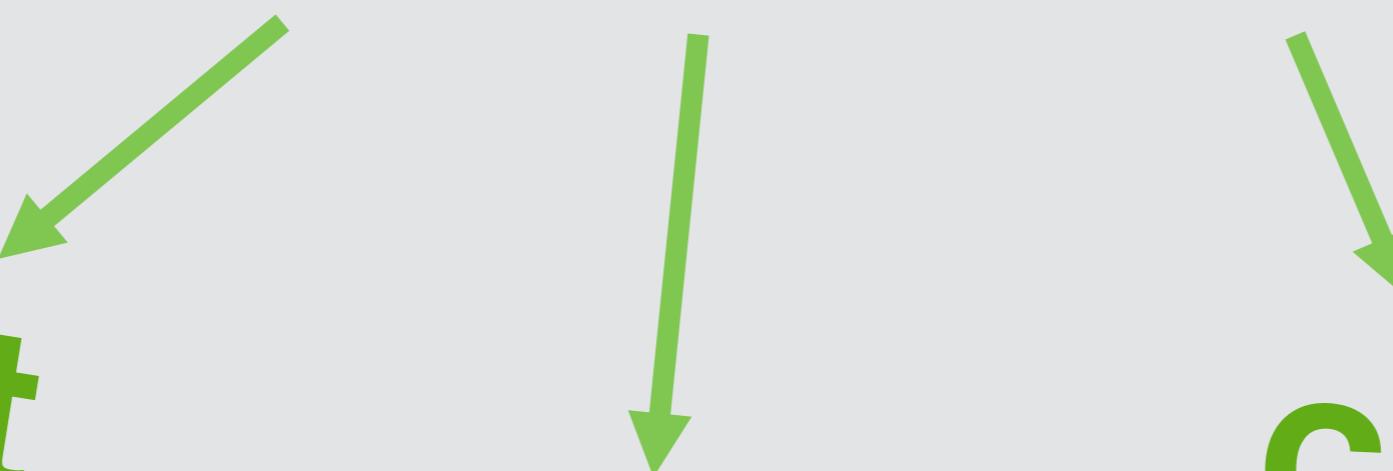
How should programmers reason
about probabilistic programs?

assert file != NULL

test

verify

check



assert e

e must hold on every execution

Approximate Computing

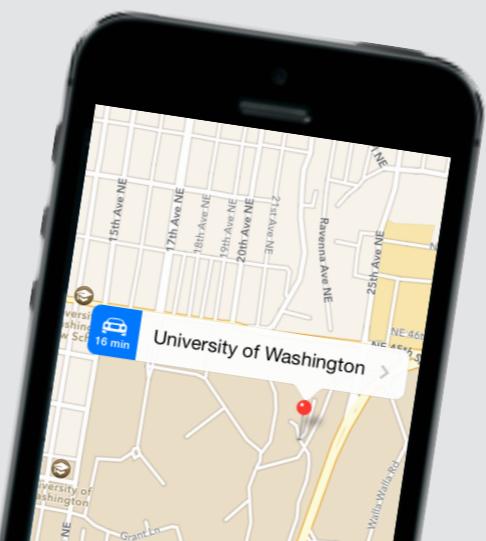
The approximate image is close to the precise version

k-means clustering is likely to converge on unreliable hardware

`assert e`

`e` must hold on every execution

Obfuscation for Privacy
obfuscated data is still useful in aggregate



Mobile and Sensing
mostly on the road

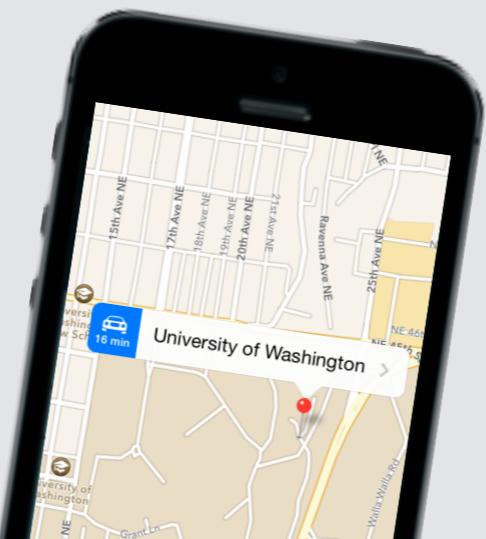
Approximate Computing

The approximate image is close to the precise version

k-means clustering is likely to converge on unreliable hardware

Traditional assertions are insufficient
for programs with probabilistic behavior

Obfuscation for Privacy
obfuscated data is still useful in aggregate



Mobile and Sensing
mostly on the road

Assertions are insufficient for data obfuscation

```
true_avg = average(salaries)
private_avg =
    average(obfuscate(salaries))
assert true_avg - private_avg
    <= 10,000
```


Assertions are insufficient for data obfuscation

```
true_avg = average(salaries)
private_avg =
    average(obfuscate(salaries))
assert true_avg - private_avg
        <= 10,000
```

probability
distribution

Assertions

`assert e`

Probabilistic assertion

passert *e, p, c*

Probabilistic assertion

passert e, p, c

e must hold with probability p
at confidence c

Probabilistic assertion

How to verify a probabilistic assertion

probabilistic
program

```
float obfuscated(float n) {
    return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
    total = 0.0;
    for (int i = 0; i < COUNT; ++i)
        total += obfuscated(salaries[i]);
    avg = total / len(salaries);
    p_avg = ...;
}
passert e, p, c
```

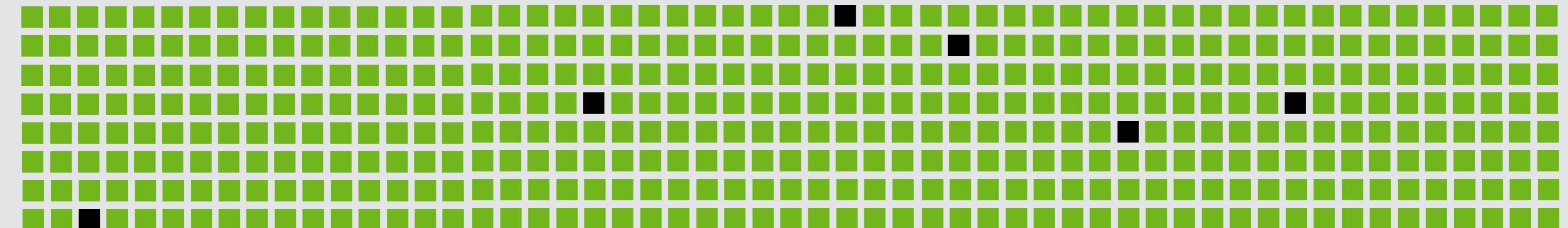
?

How to verify a probabilistic assertion naively

probabilistic
program

```
float obfuscated(float n) {
    return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
    total = 0.0;
    for (int i = 0; i < COUNT; ++i)
        total += obfuscated(salaries[i]);
    avg = total / len(salaries);
    p_avg = ...;
}
passert e, p, c
```

?



How to verify a probabilistic assertion efficiently

distribution extraction
via symbolic execution

statistical
optimizations

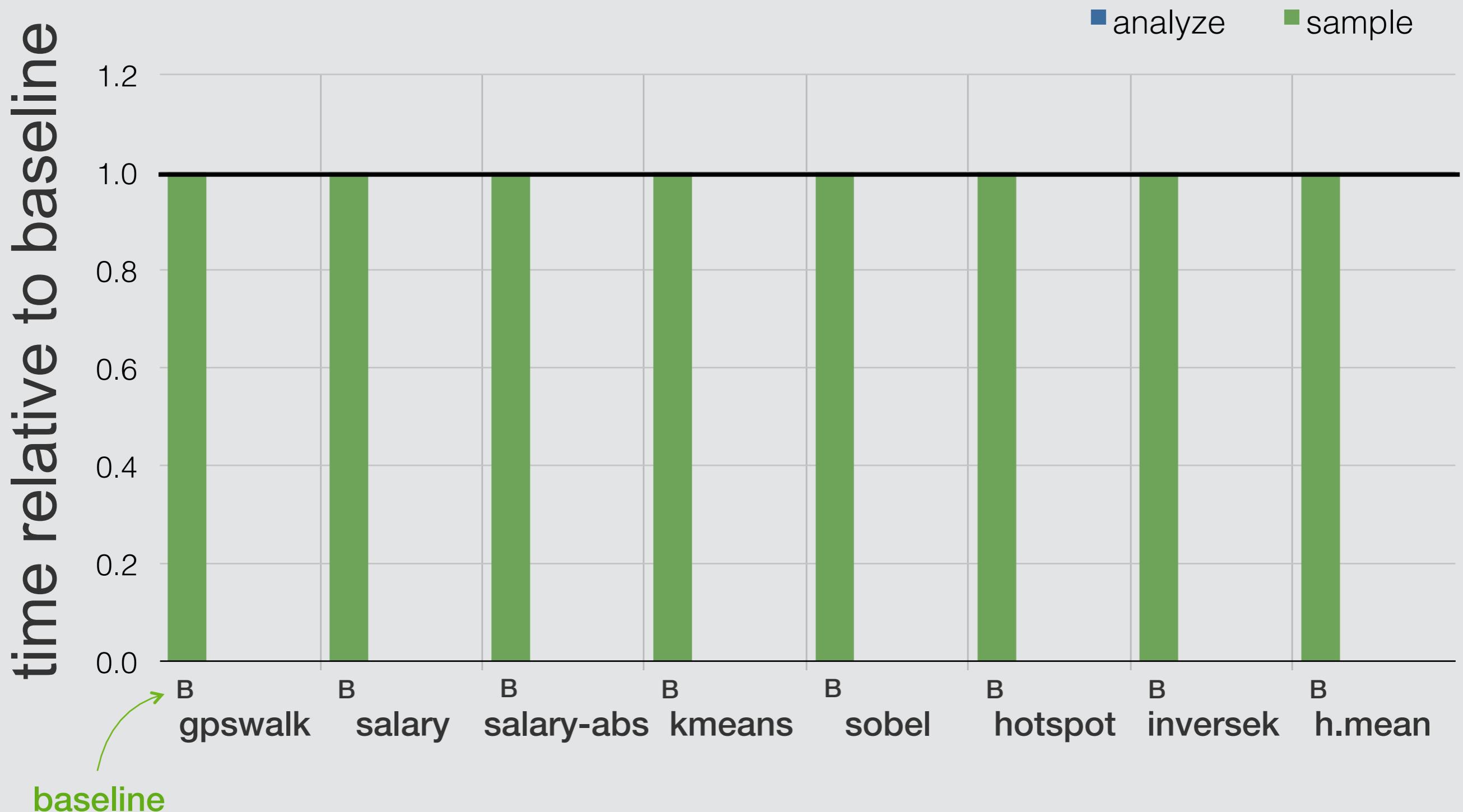
verification

```
float obfuscated(float n) {  
    return n + gaussian(0.0, 1000.0);  
}  
float average_salary(float* salaries) {  
    total = 0.0;  
    for (int i = 0; i < COUNT; ++i)  
        total += obfuscated(salaries[i]);  
    avg = total / len(salaries);  
    p_avg = ...;  
}  
passert e, p, c
```

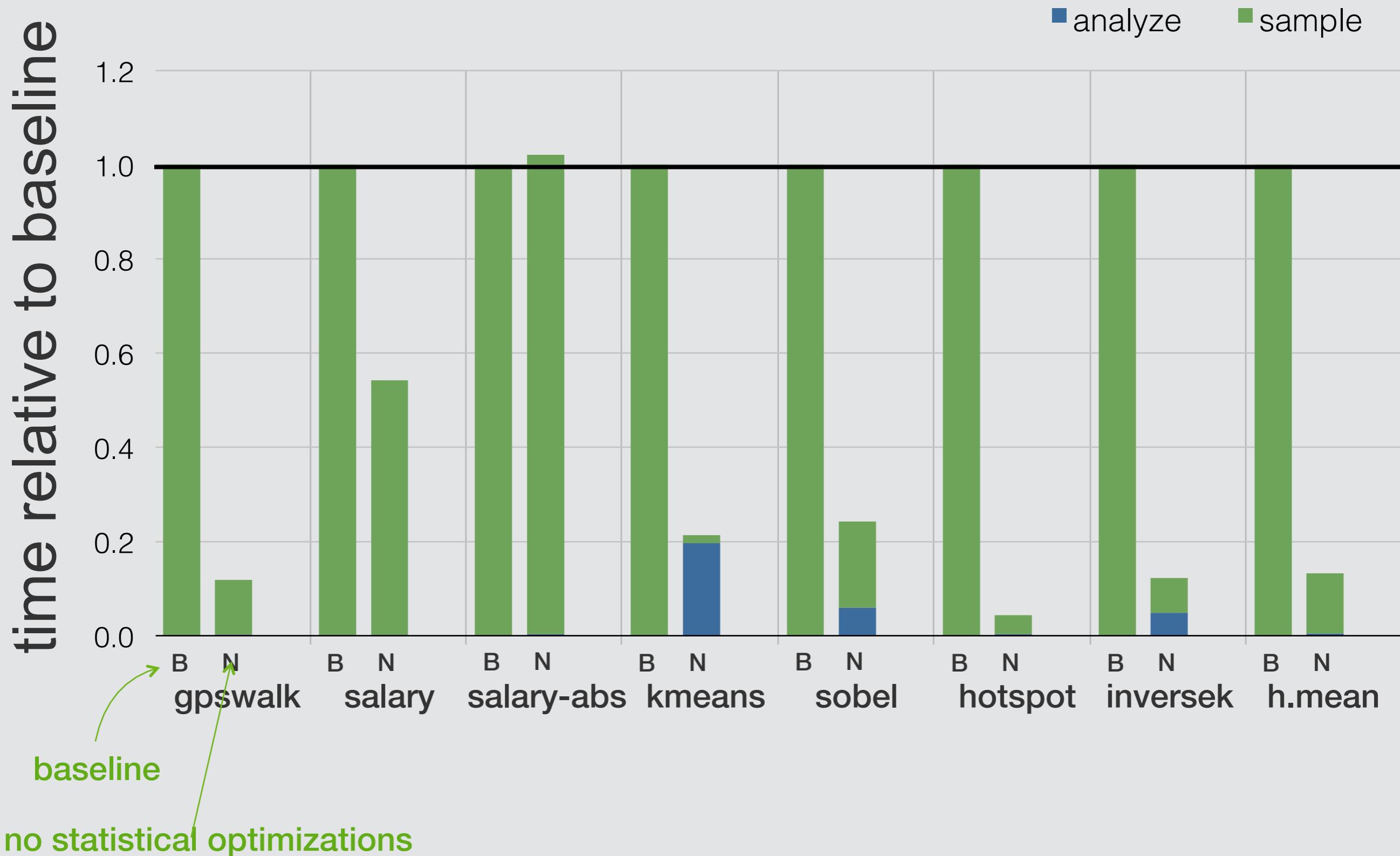

Probabilistic Assertion Verification Evaluation

sensing	gpswalk
privacy	salary
	salary-abs
approximate computing	kmeans
	sobel
	hotspot
	inversek2j

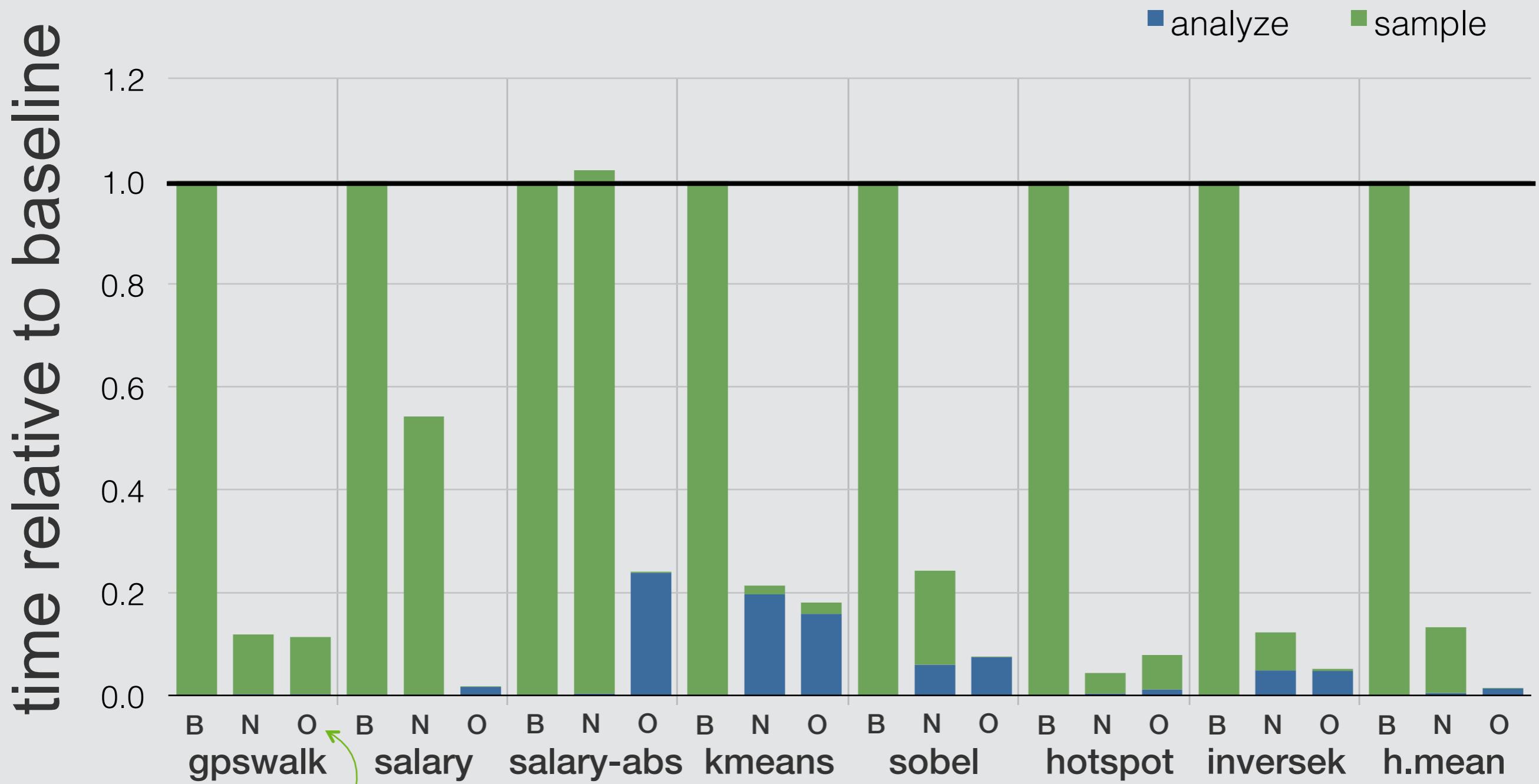
Time vs Stress Testing



Time vs Stress Testing



Time vs Stress Testing

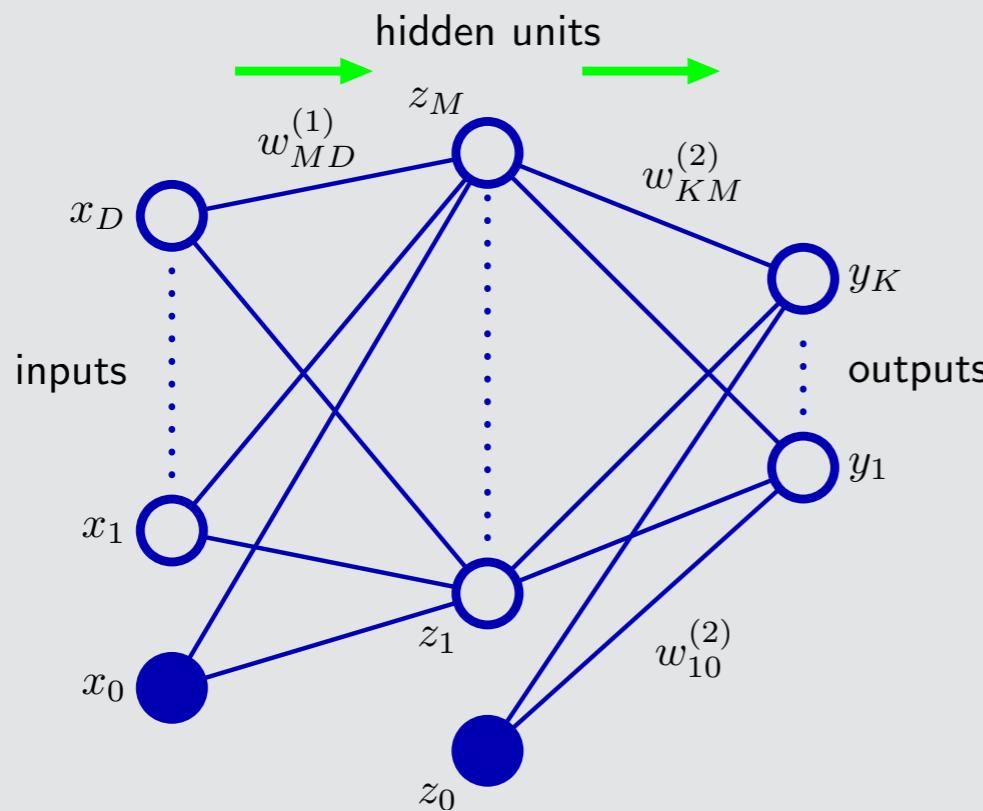


24x faster than baseline verifier on average
Mostly analysis time

Other Probabilistic Programming Languages

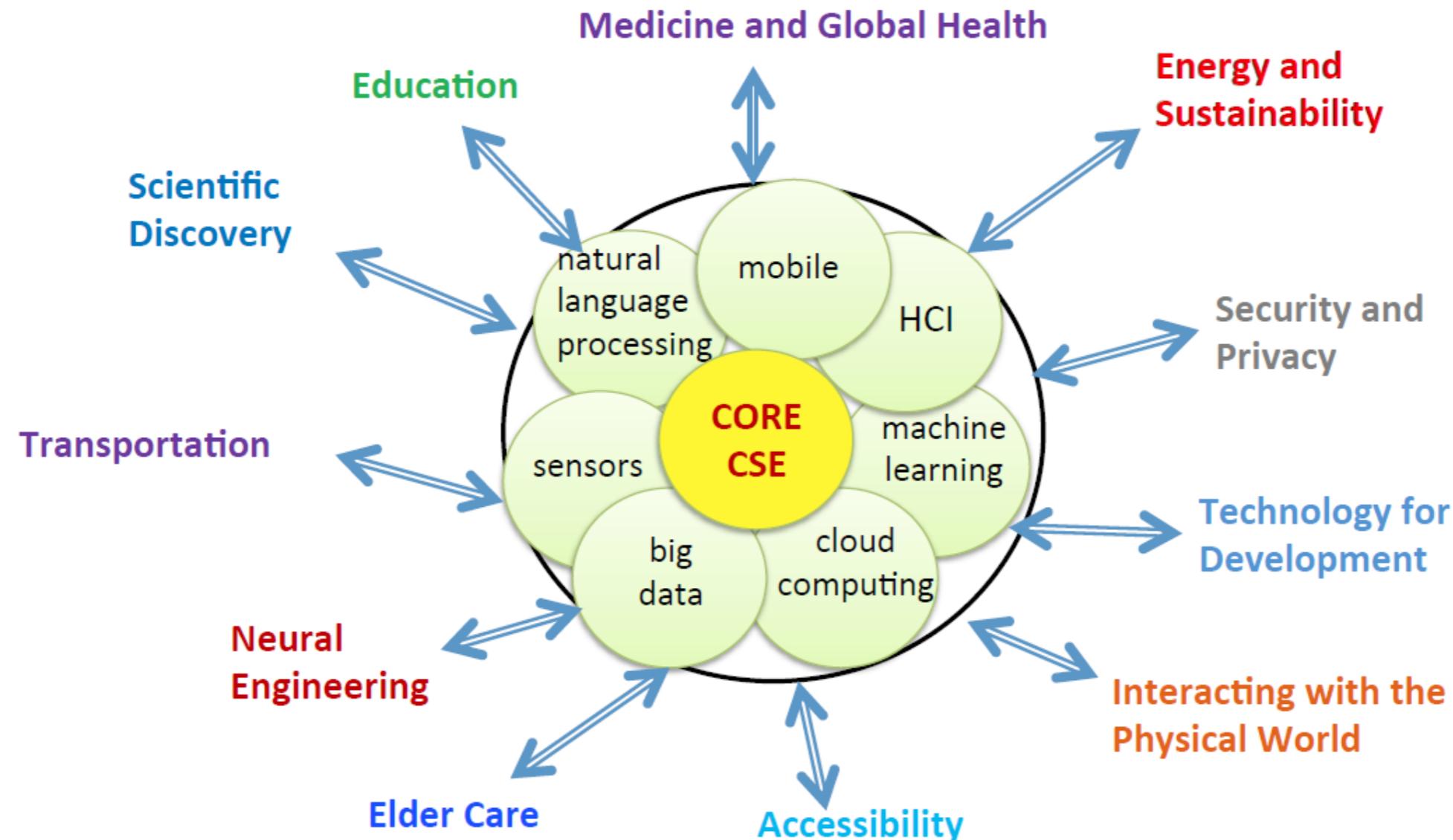
Probabilistic programming

BUGS, Church, Infer.NET, ...



Uncertain< T > helps developers *without* statistics PhDs.

A Modern View of Computing



Accuracy, Efficiency, & Programmer Productivity

The **Uncertain<T>** programming model, types, and operators help programmers reason about error in estimates and improve their accuracy.

Probabilistic Assertions express correctness properties of these programs. Our verifier accurately and efficiently checks them.

Collaborators

Todd Mytkowicz, Microsoft

James Bornholt, ANU & UW

Na Meng, The University of Texas at Austin

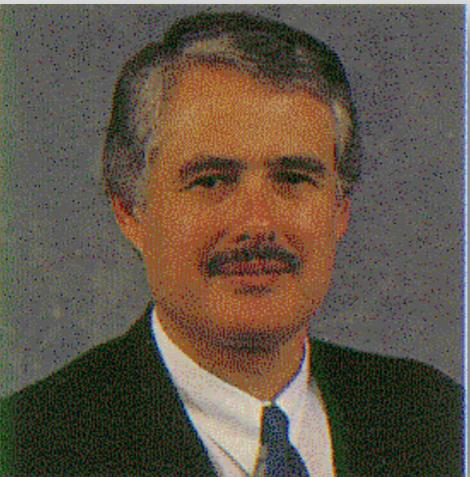
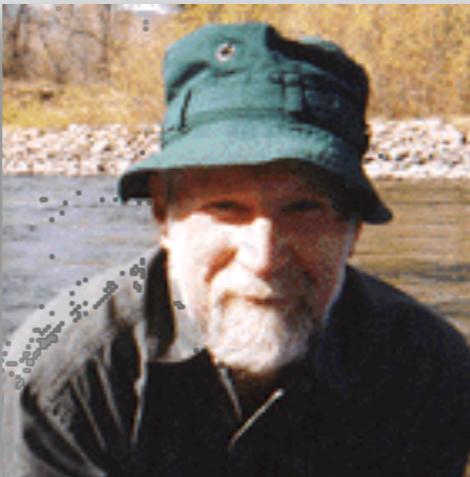
Adrian Sampson, The University of Washington, Seattle

Luis Ceze, The University of Washington, Seattle

Dan Grossman, The University of Washington, Seattle

A Byte of My Story

A Byte of My Story



Mentors

ACM Fellow

Family

Congressional Testimony

Success, Failure, and Learning

Rejected job applications

1984 (all), 1993 (8 of 11), 2011 (4 of 8)

Failed PhD qualifying exam

Rejected first three grant applications

Rejected 3 times my most cited paper

Rejected papers, grants, papers, ...

learn & persist

Thank you!