A Brief Note on Implementing Situations in KM

Peter Clark
Knowledge Systems
Boeing Math and Computing Technology
Seattle, USA
peter.e.clark@boeing.com

1 Representing Situations

KM'’s implementation of situations is a special case of using contexts [1]. Intuitively, a context (in
its general sense) is a theory which is (by default) isolated from other theories — in KM, a context
can be thought of as a partition of the knowledge-base which is (by default) isolated from other
parts of the knowledge-base. A set of lifting axioms (also called articulation azioms) then define
how axioms from one context can be transferred to other contexts.

Contexts are a very general mechanism which can be used in many ways. For example, contexts
might represent an agents’ beliefs: for instance, if context C j,e represent “Joe’s beliefs”, and Joe
believes that Sue has Bookl, then Cj,. would contain the assertion has(Sue,Book1). Lifting
axioms would state if/how propositions can be transferred to other contexts, for example, a lifting
axiom might state that proposition P in Cj,. becomes believes(Joe,P) in a ‘base’ context [2].

KM uses contexts to implement the notion of situations, as used in situation calculus. A
situation is a context C subject to two specific lifting axioms:

importing: all axioms in C’s super-situation(s) also hold in C.

projection: if no values for a frame’s slot can be found in C', then that frame’s slot acquires the
values from the previous situation Cp,¢,.

where ‘super-situation’ and ‘previous situation’ are relations between situations. If we define
ArLocaic as the axioms explicitly stated in C', Agyperc as the axioms in C’s super-situation, and
Aprepe as the axioms in C’s previous situation, then the full set of axioms A¢ visible in context
C' are approximately!:

AC’ = ALocalC’
U ASuperC’ (import)
U { S(fv U) | =0 (Arocac U ASuperC - 5(f7 U,))2 (Zf no values...

A (Aprevc F s(f,v)) } ...then project)

These lifting axioms are hard-wired into KM’s inference machinery. The arrangement of situations
and their relations are depicted in Figure 1.

'This is a deliberate simplification: Strictly, when trying to find values for a frame’s slot before resorting to
projection, the algorithm will use the axiom set Arocaic U Asuperc U A AireadyProjected; Where A aireadyProjected are
the axioms already projected from the previous context.

supersituations supersituations
ersituations
_situati next-situation —
re— next—situation - Situation2 m— *Situation3
prev-situation prev-situation
Proj ect

Figure 1: Situations and their relationships in KM.

2 Physical Implementation

Despite the many ways of using situations, as reflected by the size of this manual, the implemen-
tation of situations in KM is simple and straightforward. We now overview this implementation.

In the global situation, KM stores information about a concept on a property list which we will
here call properties®. Slot-values are read and written to this property list. In a local situation,
say _Situationl, a situation-specific property list is used instead, say _Situationl-properties.
To read a frame’s slot, KM will first try the information on the _Situationl-properties list
for that frame, and if no information is found, it will try the global properties list for that
frame instead (this implements importing from the global to local situation in a demand-driven
fashion). To write a frame’s slot, KM will always write to the _Situationl-properties list. Thus
all computation in a local situation is stored on that situation’s specific property list, and moving
out of that situation will make it inaccessible (as a new situation will be reading and writing from
a different property list). In this way, situation-specific information is retained but hidden from
the rest of the KB.

Projection is also implemented in a simple way: If no values for a frame’s slot can be found in
a local situation (including using rules imported from the global situation), then KM will change
to the previous situation and try the computation there. If successful, KM will then return to the
original situation and assert the result there.

It is important to note that the machinery for importing and projection differ. Importing
involves copying axioms (ie. slot value expressions) from the global to a local situation, without
evaluating them in the global situation — they are only evaluated after they have been imported,
in the local situation. In contrast, projection involves evaluating a query in a previous situation —
axioms (ie. slot value expressions) are not themselves transferred from a previous situation to a
next situation, but used to try to answer the query in that previous situation. Only the answers to
that query — the computed ‘ground facts’ — are then copied to the new situation. This distinction
is primarily made for efficiency reasons, to avoid redundant computation in multiple situations.

3This is a simplification — in reality, four property lists are used, called own-properties, member-properties,
own-definition, and member-definition, storing assertional properties about a class and its members, and defini-
tional properties about a class and its members, respectively. For the purposes of this description, though, imagine
just a single property list is used.

3 A Simplified Implementation in Prolog
For Prolog enthusiasts, a simplified version of this algorithm can be concisely expressed in Prolog,

and is given in Appendix A.

References

[1] Univ. Maine. Context in artificial intelligence (web site).
(http://cdps.umcs.maine.edu/Context/index.shtml), 1998.

[2] Alessandro Cimatti and Luciano Serafini. Multiagent reasoning with belief contexts ii: Elab-
oration tolerance. In Proc AAAI-95 Fall Symposium on Formalizing Context. AAAI, 1995.
(http://www-formal.stanford.edu:80 /buvac/95-context-symposium).

Appendix A: Prolog version of the KM Implementation

For Prolog enthusiasts, a simplified version of KM’s situation mechanism can be concisely ex-
pressed in Prolog, and is given below:

:— dynamic in_situation/2, blocked_projection/1, complete/1.

in_situation(S, (A,B)) :- % (A AND B) <- A AND B
in_situation(S, A),
in_situation(S, B).

in_situation(S, A) :- % A <- (A<-B) AND B
AN= (L:-0),
in_situation(S, (A:-B)),
in_situation(S, B).

in_situation(S, A) :- % PROJECTION
S \= global,
simple_term(A), % don’t project clauses...
\+ complete(A), % or indirect effects...
in_situation(global, prev_situation(S,PrevS)), % find prev situation
in_situation(PrevS, A), % value in prev situation?
\+ in_situation(S, blocked_projection(A)), % projectable?

writef ("TRACE: Projected %w from %w to %w.\n", [A,PrevS,S]).

in_situation(S, A) :- % INCLUSION
S \= global,
in_situation(global, A),
writef ("TRACE: Included %w from %w to %w.\n", [A,global,S]).

simple_term(A) :- A \= (_:-1), A \= (_,), !.

% Form for specifying an action:
% action(+Name, +Del_list, +Add_list).

% Doing an action...
do_action(Action, 01dSitn, NewSitn) :-
action(Action, DellList, AddList),
assert(in_situation(global, prev_situation(NewSitn,01dSitn))),
del_facts(DelList, NewSitn),
add_facts(AddList, NewSitn),

writef ("Done!\n"),
I,

% DELETE is implemented by blocking projection of the facts to the new sitn
del_facts([], _).
del_facts([F|Fs], Sitn) :-

assert(in_situation(Sitn, blocked_projection(F))),

del_facts(Fs, Sitn).

% ADD asserts the facts in the new situation

add_facts([], _).

add_facts([F|Fs], Sitn) :-
assert(in_situation(Sitn,F)),
add_facts(Fs, Sitn).

/A Domain-specific example

% GLOBAL FACTS

in_situation(global, controlled_by(lightl,switchl)).

in_situation(global, (brightness(L,bright) :-
controlled_by(L,S),
position(S,up))).

in_situation(global, (brightness(L,dark) :-
controlled_by(L,S),
position(S,down))).

% BRIGHTNESS is a derived (indirect) effect
complete(brightness(_,_)).

% DEFINE AN ACTION
% action(+Name, +Del_list, +Add_list).
action(switching_on(S), [position(S,down)], [position(S,up)]).

% LOCAL FACTS: INITIAL SITUATION
in_situation(sitnl, position(switchl,down)).

/* Demo:

| ?- do_action(switching on(switchl), sitnl, sitn2).
| ?- in_situation(sitn2, brightness(light1,X)).

X = bright

x/

