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1. Introduction

We are engaged in research projects that explore the application of a large-
scale, multifunctional knowledge base to significant AI problems. The premise of
this work is the knowledge principle [LENAST, p 1173]:

“A system exhibits intelligent understanding and action at a high level of competence
primarily because of the specific knowledge that it can bring to bear: the concepts,
facts, representations, methods, models, metaphors, and heuristics about its domain
of endeavor.”

While there is strong evidence for the knowledge principle in expert systems,
very little research has explored the general applicability of a large-scale structured
knowledge base to a broad range of cognitive tasks. Current expert systems draw on
detailed knowledge of a narrow domain that is structured to support a single task
(e.g., identification [SHORT76]) and a single problem-solving method (e.g., heuristic
classification [CLAN85]). We believe that broader success in Al requires using
multifunctional knowledge bases to further explore the knowledge principle. Our
research in machine learning is an example of this exploration.

It is our premise that people learn by integrating new information into a
wealth of existing knowledge. Although this conjecture seems obvious, few research
projects have explored it. Most assume that the learner has little initial knowledge
and that acquired knowledge improves problem-solving but not learning.! As
discussed in Section 3, this assumption is contrary both to our intuitions about
learning and to theories in developmental psychology.

To provide a “laboratory” in which to conduct our research, we are construct-
ing a large-scale, structured knowledge base. We have chosen the domain of plant
anatomy, physiology, and development because it is representative of nonformal do-
mains yet is relatively self-contained. Like most domains, botany is concerned with
objects (i.e., plant anatomy) and processes that change objects (i.e., plant phys-
iology and development). Furthermore, botany incorporates both common sense
and expert knowledge. For example, the common sense that living things require
nutrients supports the expert knowledge that plant embryos consume endosperm.
Since botany is not a formal domain, the knowledge is descriptive, heuristic, and
incomplete. By contrast, knowledge in a formal domain is proscriptive, axiomatic,
and comprehensive.

Although many researchers share our conviction of the knowledge principle,
similar exploratory projects have been stalled by lack of resources. A primary
frustration has been the “stone age” knowledge-base construction and editing tools
that are available. We are constructing the Botany Knowledge Base using the
excellent tools of CYC, which are under development by Doug Lenat’s group at

b See, for example, the general model of learning in [Conr82, pp 325-334].



MCC. Another frustration has been the enormous investments of time and effort
required for construction. Each of the participants on our project has an individual
research agenda that is predicated on exploring the knowledge principle; we are

amortizing the expense of constructing the Botany Knowledge Base over a variety
of projects.

This report summarizes the results of our first eighteen months of research
activities. Section 2 describes our primary effort: construction of the Botany
Knowledge Base. To summarize the (roughly) 4,000 frames, we present the top-
level representations of objects and processes as well as the skeletal diagramming of
the knowledge base. Sections 3 and 4 introduce the first two research projects that
use the Botany Knowledge Base. Our first project studies knowledge integration,
or “learning at the fringes” of existing knowledge. One anticipated outcome of this
research is technology for semi-automatically extending a knowledge base [MUrRR88]
(i.e., a “next generation” Teiresias system [Davi77]). Our second project concerns
intelligent tutoring. In particular, we are exploring the dynamic generation of
teaching plans and student-customized explanations of domain knowledge. We
expect this research to improve intelligent tutoring by tailoring the presentation
of knowledge to the particular needs of the student with more precision than is
possible with current tutoring systems.

2. Constructing the Botany Knowledge Base

The primary activity during the first year of our research has been construct-
ing the knowledge base. Section 2.1 describes the focus of the knowledge base
and Section 2.2 discusses important lessons from the knowledge-base construction
project.

2.1 The Focus of the Botany Knowledge Base
There are seven broad subareas in botany: anatomy, physiology, development,
ecology, evolution, genetics, and taxonomy. We focus on the first three subareas:

e Anatomy is concerned with the component parts and subsystems of a plant.
For example, important parts include the stamen of a flower, the tap root
of the root system, and the chloroplasts of the shoot system. Crucial sub-
systems include the xylem network and the phloem network for distributing
water, nutrients, and energy-containing compounds throughout the plant.

e Physiology is concerned with the roles played by anatomical and cellular
components in processes important for life support, development, and re-
production of the plant. For example, important functions include photo-
synthesis, respiration, and hormonal regulation.

o Development is concerned with the changes affecting both the anatomy and
physiology of a plant. Developmental changes must be viewed on both a
small scale (e.g., the growth and differentiation of a cell) and a large scale
(e.g., the development of a mature plant from an embryo).



Generally, we focus on botanical objects and the functional processes in which they
participate.

The charts summarizing the Botany Knowledge Base are in the appendix.
They contain the top-level representations of objects and processes, and the skeleton
of the entire knowledge base.

2.2 Lessons from the Knowledge-base Construction Project

For the first three months of our project we attempted, with little success,
to extract botany knowledge from textbooks. Our primary frustration was that
textbook authors interleave multiple perspectives in a single description. Some
of the perspective shifts were along the lines given above: the subarea of botany
being emphasized and the developmental stage being described. Other perspective:
shifts were simplifications of domain knowledge. These “half-truths” are essential
for introducing or summarizing complex concepts but must be reconciled with
comprehensive perspectives.

More fundamentally, the implied relations among domain “facts” are often
difficult to identify and incorporate. These relations include the consequences,
implications, and support structure for each fact. The relations arise from the
interactions between each new fact and the wealth of existing knowledge; they
are crucial to integrating new information and to synthesizing a coherent overall
understanding.

For example, consider the following fact about plant photosynthesis: A plant
uses light energy to perform photosynthesis and produce photosynthate. Some of
the relations between this new information and the pre-existing knowledge provide
a support structure. These relations to existing knowledge (in bold print) might
include:

e Photosynthesis is a production process with the plant as the producer,
light as an energy source, and photosynthate as a product.
o Light energy is available in the plant environment.

e All living things require food, and plants produce their own food using
light energy. This explains why a plant dies if kept in the dark too
long.

Some of the relations elaborate the consequences of the new information.
These relations might include:

e Since photosynthate is matter, raw materials are necessary to build it.

e The rate of photosynthesis will depend partly on the availability of light
energy and raw materials.

o The plant must have some mechanism for assimilating (s.e., acquiring, dis-
tributing, and utilizing) light energy and raw materials for photosynthesis.



e There may be waste products from photosynthesis, and the plant must have
some mechanism for their disposal.

The search for relations between new information and existing knowledge can
reveal inconsistencies. For example, the early development of a plant includes its
embryo stage and emerging seedling stage. During these stages, the plant is without
sunlight. Relating this new information to existing knowledge predicts that the
young plant will die. Resolving this inconsistency requires additional knowledge of
material-acquisition methods appropriate for young plants.

From our frustration with “direct knowledge transfer” we learned that thor-
ough deliberation was required to represent each fragment of botanical knowledge.
We identified inconsistencies and disambiguated meanings, often by identifying mul-
tiple perspectives on the same issue. This is essential to the flexible use of the
knowledge base to support a range of cognitive tasks.

This flexibility is important to us. Most knowledge-based systems are in-
flexible because domain knowledge is included only if it is directly required for the
problem-solving task; the support structure for the knowledge is extraneous. Craft-
ing a knowledge base for a particular task, such as identification, sacrifices other
tasks, such as tutoring and learning. This is similar to program compilation, which
improves execution efficiency at the expense of modifiability and readability. As
with program decompilation, introducing support structure in a knowledge base is
very difficult.

The inflexibility of knowledge bases is apparent from current knowledge ac-
quisition tools, which exploit the specificity of a “target” knowledge base in sev-
eral ways. Some tools acquire knowledge by instantiating the model of a partic-
ular problem-solving method [Esur87] or task [Muse87, BENN85]. Others acquire
knowledge by debugging the knowledge base when problem-solving fails [Davi77,
Bare87]. Still others acquire knowledge by generalizing a set of examples to form
classification rules [QuiNg86, MIcHS0].

The Botany Knowledge Base is one of the first multifunctional knowledge
bases. A multifunctional knowledge base is not committed to any particular
problem-solving method or task. Rather, it encodes general knowledge of a domain
to support diverse methods and tasks. For example, a multifunctional knowledge
base for human physiology might be the substrate for expert programs that diag-
nose patients, tutor students, and organize reference materials. Automated tools for
helping construct a multifunctional knowledge base cannot exploit knowledge-base
specificity in the conventional ways.

The move to multifunctional knowledge bases is inevitable. The grid of
potential knowledge bases has three dimensions: domain, task, and problem-solving
method. Building knowledge-based systems for individual cells of this grid is both
costly and shortsighted. Growing interest in multifunctional knowledge bases is
evidenced by the first workshop on the topic [Work88] and several other projects,



such as CYC [LENA87], Fermi [LARKSS8], and Kreme [ABRE86]. Further evidence is
the use of general purpose knowledge representation languages and programming
environments such as the CYC tools and language [SHEP88, LENA8S], Framelit
[N1rE88], Opal [Muse87], and Kee [INTE84]. These languages are not biased toward
a particular problem-solving method. The next section describes our machine-
learning research in knowledge acquisition for multifunctional knowledge bases.

3. Research in Machine Learning

Machine-learning research is motivated by two goals: constructing knowledge-
based systems and modeling psychological theories of human learning [ConEg82,
CarB83, SiM083]. However, because considerable effort has been devoted to the
formalization of learning as concept formation (e.g., [MiTc82, QUIN83, MicHS0;
BAREST]), research results have demonstrated little progress toward these goals. We
believe that progress toward the goals of machine learning requires the definition and
exploration of tasks that better represent the general phenomenon of learning. We

propose the task of knowledge integration — the incorporation of new information
into existing knowledge.

Programs for concept formation offer negligible assistance with the construc-
tion of knowledge bases. These programs learn classification rules that summarize
training examples to identify new examples. Research in knowledge-based systems
is moving well beyond classification systems. As discussed above, current projects
emphasize flexible support of multiple tasks.

Furthermore, concept formation, as formalized in machine learning, is of minor
importance to theories of human learning. Learning tasks that assume little pre-
existing knowledge may be important to theories of early development,! but theories
of later learning emphasize the indispensable role of existing knowledge during
learning. For example, psychological theories of concept formation and classification
now emphasize the knowledge in which each concept is embedded [Murpr85, p 289]:

“... current ideas, maxims, and theories concerning the structure of concepts ... are

inadequate, in part, because they fail to represent intra- and inter-concept relations
and more general world knowledge. We propose a different approach in which attention
is focused on people’s theories about the world.”

A significant development in machine learning is recent work on explanation-
based learning that demonstrates the essential role of domain knowledge in concept

1 Researchers who believe concept formation is important to early development should demonstrate
the adequacy of concept formation to learning “primitive concepts;” unfortunately, research primar-
ily focuses on advanced concepts, such as disease categories [QUIN86, MicH87, KiBL87, BAREST], that
no one contends are learned by people via concept formation. An exception to this focus is work on
grammar learning (e.g., [WHARTT]); however, the results so far give little confidence that inductive
learning accounts for learning grammars of realistic size and complexity, and analysis of the task
reveals its inherent limitations [GoLp78].



formation [MiTc86, DEJo86]. Although we have gained considerable inspiration
from this research, we note two implicit assumptions limiting its progress toward
the two goals of machine learning. The first assumption is that an explanation is
a deductive proof. This assumption is appropriate to a few artificial domains, but
it ignores the complexity found in less formal domains and prevents knowledge-
level learning [DieT87]. The second assumption is that the the learner knows “just
enough” to form a single explanation. This assumption avoids issues of weighing
competing explanations, seeking unifying explanations, and controlling the search
for an explanation. Ironically, the carefully crafted lack of knowledge is a crucial
source of power for current explanation-based learning systems.

This section describes our initial efforts on research directed toward the goals
of machine learning. A tenet of our research is that learning is knowledge intensive
and involves establishing relationships between existing knowledge structures and
new information. Section 3.1 introduces the task of knowledge integration, our
steps toward a computational model, and the psychological basis for the learning
task. Section 3.2 describes an application of the computational model for semi-

automatically extending a knowledge base through discussion with a knowledge
engineer.

3.1 The Task of Knowledge Integration

Knowledge integration is the incorporation of new information into existing
knowledge. We believe that it is an active learning process involving three steps:
recognition, elaboration, and adaptation. Recognition identifies known concepts
that might relate to the new information. Elaboration establishes these relation-
ships while filling-in missing details of the new information and identifying conflicts
with existing knowledge. Adaptation modifies the learner’s knowledge to accom-
modate the elaborated information. Although it has received little attention in
machine learning, knowledge integration is central to psychological models of learn-
ing.

3.1.1 Recognition of New Information

For new information to be learned, it must include references to concepts
familiar to the learner [Havi74]. These references provide indices into the learner’s
existing knowledge to locate a place to record the new information. This is the
process of recognition. For example, learning from the statement The literacy rate
of Towa 1s 91% requires knowledge of Towa, literacy rate, and 91%, and that 91%
is a sensible value for literacy rate, which itself is a sensible attribute of JTowa.

Sometimes the learner has multiple perspectives for each referenced concept.
For example, perspectives for the concept Jowa might include: Towa as a geolog-
ical region, Jowa as an agricultural state, and Iowa as a political entity. When

integrating new information about Iowa, the learner must determine the relevent
perspective(s).



Therefore, recognition has two steps. When presented with new information,
a learner must:

1) Identify existing knowledge structures corresponding to the referenced con-
cepts.

2) ldentify relevant perspectives for each referenced concept.

Identifying the relevant existing knowledge structures provides an interpretive con-
text in which to integrate new information. The learner derives expectations from
the knowledge structures. Applying these expectations to new information involves
elaboration, which is discussed in the next section.

3.1.2 Elaboration of New Information

Elaboration is the embellishment of training; it results from the interaction of
new information and existing beliefs that have been retrieved during recognition.
Elaboration improves learning in three ways: it expands the information content of
the training; it promotes consistency in the extended knowledge; and, by establish-
ing more connections with prior knowledge, it enables new knowledge to be more
accessible for subsequent use. This section discusses each improvement.

First, elaboration expands new information by relating it to existing know-
ledge. Gagne illustrates this with the following example [GAGN85, p T7]: A student
is told In witro ezperiments show that Vitamin C increases the formation of white
blood cells. The student has prior knowledge that white blood cells destroy viruses
and that Vitamin C is taken to fight colds, that are caused by viruses. Elaboration
suggests that Vitamin C is capable of fighting colds because it stimulates creation
of white blood cells, which subsequently kill cold-causing viruses. This conclusion
was neither stated in the training nor previously known by the student. It arose
from the student’s effort to relate the new information to existing knowledge.

Second, elaboration identifies conflicts between new information and existing
knowledge. For example, consider telling a learner that President Nizon is a
Quaker.! This should trigger a greater response than simply recording Nixon's
religious affiliation. From prior knowledge of Quaker pacifism, the learner predicts
that Nixon is a dove. However, from prior knowledge of Nixon’s defense policies, the
learner predicts that Nixon is a hawk. Thus, elaboration reveals a conflict between
new information and existing knowledge.

Third, elaboration makes new information more accessible for subsequent
recall. For example, the student in Gagne’s example might be reminded that
Vitamin C increases white blood cell count by recalling the beliefs that Vitamin C
fights colds and white blood cells destroy viruses that cause colds. The justification

! This example is from [ToURST].



" find reasons

staTeMeNT: This plant looks as if it has died.

eLaBoraTION: Of course it died; it wasn’t producing food; all living things die without food.
make predictions

sTATEMENT: Plants absorb water through their roots.

BLABORATION: The water is distributed through the zylem network.
attribute details

stateMeNT: The Hispaniola is a fine schooner.

sLaBoraTioN: The Hispaniola probably has three masts, since it is a schooner.
identify principles

staTeMeENT: Consumers compete to purchase the desired goods.

BELABORATION: As demand goes up, then price goes up too.

Figure 1
Common Types of Elaboration

of Vitamin C fighting colds includes the belief that Vitamin C increases formation
of white blood cells.

The elaboration of new information is potentially unbounded. A goal of
our research is to identify frequently occurring classes of elaborations useful for
the construction of knowledge-based systems, such as attribution (i.e., inheriting
properties to a new concept from superordinate concepts) and continuation (s.e.,
predicting the outcome or temporal continuation of a process) [GaaN85]. A partial
list of elaboration types is presented in Figure 1 (adapted from [GaGN85, WEINTS]).

3.1.3 Adaptation of Existing Knowledge and New Information

The final step in our learning model is to modify the learner’s existing beliefs
to accommodate the elaborated training. This involves generalizing the argument
structures so that they apply to all sufficiently similar concepts. For example,
generalizing the elaboration of the Nixon information might produce the belief that
politicians’ defense policies are more heavily influenced by political affiliation than
by religion.

Modifications to the learner’s knowledge are not restricted to generalizations
of existing beliefs. Adding the generalized elaboration can introduce new relations,
or shift the applicability of existing beliefs. Generalizing or specializing are simply
two of many possible ways to shift the applicability of beliefs. In the Nixon example,
the belief that religious preference determines defense policy was weakened in the
case of politicians.

Contrast our approach to that of concept formation. Under concept forma-
tion, the statement President Nizon i3 a Quaker is a training instance in which
President Nixon is a positive example of the concept Quaker. Explanation-based
concept formation [MiTc86, DEJo86] would try to confirm Nixon’s religion, and
then generalize the representation of Quaker with the explanation’s weakest pre-
conditions. Similarity-based concept formation would probably fail because the

10



example lacks relevant attributes, but it might conclude that presidents are Quak-
ers, or that Nixons are Quakers. Neither learning method would reveal or resolve
the assertion’s irony.

3.1.4 Psychological Basis of Learning as Knowledge Integration

The view that learning involves relating new information to existing knowledge
is fundamental to contemporary educational psychology. It is central to both
Piaget’s general learning theory of assimilation and accommodation [P1aG46], and
to the Given-New Strategy for modeling learning from prose [Havi74]. It is the
foundation of the learning strategy hypothesis, a popular interpretation of numerous
empirical studies, which claims [MAYES0, p 770]:

“activities aimed at making the learner actively integrate new information with ex-
isting knowledge affect the encoding, storage, and eventual use of new material on
performance tests.”

This doctrine originated with the eighteenth-century philosopher and psychol-
ogist Herbart (1776-1841) [LaNG93, DEGA95, RAND10, MiLL79]. Herbart appears
to be the first to explicitly advocate the process of relating new information to ex-
isting knowledge, which he called apperception, as the central activity of learning,.
Herbart notes that successful learning involves a double apperception: relating new
observations to existing beliefs, and relating new explanations to existing laws and
theories (i.e., generalizing). These distinctions suggest the separate activities that
we call recognition, elaboration, and adaptation.

Contemporary educational psychology also stresses the importance of relating
new information to existing knowledge during learning [WEIN7T8]. Studies show
that relations are constructed by elaborating new information [GAGNTS8]. Studies
by Haviland and Clark indicate that readers elaborate to fill in missing details
in text, and that this elaboration is performed as information is encountered,
rather than only during recall, as in reconstructive memory [Havi74]. Studies by
Mayer [MAYES0] suggest two ways that elaboration enhances learning: by increasing
a student’s ability to recall information and by enabling the student to apply
new information in solving problems. Reder [REpE79, REDES2B] has found that
elaboration results in additional beliefs, either added to the learner’s knowledge
explicitly and directly accessible, or added implicitly and quickly computable.

3.2 An Application and Evaluation of Knowledge Integration

In this section, we discuss our application of knowledge integration to a
knowledge acquisition tool that helps extend a knowledge base. This application is
useful for two reasons. First, knowledge-base extension is a real problem confronting
knowledge engineers, and its solution has inherent utility. Second, knowledge-base
extension directly confronts the complexity of knowledge integration. The sources
of this complexity are the numerous, subtle relationships between new information
and existing knowledge that must be identified.

11



Our discussion centers on an example of knowledge integration that is repre-
sentative of the complex task of extending a knowledge base. A prototype imple-
mentation of our knowledge integration theory, called ProtoKI, has been completed
and has been successfully tested with this learning scenario. This example has been
simplified for presentation. For example, ProtoKI does not generate and parse natu-
ral language; this discourse has been converted from a language of frames, slots, and

values. We provide a complete description of the prototype and the implementation
of this learning scenario in [MURRSS].

In our discussion of the ProtoKI program, we first present the learning example
as a dialogue between ProtoKI and a knowledge engineer. Then, in Sections 3.2.1

through 3.2.3, we discuss this example in terms of recognition, elaboration, and
adaptation.

3.2.1 An Example of Knowledge Integration !

This example involves extending the Botany Knowledge Base with new in-
formation about plant seeds. The knowledge base already has information that
plant seeds contain nutritive tissue called endosperm, which is analogous to an egg’s
yolk. The plant embryo consumes the endosperm during its development inside the
seed. A knowledge engineer wishes to extend the knowledge base with a represen-
tation of nonendospermic seeds, a type of seed that contains no endosperm. The

task of ProtoKI is to interact with the knowledge engineer to integrate this new
information.

The knowledge engineer presents new information to ProtoKI:
Knowledge Engineer: “There is a class of seeds that have no endosperm.”

ProtoKI retrieves knowledge structures relevant to this new information. Us-
ing inference rules defined for the retrieved knowledge structures, ProtoKI forms
the expectation that the embryo in a nonendospermic seed will die of starvation.
It then attempts to confirm this expectation with the knowledge engineer:

ProtoKI: “These seeds do not give rise to healthy seedlings.”

Knowledge Engineer: “Explain.”

ProtoKI: “The embryo starves since the endosperm provides nutrients, and nu-
trients are essential for health and survival.”

Knowledge Engineer: “Yes, nutrients are essential; however, the embryo sur-
vives.”

1 This section forms the basis of a paper appearing in the Proceedings of the Knowledge Acquisition
for Knowledge-based Systems Workshop, Banff, Canada, November 6-11, 1988.



ProtoKI attempts to resolve the inconsistency between its expectations and
the assertion that embryos in nonendospermic seeds survive. One possible expla-
nation is that these embryos acquire nutrients from some other source. ProtoKI
searches for alternate ways an embryo-stage plant might acquire nutrients. A fo-
cused discussion with the knowledge engineer ensues that resolves the inconsistency
and extends the knowledge base.

ProtoKI: “Does the embryo acquire nutrients from photosynthesis?”

Knowledge Engineer: “Yes, the shoots of some plant embryos emerge from the
seed during germination and start producing photosynthate.”

As this example illustrates, ProtoKI integrates new information by deter-
mining its consequences. When inconsistencies are encountered, ProtoKI suggests
possible explanations to resolve them. This guides the acquisition of further know-
ledge.

The computational issues that arise during knowledge integration include
identifying knowledge relevant to new information, relating new information to
the relevant knowledge, and adapting the knowledge base to accommodate the new
information. The following three sections describe in greater detail how ProtoKI
performs these activities.

3.2.2 Recognition
ProtoKI begins knowledge integration by identifying relevant knowledge struc-
tures. In the previous example about seeds with no endosperm, ProtoKI must de-

termine which among the thousands of frames in the Botany Knowledge Base may
be affected in some interesting way.

To focus the search for knowledge relevant to new information, the representa-
tion of each object in the Botany Knowledge Base is structured with perspectives.
Each perspective is a partitioning of the knowledge base that describes an object in
a particular role. For example, one perspective of endosperm is Plant Food Source,
as shown in Figure 2. Other perspectives include: endosperm as a Product Of Re-
production, endosperm as a Contained Object, and endosperm as a Tazon Defining
Part. ProtoKI collects the perspectives for objects referenced by new information
and prompts the knowledge engineer to select which are appropriate.

A perspective is a semantic-net template that can be instantiated for hy-
pothetical objects. The instantiation of Plant Food Source for an endosperm is
presented in Figure 3. Collectively, these instantiated frames comprise a context
representing an endosperm in its role as a plant food source; this context is used to
simulate the effects of the new information about endosperm.

13



assimilator

destroyedAs

superProcess

decomposedIn

superProcess

enables

This semantic-net template defines the context relevant to an object in its role as a plant food source:
A plant food source must have a stage when it is destroyed and decomposed into nutrients.
This decomposition enables the nutrients to be assimilated by the plant.  The nested
subprocesses of assimilation are provision and acquisition.

Figure 2
The Perspective Plant Food Source

Embgyo001

assimilator

EmbryoNutrient
Endosperm001 Assimilation001

destroyedAs superProcess
EndospermDuring EmbryoNutrient
Breakdown001 Provision001
decomposedin superProcess
EmbryoNutrient
Endosperm s
Breakd 001 bl Acquisition
reakdown
enabies FromEndosperm001

Figure 3
The Context Created by Instantiating Plant Food Source

14



. When an entity is disabled, all of its developmental stages are disabled.

. When an entity is disabled, all the processes involving the entity are disabled.

. When a process is disabled, all the processes that its completion enables are disabled.

. When the known methods of acquiring some essential resource are disabled, the rate of
provisioning the resource is inadequate for survival.

> 00 DD

ot

. When the assimilation rate for some resource is unknown, it is the same as the provision rate.

<

. When nutrient assimilation is inadequate for survival, the assimilator is dying.
7. When a living entity is dying, the succeeding developmental stage is disabled.

Figure 4
Heuristic Rules Relevant to Endosperm as a Plant Food Source

Zygote001 predecessor Embryo001 Successor Seedling001
acquirerIn acquirern
ZygoteNutrient Seedling
Acquisition Photosynthesis001

FromParent001

This is the extension to the context of Figure 2, showing the developmental predecessor and
successor of Embryo 001 and their methods of nutrient acquisition.

Figure 5
The Context Extension

3.2.3 Elaboration

During recognition, ProtoKI has isolated the context in the knowledge base
most relevant to the new information. Next, during elaboration, ProtoKI deter-
mines how the new information interacts with existing knowledge within this con-
text. Elaboration involves applying inference rules to propagate the effects of the
new information throughout the context.

In the endosperm example, elaboration begins when ProtoKI asserts that the
endosperm is absent from the context by assigning value False to the slot enabled?
of Endosperm 001. This assignment triggers inference rules that determine the
consequences of seeds lacking endosperm. For example, without the endosperm,
the embryo cannot get enough nutrients to survive. The inference rules applicable
to this example are listed in Figure 4.

Through elaboration, ProtoKI concludes that the plant embryo is dying from
lack of nutrients. This triggers the instantiation of a second semantic-net template
defined for plants that are starving and in danger of dying. The context is expanded
to include the plant’s developmental stages immediately before and after its embryo

15



stage and how nutrients are acquired during each of these developmental stages.
Through continued elaboration, ProtoKI concludes that the plant’s seedling stage is
not reached because the plant dies during its embryo stage. The context extension
is presented in Figure 5.

An important function of elaboration is identifying incomnsistencies. These
occur when expectations of the knowledge base are violated by new information
or when two rules reach conflicting conclusions. Resolving inconsistencies involves
correcting the new information to comply with current expectations or adapting
the existing knowledge structures to accommodate the new information.

3.2.4 Adaptation

Elaboration can reveal inconsistencies in the knowledge base; the adaptation
step resolves them. An inconsistency can be introduced by inference rules used
during elaboration or by facts the knowledge engineer asserts. In the endosperm
example, an inconsistency is detected when the knowledge engineer asserts that

the embryos of nonendospermic seeds survive, correcting the prediction that these
embryos starve.

Resolving inconsistencies requires correcting explanations that support failed
expectations and constructing alternative explanations to account for new informa-
tion. When the knowledge engineer refutes the prediction that embryos of nonen-
dospermic seeds starve, ProtoKI inspects the explanation for this prediction to
determine its weakest premise. Rule 4 (from Figure 4) relies on a closed-world
assumption and is considered a relatively weak inference. Therefore, ProtoKI re-
tracts its conclusion and assumes Embryo Nutrient Provision 001 is adequate for
the embryo’s survival. This change propagates through the explanation, retracting
the belief that the embryo starves.

The original inconsistency has been resolved by assuming adequate nutrient
provision by the embryos of nonendospermic seeds. However, no alternative method
is known for plant embryos to acquire nutrients. ProtoKI seeks to construct an
explanation for the assumed nutrient acquisition using the following inference:

IF a resource provision is adequate for survival, but no acquisition method is known
THEN assume the acquisition method of the developmental successor is employed.

This rule suggests the embryos of nonendospermic seeds acquire nutrients by
photosynthesis, as is done by seedlings. However, this hypothesis introduces new
constraints on the embryos of nonendospermic seeds. For example, to acquire nutri-
ents by photosynthesis, the embryo must be a photosynthetic plant. Therefore, to
apply this inference, ProtoKI asserts that Embryo 001 is an instance of Photosyn-
thetic Plant. As a photosynthetic plant, the embryo inherits the following features:
its color is green, it contacts sunlight, and its composition includes chlorophyll.
In short, the plausibility of explaining the survival of nonendospermic embryos by
assuming they engage in photosynthesis is contingent on their contacting sunlight
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and containing chlorophyll. Confirming these assumptions leads to the acquisition
of further knowledge from the knowledge engineer.

3.2.5 Assessment of the Initial Results

The preceding example is representative of the complex knowledge-base exten-
sions that a knowledge integration tool should handle. Implementing this scenario
has provided several insights into the task of knowledge integration and our ap-

proach to automating it. In this section, we highlight the lessons derived from this
exercise.

Source of Power

KI uses the domain expertise of the knowledge base to determine the conse-
quences of new information. By contrast, other approaches to critiquing knowledge-
base extensions underutilize the existing knowledge. These include:

e Teiresias [Davi77] critiques new rules with rule models. Rule models record
correlations between antecedent terms and consequent terms of the existing
rule base. If a new rule violates a rule model, Teiresias suggests how the rule
can be modified to conform to the model.

e Knac [LEFK87] anticipates knowledge-base revisions with discourse cues and
a heuristic theory of knowledge acquisition. Knac is capable of predicting
which structures to revise when new information is ambiguous.

e Odysseus [WIiLk88] validates new rules with a confirmation theory. This
involves techniques to assess the quality of a new rule for subsequent problem
solving and to ensure its consistency against a set of test cases.

Each of these methods demonstrates the use of external knowledge or meta-
knowledge to evaluate new information. However, they cannot detect subtle incon-
sistencies introduced by knowledge-base revisions because they ignore the conse-
quences of new information on existing knowledge.

Source of Complexity

The first step of knowledge integration requires identifying existing knowledge
that might be affected by new information. This task is quite difficult because
of four complications. First, the inconsistencies introduced by knowledge-base
revisions are often implicit. Revealing them requires determining the consequences
of the new information using the system’s inference rules. However, computing
the deductive closure of a knowledge base is intractable. Second, the network
paths relating two frames may be quite long. Since these may lead to the “deep”
consequences of the new information, the paths must be pursued. Third, the
knowledge-base frames are densely interconnected. This precludes unfocused search
methods, such as spreading activation. Finally, since no fixed performance task is

assumed, we cannot simply consider the consequences of new information for a fixed
set of queries.

17



Limitations

Our implementation of a tool for knowledge integration ignores the issue of
selecting perspectives. For the next phase of development, we are designing an
agenda-based architecture to address this issue. Tasks on the agenda select per-
spectives and instantiate them. A perspective is selected for possible instantiation
when its degree of overlap with the current context exceeds an activation threshold.
Selected perspectives are ordered for instantiation by a heuristic measure of “inter-
estingness.” This is a function of the conflict level of inconsistencies contained in
those portions of the context that each perspective overlaps. This control mecha-
nism permits KI to conduct a best-first search through the deductive closure of the
extended knowledge base, either autonomously or under the user’s guidance.

Because knowledge integration assumes substantial domain knowledge, tools
for knowledge integration are limited. In particular, they are inappropriate dur-
ing the initial stages of knowledge-base development when the encoded domain
expertise 1s sparse.

4. Research in Intelligent Tutoring

Our second major project exploiting the Botany Knowledge Base concerns
intelligent tutoring. In particular, we are interested in knowledge representations
and processes for adapting teaching plans and explanations to the individual needs
of a student. The rigidity of past tutoring programs is due largely to the lack of
adaptable teaching plans and explanations. These depend on a rich knowledge of
the domain, the student’s understanding, and the available teaching mechanisms.
This section describes our proposed research and expected contributions, although
the research is just underway.

The goal of tutoring is improving the student’s understanding of a particular
domain. To achieve this goal the tutor must have a plan for presenting knowledge
in an organized fashion. An important part of this presentation is a set of standard
explanations that provide cohesion to the knowledge. Ideally, the tutor need never
change the teaching plan or the form of these standard explanations during the
tutorial session. However, in most sessions, the teacher cannot predict in advance
the student’s understanding at each stage of the interaction. Therefore, good tutors
can dynamically revise their teaching plans and generate novel explanations in
response to changing perceptions of the student’s knowledge.

Clearly, an Intelligent Tutoring System (ITS) would benefit from the ability to
adjust to the student’s current needs through the use of dynamic pedagogical plan-
ning and explanation generation. However, most ITSs either ignore teaching plans
and explanations entirely, or they employ ones that are preformulated. This means
that teaching plans cannot be dynamically modified to cope with unanticipated
student needs. Similarly, preformulated explanations lack sensitivity to changing

student needs and fail to take advantage of the inferential power of the domain
representation.
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The goal of the proposed research is to construct an ITS that provides two
fundamental enhancements to the current state of the art: dynamic pedagogical
planning and student-customized explanation generation. Because the enhance-
ments depend critically on a sophisticated student model, a secondary goal is de-

veloping a student modeling facility that provides a richer representation than those
in current I'TSs.

We intend to develop a dynamic planning facility that constructs plans for
teaching episodes. During the course of a tutoring session, some plans may fail
to achieve the intended goals, while others may be rendered unnecessary, either
because of certain changes in the student’s understanding or because of changes in
higher-level goals. In these cases, the system will be able to dynamically revise plans
to respond to the idiosyncratic flow of each session. Plan revision will be based on
the current contents of the student model, curricular information embedded in the
domain model, and a library of pedagogical strategies.

We intend to develop a dynamic explanation facility for constructing explana-
tions that should be more effective than those in current systems for two reasons.
First, the explanations will be generated directly from the representation of the
domain knowledge. This enables the system to provide a variety of explanations
expressing different shades of meaning. Second, they will be more customized to the
student because the explanation generator will have access to a rich student model.
This allows the presentation of explanations that are more easily understood by
the student. Since the system can generate a multitude of explanations for a given
phenomenon, and it can use a more precise understanding of the student’s current
knowledge state to generate the explanations, the resulting explanations should
address the student’s needs more specifically.

In combination, a dynamic planner and explanation generator should improve
student learning at two levels. At the global level, the dynamic planner can react to
changing student needs and interests, such as resolving a mismatch in perspectives
between the student and the tutoring system. In contrast, the explanation generator
operates at the local level, e.g., correcting a misunderstanding about a particular
concept. The net effect of this multilevel interaction should be a significantly more
successful and efficient presentation to the student.

5. Summary
Our research explores the application of a large-scale, multifunctional know-
ledge base to a variety of Al tasks. During the past year we have constructed a

knowledge base that, we believe, will flexibly support a range of cognitive modeling
experiments.

Our knowledge base is in the domain of botany. Our focus is the anatomy,
physiology and development of plants, with emphasis on structured objects and the
processes causing their creation and change. We are constructing our knowledge
base using the excellent tools of CYC which are under development by Doug Lenat
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at MCC. The enormous investment of time and effort devoted to construction is

being amortized over two research projects now, and more that are planned for the
future. g

Currently, we are studying machine learning and tutoring. The goal of our
learning research is to develop and evaluate a computational model for a new
learning task — knowledge integration. This task, which might be termed “learning
at the fringes of a knowledge base,” involves the incorporation of new inforrmation
into existing knowledge. The goals of machine learning — knowledge acquisition and
cognitive modeling — emphasize the importance of this learning task and suggest
that research on concept formation, the predominant concern of machine learning
research, is of limited applicability. We are applying our computational model of
this task to the problem of automated knowledge acquisition, in particular the
extension of a knowledge base through interaction with a knowledge engineer.

The goal of our intelligent tutoring research is to develop knowledge reporesen-
tations and processes for dynamically adapting teaching plans and explanations to
the individual needs of a student. Most current intelligent tutoring systems either
ignore teaching plans and explanations entirely, or they employ ones that a.re pre-
formulated. As a result, teaching scenarios cannot be dynamically modified t o cope
with unanticipated student needs. The ability to dynamically modify a twatoring
session is critically dependent on rich domain knowledge.

Our work is predicated on the knowledge principle that emphasizes t hhe cru-
cial role in intelligence of extensive, task-independent knowledge. This research
cannot be done “in the small,” and we are committed to its long-term exploration.
Although we are in the early stages of research, the significance of the knowledge
principle has already become evident.
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