Uncertain<T>
Programming with Estimates

Kathryn S McKinley

Microsoft Research

Uncenrtainty is everywhere

Sensors Machine learning Approximate computing

hidden units

' Pause | Stop

But we lack abstractions to help developers
reason about uncertainty

Home

Jake Van Damme

DURATION DISTANCE

00:23:43 2.59

PACE " AVG. SPEED
| 08:53 ™ 6.5
ALTITUDE ** CALORIES

ft 10 kCal 354

Pause | Stop

Usain Bolt is fast

e e
S . AN . o [LONR
EURU TR b g
e o 'y

24 mph

But James Is faster...

Home
=

Jake Van Damme
DURATION DISTANCE
00:23:43 2.59
h:m:s. mi

PACE ** AVG. SPEED

6.5
354

Pause | Stop

ALTITUDE *** CALORIES
f 0 <

Programming with Estimates:
Challenges

=stimates are noisy
Improving estimates requires domain knowledge

What do these programs mean?

GPS locations

Loc lastloc = GPS.GetLocation();

double accuracy = GPS.GetAccuracy();

Map.DrawCircleWithCenter(lastloc, accuracy);

S WV PN

.
NE 40th St

ramesy Karaie 1 1 V193U T VA Jacv 19304
14808 usss @ T NE 40th St
NE 40th St E NE 40th \\
Downey —
Chiropractic = ¢ s % \\
Center (3] organic salon E]
1 l|
g Microsoft _ 4 Microsoft
_ Studio B i Studio A
Microsoft | O
- Microsoft Studio E :
g Studio F T
NE 39th g > MS Trall Exit = A
3 Y\ W
$ 2\ \ Pedal Dynan
, ol W Bike S
/ g \ \ *
:\‘ |' l' -—
NE 38th St l : . RN 2 ".
R) o Spitfiwe Grill = e AW\ ¥
NE 37th PI) . d' ‘% NN \ \ |)
‘u .’ / || |' ;
1 ‘T The b . "} S 'l' l'
& . a g | | " %
Vitamin - h Z Gy |. | y J
and Beauty icroso = 2 S
store online! i Studio C X0 q‘
N
= l
Vi l'
< l|
; E n'f.'
¥ Y 7 NN
4, 450 o E . Microsoft ' l‘
s E g o Studio D i / !
I8 < 3
- ‘ : Microsoft /4 ,g ' |
| Visitor Cen ® , /
NE 36th St VAN T z |
| , : .)
K /
: ///
"‘}/
14800 b qasc0 | |
Town NE 35th St i NE 36th St | /
e g / f'
i Studio X /
< L /
z 1 & / [
m v Y
Microsoft df / / / Microsoft
Building 112 ‘% / // / Building 44
L] i L) / y
w Microsoft
= Building 111 /
(o)) Micresoft
| & Buiding 115
g - Honeywell

/ /
Aetospace

Which is more accurate?

Windows
68% confidence interval
Phone e

95% confidence interval
oc=33m

Computing Speed from GPS

Loc lastloc = GPS.GetLocation();
Sleep(5);
Loc currloc = GPS.GetLocation();

double dist = GPS.Distance(currloc, lastloc);
double speed = dist / 5;

if (speed > 4) print("Great job!");

print(speed, accuracy);

60

— GPS speed (95% ClI)

50

40

Speed (mph)
W
o

ireat job!

Dl

Great job!
iob!
Great job! Great job! GPéZT J:b: o1
: reat job!
Great job! Great job!

I

i

oy

Time

Problems

Using estimates as facts introduces errors
Computation compounds error

Boolean conditionals on probabillistic data
INntroduce false positives and false negatives

Adding domain knowledge is adhoc and
fragile

Uncertain<T>

Programming Model

Speed with Uncertain<T>

Uncertain<Loc> lastloc
Sleep(5);
Uncertain<Loc> currloc

Uncertain<double> dist

GPS.GetLocation(); "wun{

GPS.GetLocation();

GPS.Distance(currloc, lastloc);

Uncertain<double> speed = dist / 5;

if ((newSpeed > 4).Pr(0.9)) print("Great job!");

print(speed, accuracy);

Speed with Uncertain<T>

Uncertain<Loc> lastloc
Sleep(5);
Uncertain<Loc> currloc

Uncertain<double> dist

GPS.GetLocation();

NE 36#’) g t

GPS.GetLocation();

GPS.Distance(currloc, lastloc);

Uncertain<double> speed = dist / 5;

Uncertain<double> walkPrior = new Uncertain<double> (()=>

SamplePrior(@ mph, 10 mph, accuracy));

Uncertain<double> newSpeed = speed # walkPrior;

if (newSpeed > 4).Pr(0.9)) print("Great job!");

print(speed, accuracy);

60

—— GPS speed (95% Cl)
— Improved speed (95% Cl)

50

40 f .

Speed (mph)
S
|
\

20 | Bl - a B B

10

Uncertain<T>

Implementation

Semantics

Uncertain<doubley> Z = X + Y

/Z 1S a random variable we represent as a distribution
X

If x
and y
then x+y

IS a sa
IS a sa
IS a sa

P
P

P

e of X
eofY
e of X+Y~

*1f Xand Y are independent

Sampling functions return random samples
v/ Simple computations
v’ Represent arbitrary distributions
X Sampling is approximate

Later: how Uncertain< 7> learned to love approximation,
and you can too

D =A /B
D - C

Tl
|

Bayesian network representation

Sampling function for E recursively samples children

f X IS asa
and y IS a sa
then x+y Is a sa

mp
mp

mp

*Only if Xand Y are independent.

A= X+Y
B =A+ X

e of X
eofY
e of X+Y *

(X,Y Independent)

A and B depend on X — not independent!

Speed with Uncertain<T>

Uncertain<Loc> lastloc GPS.GetLocation();
Sleep(5);

Uncertain<lLoc> currloc

GPS.GetlLocation();

Uncertain<double> dist = GPS.Distance(currloc, lastloc);
Uncertain<double> speed = dist / 5;

if (speed > 4) print("Great job!");

\
Hypothesis Test

if (speed > 4) print("Great job!”)

0 2 4 6 .8 10

Speed (mph)

if (speed > 4) print("Great job!”)

4 mph

PriSpeed > 4]|> 0.57 |

0 2 4 6 8 10
Speed (mph)

More likely than not that Speed > 47

if (speed > 4).Pr(0.9)
print("Great job!?”)

4 mph
Pr[Speed > 4] > 0.97?

0 2 4 6 8 10
Speed (mph)

At least 90% likely that Speed > 47

if (speed > 4) print("Great job!”)

null hypothesis Hg: PriSpeed > 4] < 0.5
alternate hypothesis H,: PriSpeed > 4] > 0.5

\ J

approximate

‘00 many = too slow
Too few = too noisy

Sequential sampling: sample size depends on progress

How many samples”?

Uncertain<T>

Mitigates Bugs from Random Error

Edge detection

\Y8 T

-> . -» Sobel(p) =»> 0.4940 =»

Approximate edge detection

=» 0.4940 =»

3.4% average error

Approximate edge detection

What is the gradient at pixel p*7

Sobel(p) 3.4% average
training error

s there an edge at pixel p*?

if (Sobel(p) > 0.1) 36% false positives
EdgeFound(); on the same datal

Computation compounds uncertainty!

Is there an edge at pixel p?

if (Sobel(p) > 0.1) 36% false positives!
EdgeFound() ;

0.1 :Single output

|
0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

Is there an edge at pixel p?

if (Sobel(p) > 0.1) 36% false positives!
EdgeFound() ;

0.1 :Single output

| |
0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

Is there an edge at pixel p?

if (Sobel(p) > 0.1) 36% false positives!
EdgeFound() ;

0.1 :Single output

Pr[Sobel(p) > 0.1] = 70%

| |
0.00 0.05 0.10 0.15 0.20 0.25
Value of Sobel operator

100%+

80% -

Precision/Recall (%)

60% -

0.5

0.6

0.7 0.8
Conditional threshold o

S~

Pr[Sobel(p) > 0.1] > a

0.9

00/ Naive Recall

% I Y NS o b st S S RSN
Higher recall
= fewer false negatives

S

= 80%:

O

D

o

~~

C

ke,

D

O 1 0 - . . .

g% — ngher precision Naive Precision

= fewer false positives

0.5 0.6 0.7 0.8 0.9
Conditional threshold «

S~

Pr[Sobel(p) > 0.1] > a

Naive Recall

100% T+ b = = —— —o———0 - -
Higher recall
= fewer false negatives
o
= s Uncertain<T>
g 80%- o Precision
8 4 Recall
0C
S~
-
O
D
© T T T e U
ghj — H|gher precision Naive Precision
= fewer false positives
0.5 0.6 0.7 0.8 0.9

Conditional threshold «

S~

Pr[Sobel(p) > 0.1] > a

Uncertain<T>

Mitigates Bugs from Random Error

Many Estimates are Inherently Noisy!
Add Domain Knowledge

GPS Navigation

PS5

PS5

Driver Is likely on a road!

Driving on a road (or not!)

NE 8th St

road snapping

NE 8th St

Incorporate Domain Knowledge

0.25

0.20

=
—
o

Density

0.05

0.00

- | jkelihood

Location

Incorporate Domain Knowledge

| am on a road

0.25

Prior
Likelihood
0.20
> 0.15
‘n
C
()
0 0.10
0.05
0.00
Location
, likelihood prior
posterior J —
S Pr[E|H] Pr[H]

Pr[H|E] =

Pr|E]

Incorporate Domain Knowledge

| am on a road

0.25

= Prior
Likelihood
wes - Posterior
0.20
*2,0.15
‘n
C
()
0 0.10
0.05
0.00
Location
, likelihood prior
posterior J —
S Pr[E|H] Pr[H]

Pr[H|E] =

Pr|E]

Incorporate Domain Knowledge

Adding

Context

New operators and semantics
> Conditional distribution operator

Bayes operator

Implementation

Sequen

1al likelihood reweighting (new)

Automa

ically picks sample size!

Forward inference for imperative
programming languages!

Road Snapping Adding Context

// find relevant roads
Uncertain<Point> roadPrior = new uncertain<Point>(()=>
SamplePrior(location, accuracy, radiusFactor, weight))

// 1mprove location estimate
Uncertain<Point> NewLocation = GPSLikelihood #
roadPrior

Road Snapping Sampling

Point SamplePrior (Point location, double accuracy,
double radiusFactor, double weight) {
// find relevant roads
Double radius = radiusFactor * accuracy;
Road|[| segments = NearbySegments(roads, location,
radius)
// Generate random sample according to weight
I+ (Random.NextDouble() < 1 - 1/(1+wieght))
return SamplePoint(segments)
else return SampleUniform(location, accuracy);
¥
Point SamplePoint(Road{} segments) {
Road segment = WeightedSample(segments, (s) =>
s.length)
Return SampleUniform(segment);

How should programmers reason
about probabilistic programs?

assert file != NULL

lest check

yerify

assert e

e must hold on every execution

Approximate Computing

~ The approximate k-means clustering is
~ image is close to likely to converge on

the precise version unreliable hardware

assert e

e must hold on every execution

Mobile and Sensing
mostly on the road

Obfuscation for Privacy

obfuscated data is still
useful in aggregate

Approximate Computing

~ The approximate k-means clustering is
~ image is close to likely to converge on

the precise version unreliable hardware

Traditional assertions are insufficient
for programs with probabilistic behavior

Mobile and Sensing
mostly on the road

Obfuscation for Privacy

obfuscated data is still
useful in aggregate

Assertions are insufficient for
data obfuscation

true avg = average(salaries)
private avg =
average (obfuscate(salaries))

assert true avg - private avg
<= 10,000

Assertions are insufficient for
data obfuscation

true avg = average(salaries)
private avg =
average (obfuscate(salaries))
aswert true avg - private avg
<= 10,000

probability
distribution

Assertions

assert e

Probabilistic assertion

passert e p, C

Probabilistic assertion

passert e p, C

e must hold with probability p
at confidence ¢

Probabilistic assertion

passert e, p, C

How to verify a
probabilistic assertion

probabilistic
program

float obfuscated(float n) {
return n + gaussian(0.0, 1000.0);
}
float average salary(float* salaries) ({
total = 0.0;
for (int i = 0; i < COUNT; ++i)
total += obfuscated(salaries[i]);
avg = total / len(salaries);

p avg = ...;

passert e, p, C

How to verify a
probabilistic assertion naively

float obfuscated(float n) {
return n + gaussian(0.0, 1000.0);
}
float average salary(float* salaries) ({
total = 0.0;
for (int i = 0; i < COUNT; ++i)
total += obfuscated(salaries[i]);
avg = total / len(salaries);
p_avg = ...;

passért e, p, c|?

probabilistic
program

How to verify a
probabilistic assertion efficiently

distribution extraction
via symbolic execution giatistical

optimizations

verification

fffffffffffffff (float n) {
return n + gaussian(0.0, 1000.0);
}
float average salary(float* salaries) {
total = 0.0;
for (int i = 0; i < COUNT; ++i)
total += obfuscated (salaries[i]);
avg = total / len (salaries);
p avg = ...;
passert e, p, C
}

Bayesian network
IR

Probabilistic Assertion Verification
Evaluation

sensing | gpswalk
salary
salary-abs
kmeans

privacy

approximate | sobel
computing hotspot

inversek2)j

Time vs Stress Testing

1.2

time relative to baseline

basehne

Wanalyze ®sample

1.0
0.8
0.6
0.4
0.2
0.0

gpswalk

salary salary -abs kmeans

sobel

hotspot mversek h mean

Time vs Stress Testing

®analyze ®sample
1.2

time relative to baseline

1.0
0.8
0.6
0.4
0.2
00 B N B N B N B N B N B N B N

B
/ gpswalk salary salary-abs kmeans sobel hotspot inversek h.mean

baseline

no statistical optimizations

Time vs Stress Testing

®analyze ®sample
1.2

1.0

0.8

0.6

0.4

0.2

time relative to baseline

0.0
B N O_B N O B N O B N O B N O B N O B N O B N O

gpswalk\ salary salary-abs kmeans sobel hotspot inversek h.mean

24x faster than baseline verifier on average
Mostly analysis time

Other
Probabilistic

Programming Languages

Probabilistic programming
BUGS, Church, Infer.NET, ...

Uncertain< /> helps developers without statistics PhDs.

A Modern View of Computing

Medicine and Global Health
Energy and

Education e
Sustainability

Scientific
Discovery \ \ /
natural ' mobile
\ language HCl Security and

processing ' Privacy

CORE ' machine

Transportation N sensors . CSE /' learning

S ——

b|g cloud

. dat3 computing
Neural %
Engineering /

Elder Care Accessibility

Technology for
Development

Interacting with the
Physical World

Ed Lazowska http://lazowska.cs.washington.edu/Wenk.pdf

Accuracy, Efficiency, &
Programmer Productivity

The Uncertain<T> programming model, types,
and operators help programmers reason about
error In estimates and improve their accuracy.

Probabilistic Assertions express correctness
properties of these programs. Our verifier
accurately and efficiently checks them.

Collaborators

Todd Mytkowicz, Microsoft

James Bornholt, ANU & UW

Na Meng, The University of Texas at Austin

Adrian Samspon, The University of Washington, Seattle
Luis Ceze, The University of Washington, Seattle

Dan Grossman, The University of Washington, Seattle

A Byte of My Story

A Byte of My Story

Success, Failure, and Learning

Rejected job applications
1984 (all), 1993 (8 of 11), 2011 (4 of 8)

Failed PhD qualifying exam

Rejected first three grant applications

Rejected 3 times my most cited paper

Rejected papers, grants, papers, ...

learn & persist

Thank you!

