
Knowledge Integration Across Multiple Texts

Doo Soon Kim
Dept. of Computer Science

University of Texas
Austin, TX, 78712

onue5@cs.utexas.edu

Ken Barker
Dept. of Computer Science

University of Texas
Austin, TX, 78712

kbarker@cs.utexas.edu

Bruce Porter
Dept. of Computer Science

University of Texas
Austin, TX, 78712

porter@cs.utexas.edu

ABSTRACT
One of the grand challenges of AI is to build systems
that learn by reading. The ideal system would construct
a rich knowledge base capable of automated reasoning.
We have built a Learning-by-Reading system and this
paper focuses on one aspect of it: the task of integrat-
ing together snippets of knowledge drawn from multiple
texts to build a single coherent knowledge base. Our
evaluation shows that our approach to the knowledge
integration is both feasible and promising.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Knowledge
Acquisition; I.2.7 [Artificial Intelligence]: Natural
Language Processing—Discourse

General Terms
Algorithms

Keywords
knowledge acquisition, knowledge integration, natural
language understanding, learning-by-reading

1. INTRODUCTION
An ideal solution to the problem of knowledge capture is
to build systems that automatically construct a knowl-
edge base by reading texts. However, this requires solv-
ing another formidable problem: Natural Language Un-
derstanding. NLU is the AI task of reading texts to
build a formal representation of their content in order
to support a variety of tasks, such as automated rea-
soning and question answering. Despite considerable
progress, full NLU remains challenging, largely because
of the ambiguity of natural language and the omission
of information that readers easily infer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
K-CAP’09,Septempber 1–4,2009,Redondo Beach, California, USA.
Copyright 2009 ACM 978-1-60558-658-8/09/09 ...$10.00

Nevertheless, there has been encouraging progress on
the subtasks of NLU, including parsing and semantic
interpretation. Much of this progress is due to corpus-
based, statistical methods that nicely handle ambiguity
and uncertainty. We believe the time is ripe to tackle
the challenge of NLU afresh.

We bring to this challenge a new approach which is
based on our experience with the Learning by Reading
project [3]1 . Rather than trying to build systems that
extract the full content of a text, our goal is to build
systems that extract a partial understanding from many
texts (all on the same topic), then integrates these into
a single, coherent knowledge base. The advantage of
this approach, when applied to a corpus of texts with
redundant content, is obvious: it allows a system to
extract only those text segments that the system can
interpret with high confidence.

This new approach partially shifts the burden of NLU
from language processing tasks, which are known to be
hard, to a new AI challenge: knowledge integration, the
task of combining fragments of information drawn from
multiple texts – along with background knowledge –
into a single coherent knowledge base. Our preliminary
results indicate that the knowledge integration task is
tractable and worth investigating further.

Mobius [3], a prototype Learning-by-Reading system,
showed the importance of knowledge integration. It was
able to extract, on average, about 30% of the informa-
tion content of texts. However, the resulting knowl-
edge base was highly fragmented – a large set of un-
related triples. We have considerable experience man-
ually building knowledge bases that support sophisti-
cated reasoning and question answering (e.g. Halo [7]);
we can attest that the Mobius-built knowledge base is
too fragmented to be useful for such tasks.

Based on Mobius, we built a new experimental Learning-
by-Reading system, Kleo, which has a sophisticated

1For this and other insights, we appreciate the lively discus-
sions with our team members on the Learning by Reading
project: Noah Friedland, Jerry Hobbs, Ed Hovy, Paul Mar-
tin, Ralph Weischedel and David Israel.

knowledge integration facility. This paper presents Kleo’s
knowledge integration component. Because the KI com-
ponent is the primary difference between Mobius and
Kleo, we can evaluate the contribution of knowledge in-
tegration in Kleo by comparing the two systems’ ability
to read a corpus of texts.

It is important to note that our goal in building Kleo is
to extract from texts the domain-specific, rich represen-
tations (graphical representations). Consequently, Kleo
is unlike other information extraction systems [1] that
extract relatively simple facts (e.g. relations between
two entities) by skimming millions of open-domain doc-
uments.

2. NL PROCESSING IN KLEO
Kleo consists of two main components: the NL compo-
nent, which produces semantic representations for the
sentences in the texts, and the KI component, which
combines the semantic representations produced by the
NL component.

This section briefly describes Kleo’s NL component (see
[9] for details) to provide background of Kleo’s KI. Given
a text, Kleo parses individual sentences into dependency
parses using the Stanford Parser [10]. A dependency
parse is a set of triples in which the first and the third
elements are words occurring in a sentence and the
second is a syntactic relation between the two words
(e.g. (move nsubj ball) 2 for “A ball moves”). From
these syntactic triples, Kleo produces semantic triples
in which the words in the first and the third position
are assigned ontological types and the second element
expresses a semantic relation between the two words.
For example, the left figure in fig. 1 shows a seman-
tic representation for the sentence “The engine’s piston
compresses the gasoline.”. The representation indicates
that piston-4 is a kind of Device and is the instru-
ment of compresses-5.

The ontological types and the semantic relations are
drawn from a formal ontology, the Component Library [2],
which defines about 800 upper-ontology concepts and
80 semantic relations. Because these concepts and rela-
tions are domain-independent, they can be used to rep-
resent knowledge of any domain. Our experiment [3]
shows that the NL component extracts about 30% of
useful information, on average, from a single document. 3

3. KNOWLEDGE INTEGRATION IN KLEO
Kleo and Mobius perform two types of knowledge in-
tegration: sentence-to-sentence knowledge integration
(SKI) and text-to-text knowledge integration (TKI).
SKI integrates semantic representations for individual
sentences within a text to create a representation for
2(X nsubj Y) means that a noun, Y, is a subject of X.
3The experiment was performed on Mobius whose NL com-
ponent is almost equal to the one in Kleo

Figure 1: The semantic representations for S1
and S2

the text, and TKI assimilates the representation of the
text into the knowledge base of a domain.

Kleo’s knowledge integration capability is considerably
more sophisticated than Mobius in three ways: First,
Kleo is able to integrate multiple representations of an
entity or event, even when the representations differ
in their level of detail. Second, Kleo uses more back-
ground knowledge than Mobius in that it uses knowl-
edge it learned from reading previous texts. Third, Kleo
is considerably more scalable than Mobius in that it can
combine knowledge from many more texts.

This section presents the KI capabilities in Kleo, using
the example sentences below. The semantic representa-
tions for these sentences are shown in fig. 1. We skip the
explanation of how the NL component produces these
representations because it is not the focus of this paper.

S1: The engine’s piston compresses the gasoline.
S2: Then, combustion of gasoline occurs inside
the engine’s cylinder.

The core component of SKI and TKI in Kleo is a graph
matcher, which is described in Section 4. In addition,
SKI uses the knowledge base – the one being built by
Kleo – to provide background information for a current
text, and TKI uses a technique called partitioning which
addresses the scalability issue.

3.1 Sentence-to-Sentence Knowledge Integra-
tion

The goal of SKI is to produce representations of a text
(text-KR) that make explicit the connections among
the entities and events mentioned in the text. These
connections are often implicit in the text, but are es-
sential for capturing its coherence. To assess how well
SKI identifies these connections, we will measure the
improvement it causes in the density (connectivity) of
the graphical representations of the text.

Initially, the text-KR consists of only the representation
of the first sentence. As Kleo reads each subsequent sen-
tence, SKI integrates the representation of the sentence
with its text-KR. SKI consists of two steps: Stitch and
Elaborate. Stitch aligns the representation of each sen-
tence with the text-KR, and Elaborate makes explicit
its implied content.

3.1.1 Stitch
Stitch aligns two semantic representations by graph match-
ing, as described in Section 4 below. The process starts
by resolving some direct anaphoric references among the
sentences (using simple heuristics), then the matcher
aligns the whole graphical representations, which in-
cludes the step of merging co-referential events that are
described in different sentences.

The matcher combines S1 with S2 in fig. 1 using the
following inferences: (1) engine-8 is joined [13] with
engine-2 and gasoline-4 is joined with gasoline-6
(because they derive from the same word class); (2)
cylinders-10 is related to piston-3 (because they are
parts of the same engine); (3) “then” implies that
combustion-1 occurs after compresses-4. See fig. 2
for the result of this combination. These inference steps
are described further in Section 4.

Stitch also performs a simple mapping (similar to [4])
from cue phrases to semantic relations between the con-
secutive sentences. For example, “because”, “and so”
are mapped to a casual relations, and “then”, “after”,
“before” are mapped to a temporal relations.

3.1.2 Elaborate
To produce a complete and coherent representation for
the text, the omitted information in the text should
be represented explicitly. Kleo does this by augment-
ing the representation produced by Stitch with relevant
background knowledge. The augmentation may relate
together two or more nodes in the graphical representa-
tion with semantic paths, which could resolve indirect
anaphora and add temporal and causal relations among
the events mentioned in the text.

Kleo draws background information from two sources.
One is the Component Library which provides rich rep-
resentations of general events and entities, such as En-

ter and Container. For example, if Kleo reads “fuel
enters the cylinder”, it draws on knowledge of Enter to
infer that a cylinder is a container (the base of all En-

ter events) and that the fuel passed through a portal
of the cylinder enroute from the outside of the cylinder
to the inside.

The other source is information that Kleo learned by
previously reading other texts on the same topic (i.e.
the knowledge base constructed with the previous texts).
This provides a bootstrapping capability in which Kleo
exploits pre-learned knowledge.

Figure 2: The stitched representation

Figure 3: The example knowledge base

Because the information sources contain a vast amount
of background knowledge, it is challenging to retrieve
only the information that is relevant to the text. Kleo
meets this challenge by performing spreading activation
through the information sources. Specifically, the acti-
vation starts from the concepts referenced in the rep-
resentations produced by Stitch. For example, suppose
that the knowledge base - i.e. the Component Library
or pre-learned knowledge - contains the representation
shown in fig. 3. For the representation in fig. 2, ac-
tivation starts from Engine, Cylinder, Piston, and
Compress which are referenced by the types of engine-
9, cylinders-11, piston-4 and compresses-5. Currently,
we use a simple termination condition whereby activa-
tion stops when it meets another activation (success)
or it travels a certain distance (failure). Thus, the ital-
icized parts - the region explored by the spreading ac-
tivation (“The compression occurs inside the cylinder”
and “The cylinder encloses the piston”) - are returned
as background information and aligned with the repre-
sentation in fig. 2 using the graph matcher. Fig. 4 shows
the resulting representation.

3.2 Text-to-Text Knowledge Integration

The goal of TKI is to combine knowledge extracted from
multiple texts into a single knowledge base. Initially,
the knowledge base consists of only the representation
of the first text. As Kleo reads each subsequent text, its
representation is integrated with the knowledge base.

Typically, the texts have overlapping content. TKI at-
tempts to identify the points of overlap, which is chal-
lenging because the texts differ in their presentation.
Commonly, for example, the texts present overlapping
content, but at different levels of granularity.

The graph matcher (in Section 4) is the main compo-
nent of TKI. However, before it can be applied, we must
address an efficiency concern because TKI attempts to
match graphs that are large. (Contrast this with SKI,
which attempts to match graphs that represent mere

Figure 4: The elaborated representation

Figure 5: K-units produced from the representa-
tion in fig. 4 by partitioning. The dotted nodes
are roots.

sentences). Our approach is to partition the graphs –
and the background knowledge base that will be used
to align them – into a set of coherent subgraphs, that
we will call K-units. Fig. 5 shows examples of K-units
for Engine, Cylinder, and Combustion.

A K-unit has a root node which is universally quantified.
The other nodes in the K-unit are existentially quan-
tified in the scope of the root node. For example, the
Cylinder K-unit in fig. 5 represents ∀x.Cylinder(x) →
∃y.P iston(y) ∧ encloses(x, y). Notice that the K-units
are implicitly associated to one another because the root
nodes are universally quantified. For example, Cylin-

der in the Engine K-unit in fig. 5 is connected to the
root node of the Cylinder K-unit.

TKI partitions learned knowledge into K-units with the
following procedure: Given a text-KR from SKI (e.g.
the representation in fig. 4), TKI chooses nodes that
can serve as root nodes - typically, key concepts in the
domain of the texts. The heuristic used by TKI is se-
lecting nodes whose input words frequently appear in
the texts or nodes that are an instance of an Event be-
cause frequently occurring words or events are generally
important concepts. Once the root nodes are identified,
TKI performs spreading activation from each root node
until the activation arrives at other root nodes. The re-
gion explored by the activation becomes a K-unit for
the root node. Fig. 5 shows the K-units resulting from
partitioning the representation in fig. 4.

For each new K-unit, Kleo retrieves a relevant K-Unit
from the knowledge base. Two K-units are relevant if
(1) their roots are instances of the same entity or (2)
their root nodes are events and their case roles are taxo-
nomically related. The two relevant K-units are aligned
by the graph matcher and then the new integrated K-
unit is stored in the knowledge base.

4. GRAPH MATCHING
The central issue in both SKI and TKI is combining
multiple representations of knowledge into a coherent
whole. The basic operation is graph join [13], but com-
plications commonly arise because the representations
do not align perfectly. Our graph matcher attempts to
resolve mismatches.

Based on our earlier “semantic matcher” [15] that han-
dles a variety of common cases, such as the transitivity

of causality, the graph matcher in Kleo handles a com-
mon source of mismatch: shifts in granularity such as
the example in fig. 6.

The matcher operates in two steps: (1) First, it identi-
fies seed nodes in the two graphs that can be mapped
to each other and (2) from the pairs of seed nodes, the
matcher extends the mappings to identify more.

4.1 Identifying seed nodes
The matcher uses two heuristics to identify seed nodes.
In the description of the heuristics, let node1 be a node
from the first input graph, and node2 from the second.

Heuristic 1. Node1 is mapped with node2 if both
are entities and originate from the same word class.

Heuristic 2. Node1 is mapped with node2 if both
are events, node1 subsumes node2 (or vice versa) and
the case roles of node1 subsumes ones of node2 (or vice
versa).

As an example of heuristic2, consider two representa-
tions, “Fuel moves into an engine” (Move-Into1 object
Fuel1) (Move-Into1 destination Engine1) and “Engine
takes in gasoline” (Take-In2 object Gasoline2) (Take-
In2 destination Engine1). Heuristic2 chooses (Move-
Into1, Take-In2) as a pair of seed nodes because, in
CLib, Take-In and Gasoline are subclass of Move-

In and Fuel, respectively. It is important to check
the case roles because the case roles restrict the mean-
ing of the events. To identify more seed nodes We
plan to incorporate state-of-the-art methods for resolv-
ing anaphoric references [12].

4.2 Extending mappings
The mappings are recursively extended from the seed
nodes by extension pattern rules. In the description of
the patterns, G1 and G2 refer to the two input graphs,
and A and X refer to nodes in G1 and G2 that are
already mapped to each other.

Pattern 1. (simple alignment) There are triples
(A r B) in G1 and (X r Y) in G2 such that B subsumes
Y (or vice versa). Then, B is mapped with Y.

The pattern can align, for example, (Engine1 has-part
Piston1) with (Gasoline-Engine2 has-part Piston2) if
the system knows (Engine subclass Gasoline-Engine).

Patterns 2 through 6 resolve several types of granularity
mismatches.

Pattern 2. (transitivity-based alignment) There
are triples (A r B) in G1 and (X r Y) (Y r Z) in G2

such that B subsumes Z (or vice versa) and r is a tran-
sitive relation such as causes, next-event. Then, B is
mapped with Z.

A transitive relation often causes a granularity mis-
match such as (Engine1 has-part Engine-Block1) (Engine-
Block1 has-part Cylinder1) and (Engine2 has-part Cylin-
der2).

The following pattern uses a relation called X-onomy,
which is a general relation that includes all relations
that involve hierarchy such as has-part, has-region and
sub-event (partonomy), isa (taxonomy).

Pattern 3. (Co-reference across a granularity
shift) There are (A r B) in G1 and (X r Y) (Y X-
onomy Z) in G2 such that B subsumes Z (or vice versa).
Then, B is mapped with Z.

This pattern handles a case that two expressions refer-
ence the same entity at different granularities. For ex-
ample, two representations, “The engine takes in gaso-
line”(Move1 object Gasoline1) (Move1 destination En-
gine1) and “The cylinder in the engine takes in gaso-
line” (Move2 object Gasoline2) (Move2 destination Cylin-
der2) (Engine2 has-part Cylinder2), co-references at the
different granularity the location which gasoline is taken
into. Notice that the patterns3 can align (Move1 des-
tination Engine1) with (Move2 destination Cylinder2)
(Engine2 has-part Cylinder2). In this case, X-onomy is
a has-part relation.

Patterns 4 through 6 introduce assumptions - additional
triples - without which the alignment would fail.

Pattern 4. (Abductive transfer-thru alignment)
There are triples (A r B) in G1 and (X r Y) in G2 such
that B does not subsumes Y (or vice versa). Then, X-
onomy can be abduced between B and Y. Additionally,
if r is a transitive relation, r can be abduced between B
and Y, too. (In the implementation of Kleo, we abduce
related-to).

This pattern is an abductive version of pattern 2 and
pattern 3. For example, for S1 and S2 in fig. 1, this pat-
tern abduces (cylinder-11 related-to piston-4) be-
cause both cylinder-11 and piston-4 are parts of the
same engine.

Pattern 5. (Generalization-based alignment)
There are (A r B1) .. (A r Bn) in G1 and (X r Y) in
G2 such that each of B1, ..., Bn does not subsumes Y
(or vice versa). Then, X-onomy is abduced between Bi
and Y for i = 1,2, ..., n.

This pattern handles a case that several pieces of similar
information in a fine-grained representation are gener-
alized together to form a coarse-grained representation.
For example, given two representations, (Engine1 has-
part Cylinder1) (Engine1 has-part Piston1) and (En-
gine2 has-part Device2), this pattern makes an inference
that Cylinder1 and Device2 are in a X-onomy relation-
ship and that Piston1 and Device2 are in a X-onomy
relationship.

The following pattern uses a relation called lateral re-
lation, which is a general relation that connects two
consecutive things (e.g. next-event, beside) - whether
Entity or Event

Pattern 6. (Abstraction-based alignment)
There are triples (A r1 B) (B lateral-relation C) (C r2
D) in G1 and (X r1 Y) (Y r2 Z) in G2. Then D is
mapped with Z, and two X-onomy relations are abduced
between Y and B and between Z and C.

This pattern handles a case that an aggregation of small
things, whether Entities or Events, is viewed as one
thing. Fig. 6 shows an example of this pattern which
infers that Move2 is in a X-onomy relationship with
Move1a and Move1b.

All these patterns are inherently uncertain; That is, a
pattern could make a wrong alignment even if its pre-
condition holds true (especially, pattern 4-6). Part of
our future research is to deal with the uncertain nature
of knowledge integration.

5. EVALUATION
We evaluate the contribution of knowledge integration
by comparing Kleo with Mobius, two systems that differ
primarily in their knowledge integration capabilities 4.
Specifically, they differ in three ways: (1) Kleo’s graph
matcher handles mismatches in granularity, while Mo-
bius’s does not (i.e. Kleo uses patterns 1 - 6, described
4The original Mobius system used BBN’s Serif parser [11];
but, for the evaluation purpose, we replaced the parser with
the one used in Kleo, the Stanford parser.

Figure 6: Example for the extension pattern 6

in Section 4. Mobius, however, uses only pattern 1). (2)
During knowledge integration, Kleo uses both CLib and
knowledge derived from reading previous texts. Mobius
uses only CLib. (3) To improve efficiency, Kleo uses
partitioning (see Section 3.2), but Mobius does not.

Both systems read about 25 texts in two domains: the
blood circulation in the human heart and the cycle in
the internal-combustion engine. Each text consisted of
a paragraph drawn from a variety of sources – ency-
clopedia, web pages, textbooks – and were roughly at
the same complexity as the Wikipedia articles on the
topics. On average, the texts contained 5.67 sentences,
and the sentences averaged 16 words in length.

5.1 Evaluation of SKI
We evaluate the two main features of SKI: (1) the ability
to align representations, even when they differ in their
level of granularity. This is performed by pattern rules
2 through 6 in the graph matcher (see Section 4.2) (2)
the use of background knowledge learned by reading
previous texts (see Elaborate in Section 3.1).

To measure the contribution of each feature, we com-
pared 4 systems: Kleo (uses both features), Mobius+GM
(uses only the extension rules), Mobius+KB (uses only
the pre-learned knowledge), Mobius (uses neither). The
graph matcher used in Mobius and Mobius+KB is the
same as the one in Kleo except that it uses only rule
pattern 1, and none of the rules that handle granularity
mismatches.

The main purpose of SKI is to reduce the fragmentation
of knowledge among the sentence-level representations.
To measure the contribution of SKI, we use a metric
called density-improvement. This metric is based on the
density of the graph, which measures the connectivity
of a graphical representation:

density =
number of edges

number of edges in a fully con-
nected graph of n nodes

=
e

(

n

2

)

where n is the number of nodes in the graph and e is
the number of edges. The maximum of density is 1 in
the case that the graph is fully connected.

Density-improvement is defined as

Heart Engine
0

1

2

3

4

5

Mobius
Mobius+GM
Mobius+KB
Kleo

Figure 7: The average density-improvement
over 25 texts in each domain (95% confidence
level).

density of the graph after SKI
density of the graph before SKI

This metric measures SKI’s contribution to increase the
density of the graphical representation. Fig. 7 shows
the results. SKI improved the density of the graph of
learned knowledge by a factor of 2.5-3.5 (the density-
improvement of Kleo is 2.5-3.5 times higher than the
density-improvement of Mobius). The two main fea-
tures of SKI – handling granularity mismatches and
using background knowledge from previous reading –
contributed equally to this improvement (the density-
improvement of Mobius+GM and Mobius+KB are about
equal). We also found that this result is independent to
the order of reading texts.

Further, we investigated why SKI contributed more in
the heart domain than in the engine domain. We found
that the major reason for this difference is that Kleo
drew more background knowledge for the texts about
the heart because they have more overlapping content,
as measured by the number of words in common across
the texts.

5.2 Failure Analysis on SKI
To prioritize the future work on knowledge integration,
we analyzed the failure cases of SKI during the experi-
ment in Section 5.1. We randomly chose 15 texts used
in the experiment, and closely examined the following
knowledge integration operations – merging two knowl-
edge structures and inferring additional semantic rela-
tions.

First, we used a simple scoring function to measure how
often the operations contribute to combining represen-
tations coherently: 1 if an operation contributes; .5 if
an operation partially contributes; 0 if an operation is
not justified. Examples of the operations that partially
contribute are : (1) Background knowledge used during
reading is only partially correct (2) Merging two nodes
is only partially justified.5

5For example, let’s assume that node3 should be merged
with node1 but not with node2 and that knowledge integra-
tion merges node1 and node2 to produce node4 and then
merges node4 with node3. Merging of node4 with node3

The average score was .56, indicating that roughly half
of the operations contribute to the goal of coherently
combining information 6. To investigate the other in-
appropriate operations, we categorized the failures and
measured their frequencies:

1. Incorrect semantic representations from pre-
vious reading (36%) During knowledge integration,
Kleo draws upon knowledge acquired from reading pre-
vious texts. In errors of this type, the previously ac-
quired knowledge was incorrect, typically due to errors
in the NL component.

2. Incorrect application of background knowl-
edge (18%) In errors of this type, Kleo pulled in pre-
viously acquired knowledge that irrelevant. For exam-
ple, Kleo pulled in information about a jet engine for a
text about gasoline engine. To avoid this error, Kleo

should consider context when drawing information from
the background knowledge base.

3. Overly general background knowledge (18%)
In errors of this type, Kleo pulled in knowledge that
is overly general and vague. For example, Kleo pulled
in the triple (Engine related-to Piston), which fails to
specify the relationship.

4. Inappropriate application of Heuristic1 in
Section 4.1 (14%) In errors of this type, heuristic1
joined two entities that share a common head word,
but are otherwise dissimilar. For example, Kleo inap-
propriately joined “right atrium” with “left atrium”. To
avoid this type of mistake, Kleo should consider features
derived from modifying phrases.

5. Language interpretation failure (8%) In errors
of this type, Kleo makes incorrect knowledge-integration
decisions because the NL component misread a text.
For example, mapping a word to an inappropriate con-
cept can cause errors in graph matching.

6. Mishandling transient properties (5%) In er-
rors of this type, Kleo fails to recognize that a property
is transient, causing inappropriate matches. For exam-
ple, Kleo incorrectly matched “oxygen-rich blood” with
“oxygen-poor blood”

The above categories show that the failure of the NL
component (44% from error1 and 5) is a main bottle-
neck of knowledge integration (In our experiment, only
30% of the triples produced by the NL component were
correct [3]). We plan to address this brittleness of Natu-
ral Language Processing by reading multiple texts with

is partially justified because node1 should be merged with
node3 but node2 should not.
6Because the erroneous operations are often caused by the
failure of the NL, not KI’s algorithm (see the categories of
the failure cases), the score will increase independent to the
KI component with more advanced NL technology.

patterns frequency(%) patterns frequency(%)

pattern1 52.4 pattern2 0.3
pattern3 8.2 pattern4 31.9
pattern5 7.2 pattern6 0

Table 1: The frequency of invocation of the ex-
tension pattern rules

0 500 1,000 1,500 1,800
0

200

400

600

800

1000

1200

1400

1600

1800

number of input triples

nu
m

be
r

of
 tr

ip
le

s
in

 K
B

0 500 1000 1500 1800
0

200

400

600

800

1000

1200

1400

1600

1800

Baseline
Mobius
Kleo

EngineHeart

Figure 8: Increase in knowledge-base size with
presentation of triples to TKI

redundant contents. Specifically, we will widen the fun-
nel between the NL and the KI component, which cur-
rently passes forward only one interpretation for a single
text (while pruning the other possible interpretations
which may contain the right one). We recently devel-
oped a compact representation for representing a set
of candidate interpretations. Then, the KI component
finds the most plausible one by comparing different sets
of the candidate interpretations from multiple texts on
the same topic.

5.3 Evaluation of TKI
The main purpose of TKI is to combine information
learned across multiple texts. In this evaluation, we use
the metric of knowledge base size – the number of triples
in the final knowledge base of information learned by
reading a corpus of texts. Because TKI attempts to
find overlapping content, to avoid redundancy and im-
prove coherence, the more TKI identifies and merges
the overlapping contents the smaller the resulting KB
will be.

Specifically, we evaluate the contribution of the graph
matcher, especially the pattern rules that handle gran-
ularity mismatches, by comparing three systems: Kleo
(uses all the pattern rules described in Section 4), Mo-
bius (uses only pattern rule 1, not rules 2 through 6,
which are intended to handle granularity mismatches),
and a baseline (simply appends knowledge structures
with no attempt to match them).

Fig. 8 shows the result. The x-axis is the total number
of input triples presented to TKI and the y-axis is the
total number of output triples produced by TKI (i.e.
the total number of triples in the final knowledge base).
In both domains, TKI discovered a significant amount
of overlapping content across the texts – the knowledge
base built by Kleo was 30% smaller than the one built

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

number of texts

to
ta

l d
ur

at
io

n
(m

in
)

Heart

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Engine

Kleo with partitioning
Kleo without partitioning

Figure 9: With partitioning, the run time of up-
dating a knowledge base is almost negligible

by the baseline. The graph-matcher rules that handle
granularity mismatches account for about 45% of this
contribution – the knowledge base built by Kleo was
18% smaller than the one built by Mobius.

Table. 1 shows the number of frequencies in which the
extension pattern rules are invoked during reading the
25 texts in two domains. It shows that the rules for
resolving granularity mismatches (pattern 2-6) make a
significant contribution (about 50% of total invocation)
and that Pattern4 is used most whereas Pattern2 and
6 are rarely used.

Lastly, we evaluated the contribution of partitioning.
The purpose of partitioning is to dampen the increase in
the cost of graph matching as the knowledge base grows.
We compare two systems: Kleo and Kleo-Partioning
(i.e. Kleo without the partitioning capability).

Fig. 9 shows the results. The time required to read a
text by Kleo-Partitioning grows rapidly with the size of
the knowledge base (as measured here by the number
of texts read so far). In contrast, the time required
by Kleo remains almost constant. Partitioning seems
crucial for the scalability of knowledge integration.

6. RELATED WORK
Learning Reader [6] and Kleo are similar in that both
attempt to relate information across texts. Their goals,
however, differ. Learning Reader, which reads a corpus
of newswire, attempts to identify a same incident men-
tioned across articles and merge the information about
the incident together. In contrast, Kleo, which reads
texts about general concepts such as the engine or the
heart, uses the other texts to imply unstated informa-
tion in a text (see Elaborate in Section 3.1).

Most information extraction systems extract particular
types of knowledge such as relations between two en-
tities [1] or named-entities [5]. Because their represen-
tations are simple (e.g. triples or named-entities), they
generally do not employ a sophisticated knowledge inte-
gration such as the graph matching performed by Kleo.
Some machine reading systems perform a simple type
of knowledge integration – mostly, named-entity reso-
lution, using, for example, spreading activation [8] or
semantic matching [14].

7. ACKNOWLEDGEMENT
Support for this research was provided by a 2008 IBM
Open Collaborative Faculty Award.

8. REFERENCES
[1] M. Banko and et al. Open information extraction

from the web. In IJCAI, Hyderabad, 2007.

[2] K. Barker and et al. A library of generic concepts
for composing knowledge bases. In Proc. of
K-Cap, Victoria, 2001.

[3] K. Barker and et al. Learning by reading: A
prototype system, performance baseline and
lessons learned. In Proc. of 21nd National
Conference on Artificial Intelligence, 2007.

[4] K. Barker and S. Szpakowicz. Interactive
semantic analysis of clause-level relationships. In
Proc. of PACLING, pages 22–30, 1995.

[5] O. Etzioni and et al. Unsupervised named-entity
extraction from the web: An experimental study.
Artificial Intelligence, 165(1):91–134, 2005.

[6] K. Forbus and et al. Integrating natural language,
knowledge representation and reasoning, and
analogical processing to learn by reading. In Proc.
of AAAI, pages 1542–1547, 2007.

[7] N. Friedland and et al. Project Halo: Towards a
digital Aristotle. AI Magazine, 25(4):29–48, 2004.

[8] B. Harrington and S. Clark. Asknet: Automated
semantic knowledge network. In Proc. of AAAI,
2007.

[9] D. S. Kim and B. Porter. Kleo: A bootstrapping
learning-by-reading system. In Proc. of the Spring
AAAI Symposium Series, 2009.

[10] D. Klein and C. Manning. Accurate unlexicalized
parsing. In Proc. of ACL, 2003.

[11] S. Miller and et al. A novel use of statistical
parsing to extract information from text. In Proc.
of the 1st conf. on NAACL, pages 226–233, 2000.

[12] R. Mitkov, B. Boguraev, and S. Lappin.
Introduction to the special issue on computational
anaphora resolution. Computational Linguistics,
27(4):473–477, 2001.

[13] J. Sowa. Conceptual Structures. Addison-Wesley,
1984.

[14] M. Yatskevich and et al. Coreference resolution on
rdf graphs generated from information extraction:
first results. In ISWC Workshop, 2006.

[15] P. Z. Yeh, B. Porter, and K. Barker. Using
transformations to improve semantic matching. In
K-CAP’03, pages 180–189, 2003.

