The Representation of Actions in KM and Cyc

Aarati Parmar
Department of Computer Science,
Gates Building, 2A Wing
Stanford University, Stanford, CA 94305-9020, USA
aarati@cs.stanford.edu

Technical Report FRG-1
May 7, 2001

Abstract

In this article we explore the representations of actions in the sys-
tems Cyc and KM, in sections 1 and 2. In Section 3, we compare a
selected set of actions in KM against those in Cyc. For simplicity, KM
terms are set in this typeface, while Cyc ones are in this one. Sec-
tion 4 gives a summary of the differences between the two, along with a
table comparing selected actions. The essential difference is that while
Cyc can teach us much about actions and properties of them, KM can
actually simulate these actions. KM can support the rich ontology Cyc
does; there is only the matter of coding the facts.

Contents

1 Representation of Actions in Cyc
1.1 Action’s Place in the Cyc Ontology
1.2 Properties of Actionsin Cyc
1.3 Representing Preconditions
1.4 Representing Results of Actions
1.5 CycSummary e

2 Representation of Actions in KM
2.1 Situations In KM
2.2 Actionsin KM
2.3 Simulating Actionsin KM
2.4 KM SUMMATY . . o v v o vttt e e e e e e e e e e

3 Comparison of Action Representations 11

3.1 Events e e e e e 12
3.2 Actions e e 12
3.3 Break e e e e 12
3.4 Break-Contact 12
3.0 Create. e e e e e 13
3.6 Make-Accessible 13
3.6,1 Release @ i i i e 13

3.7 Make-Contact. o v v i i i i it 13
3.8 Make-Inaccessible i i .. 13
3.8.1 Confine 14
3.8.2 Be-Confined ' uiene... 14

3.9 Move e e e e e e 14
3.9.1 Carry 15
3.9.2 Enter e e e 15
3.9.3 Move-Out-0Of 15
3.10 Remove e e e e e e e e 15
3.11 Repair oL 16
3.12 Transfer e e e e 16
3.13 Encode e e e e e 16
3.14 Read e e e e e e 16
4 Conclusions and Discussion 17
5 Index 20
51 CycCollections 21
5.2 CycPredicates 22
5.3 KM Terms o i i i e e e e e e e e e e e e 22
5.4 KMSlots e 23

1 Representation of Actions in Cyc

This study of the actions in Cyc is based on version 12, patch 1.652 of the
IKB.

Cyc makes no commitment to any formalism for representing change,
such as situation calculus [McCarthy and Hayes, 1969], event calculus
[Shanahan, 1999], or STRIPS [Fikes and Nilsson, 1971]. Actions are defined
by their location in the Action hierarchy and what axioms and slots (predi-
cates) apply to them.

For example, Cracking is a subclass of the actions classes SeparationEvent,
IntrinsicStateChangeEvent, and PhysicalEvent. Through the type hierarchy,
any instance of Cracking inherits any axioms applicable to these classes,
along with those that asserted about the class itself. Some axioms include:

(implies (and (isa ?CRK Cracking)
(object0fStateChange ?CRK 70BJ))
(holdsIn ?CRK (isa ?0BJ SolidTangibleThing)))
[From Cracking]

(requiredArgiPred SeparationEvent outputsRemaining)
[Inherited from
SeparationEvent]

(requiredArgiPred IntrinsicStateChangeEvent objectOfStateChange)
[Inherited from
IntrinsicStateChangeEvent]

The first axiom asserts that the object involved in a Cracking event is
a SolidTangibleThing during the event. The second abbreviates the fact
that for any instance SeparationEventl of SeparationEvent, there is an ob-
ject SomethingExisting2 such that (outputsRemaining SeparationEventl Some-
thingExisting2).! Since Cracking is a subclass of SeparationEvent, this prop-
erty also applies to it. The third axiom asserts that every instance of In-
trinsicStateChangeEvent has a PartiallyTangible object which is its objectOf-
StateChange. Note that the object that is cracked in this case is not even
specifically mentioned; only its existence is assured by the third axiom, and
asserted to exist after the Cracking by the second axiom.

The rest of section 1 describes where Action fits in the Cyc ontology,
properties of Action, and how preconditions and results of Actions are rep-
resented in Cyc. It ends with a short summary.

1.1 Action’s Place in the Cyc Ontology

The class Action is a subclass of Event. Actions are Events that must have do-
ers.? Special kinds (subsets) of Actions include AnimalActivity, Information-

'requiredArglPred is a special second-order predicate used to assert the existence of
a set of values for an instance’s slot. Formally (requiredArglPred Collection slotpredicate)
means that for any instance i of Collection, there are terms t1, ..., tn such that (slotpredicate
itl ... tn). slotpredicate has arity n + 1 and the terms obey its type restrictions.

2This is expressed by the GAF (requiredArglPred Action doneBy).

Situation

/

Situation—-Temporal

StaticSituation

Event

HolidaySeason

Action RepeatedEvent

IntrinsicStateChangeEvent ¢
Breathing

AnimalActivity
SingleDoerAction

InformationGathering

Figure 1: Action’s Place in the Cyc Ontology.

Gathering, or SingleDoerAction. Note that these are not mutually exclusive

categories.

More general information regarding Action is found in its superclass,

Event. Other than Action, Event also includes subclasses:

1. HolidaySeason: events surrounding a particular holiday, such as Christ-

mas,

2. IntrinsicStateChangeEvent: events where one of the participants in an

event experiences an intrinsic change, and

3. RepeatedEvent: the class of events that are repeated in another event,

such as Breathing.

At first it may seem unintuitive, but Event is a subclass of Situation.
Situations are very generally described as states of the world. Situation-
Temporal are the Situations with a temporal aspect (might depend on time).
Event and StaticSituation are subclasses of Situation-Temporal. Any Event
is a change in the state of the world. A StaticSituation on the other hand,
is meant to be a time interval during which all relationships stay static.

StaticSituations most closely fit our usual notion of situation.

1.2 Properties of Actions in Cyc

Properties of objects in Cyc are asserted through axioms or slots, and inher-
ited through type hierarchies. Cyc has a rich ontology of slots for Events.
The most general kind of slot is a Role. A Role is a relation between a Sit-
uation and an object. Role’s subclass, ActorSlot is the collection of binary
predicates which relate Events to the objects that are involved in them. Ex-
amples of ActorSlots include? bodilyDoer, damages, postActors and products.
Other instances of ActorSlots include actors, doneby, prospectiveSeller, and
inputs.

Some kinds of Actions are required to have values for their slots. On
the other hand, certain slots only can apply to certain kinds of Action.
The first constraint is accomplished through the second-order relation re-
quiredArglPred. (requiredArglPred Buying buyer) asserts that every instance
Buyingl of the action Buying must have an agent Agent2 such that (buyer
Buyingl Agent2) holds. (requiredArglPred ActionOnObject objectActedOn)
means that every instance of ActionOnObject has an associated object that
is acted upon. Other relations in Cyc, such as relationAllExists, make similar
assertions.

Restricting the application of some ActorSlots to certain types of events
is straightforward as well. This is done by restricting the domain of the pred-
icate to that event subclass. For example, inputs only applies to instances of
CreationorDestructionEvent. prospectiveSeller only applies to actions of type
CommercialActivity.

There are other predicates, besides instances of ActorSlots, which de-
scribe an action. Some include performancelevel or skillRequired, which, us-
ing the instances of ScriptPerformanceAttribute, can talk about how an action
is performed. Some of these ways include Agility, Dexterity, and Competence.

1.3 Representing Preconditions

Cyc has numerous means, using instances of ActorSlots, to describe an action.
One of most important properties of an action, though, is its preconditions
— what are the requirements for a successful action? Cyc has a rich array of
predicates that could be used to represent this concept, but they are neither
used systematically nor extensively. Most preconditions are specific notions
such as resources required, or agents that play a certain role. In practice
these requirements are expressed in terms of ActorSlots.

3Recall that all predicates in Cyc begin in lowercase, to be distinguished from terms,
which are capitalized.

Four predicates that embody the traditional notion of preconditions are
preconditionFor-PropSit, preconditionFor-Events, preconditionFor-Props, and
preconditionFor-SitProp. However, none are used extensively to describe ac-
tions in the current version (KB 12, Patch 1.652) of Cyc. (preconditionFor-
PropSit CycFormulal Situation2) asserts that CycFormulal is necessary in
order for Situation2 to be possible. (preconditionFor-Events Eventl Event2)
asserts that Eventl is a necessary condition for Event2. (preconditionFor-
Props CycFormulal CycFormula2) asserts that CycFormulal is necessary for
CycFormula2 to hold. (preconditionFor-SitProp Situationl CycFormula2) is
used to say that Situationl must happen in order for CycFormula2 to hold.

Another predicate that could be used to represent all sorts of precondi-
tions is (requiresForRole Situationl Collection2 Role3), where the success of
Situationl requires there to be an object in Collection2 which plays the role
Role3. For example, the Cyc formula

(implies (isa ?U WritingByHand)
(requiresForRole ?U WritingImplement deviceUsed))

states that the WritingByHand action ?U requires an instance ?V of Writinglm-
plement where (deviceUsed ?U ?V). In practice, this is also not used exten-
sively in Cyc.

The predicate (preSituation Eventl StaticSituation2) is used to relate a
situation StaticSituation2 that is true right before the occurrence of Eventl.
This pre-situation is used to assert salience of Eventl to StaticSituation2, a
weaker type of precondition.

As mentioned above, ActorSlots themselves embody many specific pre-
conditions. The ActorSlot inputs is used to state which objects are used (and
changed) in CreationorDestructionEvent events. inputs has more specific pred-
icates, including inputsCommitted and inputsDestroyed. instrument-Generic is
a slot for the general category of objects that are used to facilitate an action.

1.4 Representing Results of Actions

The predicate (eventOutcomes Eventl Situation-Temporal2) asserts that
Situation-Temporal is the result of Event. More specific subpredicates include
postSituation, causes-EventEvent, postEvents, and inReactionTo. (postSitua-
tion Eventl StaticSituation2) is the closest notion of StaticSituation2 being
the result of Eventl.

(causes-EventEvent Eventl Event2) codifies causation between events
Eventl and Event2.* Some other related predicates include causes-PropProp

“(causedBy Eventl Event2) appears to be an archaic converse relation.

and causes-SitProp, both subpredicates of causes-ThingProp, the most gen-
eral notion of causation. causes-PropProp asserts that one Cyc formula causes
another, a notion stronger than implication. causes-SitProp is a little more
useful as it asserts that a situation causes a formula to become true.

There are looser notions of causation between collections of situations.
(causes-SitSitType Situation-Temporallnstancel Situation2) means that Situation-
Temporallnstancel causes an instance of Situation2, to occur.
(causes-SitTypeSitType Situation-Temporall Situation-Temporal2) says that
an instance of Situation-Temporall will cause an instance of Situation-Temporal2
to come about.

(postEvents Eventl Event2) orders the events Eventl and Event2, imply-
ing some sort of relevance between the two. Cyc also has functions (STIB
TemporalThingl) and (STIF TemporalThingl) to return some Timelnterval
shortly before/following Temporal Thingl.

(inReactionTo Actionl Situation-Temporal2) is meant to be the weak-
est form of response, where Actionl is performed in response to Situation-
Temporal2. This relation is useful in event narration.

Some action-specific predicates include resultantMentalObjects, used to
relate how an agent feels after experiencing a mental object. fromState and
toState are predicates used in conjunction with the Action ChangingDeviceS-
tate to talk about preceding and post states.

1.5 Cyc Summary

Cyc does not follow the traditional route of action representation by elabo-
rating the sets of fluents which change. Rather, actions are organized into
hierarchies, which themselves contain (and inherit) relevant axioms and Ac-
torSlots which [must] apply to certain types of actions. Thus in an instance
of the event DryingSomething, there is an instance of a LiquidTangibleThing
that permeates the object to be dried beforehand, and does not permeate it
afterward. Being a subclass of IntrinsicStateChangeEvent, the drying action
must have an object that is acted upon.

Properties are ascribed to actions by means of a rich set of ActorSlots,
whose instances are predicates relating Events to objects. These are unlim-
ited in expressivity. There are no formal notions of precondition and result,
although there are relations that can express what is required. The bulk of
preconditions and result appear to be formalized in terms of ActorSlots.

2 Representation of Actions in KM

KM [Clark and Porter, 1998] is a frame-based representation language with
first-order logic semantics. It has built-in support for reasoning about
change. Most of the information below was gleaned from [Clark and Porter, 2000],
and the Component Library (v1.0) at
http://www.cs.utexas.edu/users/mfkb/RKF/tree/. The version of KM
evaluated is 1.4.3.10.

2.1 Situations in KM

In order to talk about actions in KM, situations should be described first. As
usual, a Situation describes the state of the world at a moment in time.

KM treats situations much as contexts [McCarthy and Buvaé, 1994], where
facts (or technically, fluents) are contained within a situation. Situations can
be organized hierarchically, having a super- and sub- situations. One can
“pop” in and out of situations just as one would with contexts. Facts within
a situation are viewable from its subsituations, but not from its supersit-
uations. KM has one global situation *Global, which is the supersituation
of all situations. *Global intuitively is the situation containing all timeless
truths. Thus, one must be careful what to assert in the global situation (such
as information that may be time variant), because it is accessible to every
other situation. Situations can be viewed, and quantified over as objects.

Situations require fluents. KM defines fluents (*Fluent) as slots whose
values depend on the situation. An inertial fluent (*Inertial-Fluent) is
a fluent whose value persists from one situation to the next.® A non-fluent
(*Non-Fluent) is a slot whose value is not situation dependent. Every slot
is described by one of these three possibilities.

2.2 Actions in KM

Actions in KM are point-like, in that only the situations before and after the
action are modeled.® As in Cyc, an Action is also a subclass of Event.

KM uses slots to describe aspects of actions. It implements the STRIPS
representation of actions by means of the following four slots:

SxFluent slots and *Inertial-Fluent slots are disjoint — a slot that is a *Fluent can
vary between situations, but will not persist.

6KM can extend to actions with duration, where the situation during the action is also
represented. This is discussed in the summary section 2.4.

1. pcs-list (positive preconditions): a list of ground literals, also known
as propositions’ which must be true for the action to occur.

2. ncs-list (negative preconditions): a list of propositions which must
be false.

3. add-list: the propositions that become true after the action.

4. del-1list: the propositions which become false after the action.

Other than the above slots, actions in KM have other property-defining
slots, such as object and instrument. As KM is frame-based, any action
class will inherit slots (and their values) from its superclasses. Hence the
action class Break inherits from Action the preconditions (pcs-list) that
the object acted upon is accessible.

While an action’s operations in KM are governed by STRIPS lists, which
are conjunctions of literals, KM is more expressive than STRIPS because the
generation of these lists can involve quantification and if-statements. For
example, the pcs-1ist for Move includes the formula:

(if (has-value (the source of Self))
then
(forall (the object of Self)
(:triple
It
location
(the source of Self)))),

which states that if the action in question has a value for its source slot, then
every object moved in the action must be in the same location as this source.
When evaluated, this formula will reduce to a set of literals as required by
STRIPS semantics. Note how this treatment increases expressivity, not only
with the use of quantification and if-statements, but through the use of the
predicate has-value, which actually checks to see if a slot has a value.

2.3 Simulating Actions in KM

Unlike Cyc, KM can simulate the application of an action in a situation. Tt
temporally projects facts to create the resulting situation, and also computes

7 Propositions are of the form (frame slot value), which asserts that the slot of
frame has value value.

ramifications of actions. KM’s simulation is non-monotonic in the way it
applies preconditions, and performs temporal projection.

The situation resulting from an action is related by the slot
(next-situation s s’ a), where s’ = result(a, s). KM also provides some
equivalences:

(next-situation s s’ a) <= (prev-situation s’ s a)
< (before-situation a s s’)
<= (after-situation a s’ s)

These different ternary relations equivalent to next-situation facili-
tate syntactic indexing operations. Just as in traditional situation calculus,
alternative situations, resulting from different actions in the same situation,
are representable. Thus KM can represent alternate histories.

The command (do act1) simulates the action act1 in the current situa-
tion. It works by first “asserting” that the positive preconditions (pcs-list)
hold in the current situation. By “asserting” we mean that the preconditions
are checked in the current situation. If they do not hold, but it is consistent
to assume that they are true, then they are actually set as true in that sit-
uation. (This is the first use of non-monotonicity in KM.) KM also similarly
“asserts” that the negative preconditions in ncs-1ist do not hold. If both
sets of preconditions are assertable, then a new next-situation is created
where the propositions of the add-1ist hold, and where those of del-1list
are not allowed to hold.® If the preconditions were not assertable, the nil
action is applied, and the next situation generated is based on that.?

KM has a built-in mechanism for solving the frame problem (the prob-
lem of succinctly expressing and carrying over all facts that do not change).
When temporally projecting an action from s to s’, KM asserts the proposi-
tions in add-1list and del-1ist as explained above. Then, all other propo-
sitions in slots that are *Inertial-Fluents, and hold in s, are carried over
to s?, as long as they are consistent with s’. Non-inertial slot fluents are
not carried over, but are recomputed according to any relevant axioms in
s’. This is the second use of non-monotonic reasoning by KM.

One can see that the inertial/non-inertial distinction ensures that ram-

8In fact, a constraint is enacted on the relevant slot, specifically disallowing that sit-
uation from taking on the del-1list value. Hence neither direct effects nor ramifications
can assert a value that is supposed to have been deleted.

%is-possible can be used to test, rather than assert, the preconditions of an action in
a situation. This is useful for tasks such as planning.

10

ifications are treated properly, to a first order.'® Any ramification must be
in a slot that is non-inertial, since its value is derived from other fluents that
could change, rather than inertia. This solution is adequate, since it deals
with what are essentially conjunctions of literals.!!

2.4 KM Summary

KM follows the traditional situation calculus style of representing change,
with an action linking one situation to a resulting situation. By explicitly
representing situations, KM has the power to inspect action histories.

Actions in KM have slots for STRIPS-like lists, represented as statements
which evaluate to lists of conjunctions of propositions. KM distinguishes be-
tween inertial and non-inertial fluents, and uses this information to perform
temporal projection. KM is non-monotonic in the way it asserts action pre-
conditions, and performs this temporal projection. Actions in KM have other
slots as well, to add as much description as necessary. All of these slot values
are subject to inheritance.

[Clark and Porter, 2000] demonstrates how KM could treat actions as on-
going processes rather than point events. A new type of situation, a “during-
situation,” is added, which represents the period of time the action is taking
place. Ongoing fluents could be tagged as occurring in this situation. This
“during-situation” could be broken down into subsituations. This has not
been implemented but seems straightforward.

3 Comparison of Action Representations

In this section, we compare how specific actions are formalized in KM and
Cyc. We first compare the general categories, Event, and Action, and then
move on to selected actions.

For the selected actions, we compare the representation of selected ac-
tions from KM against the closest equivalent one in Cyc. [¢] is the time it took
the author to find the closest Cyc expression. A * indicates the number is a
lower bound. The Wordnet facility in Cyc was not used in the search.

0This treatment depends on there being exactly two disjoint classes of fluents, those
that are exactly the direct effects of actions, and those whose truth is always derived
from these direct effects. Furthermore, the partition between these two classes of fluent
is permanent. [Thielscher, 1996] demonstrates that this approach is not always viable. In
short, it is possible to have a fluent which fits in both categories.

1 [Clark and Porter, 2000] correctly notes that KM does not properly handle disjunctive
ramifications, so disjunctive effects are specifically disallowed.

11

3.1 Events

Both Cyc and KM treat Events as objects with a temporal aspect. In KM
events have (non-required) slots: subevents, time, agent, beneficiary,
donor, instrument, object, recipient, and result. KM requires that all
of these slot with values must be cotemporal and cospatial. The agent in
question must be able to perform the event, and any instruments used in
the event cannot be broken.

Cyc requires Events to have an associated actor and subevent. The slot
actors contains most of the distinctions KM makes for its slots, along with
many others. These slots include: socialParticipants, intendedBeneficiary,
instrument-Generic, target, and outputs.

3.2 Actions

In KM, Event has subclasses Action as well as CompoundAction. A CompoundAction
is an object made up of multiple Actions (through subevents), none of
which are dominant. Action inherits the facts pertinent to Event, along

with a required agent, object and instrument. Cyc on the other hand,

only requires an additional doer. Compound actions are described using its
subEvents relation.

3.3 Break

A Break puts its object in a Be-Broken state, where it can no longer serve
its function. [3 min*]: IncurringDamage (A type of PhysicalEvent and thus
Event) is the closest term. The main fact about IncurringDamage, similar to
KM is it damages its object. However, no relation is made in Cyc between the
object’s being damaged and its usability.

3.4 Break-Contact

Break-Contact moves two objects from a Be-Touching state to one where
they are not. [2 min*]: Separation-Complete is a similar Cyc event, except
that it involves one object being broken into two separate pieces, rather
than two objects becoming undetached. [5 min]: Both RemovingSomething
and its subclass RemovingSomethingByMovinglt remove an object out of a
configuration, which can be used to represent the notion in Break-Contact.
Both Break-Contact and RemovingSomething have slots for the objects be-
ing worked upon.

12

3.5 Create

In a Create, an object (which must already “exist” in the sense of a KM
object) is given a physical, present-time existence, along with information
about who made it, and how. [l min*]: CreationEvent also requires an
associated object to be created through the formula (requiredArglPred Cre-
ationEvent outputsCreated).

3.6 Make-Accessible

Make-Accessible makes an object be accessible at a destination, through
actions such as Expose, Unblock, or Unobstruct, so that other actions can
apply to the object. In essence, “undoes” inaccessibility. [10 min*]: No
known Cyc counterpart. The closest idea is UnblockingTraffic, which opens
a path of transportation.

3.6.1 Release

Release is a subclass of Make-Accessible: Make-Accessible — Unobstruct
— Release. In a Release, an object is moved out of its enclosure. [14
min]:As mentioned above, Make-Accessible has no known counterpart in
Cyc, so the closest terms are: ArrangingObjects, and RemovingSomething. [6
min]: TransferOut is used in Cyc as one of the superclasses of the instance
TalibanReleaseTruckDrivers. TransferringPossession may also be relevant, as it
relates the change of rights associated with an object, similar to a Release.
None of these however have the notion of removing something out of a con-
fining enclosure.

3.7 Make-Contact

Make-Contact is the opposite of Break-Contact, as it puts two objects in
contact with each other, or one object in contact with a destination. [2
min*]: ConnectingTogether is the closest Cyc notion, except that it involves
a third object, a Connector, which connects the other two (or more) objects.
However, a Connector can be a part of one of the two objects being connected.

3.8 Make-Inaccessible

Make-Inaccessible is the opposite of Make-Accessible. Here, an agent
causes an object to be inaccessible to a certain destination. Subclasses
include Block, Conceal and Obstruct. [2 min]: In Cyc the closest action is
BlockingTraffic, which blocks access to a pathway.

13

3.8.1 Confine

Confine is a subclass of Make-Inaccessible: Make-Inaccessible — Obstruct
— Confine. It inherits one main fact from Obstruct, where in the result
the object is in Be-Obstructed state. Confine includes an enclosure object

to which the given object is to Be-Confined to. [4 min]: ControllingSome-
thing is the closest action, in that an object is controlled by an agent. No
enclosure-related information was found.

3.8.2 Be-Confined

The state Be-Confined has the subclass hierarchy State — Be-Inaccessible
— Be-Obstructed— Be-Confined. Every Be-Inaccessible state has an
associated object which is inaccessible, from the destination if provided.
Be-0Obstructed adds the constraint that the object is also obstructed. Fi-
nally, Be-Confined narrows the distinction further by requiring an object
and enclosure, so that the object is confined to the enclosure at the loca-
tion, and cannot Move-Out-0f it. [2 min]: StaticSituation is Cyc’s State.
PhysicalContactSituation, along with the abovementioned ControllingSome-
thing, are the closest terms. PhysicalContactSituation requires its associated
objects to be in contact with each other.

3.9 Move

A Move changes the location of an object. This action has some important
requirements:

1. The object must be at the source location (if specified).

2. If the object is held by an agent, that agent must be the one doing the
moving.

3. The object cannot be restrained, nor can its path (if specified) be
blocked.

At the end of the action, the object should be at its destination, if
specified.

[1 min]: Cyc would call this a MovementEvent. It has an associated moved
object, transferredThing. [5 min]: Translocation might be a closer match,
as it requires having a tolLocation. Both KM and Cyc have rich ontologies
describing movement:

14

3.9.1 Carry

Carry, a subclass of Move, is defined as a concurrent Locomotion of an
agent while Holding an object. [1 min]: TransportationEvent would be the
exact analog, with required transporter and transportees slots. Transporta-
tionEvent has many different subclasses parameterized by who the trans-
porter is, through the function (TransportViaFn ?x). There are also specific
subclasses such as TransportingPeople or UnderwaterTransportation.

3.9.2 Enter

Enter is a subclass of Move through the hierarchy Move — Move-To —
Move-Into — Enter. From Move-To, Enter gets a required destination
slot. From Move-Into it inherits a the-enclosure slot. Since Move-Into
is all about moving inside another object, it requires that any of the portals
of the enclosure, along the object’s route not Be-Closed. Also the object
cannot be shut out from the enclosure. Enter in simply any Move-Into
that is also a ReflexiveCliche. ReflexiveCliche is an intriguing class
of actions where the agent is the object. [3 min]: EncasingSomething might
be the associated term, except that it is not fleshed out enough. [1 min]:
In GuidingAMovingObject the reflexive cliche is not inherently satisfied (but
could be). [4 min]: Transferln is also related, where a transferred Thing is at
toGeneric.

3.9.3 Move-0ut-0f

Move-0ut-0f inherits from: Move — Move-From — Move-0ut-0f. Move-From
has a required source slot. Move-0ut-0f adds a slot for an object and enclo-
sure. This action depends on, like Move-Into, the portals of the enclosure
being open and the object not being confined to the enclosure. [4 min]: Leav-
ingAPlace (superclass TransferOut) and GuidingAMovingObject have some of
the flavor of moving out of something, but without the notion of an enclo-
sure.

3.10 Remove

In a Remove a part is removed from its source, negating the associated
“part-of” relation. [1 min]: RemovingSomething is a bit more general; the
part doesn’t have to be a piece of the source, but can be a completely
independent object.

15

3.11 Repair

Every object of the Repair must Be-Broken but can’t Be-Ruined. [1 min]:
SimpleRepairing is the analogue, in which we have the required slot object-
TakenCareOf. Other related actions include TakingCareOfSomething and Di-
agnosingAndRepairingSomething. The difference between something being
broken but not ruined is not made in Cyc.

3.12 Transfer

A Transfer has an object, and can have a donor and recipient. The donor,
if specified, must possess the object beforehand. Afterwards, the recipient
possesses the object instead. [1 min]: TransferringOwnership is the same
notion of an object changing hands. TransferringPossession is its superclass,
dealing with abstract rights of the fromPossessor and toPossessor which are
altered in the event. Cyc has a rich set of subclasses of such actions, including
Stealing-Generic, BorrowingSomething, and SaleByCreditCard.

3.13 Encode

This action has not yet been defined in KM. [1 min|: Cyc has Encoding, which
is a collection of actions where data in a InformationBearingThing is com-
pressed from a more natural format. Its superclass is IBTRecoding, which
are the set of events where an InformationBearingThing (IBT) is copied to
another format, so it inherits the requirements that AccessingAnIBT and
IBT Generation-Original are subevents. Other interesting superclasses of En-
coding include IBTGeneration and InformationTransferEvent, through which
the inherited slots include infoTransferred, informationOrigin, and informa-
tionDestination.

3.14 Read

Read also has not been defined in KM. [1 min]: If Read is meant to be the
opposite of Encode, Decoding is the relevant Cyc term, though it does not
appear to be fleshed out at all. (All it does is inherit facts by virtue of being
a subclass of IBTRecoding.) [1 min]: There is also Reading, a subclass of
AccessingAnIBT, where the informationOrigin is a type of TextualMaterial.

16

4 Conclusions and Discussion

Cyc and KM have somewhat orthogonal means of representing change. Cyc’s
approach is much more descriptive and hierarchical, while KM’s is much more
functional. Cyc can teach us much about actions and properties of them,
but KM can actually simulate these actions. We note that KM does have the
capability to support a similar descriptive database of actions, but simply
has not been around long enough to accumulate the ontology Cyc has. Note
that KM is more powerful than typical frame-based languages as it allows
rules, constraints, and multiple values for slots.

In terms of the situation-action dichotomy, Cyc appears to have little
fundamental support for casting actions as objects of change between states
of the world. On the other hand, KM keeps track of all situations in every
asserted action sequence, so that it can check facts about any situation.
Note that this was not possible in STRIPS, which only kept track of the
current state. It can also store multiple possible histories. KM goes on even
further to provide solutions for the frame and ramification problems.

Both knowledge bases are hierarchical and thus implement inheritance.
Cyc’s notion of inheritance is through sub-typing of concepts, so that axioms
apply not only to one class, but all its subclasses. Instances of a class in
KM inherit slots and values from superclasses. For the casual browser, it
is difficult to discern all the properties of an action in either formalism,
since most facts are inherited from superclasses. Properties of an action are
scattered up and down the hierarchy chain.

Both Cyc and KM use non-monotonicity. KM uses non-monotonic reasoning
to apply actions and temporally project fluents, while Cyc uses second-order
predicates such as (minimize CycFormula) or (minimizeExtent predicate), to
apply the Closed World Assumption to the extent of the given predicate,
mainly instances of ActorSlot. KM has a similar use of negation-as-failure,
where value-less expressions are treated as false.

Following is a summary of the selected actions and states that were
compared. We include each KM action, the Cyc equivalent, and the time it
took to find the equivalent Cyc action. If the time is starred it is only a
lower bound. We also include a subjective notion of “Quality of Match” on
a scale from 1 (poor) to 10 (perfect), along with some notes.

17

“JUOUIDUTUOD [OPOUL 0} POST 9 P[NOI 1 08 IOY}0 [Yord

Surgonoy) oq Jsnur $399(qo uorenlIgIoeIU0)|EDISAY © U] 4 ¢ | uoneniigidoejuo)edisAyd peutjuo)-ag-
"SOINSO[OUO Jnoqe SuIqjoN “juade ouros Aq
POI[OI3u0d ST 199[qO o) Jey) Ul oures ¢ ¥ Suiyrswog3uijjoiauo) UTJU0)-
UL} 2A) JuoeAmbo oN 1 4 dyjes] Sunjdojg || eTqISs8ddRUI-OR|
"0MY I9T[J0 O} s10euu0d 309[qo pIry)
® Je} Ul [RIOUSS dI0W J[}H] © SI J5y1a80o] Suildsuuor) 01 4 J3y1e80] Suirdsuuo) 10®'3U0)-d¥ R
"SHYSII Ul 93weTD oY} 9)e[ol SB[e UR)) 4 9 UoISSasSOqFulLIRjsues |
“Aeme I0 N0 SUINIOWOS SUTAOUI JO UOTIOU [RISUSS SR ¢ 9 nQJsjsues|
“JNO poAoUI 3UTA(JO BIPI 9ARY SO0(] ¥ Al Suiyrswog3uinowsy
"0INSO[OUDd JO UOIJOU ON C Al s193[qO3uiBueny oseaToy-
-3doou0d 18980[0 oY) ST diy4ed | Supdo|qun
‘{Yojyew UMOUY ON 1 «01 dyyea | Sunjpojqun 9TqQTISS8d0y-axe|
“Surueowr owreg 01 «1 1UsAZuUOI1E3I) 93eaa)
"uol1)eINSHYuUOod B JO N0 poAoW SI }99[qo duo ey ul
I2S0[0 11q ® ST SulyiswogIuirnowsy 9 g Suiyrswog3uinowsy
*s0001d omy ojur oofqo ue syeel1q 9319|dwo)-uonjesedsg
{8100[qo oMm) SOA[OAUI 2D0BQUO)-HedIg G 4 939|dwo)-uoijesedsg 10®jU0)-Yeaiyg
"SO0p WY Se AJ[Iqesn pue
poSewrep UsoM)O(UOIPR[DI OU Soyewt A7))} «& s8eweqSunnou| yeaig
Soj10N | YoIeIA JO | (urm) JuoreAmbo uorjoe
Ayrenty | owrg, 24 i

18

"yooq ' Suipeal = peay o1oym Jo[eue oy J, 01 1 Suipesy
(epooug)oyisodd() = pesy Jt
Soreue o) Nq ‘MO PoYSdY JON J 1 Suipoda(pesy
‘possoxduroo st eyep ‘Suipodu] ue ujy 6 1 Suipooug apoouyg
"STUOI}OR PoYR[dl JO 108 YOI ® SBY pur
‘[eI0UOS OIOUI UDAD ST UOISSISSOIuLLIRjsues | 01 1 diysssumQBursjsuel | Iagsuel]
‘WY UI o¥I] pouInI] T | Suryrswog3uuiedsypuySuisoulel(q
Ayuouewrzod pue o[qexr Suroq ‘Buiyrswogypase)sune]
UMD OPRUL ST dOUIIIPIP ON ‘Buinedays|dwig atedoy
-921n0s 9y} jo jred & oq 0y
oART] jou $o0p 190[qO poAowIdI O} ey} Ul
[eIowa8 oI10uI ST JuiyiswogSuinowsy 01 1 Suiyzswog3uinowsy aaoway
*9INSO[OUDd JO UOIJ0U IMOYHM Jnq o ¥ 193[qQ8uinoj y3uiping
‘SuIyjowos Jo Mo SUIAON ‘ae|dySuines || F0-An0-SA0K-
"9s[o SUIYOWOS dpIsul Fur03
Jo eop1 Jmoyym ‘uorjou Sy g 14 upsjsued|
"PO[[OIIU0)190[qO0 = SI0JOOJRIOQI[OP 19S 0} PN 9 1 193lq8uinojy ySuiping
‘SNOoud N0 POYsof 0N ¢ ¢ Suyrswogluiseouy I9qud-
“POAJOAUL J[IIYSA 10 ‘}x0dsuel) JO spoux
opn[OUI 0} JusAjuoIlelIodsuel| SoUaI 2A7) 0T 1 jusa3juoijepodsuel | £xxep-
"]JO[S UOI1BJ070] ®
soImbol Inq ‘JUSAZIUSWSAO © I 6 G uolled0|sues |
‘suor}ipuodaxd [y 1oy 1deoxe ‘yojey 6 1 JUSAJIUSWISAON 9AO[
SOJ0N | YoIRA JO | (urm) juoreatnbo uorjoe
Ayrendy | owry, 2£) W

19

References

[Clark and Porter, 1998] Clark, P. and Porter, B. (1998). KM
(v1.3): Users Manual. Knowledge-Based Systems Group,
Univ. of Texas at Austin, Austin, Texas. Available at

http://www.cs.utexas.edu/users/mfkb/km.html.

[Clark and Porter, 2000] Clark, P. and Porter, B. (2000). KM (1.4): Situa-
tions Manual'?.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). Strips: A
new approach to the application of theorem proving to problem solving.
Artificial Intelligence, 2:189-208.

[McCarthy and Buvag, 1994] McCarthy, J. and Buva¢, S. (1994). Formal-
izing Context (Expanded Notes). Technical Note STAN-CS-TN-94-13,
Stanford University.

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. J. (1969). Some
Philosophical Problems from the Standpoint of Artificial Intelligence!3.
In Meltzer, B. and Michie, D., editors, Machine Intelligence 4, pages
463-502. Edinburgh University Press.

[Shanahan, 1999] Shanahan, M. (1999). The Event Calculus Explained!*.
In Wooldridge, M. J. and Veloso, M., editors, Springer-Verlag Lecture
Notes in Artificial Intelligence, 1600, pages 409-430. Springer-Verlag.

[Thielscher, 1996] Thielscher, M. (1996). Ramification and Causality!®.
Technical Report TR-96-003, International Computer Science Institute,

Berkeley. (A revised version appeared in the Artificial Intelligence Jour-
nal, 89(1-2):317-364, 1997).

5 Index

2http://www.cs.utexas.edu/users/mfkb/manuals/situations.ps.Z
Y3http://www-formal.stanford.edu/jmc/mcchay69.html
Y“http://www-ics.ee.ic.ac.uk/ mpsha/ECExplained.ps.Z

15ftp:/ /ftp.icsi.berkeley.edu/pub/techreports/1996 /tr-96-00 3.ps.gz

20

Index

5.1

AccessingAnIBT, 16
ActionOnObject, 5
Action, 2-5, 7
ActorSlot, 5-7, 17
Agility, 5
AnimalActivity, 3
ArrangingObjects, 13, 18
BlockingTraffic, 13, 18
BorrowingSomething, 16
Breathing, 4
Buying, 5
ChangingDeviceState, 7
CommercialActivity, 5
Competence, 5
ConnectingTogether, 13, 18
Connector, 13
ControllingSomething, 14, 18
Cracking, 2, 3
CreationEvent, 13, 18
CreationorDestructionEvent, 5, 6
Decoding, 16, 19
Dexterity, 5
DiagnosingAndRepairingSomething,
16, 19
DryingSomething, 7
EncasingSomething, 15, 19
Encoding, 16, 19
Event, 3-5, 7, 12
GuidingAMovingObject, 15, 19
HolidaySeason, 4
IBT Generation-Original, 16
IBT Generation, 16
IBTRecoding, 16
IncurringDamage, 12, 18
InformationBearingThing, 16

Cyc Collections

21

InformationGathering, 3
InformationTransferEvent, 16
IntrinsicStateChangeEvent, 24, 7
LeavingAPlace, 15, 19
LiquidTangibleThing, 7
MovementEvent, 14, 19
PartiallyTangible, 3
PhysicalContactSituation, 14, 18
PhysicalEvent, 2, 12
Reading, 16, 19
RemovingSomethingByMovinglt, 12
RemovingSomething, 12, 13, 15, 18,
19
RepeatedEvent, 4
Role, 5
SaleByCreditCard, 16
ScriptPerformanceAttribute, 5
Separation-Complete, 12, 18
SeparationEvent, 2, 3
SimpleRepairing, 16, 19
SingleDoerAction, 3
Situation-Temporal, 4
Situation, 4, 5
SolidTangibleThing, 3
StaticSituation, 4, 14
Stealing-Generic, 16
TakingCareOfSomething, 16, 19
TalibanReleaseTruckDrivers, 13
TextualMaterial, 16
Timelnterval, 7
Transferln, 15, 19
TransferOut, 13, 15, 18
TransferringOwnership, 16, 19
TransferringPossession, 13, 16, 18,
19
Translocation, 14, 19
TransportationEvent, 15, 19

TransportingPeople, 15
UnblockingTraffic, 13, 18

UnderwaterTransportation, 15

WritingByHand, 6
Writinglmplement, 6

5.2 Cyc Predicates

actors, 5, 12

bodilyDoer, 5
causes-EventEvent, 6
causes-PropProp, 6, 7
causes-SitProp, 7
causes-ThingProp, 7
damages, 5, 12

doneby, 5

fromPossessor, 16
fromState, 7
inReactionTo, 6
infoTransferred, 16
informationDestination, 16
informationQOrigin, 16
inputsCommitted, 6
inputsDestroyed, 6
inputs, 5, 6
instrument-Generic, 6, 12
intendedBeneficiary, 12
objectOfStateChange, 3
objectTakenCareOf, 16
outputs, 12
performancelevel, 5
postActors, 5
postEvents, 6
postSituation, 6
preconditionFor-Events, 6
preconditionFor-PropSit, 6
preconditionFor-Props, 6
preconditionFor-SitProp, 6
products, 5
prospectiveSeller, 5

22

relationAllExists, 5
requiredArglPred, 3, 5
resultantMentalObjects, 7
skillRequired, 5
socialParticipants, 12
subEvents, 12

target, 12

toGeneric, 15
toLocation, 14, 19
toPossessor, 16

toState, 7
transferredThing, 14, 15
transportees, 15
transporter, 15

5.3 KM Terms

*Fluent, §
*Global, 8
*Inertial-Fluent, 8, 10
*Non-Fluent, 8
Actionm, 8, 9, 12
Be-Broken, 12, 16
Be-Closed, 15
Be-Confined, 14, 18
Be-Inaccessible, 14
Be-Obstructed, 14
Be-Ruined, 16
Be-Touching, 12
Block, 13
Break-Contact, 12, 13, 18
Break, 9, 12, 18
Carry, 15, 19
CompoundAction, 12
Conceal, 13
Confine, 14, 18
Create, 13, 18
Encode, 16, 19
Enter, 15, 19
Event, §, 12

Expose, 13

Hold, 15
Locomotion, 15
Make-Accessible, 13, 18
Make-Contact, 13, 18
Make-Inaccessible, 13, 14, 18
Move-From, 15
Move-Into, 15
Move-0Out-0f, 14, 15, 19
Move-To, 15
Move, 9, 14, 15, 19
Obstruct, 13, 14
Read, 16, 19
ReflexiveCliche, 15
Release, 13, 18
Remove, 15, 19
Repair, 16, 19
Situation, 8

State, 14
Transfer, 16, 19
Unblock, 13
Unobstruct, 13
add-1list, 9, 10

5.4 KM Slots

agent, 12
beneficiary, 12
del-list, 9, 10
destination, 13, 15
donor, 12

frame, 9
has-value, 9
instrument, 9, 12
is-possible, 10
ncs-1list, 9, 10
next-situation, 10
object, 9, 12
pcs-list, 9, 10
recipient, 12

23

result, 12

slot, 9

source, 9
subevents, 12
subevent, 12
the-enclosure, 15
time, 12

value, 9

