KM — The Knowledge Machine 1.4.0:
Reference Manual

(Revision 1, for KM 1.4.0 and later.
See release notes for recent updates)

Peter Clark Bruce Porter
Mathematics and Computing Technology ~ Dept of Computer Science
The Boeing Company University of Texas at Austin
PO Box 3707, Seattle, WA 98124 Austin, TX 78712
peter.e.clark@boeing.com porter@cs.utexas.edu

Contents

1 Introduction

2 A BNF for KM

3 Built-in Classes and Instances

4 Built-in Slots

1 Introduction

KM is the language used by the Knowledge Representation Group at University of Texas at
Austin. It is a frame-based representation language in the spirit of KRL [1], and has some sim-
ilarities with KL-ONE representation languages such as LOOM [2] and CLASSIC [3]. This
document is a Reference Manual for the language, and is meant to accompany the Users Man-
ual [4] and Situations Manual [5] which provide more details on how KM can be used. All
these manuals, the example KBs for them, and the KM implementation itself, are available at
http://www.cs.utexas.edu/users/mfkb/km.html.

This Reference Manual gives a very brief summary of all the different forms which KM accepts.
The User Manual, Situations Manual, and Release Notes give full details of their meanings.

2 A BNF for KM

Queries:
expr =
instance | ; an atomic instance
class | ; a class
(:set expr®) | ; a set of expressions
(:seq expr® | ; a sequence of expressions
(:args expr®) | ; a multi-argument structure

Assertions: Anonymous Instance Creation:
(a class fwith slotsvals|) | ; Create instance of class (plus give it some slot-values)
(an instance of expr) | ; Create instance of class expr

Assertions: Named Instance and Class Creation:
(expr has slotsvals) | ; Declare slot-values for the instance/class expr
(every expr has slotsvals) | ; Declare slot-values for members of the class expr

Queries: Path Following:
(the slot of expr) | ; Find values of slot on instance expr
(the class slot of expr) | ; Same, but select only values in class
Cexpr sloty classy ... slot, [class,]) | ; Same (alternative ‘linear’ syntax)

Conditional and Boolean Expressions:
(if exprl then expr? [else expr3)) | ; if exprl evals to non-nil, eval expr2 else eval expr3

(expr and expr) | ; Conjunction

(expr or expr) | ; Disjunction

(not expr) | ; Negation (Using negation as failure)
(numberp expr) | ; Test if expr is a number

Cexpr = expr) | ; Test equality

Cexpr /= expr) | ; Test inequality

Cexpr > expr) | ; arithmetic comparison

Cexpr < expr) |
(expr >= expr) |
Cexpr <= expr) |

(expr! includes expr?) | ; Set exprl includes instance expr2

(expr is-superset-of expr) | ; Set expr! includes set expr2
(expr isa class) | ; expris an instance of class
(has-value expr) | ; expr evaluates to a non-nil value (equivalent to expr)

‘Forall’ Expressions:

(allof exprl where expr() | ; Find all ezpr! members passing test expr0
(forall exprl [where expr0] expr2) | ; Eval expr2 for all exprl [passing test expr()
(oneof exprl where expr() | ; First exprl member passing test expr(
(theoneof expr! where expr() | ; The exprl member passing test expr)
(allof expr! [where expr2/ must expr2) | ; Check all expr! members passing

; test expr? also pass expr0
(allof2 exprl where expr() | ; Same, except keyword ‘It2’ rather than
(forall2 exprl [where expr(] expr2) | ; ‘It’ denotes the referent

(oneof2 exprl where expr() |
(theoneof2 exprl where expr() |
(allof2 exprl [where expr2] must expr?) |

Arithmetic Computations:

Cexpr op expr [op expr[™) | ; Arithmetic, where op is one of +,-,%,/,”
(the sum of expr) | ; Add, alternative form (expr evals to a set of numbers)
(the difference of expr) | ; Subtract: (((nl - n2) - n3) - ... - uN)

(the product of expr) | ; Multiply

(the quotient of expr) | ; Divide: (((n1 / n2) /n3) /... / nN)

(the max of expr) | ; The maximum of the value(s) expr

(the min of expr) | ; Minimum

(the average of expr) | ; Average

(the number of expr) | ; Number of values expr returns

(the abs of expr) | ; Remove negative sign from ezpreg. -1 — 1
(the floor of expr) | ; Remove decimals from ezpr, eg. 1.03 — 1
(the log of expr) | ; Logarithm (base e)

(the exp of expr) | ; Exponent

(the sqrt of expr) | ; Square root

The Object Stack (“Contexts”):

(new-context) | ; Clear the object stack

(show-context) | ; List all the instances on the object stack

(the class [with slotsvals/) | ; Find the instance (on the object stack) of class with slotsvals

(every class [with slotsvals]) | ; Find all instances (on the object stack) of class with slotsvals

(the+ class [with slotsvals)) | ; Find-or-create the instance of class with given slotsvals

(a+ class [with slotsvals)) | ; Same (Synonym for the+)

(thelast class) | ; Find the most recent instance of class on the object stack
Unification:

(expr & expr & expr[™) | ; unify instances

(expr == expr [== expr]®) | ; unify instances (synonym for &)

Cexpr &' expr [&! expr/*) | ; unify instances eagerly

Cexpr &? expr) | ; test if instances will unify

(the unification of expr) | ; Unify (using &) all elements in expr

(Cexpr®) && Cexpr®) [&& Cexpr™)]*) | ; unify sets

(Cexpr®) === (expr*®) [z== (expr®]* | ; unify sets (synonym for &&)

(Cexpr® &&! Cexpr® [&&! (expr™ %) | ; unify sets eagerly

(the set-unification of expr) | ; Unify (using &&) all values which ezpr returns

Constraints on Slot-Values:
(must-be-a class [with slotsvals]) | ; All values must be subsumed by this description
(mustnt-be-a class fwith slotsvals/) | ; No values can be subsumed by this description
(<> expr) | ; No values can be equal to expr
(constraint expr) | ; expr must be true for every value (denoted by TheValue in ezpr)

Constraints on the Set of Slot-Values:

(at-least integer class) | ; Must contain at least integer instances of class
(at-most integer class) | ; Must contain at most integer instances of class
(exactly integer class) | ; Must contain exactly integer instances of class
(set-constraint expr) | ; expr must be true for the value set (denoted by TheValues in expr)
Classification:
(every class has-definition slotsvals) | ; Condition for membership
(instance has-definition slotsvals) | ; Condition for equivalence
Sequences:
(thel of expr) | ; First element of :args/:seq (sequence) structure
(the2 of expr) | ; Second element of :args/:seq (sequence) structure
(the3 of expr) | ; Third element of :args/:seq (sequence) structure
(theN N of expr) | ; Nth element of :args/:seq (sequence) structure
(thel slot of expr) | ; First element of the :args structure on expr’s slot
(the2 slot of expr) | ; Second element of the :args structure on expr’s slot
(the3 slot of expr) | ; Third element of the :args structure on expr’s slot

Text Generation:

(the name of expr) | ; special slot: generate a name for expr
(make-phase expr) | ; Convert, sequence (:seq) of strings + instances to phrase.
(make-sentence expr) | ; Convert sequence to sentence (capitalize and add a *.")
(andify expr) | ; (a b ¢) becomes “a, b, and c”
(pluralize expr) | ; “car” becomes “cars”
(print expr) | ; Print the result of evaluating expr
(format t string expr® | ; Print string using Lisp’s format command, substituting
; (evaluated) expr* for "~a"s in string.
(format nil string expr®) | ; Same, but return rather than print the string.

(km-format [t|nil/ string expr®) | ; Same, but better formatting control for "~a".

Queries: Quoted Expressions and Subsumption:
> expr | ; a quoted expression (does not get evaluated)

#, expr | ; (Within a quoted expression) unquote (i.e. evaluate) expr

(evaluate expr) | ; evaluate the quoted expression(s) which expr evaluates to

(exprl subsumes expr?) | ; Class description expr! subsumes class description ezpr2

(exprl covers expr2) | ; Instance description expr2 is in class description expri

(exprl is expr2) | ; (Same as subsumes, but with instance descriptions)
Prototypes:

(a-prototype class fwith slotsvals)) | ; Create a prototype of class and enter prototype mode

(end-prototype) | ; Exit prototype mode

(clone expr) ; Clone the prototype instance expr
Propositions:

(:triple expr expr expr) | ; A frame-slot-value triple

(the frame of expr) | ; The frame in the triple expr

(the slot of expr) | ; The slot in the triple expr

(the value of expr) | ; The value in the triple expr

(assert expr) | ; Assert triple ezpr in the KB

(is-true expr) | ; The triple expr holds in the KB

(all-true expr) | ; The triple(s) expr all hold in the KB

(some-true expr) | ; At least one of the triple(s) ezpr hold in the KB
Situations:

(new-situation) | ; Create and enter a new situation

(next-situation) | ; Create and enter the temporally next situation

(global-situation) | ; Return to the global situation

(curr-situation) | ; Evaluates to the current situation

(in-situation expr) | ; Enter situation expr

(in-situation exprl expr?) | ; Evaluate expr?2 in situation expr!

(in-every-situation situation-class expr) | ; expr holds in all situations of situation-class

(do expr) | ; Create next situation by doing action expr

(do-and-next ezpr) | ; Create and enter next situation by doing action expr

(do-script expr) | ; = (forall (the actions of exzpr) (do-and-next It)) (Obsolete)

(default-fluent-status [fluent-status/) |; View/set default fluent status for slots

(some class fwith slotsvals]) | ; Create a fluent instance (experimental)

Escape to Lisp:
lisp-function | ; execute lisp-function

Other Commands: Loading and Saving a KB
(reset-kb) | ; Delete the current KB from memory
(load-kb filename [:verbose t/ [:with-morphism morphism/) | ; Evaluate all exprs in a file
(reload-kb filename [:verbose t/ [:with-morphism morphism/) | ; Same, but (reset-kb) first
(save-kb filename) | ; Write current KB to a file
(write-kb) | ; Write current KB to standard output

Other Commands: General
(ignore-result ezpr) | ; Evaluate expr then return (t), regardless of the result.

(delete expr) | ; Delete the frame expr (NB but not dependent facts!)

(reverse expr) | ; Reverse the sequence expr (a (:seq il ... in) expr).
(evaluate-paths) | ; Evaluate all unexpanded paths cached on instances in current context
(graph expr [depth]) | ; Print a graph of instance ezpr to depth depth (an integer)
(showme ezpr) | ; Display slot-values of ezpr

(showme-all expr) | ; Display all slot-values of ezpr (including nils)
(evaluate-all expr) | ; Compute and display all slot-values of ezpr
(showme-here expr) | ; Display slot-values of expr in the current situation only
(taxonomy) | ; Print the isa hierarchy

(show-bindings) | ; Display all variable bindings

(trace) | ; Turn on tracing

(untrace) | ; Turn off tracing

(checkkbon) | ; Turn on run-time checking of the KB

(checkkboff) | ; Turn off run-time checking of the KB
(install-all-subclasses) | ; Re-compute subclass links from superclass links
(scan-kb) | ; Cursory check of KB for undefined symbols
(disable-classification) | ; Switch off KM’s classification mechanism
(enable-classification) | ; Switch it on again

(fail-noisily) | ; Treat an answer NIL as an error

(fail-quietly) | ; Treat an answer NIL as okay (default)

(nocomments) | ; Suppress KM’s printing of comments during inference
(comments) | ; Switch on KM’s printing of comments during inference
(setq wvar val) ; (Lisp) Set Lisp variable var to val (var & val are symbols)

Sub-expressions:

slotsvals = slotvals*

slotvals = (slot Cexpr*®)) ; eg. (pets ((a Cat) (a Dog with (age (33)))))
slot = symbol | (symbol * [n]) ; (Latter is a multidepth path)
class = symbol
instance =
_namenumber | ; anonymous instance eg. _Car33
_Protonamenumber | ; prototype instance eg. ProtoCar33
_Somenamenumber | ; fluent instance eg. _SomeCar33 (experimental)
string |
number |
symbol ; named instance (recommended to prefix with a *, eg. *Pete)

filename = string
lisp-function = #’ sexpr | (function sexpr) ; sexpris a Lisp S-expression
symbol = a Lisp symbol

Lisp Commands (Access to KM from the Lisp Prompt):
(km) | ; start KM interpreter
(km ’#$expr [:fail-mode ’fail |) ; Evaluate expr from Lisp prompt (#$ for case-sensitivity)

Keywords (denoting the instance under consideration):
Self ; in (every class...) expressions.
It ; in allof/oneof/theoneof/forall/forone expressions.

It2 ; in allof2/oneof2/theoneof2/forall2/forone2 expressions.

TheValue ; in (constraint ...) expressions.
TheValues ; in (set-constraint ...) expressions. (Denotes the set of slot-values)
TheSituation ; in (in-every-situation ...) expressions. (Denotes the situation)

3 Built-in Classes and Instances

KM'’s built-in taxonomy is as follows, showing all but KM’s built-in slot instances (these are listed
in the next Section). I denotes instances, rest are classes. Indentation shows the subclasses/instances
relationships.

Thing
Boolean
I t
I f
Cardinality
1-to-1
1-to-N
N-to-1
N-to-N
Class
Fluent-Status
I *Fluent

H H H H

—

I *Non-Fluent
Number
Integer
Partition
Situation
I *Global
Slot

*Inertial-Fluent

Aggregation-Slot

String

4 Built-in Slots

Name

abs

add-list
aggregation-function
all-classes
all-instances
all-prototypes
all-subclasses
all-subslots
all-superclasses
all-supersituations
assertions

average

(Applied to) Purpose

(Number) remove any negative sign

(Action) triples which an action makes true

(Aggregation Slot) function to use to aggregate values
(Instance) All the classes of an instance

(Class) All the instances of a class (both direct and indirect)
(Class) All the prototypes of a class

(Class) All the subclasses of a class

(Slot) All the subslots of a slot

(Class) All the superclasses of a class

(Situation) All the supersituations of a situation

(Situation, book-keeping) Assertions to make in a new situation
(Numbers) Average of a set of numbers

Name
cardinality
classes
cloned-from
definition
del-list
difference
domain
domain-of
elements

exp

fifth

first

floor
fluent-status
fluent-status-of
fourth
instance-of
instances
inverse
inverse2
inverse3

last

log

max

members

min

name

ncs-list
next-situation
number
pcs-list
prev-situation
product
protopart-of
protoparts
prototype-of
prototypes
quotient

range

range-of
second
set—-unification
situation-specific
sqrt
subclasses

Applied to) Purpose

Slot) Cardinality restrictions on a slot

Instance) Immediate classes of an instance (same as instance-of)
Instance, book-keeping) source prototype(s) for an instance
Prototype, book-keeping) definitional properties of a prototype
Action) triples which an action makes false
Numbers) Difference of a set of numbers (((nl-n2)-n
Slot) class restriction on a slot’s first argument
Class) inverse of domain

Sequence) Return the elements in a sequence as a set
Number) exponent

t) Fifth element in a set of values'

t) First element in a set of values’

3)-....uN)

(§]
[§]

Number) Remove decimals, e.g., 1.03 — 1

Slot) Declare if slot is a *Fluent, *Non-Fluent or *Inertial-Fluent

(

(

(

(

(

(

(

(

(

(

(

(S

(S

(

(

(Fluent-Status) Inverse of fluent-status
(Set) Fourth element in a set of values’
(Instance) The immediate classes of an instance
(Class) The immediate instances of a class
(Slot) Name of the slot’s inverse slot
(Slot) Name of an N-ary slot’s “second inverse”
(Slot) Name of an N-ary slot’s “third inverse”
(Set) Last element in a set of values'
(Number) Logarithm of a number
(Numbers) Maximum of a set of numbers

(Partition) Classes in the partition

(Numbers) Minimum of a set of numbers

(Instance) Pretty name (text fragments) of an instance

(Action) triples false before an action happens

(Situation) The temporally next situation

(Set) The number of values in a set

(Action) triples true before an action happens

(Situation) The temporally previous situation

(Numbers) Product of a set of numbers

(Prototype, book-keeping) Inverse of protoparts

(Prototype, book-keeping) Instances which are part of the prototype
(Prototype, book-keeping) Class which the prototype is of

(Class) Prototypes of a class

(Numbers) Quotient of a set of numbers (((nl/n2)/n3)/.../nN)
(Slot) class restriction on a slot’s second argument

(Class) inverse of range

(Set) Second element in a set of values’

(Set) Unify (using &&) all the members of a set

(Slot) If t, do not compute slot values in global situation

(Number) The square root of a number

(Class) Immediate subclasses of a class

Name (Applied to) Purpose

subsituations (Situation) Immediate subsituations of a situation
subslots (Slot) Immediate subslots of a slot

sum (Numbers) Sum of a set of numbers

superclasses (Class) Immediate superclasses of a class
supersituations (Situation) Immediate supersituations of a situation
superslots (Slot) Immediate superslots of a slot

third (Set) Third element in a set of values'
unification (Set) Unify (using &) all the members of a set

Notes:

e T Preservation of slot-value ordering in a set is not guaranteed.
e instances, instances-of are inertial fluents. add-list, del-list, pcs-list, ncs-list
are non-inertial fluents. All other built-in slots are non-fluents.

References

[1] D. Bobrow and T. Winograd. An overview of KRL, a knowledge representation language. In
R. Brachman and H. Levesque, editors, Readings in Knowledge Representation, pages 264—285.
Kaufmann, CA, 1985. (originally in Cognitive Science 1 (1), 1977, 3-46).

[2] R. MacGregor and R. Bates. The LOOM knowledge representation language. Tech Report
ISI-RS-87-188, ISI, CA, 1987.

[3] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, and A. Borgida.
Living with CLASSIC: When and how to use a KL-ONE like language. In J. Sowa, editor,
Principles of Semantic Networks. Kaufmann, CA, 1991.

[4] Peter Clark and Bruce Porter. KM — the knowledge machine: Users manual. Technical report,
Al Lab, Univ Texas at Austin, 1999. (http://www.cs.utexas.edu/users/mfkb/km.html).

[5] Peter Clark and Bruce Porter. KM - situations, simulations, and possible worlds. Technical re-
port, Al Lab, Univ Texas at Austin, 1999. (http://www.cs.utexas.edu/users/mfkb/km.html).

