
Uncertain<T>!
Programming with Estimates!

Microsoft Research!
Kathryn S McKinley!

Uncertainty is everywhere!

Sensors!

approximate edge detection

Approximate computing!

x0

x1

xD

z0

z1

zM

y1

yK

w

(1)
MD

w

(2)
KM

w

(2)
10

hidden units

inputs

outputs

Machine learning!

But we lack abstractions to help developers
reason about uncertainty!

24 mph

Usain Bolt is fast!

59 mph

But James is faster… !

Programming with Estimates:!
Challenges !

Estimates are noisy

Improving estimates requires domain knowledge

What do these programs mean?

Loc	
 lastloc	
 =	
 GPS.GetLocation();	

double	
 accuracy	
 =	
 GPS.GetAccuracy();	

Map.DrawCircleWithCenter(lastloc,	
 accuracy);	

	

	

	

GPS locations!

Windows
Phone!

95% confidence interval!
σ = 33 m!

Android!
68% confidence interval!
σ = 39 m!

Which is more accurate?!

	

Loc	
 lastloc	
 =	
 GPS.GetLocation();	

Sleep(5);	

Loc	
 currloc	
 =	
 GPS.GetLocation();	

double	
 dist	
 =	
 GPS.Distance(currloc,	
 lastloc);	

double	
 speed	
 =	
 dist	
 /	
 5;	

if	
 (speed	
 >	
 4)	
 print("Great	
 job!");	

print(speed,	
 accuracy);	

Computing Speed from GPS!

Great	
 job!!
Great	
 job!!

Great	
 job!!
Great	
 job!!

Great	
 job!!

Great	
 job!!
Great	
 job!!

Great	
 job!!

Problems!
Using estimates as facts introduces errors

Computation compounds error

Boolean conditionals on probabilistic data
introduce false positives and false negatives

Adding domain knowledge is adhoc and
fragile

Uncertain<T>!
!

Programming Model

	

	

Uncertain<Loc>	
 lastloc	
 =	
 GPS.GetLocation();	

Sleep(5);	

Uncertain<Loc>	
 currloc	
 =	
 GPS.GetLocation();	

Uncertain<double>	
 dist	
 =	
 GPS.Distance(currloc,	
 lastloc);	

Uncertain<double>	
 speed	
 =	
 dist	
 /	
 5;	

	

	

if	
 ((newSpeed	
 >	
 4).Pr(0.9))	
 print("Great	
 job!");	

print(speed,	
 accuracy);	

Speed with Uncertain<T>!

	

	

Uncertain<Loc>	
 lastloc	
 =	
 GPS.GetLocation();	

Sleep(5);	

Uncertain<Loc>	
 currloc	
 =	
 GPS.GetLocation();	

Uncertain<double>	
 dist	
 =	
 GPS.Distance(currloc,	
 lastloc);	

Uncertain<double>	
 speed	
 =	
 dist	
 /	
 5;	

Uncertain<double>	
 walkPrior	
 =	
 new	
 Uncertain<double>	
 (()=>	
 	
 	
 	
 	

	
 SamplePrior(0	
 mph,	
 10	
 mph,	
 accuracy));	

Uncertain<double>	
 newSpeed	
 =	
 speed	
 #	
 walkPrior;	

if	
 (newSpeed	
 >	
 4).Pr(0.9))	
 print("Great	
 job!");	

print(speed,	
 accuracy);	

Speed with Uncertain<T>!

0

10

20

30

40

50

60

Time

Sp
ee

d
(m

ph
)

 GPS speed (95% CI)
 Improved speed (95% CI)

 Uncertain<T>!
 !

Implementation

Semantics!

Uncertain<double>	
 Z	
 =	
 X	
 +	
 Y	

Z is a random variable we represent as a distribution

X

Y
 Z=X+Y

is a sample of X

is a sample of Y

is a sample of X+Y *

If

and

then

x

y

x+y

* if X and Y are independent

Sampling functions return random samples

Simple computations

Represent arbitrary distributions

Sampling is approximate

Later: how Uncertain<T> learned to love approximation,
and you can too

✓!

✓!

✗!

D	
 =	
 A	
 /	
 B"
E	
 =	
 D	
 –	
 C	

Bayesian network representation

-

C/

E

BA

D

Sampling function for E recursively samples children

is a sample of X

is a sample of Y

is a sample of X+Y *

If

and

then

x

y

x+y

* Only if X and Y are independent.

A	
 =	
 X	
 +	
 Y	

B	
 =	
 A	
 +	
 X	

(X,Y independent)

A and B depend on X – not independent!

+

X+

B

XY

A

+

+

B

XY

A

Uncertain<Loc>	
 lastloc	
 =	
 GPS.GetLocation();	

Sleep(5);	

Uncertain<Loc>	
 currloc	
 =	
 GPS.GetLocation();	

Uncertain<double>	
 dist	
 =	
 GPS.Distance(currloc,	
 lastloc);	

Uncertain<double>	
 speed	
 =	
 dist	
 /	
 5;	

if	
 (speed	
 >	
 4)	
 print("Great	
 job!");	

Speed with Uncertain<T>!

Hypothesis Test!

if	
 (speed	
 >	
 4)	
 print("Great	
 job!”)	

0 2 4 6 8 10
Speed (mph)

4 mph

0 2 4 6 8 10
Speed (mph)

Pr[Speed > 4]

More likely than not that Speed > 4?

> 0.5?

if	
 (speed	
 >	
 4)	
 print("Great	
 job!”)	

if	
 (speed	
 >	
 4).Pr(0.9)	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print("Great	
 job!”)	

4 mph

0 2 4 6 8 10
Speed (mph)

Pr[Speed > 4]

At least 90% likely that Speed > 4?

> 0.9?

Pr[Speed > 4] > 0.5

approximate

HA:

Pr[Speed > 4] ≤ 0.5
H0:
null hypothesis

alternate hypothesis

How many samples?
 Too many = too slow

Too few = too noisy

Sequential sampling: sample size depends on progress

if	
 (speed	
 >	
 4)	
 print("Great	
 job!”)	

Uncertain<T>!
!

Mitigates Bugs from Random Error

Sobel(p)! 0.4940!

Edge detection!

0.4940!
3.4% average error!

Approximate edge detection!

What is the gradient at pixel p?!

Sobel(p)! 3.4% average
training error!

Is there an edge at pixel p?!

if	
 (Sobel(p)	
 >	
 0.1)	

	
 	
 	
 	
 EdgeFound();!

36% false positives
on the same data!!

Approximate edge detection!

Computation compounds uncertainty!!

if	
 (Sobel(p)	
 >	
 0.1)	

	
 	
 	
 	
 EdgeFound();!

Single output0.1

0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

36% false positives!!

Is there an edge at pixel p? !

True value Single output0.1

0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

36% false positives!!if	
 (Sobel(p)	
 >	
 0.1)	

	
 	
 	
 	
 EdgeFound();!

Is there an edge at pixel p? !

True value Single output0.1

0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

36% false positives!!

Pr[Sobel(p) > 0.1] = 70%

if	
 (Sobel(p)	
 >	
 0.1)	

	
 	
 	
 	
 EdgeFound();!

Is there an edge at pixel p? !

60%

80%

100%

0.5 0.6 0.7 0.8 0.9
Conditional threshold

Pr
ec

is
io

n/
R

ec
al

l (
%

)

α

Pr[Sobel(p) > 0.1] > α!

Naive Precision

Naive Recall

60%

80%

100%

0.5 0.6 0.7 0.8 0.9
Conditional threshold

Pr
ec

is
io

n/
R

ec
al

l (
%

)

α

Higher precision"
= fewer false positives

Higher recall"
= fewer false negatives

Pr[Sobel(p) > 0.1] > α!

Naive Precision

Naive Recall

60%

80%

100%

0.5 0.6 0.7 0.8 0.9
Conditional threshold

Pr
ec

is
io

n/
R

ec
al

l (
%

)

Uncertain<T>
Precision
Recall

α

Higher precision"
= fewer false positives

Higher recall"
= fewer false negatives

Pr[Sobel(p) > 0.1] > α!

Uncertain<T>!
!

Mitigates Bugs from Random Error

Many Estimates are Inherently Noisy!

Add Domain Knowledge

!

GPS Navigation

Driving on a road (or not!)!

Driver is likely on a road!

GPS

GPS + road snapping

0.00

0.05

0.10

0.15

0.20

0.25

Location

D
en
si
ty

Likelihood

Incorporate Domain Knowledge!
!
!

0.00

0.05

0.10

0.15

0.20

0.25

Location

D
en
si
ty

Prior
Likelihood

Pr[H|E] =
Pr[E|H] Pr[H]

Pr[E]

1

posterior
likelihood prior

Incorporate Domain Knowledge!
!
!
I am on a road

Pr[H|E] =
Pr[E|H] Pr[H]

Pr[E]

1

posterior
likelihood prior

0.00

0.05

0.10

0.15

0.20

0.25

Location

D
en
si
ty

Prior
Likelihood
Posterior

Incorporate Domain Knowledge!
!
!
I am on a road

Incorporate Domain Knowledge!
!
!

Adding Context!
New operators and semantics

>! Conditional distribution operator

Bayes operator

Implementation

Sequential likelihood reweighting (new)

Automatically picks sample size!

Forward inference for imperative

programming languages! !

//	
 find	
 relevant	
 roads	

Uncertain<Point>	
 roadPrior	
 =	
 new	
 uncertain<Point>(()=>	

SamplePrior(location,	
 accuracy,	
 radiusFactor,	
 weight))	
 	

	

//	
 improve	
 location	
 estimate	

Uncertain<Point>	
 NewLocation	
 =	
 GPSLikelihood	
 #	

roadPrior	

	

Road Snapping Adding Context!

Point	
 SamplePrior	
 (Point	
 location,	
 double	
 accuracy,	
 	

	
 	
 	
 	
 	
 	
 	
 double	
 radiusFactor,	
 double	
 weight)	
 {	

	
 //	
 find	
 relevant	
 roads	

	
 Double	
 radius	
 =	
 radiusFactor	
 *	
 accuracy;	

	
 Road[]	
 segments	
 =	
 NearbySegments(roads,	
 location,	

radius)	
 	

	
 //	
 Generate	
 random	
 sample	
 according	
 to	
 weight	

	
 If	
 (Random.NextDouble()	
 <	
 1	
 –	
 1/(1+wieght))	

	
 	
 return	
 SamplePoint(segments)	
 	

	
 else	
 return	
 SampleUniform(location,	
 accuracy);	

}	

Point	
 SamplePoint(Road{}	
 segments)	
 {	

	
 Road	
 segment	
 =	
 WeightedSample(segments,	
 (s)	
 =>	

s.length)	

	
 Return	
 SampleUniform(segment);	
 	

Road Snapping Sampling!

How should programmers reason!
about probabilistic programs?!

assert file != NULL!

test!
verify!

check!

assert !e!
e must hold on every execution!

assert !e!
e must hold on every execution!

≈! Approximate Computing!
The approximate
image is close to
the precise version!

k-means clustering is
likely to converge on
unreliable hardware!

mostly on the road!
Mobile and Sensing!Obfuscation for Privacy!

obfuscated data is still
useful in aggregate!

assert !e!
e must hold on every execution!

≈! Approximate Computing!
The approximate
image is close to
the precise version!

k-means clustering is
likely to converge on
unreliable hardware!

mostly on the road!
Mobile and Sensing!Obfuscation for Privacy!

obfuscated data is still
useful in aggregate!

Assert !e!
e must hold on every execution!
assert file != NULL!e!
e must hold on every execution!

Traditional assertions are insufficient!
for programs with probabilistic behavior!

true_avg = average(salaries)!
private_avg = !
 average(obfuscate(salaries))!
assert true_avg - private_avg!
 <= 10,000!

Assertions are insufficient for
data obfuscation!

true_avg = average(salaries)!
private_avg = !
 average((salaries))!
assert true_avg - private_avg!
 <= 10,000!

probability
distribution!

obfuscate!

Assertions are insufficient for
data obfuscation!

assert!e!

Assertions!

assert!e!p! , p, c!

Probabilistic assertion!

assert!e!p! , p, c!

e must hold with probability p!
at confidence c!

Probabilistic assertion!

assert!e!p! , p, c!

test?!
verify?! check?!

Probabilistic assertion!

pr
ob

ab
ili

st
ic

pr
og

ra
m
!

?!passert e, p, c!

float obfuscated(float n) {!
 return n + gaussian(0.0, 1000.0);!
}!
float average_salary(float* salaries) {!
 total = 0.0;!
 for (int i = 0; i < COUNT; ++i)!
 total += obfuscated(salaries[i]);!
 avg = total / len(salaries);!
 p_avg = ...;!

}!

How to verify a !
probabilistic assertion!

pr
ob

ab
ili

st
ic

pr
og

ra
m
!

passert e, p, c!

float obfuscated(float n) {!
 return n + gaussian(0.0, 1000.0);!
}!
float average_salary(float* salaries) {!
 total = 0.0;!
 for (int i = 0; i < COUNT; ++i)!
 total += obfuscated(salaries[i]);!
 avg = total / len(salaries);!
 p_avg = ...;!

}!
?!

How to verify a !
probabilistic assertion naively!

passert e, p, c!

float obfuscated(float n) {!
 return n + gaussian(0.0, 1000.0);!
}!
float average_salary(float* salaries) {!
 total = 0.0;!
 for (int i = 0; i < COUNT; ++i)!
 total += obfuscated(salaries[i]);!
 avg = total / len(salaries);!
 p_avg = ...;!

}!

Bayesian network
IR!

✓!

distribution extraction!
via symbolic execution! statistical!

optimizations!

verification!

How to verify a !
probabilistic assertion efficiently!

gpswalk!
salary!
salary-abs!
kmeans!
sobel!
hotspot!
inversek2j!

sensing!

privacy!

approximate!
computing!

Probabilistic Assertion Verification
Evaluation!
!

0.0

0.2

0.4

0.6

0.8

1.0

1.2
analyze sample

tim
e

re
la

tiv
e

to
 b

as
el

in
e

gpswalk! salary! salary-abs! kmeans! sobel! hotspot! inversek! h.mean!
B! B! B! B! B! B! B! B!

baseline!

Time vs Stress Testing!

0.0

0.2

0.4

0.6

0.8

1.0

1.2
analyze sample

tim
e

re
la

tiv
e

to
 b

as
el

in
e

gpswalk! salary! salary-abs! kmeans! sobel! hotspot! inversek! h.mean!
B! N! B! N! B! N! B! N! B! N! B! N! B! N! B! N!

baseline!

no statistical optimizations!

Time vs Stress Testing!

24× faster than baseline verifier on average

Mostly analysis time

0.0

0.2

0.4

0.6

0.8

1.0

1.2
analyze sample

tim
e

re
la

tiv
e

to
 b

as
el

in
e

gpswalk! salary! salary-abs! kmeans! sobel! hotspot! inversek! h.mean!
B! N! O! B! N! O! B! N! O! B! N! O! B! N! O! B! N! O! B! N! O! B! N! O!

optimized!

Time vs Stress Testing!

Other !
Probabilistic !

Programming Languages!

BUGS, Church, Infer.NET, …

x0

x1

xD

z0

z1

zM

y1

yK

w

(1)
MD

w

(2)
KM

w

(2)
10

hidden units

inputs

outputs

Probabilistic programming!

Uncertain<T> helps developers without statistics PhDs.

Ed Lazowska http://lazowska.cs.washington.edu/Wenk.pdf!

A Modern View of Computing!

Accuracy, Efficiency, & !
Programmer Productivity !

The Uncertain<T> programming model, types,
and operators help programmers reason about
error in estimates and improve their accuracy. !

Probabilistic Assertions express correctness
properties of these programs. Our verifier
accurately and efficiently checks them.!

Collaborators!
Todd Mytkowicz, Microsoft

James Bornholt, ANU & UW

Na Meng, The University of Texas at Austin

Adrian Samspon, The University of Washington, Seattle

Luis Ceze, The University of Washington, Seattle

Dan Grossman, The University of Washington, Seattle

A Byte of My Story!

A Byte of My Story!

ACM Fellow

Congressional Testimony

Mentors

Family

Success, Failure, and Learning !

 Rejected job applications

 1984 (all), 1993 (8 of 11), 2011 (4 of 8)

 Failed PhD qualifying exam

 Rejected first three grant applications

 Rejected 3 times my most cited paper

 Rejected papers, grants, papers, …

learn & persist!
!

Thank you!!

