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Uncertainty is everywhere!

Sensors!

approximate edge detection


Approximate computing!
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Machine learning!

But we lack abstractions to help developers 
reason about uncertainty!





24 mph


Usain Bolt is fast!



59 mph


But James is faster… !



Programming with Estimates:!
Challenges !



Estimates are noisy


Improving estimates requires domain knowledge 


What do these programs mean?




Loc	
  lastloc	
  =	
  GPS.GetLocation();	
  

double	
  accuracy	
  =	
  GPS.GetAccuracy();	
  

Map.DrawCircleWithCenter(lastloc,	
  accuracy);	
  

	
  

	
  

	
  

GPS locations!





Windows 
Phone!

95% confidence interval!
σ = 33 m!

Android!
68% confidence interval!
σ = 39 m!

Which is more accurate?!



	
  

Loc	
  lastloc	
  =	
  GPS.GetLocation();	
  
Sleep(5);	
  
Loc	
  currloc	
  =	
  GPS.GetLocation();	
  

double	
  dist	
  =	
  GPS.Distance(currloc,	
  lastloc);	
  
double	
  speed	
  =	
  dist	
  /	
  5;	
  

if	
  (speed	
  >	
  4)	
  print("Great	
  job!");	
  

print(speed,	
  accuracy);	
  

Computing Speed from GPS!



Great	
  job!!
Great	
  job!!

Great	
  job!!
Great	
  job!!

Great	
  job!!

Great	
  job!!
Great	
  job!!

Great	
  job!!



Problems!
Using estimates as facts introduces errors


Computation compounds error


Boolean conditionals on probabilistic data 
introduce false positives and false negatives


Adding domain knowledge is adhoc and 
fragile




Uncertain<T>!
!

Programming Model




	
  

	
  

Uncertain<Loc>	
  lastloc	
  =	
  GPS.GetLocation();	
  
Sleep(5);	
  
Uncertain<Loc>	
  currloc	
  =	
  GPS.GetLocation();	
  

Uncertain<double>	
  dist	
  =	
  GPS.Distance(currloc,	
  lastloc);	
  
Uncertain<double>	
  speed	
  =	
  dist	
  /	
  5;	
  

	
  

	
  

if	
  ((newSpeed	
  >	
  4).Pr(0.9))	
  print("Great	
  job!");	
  

print(speed,	
  accuracy);	
  

Speed with Uncertain<T>!



	
  

	
  

Uncertain<Loc>	
  lastloc	
  =	
  GPS.GetLocation();	
  
Sleep(5);	
  
Uncertain<Loc>	
  currloc	
  =	
  GPS.GetLocation();	
  

Uncertain<double>	
  dist	
  =	
  GPS.Distance(currloc,	
  lastloc);	
  
Uncertain<double>	
  speed	
  =	
  dist	
  /	
  5;	
  

Uncertain<double>	
  walkPrior	
  =	
  new	
  Uncertain<double>	
  (()=>	
  	
  	
  	
  	
  
	
  SamplePrior(0	
  mph,	
  10	
  mph,	
  accuracy));	
  

Uncertain<double>	
  newSpeed	
  =	
  speed	
  #	
  walkPrior;	
  

if	
  (newSpeed	
  >	
  4).Pr(0.9))	
  print("Great	
  job!");	
  

print(speed,	
  accuracy);	
  

Speed with Uncertain<T>!
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 Uncertain<T>!
 !

Implementation




Semantics!

Uncertain<double>	
  Z	
  =	
  X	
  +	
  Y	
  

Z is a random variable we represent as a distribution

X

Y
 Z=X+Y


is a sample of X

is a sample of Y

is a sample of X+Y *


If

and

then


x

y

x+y


* if X and Y are independent




Sampling functions return random samples



 
Simple computations



 
Represent arbitrary distributions



 
Sampling is approximate


Later: how Uncertain<T> learned to love approximation, 
and you can too


✓!

✓!

✗!



D	
  =	
  A	
  /	
  B"
E	
  =	
  D	
  –	
  C	
  

Bayesian network representation


-

C/

E

BA

D

Sampling function for E recursively samples children




is a sample of X

is a sample of Y

is a sample of X+Y *


If

and

then


x

y

x+y


* Only if X and Y are independent. 


A	
  =	
  X	
  +	
  Y	
  
B	
  =	
  A	
  +	
  X	
  

(X,Y independent)


A and B depend on X – not independent!


+
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B

XY
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+
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A



Uncertain<Loc>	
  lastloc	
  =	
  GPS.GetLocation();	
  
Sleep(5);	
  
Uncertain<Loc>	
  currloc	
  =	
  GPS.GetLocation();	
  

Uncertain<double>	
  dist	
  =	
  GPS.Distance(currloc,	
  lastloc);	
  
Uncertain<double>	
  speed	
  =	
  dist	
  /	
  5;	
  

if	
  (speed	
  >	
  4)	
  print("Great	
  job!");	
  

Speed with Uncertain<T>!

Hypothesis Test!



if	
  (speed	
  >	
  4)	
  print("Great	
  job!”)	
  

0 2 4 6 8 10
Speed (mph)



4 mph

0 2 4 6 8 10
Speed (mph)

Pr[Speed > 4]


More likely than not that Speed > 4?


> 0.5?


if	
  (speed	
  >	
  4)	
  print("Great	
  job!”)	
  



if	
  (speed	
  >	
  4).Pr(0.9)	
   	
   	
   	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  print("Great	
  job!”)	
  

4 mph

0 2 4 6 8 10
Speed (mph)

Pr[Speed > 4]


At least 90% likely that Speed > 4?


> 0.9?




Pr[Speed > 4] > 0.5

approximate


HA:

Pr[Speed > 4] ≤ 0.5
H0:
null hypothesis


alternate hypothesis


How many samples?
 Too many = too slow

Too few = too noisy


Sequential sampling: sample size depends on progress


if	
  (speed	
  >	
  4)	
  print("Great	
  job!”)	
  



Uncertain<T>!
!

Mitigates Bugs from Random Error




Sobel(p)! 0.4940!

Edge detection!



0.4940!
3.4% average error!

Approximate edge detection!



What is the gradient at pixel p?!

Sobel(p)! 3.4% average 
training error!

Is there an edge at pixel p?!

if	
  (Sobel(p)	
  >	
  0.1)	
  
	
  	
  	
  	
  EdgeFound();!

36% false positives 
on the same data!!

Approximate edge detection!

Computation compounds uncertainty!!



if	
  (Sobel(p)	
  >	
  0.1)	
  
	
  	
  	
  	
  EdgeFound();!

Single output0.1

0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

36% false positives!!

Is there an edge at pixel p? !



True value Single output0.1

0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

36% false positives!!if	
  (Sobel(p)	
  >	
  0.1)	
  
	
  	
  	
  	
  EdgeFound();!

Is there an edge at pixel p? !



True value Single output0.1

0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

36% false positives!!

Pr[Sobel(p) > 0.1] = 70%


if	
  (Sobel(p)	
  >	
  0.1)	
  
	
  	
  	
  	
  EdgeFound();!

Is there an edge at pixel p? !
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Pr[Sobel(p) > 0.1] > α!



Naive Precision

Naive Recall
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Higher precision"
= fewer false positives


Higher recall"
= fewer false negatives


Pr[Sobel(p) > 0.1] > α!



Naive Precision

Naive Recall
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Higher precision"
= fewer false positives


Higher recall"
= fewer false negatives


Pr[Sobel(p) > 0.1] > α!



Uncertain<T>!
!

Mitigates Bugs from Random Error




Many Estimates are Inherently Noisy!

Add Domain Knowledge 


!



GPS Navigation


Driving on a road (or not!)!

Driver is likely on a road!


GPS

GPS + road snapping
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Incorporate Domain Knowledge!
!
!
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Incorporate Domain Knowledge!
!
!
I am on a road




Pr[H|E] =
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!
!
I am on a road




Incorporate Domain Knowledge!
!
!



Adding Context!
New operators and semantics


>!  Conditional distribution operator

#  Bayes operator




Implementation


Sequential likelihood reweighting (new)


Automatically picks sample size!




Forward inference for imperative 

programming languages! !



//	
  find	
  relevant	
  roads	
  
Uncertain<Point>	
  roadPrior	
  =	
  new	
  uncertain<Point>(()=>	
  
SamplePrior(location,	
  accuracy,	
  radiusFactor,	
  weight))	
  	
  
	
  
//	
  improve	
  location	
  estimate	
  
Uncertain<Point>	
  NewLocation	
  =	
  GPSLikelihood	
  #	
  
roadPrior	
  
	
  

Road Snapping Adding Context!



Point	
  SamplePrior	
  (Point	
  location,	
  double	
  accuracy,	
  	
  
	
   	
   	
   	
   	
   	
  	
  double	
  radiusFactor,	
  double	
  weight)	
  {	
  
	
  //	
  find	
  relevant	
  roads	
  
	
  Double	
  radius	
  =	
  radiusFactor	
  *	
  accuracy;	
  
	
  Road[]	
  segments	
  =	
  NearbySegments(roads,	
  location,	
  

radius)	
  	
  
	
  //	
  Generate	
  random	
  sample	
  according	
  to	
  weight	
  
	
  If	
  (Random.NextDouble()	
  <	
  1	
  –	
  1/(1+wieght))	
  
	
   	
  return	
  SamplePoint(segments)	
  	
  
	
  else	
  return	
  SampleUniform(location,	
  accuracy);	
  

}	
  
Point	
  SamplePoint(Road{}	
  segments)	
  {	
  
	
  Road	
  segment	
  =	
  WeightedSample(segments,	
  (s)	
  =>	
  

s.length)	
  
	
  Return	
  SampleUniform(segment);	
  	
  

Road Snapping Sampling!



How should programmers reason!
about probabilistic programs?!



assert file != NULL!

test!
verify!

check!



assert !e!
e must hold on every execution!



assert !e!
e must hold on every execution!

≈! Approximate Computing!
The approximate 
image is close to 
the precise version!

k-means clustering is 
likely to converge on 
unreliable hardware!

mostly on the road!
Mobile and Sensing!Obfuscation for Privacy!

obfuscated data is still 
useful in aggregate!



assert !e!
e must hold on every execution!

≈! Approximate Computing!
The approximate 
image is close to 
the precise version!

k-means clustering is 
likely to converge on 
unreliable hardware!

mostly on the road!
Mobile and Sensing!Obfuscation for Privacy!

obfuscated data is still 
useful in aggregate!

Assert !e!
e must hold on every execution!
assert file != NULL!e!
e must hold on every execution!

Traditional assertions are insufficient!
for programs with probabilistic behavior!



true_avg = average(salaries)!
private_avg = !
  average(obfuscate(salaries))!
assert true_avg - private_avg!
       <= 10,000!

Assertions are insufficient for 
data obfuscation!



true_avg = average(salaries)!
private_avg = !
  average(         (salaries))!
assert true_avg - private_avg!
       <= 10,000!

probability 
distribution!

obfuscate!

Assertions are insufficient for 
data obfuscation!



assert!e!

Assertions!



assert!e!p! , p, c!

Probabilistic assertion!



assert!e!p! , p, c!

e must hold with probability p!
at confidence c!

Probabilistic assertion!



assert!e!p! , p, c!

test?!
verify?! check?!

Probabilistic assertion!
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?!passert e, p, c!

float obfuscated(float n) {!
  return n + gaussian(0.0, 1000.0);!
}!
float average_salary(float* salaries) {!
  total = 0.0;!
  for (int i = 0; i < COUNT; ++i)!
    total += obfuscated(salaries[i]);!
  avg = total / len(salaries);!
  p_avg = ...;!

}!

How to verify a !
probabilistic assertion!
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passert e, p, c!

float obfuscated(float n) {!
  return n + gaussian(0.0, 1000.0);!
}!
float average_salary(float* salaries) {!
  total = 0.0;!
  for (int i = 0; i < COUNT; ++i)!
    total += obfuscated(salaries[i]);!
  avg = total / len(salaries);!
  p_avg = ...;!

}!
?!

How to verify a !
probabilistic assertion naively!



passert e, p, c!

float obfuscated(float n) {!
  return n + gaussian(0.0, 1000.0);!
}!
float average_salary(float* salaries) {!
  total = 0.0;!
  for (int i = 0; i < COUNT; ++i)!
    total += obfuscated(salaries[i]);!
  avg = total / len(salaries);!
  p_avg = ...;!

}!

Bayesian network 
IR!

✓!

distribution extraction!
via symbolic execution! statistical!

optimizations!

verification!

How to verify a !
probabilistic assertion efficiently!



gpswalk!
salary!
salary-abs!
kmeans!
sobel!
hotspot!
inversek2j!

sensing!

privacy!

approximate!
computing!

Probabilistic Assertion Verification 
Evaluation!
!
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24× faster than baseline verifier on average

Mostly analysis time
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Other !
Probabilistic !

Programming Languages!



BUGS, Church, Infer.NET, …
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Probabilistic programming!

Uncertain<T> helps developers without statistics PhDs.




Ed Lazowska http://lazowska.cs.washington.edu/Wenk.pdf!

A Modern View of Computing!



Accuracy, Efficiency, & !
Programmer Productivity !

The Uncertain<T> programming model, types, 
and operators help programmers reason about 
error in estimates and improve their accuracy. !

Probabilistic Assertions express correctness 
properties of these programs. Our verifier 
accurately and efficiently checks them.!



Collaborators!
Todd Mytkowicz, Microsoft


James Bornholt, ANU & UW


Na Meng, The University of Texas at Austin


Adrian Samspon, The University of Washington, Seattle


Luis Ceze, The University of Washington, Seattle


Dan Grossman, The University of Washington, Seattle




A Byte of My Story!



A Byte of My Story!

ACM Fellow 

Congressional Testimony 

Mentors 

Family 



Success, Failure, and Learning !

   Rejected job applications 

   1984 (all), 1993 (8 of 11), 2011 (4 of 8)


   Failed PhD qualifying exam

   Rejected first three grant applications

   Rejected 3 times my most cited paper

   Rejected papers, grants, papers, …




learn & persist!
!



Thank you!!


