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Abstract 
A traditional goal of Artificial Intelligence research has 
been a system that can read unrestricted natural language 
texts on a given topic, build a model of that topic and reason 
over the model. Natural Language Processing advances in 
syntax and semantics have made it possible to extract a 
limited form of meaning from sentences. Knowledge 
Representation research has shown that it is possible to 
model and reason over topics in interesting areas of human 
knowledge. It is useful for these two communities to reunite 
periodically to see where we stand with respect to the 
common goal of text understanding. 

In this paper, we describe a coordinated effort among 
researchers from the Natural Language and Knowledge 
Representation and Reasoning communities. We routed the 
output of existing NL software into existing KR software to 
extract knowledge from texts for integration with 
engineered knowledge bases. We tested the system on a 
suite of roughly 80 small English texts about the form and 
function of the human heart, as well as a handful of 
“confuser” texts from other domains. We then manually 
evaluated the knowledge extracted from novel texts. 

Our conclusion is that the technology from these fields is 
mature enough to start producing unified machine reading 
systems. The results of our exercise provide a performance 
baseline for systems attempting to acquire models from text. 

Learning by Reading 

Learning by reading is a term that may refer to any number 
of tasks involving the interpretation of natural language 
texts. Our task is to build a formal representation of a 
specific, coherent topic through deep processing of concise 
texts focused on that topic. This is in contrast to 
unrestricted text understanding, which attempts to extract 
as much knowledge as possible from what is explicitly 
expressed in given texts. Unrestricted text understanding is 
a much more challenging form of learning by reading than 
our task. In particular, our target topic is known and the 
vocabulary and required depth of the formal representation 
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are fixed. These features of the task mean that we place 
more emphasis on existing background knowledge and the 
expectations it implies and less emphasis on “reading 
well”. Specifically, our task allows us to read multiple 
texts on a topic to find the knowledge required to build a 
model of the topic, reducing the burden of Recall 
performance on any given text. 

Even this restricted definition of learning by reading 
subsumes at least two subtasks that are open problems in 
AI—natural language understanding and knowledge 
integration. Advances in both areas suggest that their 
technologies are ready to be combined to make headway in 
text understanding. The use of large, domain-independent, 
broad-coverage, corpus-based language tools and resources 
has made natural language processing systems very robust. 
The availability of large, domain-independent, broad-
coverage knowledge repositories and flexible matching 
techniques have made knowledge integration of 
unexpected inputs much more feasible. These advances 
help reduce the brittleness that has plagued end-to-end text 
understanding systems of the past. 

Furthermore, although the subtasks are undeniably 
difficult, combining them might simplify both. The 
knowledge integration task provides a knowledge base that 
can supply expectations and context to help disambiguate 
natural language, and natural language understanding 
might automatically produce new content to fill gaps in the 
knowledge. Ultimately, with the two tasks tightly coupled 
in a cycle, a Learning-by-Reading system might start with 
only general knowledge and a corpus of relevant texts and 
bootstrap itself to a state of domain expertise. 

This paper describes a first step toward building a 
Learning-by-Reading system: assembling a prototype, 
analyzing its performance and identifying major 
challenges. We built the prototype system by combining 
off-the-shelf systems for the tasks of parsing, semantic 
elaboration and knowledge integration.  

The system attempts to acquire a knowledge base of 
CONCEPT-relation-CONCEPT triples from information 
conveyed by the text. The triples are not isolated facts, but 
are integrated with the rich logical forms of the 



background knowledge base. That is, each CONCEPT-
relation-CONCEPT triple is part of a larger, underlying 
semantic graph. The result for an entire focused text is a 
semantic model of a topic, not simply a set of relational 
tuples such as those harvested by corpus-based Information 
Extraction tools (Banko et al., 2007). In addition to guiding 
integration, the background knowledge provides 
expectations for generating hypotheses—information that 
may be relevant to the topic, but not present in the text. 
These hypotheses may be useful in helping disambiguate 
text and guiding subsequent reading. 

To test the prototype we applied it to texts in the domain 
of human physiology, in particular, the form and function 
of the human heart. The texts were in unrestricted English, 
were obtained from a variety of sources (including the 
web, encyclopedias, and biologists), and were roughly at 
the level of Wikipedia articles. We compared the system’s 
output with extracted facts identified by human readers, 
establishing a performance baseline for evaluating future 
systems.  

Assembling a Prototype System 

We built the prototype system by integrating existing 
components drawn from natural language understanding 
and knowledge-based systems. The components had never 
before been combined, and they were not designed with 
integration in mind. We connected them in a straight 
pipeline architecture. For integration, the components were 
customized in only one way, namely to use the same set of 
(binary) semantic relations. The relations include: 

• EVENT-to-ENTITY : agent, donor, instrument, etc. 

• ENTITY-to-ENTITY : has-part, location, material, etc.  

• EVENT-to-EVENT: causes, defeats, enables, etc. 

• EVENT-to-VALUE: rate, duration, manner, etc. 

• ENTITY-to-VALUE: size, color, age, etc. 

The background knowledge base is the Component Library 
(Barker et al., 2001), which encodes representations of 
about 700 general concepts, such as the events TRANSFER, 
COMMUNICATE and ENTER and entities PLACE, ORGANISM 
and CONTAINER. The philosophy behind the Component 
Library is to achieve broad coverage by concentrating on 
general concepts in the upper ontology, but to achieve 
depth of representation by richly axiomatizing the 
relatively small number of concepts and formalizing the 
semantics of their composition. 

To help the system get started, we seeded it with ten 
concepts—including PUMP and MUSCLE—that are domain-
general, but important to understanding heart texts. To 
avoid bias we also added about twenty “confuser” 
concepts—including MUSICAL-INSTRUMENT and SHOE—
that a naïve system might identify in texts about “organs” 
and “pumps”. 

We lightly trained the NL system by identifying novel 
words and phrases pertaining to the heart and adding them 
to the parser’s domain lexicon. The exercise also identified 

a handful of novel syntactic patterns particular to our genre 
of texts. 

System Components and Processing 

This section describes the text analysis process and 
illustrates features of the prototype by way of an example 
paragraph (sentences numbered for clarity). 

1. The heart is a pump that works together with the lungs. 

2. The heart consists of 4 chambers. 

3. The upper chambers are called atria, and the lower chambers 
are called ventricles. 

4. The right atrium and ventricle receive blood from the body 
through the veins and then pump the blood to the lungs. 

5. It pumps blood in 2 ways. 

6. It pumps blood from the heart to the lungs to pick up oxygen. 

7. The oxygenated blood returns to the heart. 

8. It then pumps blood out into the circulatory system of blood 
vessels that carry blood through the body. 

Natural Language Processing 

The NLP system (Mulkar et al., 2007a) includes a parser, a 
set of rules to convert parse fragments into logical form 
expressions (which include logical variables and a 
preliminary assignment of relations), and an abductive 
reasoner to expand the LF expressions for knowledge 
integration. 

Parsing. CONTEX (Hermjakob, 1997; 2001) parses NL 
sentences into dependency trees that also contain certain 
surface semantic labels (typically, case relations). 
CONTEX is a deterministic parser that uses a decision tree 
of shift-reduce parsing operation rules, which are learned 
from a general corpus of training sentences. We trained 
CONTEX further on an additional few dozen sentences 
that contained unusual syntactic patterns from our domain.  

Logical Form Generation. The LF Toolkit (Rathod and 
Hobbs, 2005) generates a set of shallow logical form 
expressions (Hobbs, 1998). It produces a logical form 
fragment for each lexical item in the parse tree and uses 
syntactic composition relations to create variables shared 
by the LF fragments. Certain additional representations are 
introduced, for example sets associated with plurals. The 
result is a set of LF expressions for each part-of-speech 
node in the parse tree. For example, for the verb ‘work’ in 
sentence 1, the LF Toolkit uses the following rule: 

work-vb(e0,x1) → 
e0-work; instance-of: work; agent-of: x1,e0 

where the variable x1 represents the parse tree node for 
‘heart’, and e0 represents the eventuality of the working 
event itself. For sentence 1 the intermediate LF is: 
is(e0,x0,x1) 
heart-nn(x0); pump-nn(x1) 



work-vb(e1) 
lung-nn(x3); together_with(e2,e1,x3); 
agent-of2(x3,e1) 

agent-of1(x1,e1) 

Abductive Expansion and Reformulation. The final NL 
step (Mini-TACITUS) implements a version of the 
abductive reasoner TACITUS (Hobbs et al., 1993). It co-
indexes all variables appropriately and adds additional LF 
expressions that can be abductively derived from the 
knowledge just obtained. This step uses a set of (a few 
dozen) hand-crafted axioms. The final LF expressions for 
sentence 1 are:  
[Interpt Number: 20 (Cost: 56) 
e0-is: eventuality-of is 
x0-heart: is x1-pump; instance-of heart 
x1-pump: agent-of e1-work;instance-of pump 
e1-work: instance-of work; 
 together-with x3-lung ...] 

At this stage axioms can abductively introduce new terms 
and use them to connect apparently unrelated LF 
expressions. For example, given the two axioms  

Axiom1: device(x1) & fluid(x2) → pump(x1,x2) 
Axiom2: device(x1) & heart(x1) → heart(x1) 

the first axiom states that a pumping activity can expect 
some device (named x1) and some fluid (named x2). 
Should the LF expressions include a device such as ‘heart’ 
(named, for example, x7) and some fluid such as ‘blood’ 
(named, say, x11), these axioms will allow the abductive 
unification of x1 with x7 and x2 with x11, producing the 
desired path connecting ‘heart’ and ‘blood’. 

The NL system passes LF expressions on to the KI 
system along with some housekeeping information about 
words and parts of speech for variables, and an indication 
of any “definitional language” (for example, ‘heart’ being 
defined in terms of ‘pump’). 

Knowledge Integration 

Word-to-Concept Mapping. In addition to rich semantic 
representations of concepts, the existing knowledge base 
includes links from each concept to the WordNet synsets 
(Miller, 1990) that most closely match the semantics of the 
concept. For each variable in an LF expression, the KI 
subsystem looks its word up in WordNet and climbs the 
WordNet hypernym tree (isa hierarchy) to find synsets 
mapped to from KB concepts. These concepts are the 
candidate concepts for words from the sentence. The 
candidates are scored on distance traveled in WordNet, 
depth in the KB hierarchy and type of concept (generic vs. 
specialized vs. domain). Preference is also given to new 
concepts learned in the current reading session. 

For example, the noun ‘pump’ has three synsets in 
WordNet: pump#1 (mechanical device), pump#2 (heart) 
and pump#3 (shoe). The KB concept PUMPING-DEVICE 
maps directly to pump#1 (distance 0). No KB concept 
maps directly to pump#2, but INTERNAL-ORGAN maps to 
pump#2’s ancestor, organ#1 (distance 2). The KB concept 
SHOE maps to pump#3’s parent shoe#1 (distance 1). The 

three candidates (PUMPING-DEVICE, INTERNAL-ORGAN and 
SHOE) are all specialized but pre-existing KB concepts. 
With no other context, PUMPING-DEVICE is preferred. 

Concept Creation. Each word in an LF expression is 
mapped to its preferred KB concept as described above. 
For words that directly match the name of an existing 
concept the system generates instances of the existing 
concept. For “new” words, the system may create new KB 
concepts. For sentence 1, KI creates a new concept for 
LUNG as a kind of INTERNAL-ORGAN (based on the 
WordNet-based semantic search).  

For ‘heart’, the semantic search finds seven candidate 
concepts: PUMPING-DEVICE, INTERNAL-ORGAN, TRAIT-
VALUE, PLACE, CONCEPTUAL-ENTITY , PAPER and SOLID-
SUBSTANCE. The candidate INTERNAL-ORGAN scores 
highest and, in the absence of context, would be selected as 
superclass for the new concept HEART. The NL system, 
however, has identified “definitional language”, with 
‘heart’ being defined in terms of ‘pump’. KI’s concept 
creation biases superclass selection for definitional 
language by asserting axioms from PUMPING-DEVICE (the 
top candidate for the word ‘pump’) to the instance of 
HEART. This instance is semantically matched against 
instances of each of the seven candidate concepts. 
INTERNAL-ORGAN is discarded in favor of PUMPING-
DEVICE as the superclass for the new HEART concept. 

New concept creation may be deferred if the preferred 
superclass for the new concept is deemed too general.  

Instance Unification. Definitional language is also a cue 
for the KI subsystem to perform a kind of co-reference 
resolution: the instance corresponding to the definition 
target word and the instance for the genus are unified. 

For example, from sentence 3 ‘The upper chambers are 
called atria’, ‘atrium’ is the target and ‘chamber’ is the 
genus. The property ‘upper’ refers to ‘chamber’ and 
appears as an attribute on the instance of the concept 
CHAMBER. Unifying the ATRIUM instance and the 
CHAMBER instance equates ‘upper chamber’ and ‘atrium’, 
transferring the property ‘upper’ to the ATRIUM instance.  

Semantic Role Relabeling. The NL subsystem assigns 
temporary semantic relations to related terms from 
sentences. The KI subsystem may accept these assignments 
or change them based on context from the background KB. 

For example, for the phrase ‘blood from the heart’ the 
NL system may produce the LF expression: 
x0-heart: origin-of x3-blood 

In the knowledge base, however, origin-of is a relation 
constrained to be between an EVENT and a SPATIAL-
ENTITY  (not two ENTITIES). The KI subsystem recognizes 
the constraint violation and searches the KB for evidence 
of more appropriate spatial relations between two 
ENTITIES. In this case, it replaces origin-of with encloses, 
generating the KB triple: 
<_Heart1 encloses _Blood3> 

The KI subsystem performs the same KB search to assign 
relations the NL system has missed. In the LF expression 



for sentence 1, together-with is not a legal knowledge base 
relation. KB search finds agent as a suitable reassignment: 
<_Work1 agent _Heart0> 
<_Work1 agent _Lung3> 

Constraint Assertion. When the NL system identifies sets 
(via expressions of cardinality), the KI subsystem can 
assert set constraint axioms into the knowledge base. For 
sentence 2 ‘The heart consists of four chambers’, the NL 
system declares the cardinality of ‘chamber’ to be 4 and 
the KI system asserts a set constraint on the has-part 
relation for the concept HEART: 
<Heart has-part (exactly 4 Chamber)> 

Adjective Elaboration. The existing knowledge base 
representation for properties allows ordering of scalar 
values (e.g., hot > cold), specification of values relative to 
classes (e.g., tall relative to Person), unit conversion for 
numeric values, etc. This representation carries significant 
syntactic baggage. The KI subsystem accepts impoverished 
property representations from NL and searches the 
background KB for an appropriate elaboration. 

In sentence 3, the NL system produces the LF: 
x1-chamber: property upper 

The KI system elaborates the LF to: 
<_Chamber1 position _Position-Value2> 
<_Position-Value2 value (*upper Chamber)> 

meaning that the instance of CHAMBER has a position and 
the value of that position is *upper relative to the 
collection of instances of CHAMBER. 

The background knowledge base also includes 
information about the noun roots of denominal adjectives. 
If no property constants (such as *upper) exist for an 
adjective a, the KI system checks if there is a noun root n 
for the adjective. If so, it submits a-h as a potential new 
concept (where h is the head modified by a) that is related 
to the preferred candidate concept for n. 

For example, in sentence 8 the adjective ‘circulatory’ in 
‘the circulatory system’ has a noun root ‘circulation’. The 
KI system submits CIRCULATORY-SYSTEM as a potential 
new concept with superclass SYSTEM, and asserts that 
CIRCULATORY-SYSTEM is related to FLOW (the preferred 
candidate concept for ‘circulation’). 

KB Matching and Hypothesis Generation. The result of 
all previous NL and KI system steps is a set of triples for 
each sentence consisting of KB concept instances and 
relations between them. Coreference of concept instances 
is maintained, so the set of triples forms a (possibly 
disconnected) semantic graph. As its final “integration” 
step for a sentence, the KI system selects potentially 
relevant KB concepts (those referred to in current-sentence 
triples, previous triples, as well as domain concepts and 
learned concepts). For each relevant concept it builds an 
instance graph by walking KB relations to a set depth. It 
then chooses one concept as the best semantic match to the 
current-sentence triple graph using flexible semantic 
matching (Yeh et al. 2005). “Committing” to this match 
integrates the knowledge extracted from the sentence into a 

relevant part of the background knowledge base, resulting 
in richer, more connected (more coherent) model of the 
topic than the original graph of triples of the sentence. 

The parts of the chosen KB concept graph that do not 
match the triple set for the current sentence are hypotheses. 
For example, in sentence 6 ‘It pumps blood from the heart 
to the lungs to pick up oxygen’, the most closely matching 
KB concept is the PUMPING action. The sentence triples 
match PUMPING because there is an instrument, a FLUID-
SUBSTANCE being pumped, an origin and a destination. 
Triples from the instantiated graph for PUMPING not 
accounted for in the sentence include the existence of a 
CONTRACT action acting on the instrument of the PUMPING 
causing a FLOW of the FLUID-SUBSTANCE from inside the 
instrument through a PORTAL to a PLACE outside the 
instrument. These facts from PUMPING form hypotheses 
about the heart that could be scheduled for confirmation 
through more reading. That is, the system could search for 
texts that suggest that hearts contract, blood flows, hearts 
have portals, etc. In the prototype system, hypotheses are 
reported, but not investigated. 

Final Output. After processing all eight sentences, the 
prototype system has created eight new concepts and added 
them to the knowledge base: ATRIUM (a subclass of 
CHAMBER), BLOOD (LIQUID-SUBSTANCE), HEART 
(PUMPING-DEVICE), LUNG (INTERNAL-ORGAN), OXYGEN 
(GAS-SUBSTANCE), VEIN (BODY-PART), VENTRICLE 
(CHAMBER) and VESSEL (BODY-PART). It has also 
identified one candidate concept not added to the 
knowledge base: CIRCULATORY-SYSTEM (a subclass of the 
very general concept SYSTEM) which is related (in some 
unknown way) to the concept FLOW. 

Also asserted to the knowledge base were 48 unique 
axioms. Some axioms are good: 
<Pumping 
 object Blood 
 destination Lung> 

<Heart has-part (exactly 4 Chamber)> 

<Receive 
 origin Body 
 path Vein 
 recipient Ventricle 
 object Blood> 

Some axioms are incorrect or overly general: 
<Oxygen object-of Learn> 

<Lung encloses Fluid-Substance> 

<Entity object-of Action> 

Evaluation 

The current prototype was developed as an interactive 
demo system intended as a proof of concept. It was not 
instrumented to allow for objective comparison to other 
systems, or even to allow its quantitative performance to be 
tracked over time. The next version of the prototype, 
currently under development, will include a flexible 
question answering system and problem solver (Chaw and 



Porter, 2007) to query the knowledge captured from text. 
Maintaining a test suite of questions will allow us to 
provide a quantitative measure of its performance on a 
real-world task. It should also allow us to compare 
performance to related systems in question answering, 
textual entailment, reading comprehension, etc. 

System Performance Evaluation 
We did, nonetheless, evaluate the system and its 
components in various ways. The main evaluation of the 
system’s output measured its extracted information against 
a human gold standard.  

We gave four novel texts on the form and function of the 
human heart to four human readers not associated with the 
project. The exercise can be thought of as an active 
reading comprehension test, where readers must identify 
“who did what to whom?” for each sentence. Specifically, 
we asked the readers to represent the content of each 
sentence by (1) identifying the main events described in 
the sentence, (2) identifying the main participants of these 
events, (3) deciding whether the sentence introduces new 
concepts outside the existing ontology, (4) identifying 
properties of the events and participants, and (5) describing 
the relationships among events and participants. For 
example, ‘the human heart pumps blood’ might be 
expressed as: 
Pump (a Pumping event) (1) 
Heart (2) 
Human 
Blood 

Heart (an Internal-Organ) (3) 
Blood (a Liquid-Substance) 

Heart part-of: Human (4) 
Pump instrument: Heart (5) 
  object: Blood 

The human readers were encouraged to use their common-
sense knowledge to interpret the text (e.g. to resolve 
anaphora), but were asked to limit their representations to 
include only the information conveyed by the text, either 
implicitly or explicitly. After the human readers worked 
individually to represent the texts, they discussed their 
encodings and collectively agreed on the final 
representations (the gold standard). 

We compared the prototype system’s output with the 
gold standard using the following metrics: 

precision (P) = (correct + partial×0.5) 
actual 

recall (R) = (correct + partial×0.5) 
possible 

undergeneration (U) = missing 
possible 

overgeneration (O) = spurious 
actual 

where 

correct the number of triples from the system that 
match a triple from the gold standard 

partial the number of triples from the system that 
almost match the gold standard (reasonable 
triples that differ by at most one element) 

actual total triples from the final output of the system. 

possible total triples in the gold standard. 

missing the number of triples in the gold standard that 
have no counterpart in the output of the system 

spurious the number of triples from the system that have 
no counterpart in the gold standard 

Note that partial correctness was only awarded to 
reasonable triples that differ by one element. So a triple 
such as (Pump instrument Country) would not 
receive partial credit, even though it differs in only one 
element. 

Table 1 shows the results of comparing system 
performance to the gold standard on four test texts. The 
first row shows the scores for the system on the task of 
concept creation—the task of identifying what items in 
sentences require new concepts and finding the correct 
superclass in the knowledge base. The second row shows 
scores on the task of connecting concepts through relations 
to produce triples. The third row shows total scores. 

 P R O U 
Concepts .589 .644 .314 .174 
Relations .284 .218 .520 .664 

Total .374 .322 .460 .542 

Table 1: System Precision, Recall, Over- and Under-
generation versus gold standard human performance 

The system seems to do reasonably well with concept 
creation. Overgeneration is mainly due to the system’s 
“unique-word” approach to concept creation, resulting in 
new concepts such as ORGAN as a subclass of INTERNAL-
ORGAN because the word ‘organ’ doesn’t match the name 
of an existing concept. It is an interesting result that the 
human readers often preferred not to create new concepts 
when the semantics of existing concepts were “close 
enough”. 

The system performs more poorly on relation 
assignment. The low scores are due in part to the difficulty 
of this problem, to be sure, but also in part to our scoring 
scheme. For example, consider the case where the system 
has (over-eagerly) created a new PUMP concept as a 
subclass of PUMPING-DEVICE: 
(Pumping instrument Pumping-Device) (Gold) 
(Pumping instrument Pump) (1) 
(Pumping agent Pumping-Device) (2) 
(Pumping agent Pump) (3) 

We would assign partial correctness to (1) because of the 
class mismatch and partial correctness to (2) for the 
relation mismatch. (3) would be scored incorrect (zero) for 
mismatching the gold standard in two ways, though it 



clearly more closely matches the content of the text than 
some random triple. 

NLP-Oriented Expansion and Evaluation  

One of the more interesting lessons learned in this effort 
was the effect of errors in Natural Language Processing on 
the final knowledge base (e.g., prepositional phrase 
misattachments resulting ultimately in knowledge base 
constraint violations).  

An analysis of throughput indicated that the surface-
level expressions produced at the end of abductive 
reasoning were often not sufficiently semantic for 
knowledge integration. In order to improve throughput, we 
trained the NLP subsystem to perform better on sentences 
about ‘hearts’ and ‘blood’ on a very large corpus. 

The result was an increase of 15% in KR triples, and 
doubled coverage on the number of KB concepts reflecting 
content from the sentences (from 50% to 100%). This 
constituted a striking indication of the value of widening 
coverage through corpus-based training.  

Sensitivity of the Prototype to the Domain 
To test (informally) whether the prototype system was 
overly biased toward hearts as pumps, we processed six 
texts unrelated to the heart, but having something to do 
with ‘pumps’ or ‘pumping’ (e.g., ‘bicycle pump’, 
‘harmonium’, ‘shoe’). The goals were to verify that the 
results were comparable to those extracted from heart texts 
and to verify that background knowledge was not causing 
the system to “hallucinate” facts about hearts in texts 
unrelated to hearts. The results showed that the prototype 
system’s performance on non-heart text is equivalent to 
performance on our suite of test texts about the heart.  

Redundancy, Recall and Convergence 
The machine reading task we envision is to read potentially 
many, redundant texts to build a model of a topic (although 
the prototype system does not seek out new texts to 
confirm hypotheses). The system is not expected to capture 
all of the content of any given text: facts missed from one 
text may be captured from subsequent texts. 

We conducted an experiment to test two hypotheses: (1) 
that the redundancy of information over multiple texts 
lessens the Recall burden on the system for any single text; 
(2) that each subsequent text on a single topic will 
contribute less knowledge to the growing model 
(suggesting that the system will eventually converge on a 
model and can stop reading). 

To test these hypotheses we compared the knowledge 
captured from single texts in isolation to the knowledge 
captured from the same texts in the context of having read 
other texts in the same domain. In every case, the 
incremental contribution from a text was less having read 
other texts than in isolation, suggesting that at least some 
of the concepts and relations in a given text are recoverable 
(if missed) from other texts. 

Related Work 

There has been little work on integrated Learning by 
Reading since the 1970s, when NLP and KR&R began to 
diverge. Subtasks of the reading problem have been 
investigated in depth by the different communities. 
Research from word sense disambiguation (Edmonds and 
Kilgarriff, 2003), semantic role labeling (Carreras and 
Màrquez, 2004), semantic parsing (Ge and Mooney, 2005), 
ontology discovery (Buitelaar et al., 2004), and knowledge 
integration (Murray and Porter, 1989) are all relevant to the 
attempt to build a machine reading system. There have 
been research efforts investigating more integration of the 
different aspects of the problem. Although these often 
serve a specific information need in a particular domain or 
simplify the task in one or more ways (Forbus et al., 2007; 
Hahn et al., 2002; Hovy, 2006; Mulkar et al., 2007b) they 
indicate progress in text understanding and an eagerness in 
the community for producing integrated machine reading 
systems.  

Hard Problems and Next Steps 

Because of the syntactic complexity of scientific text, we 
cannot count on parses being entirely correct. The machine 
reading task we envision mitigates the problem somewhat 
by relying on redundancy across multiple texts. An 
important next step will be to extend the system to perform 
“targeted reading”, both to seek to confirm expectation-
based hypotheses from the knowledge base and to take 
advantage of redundancy in building a model of the topic. 

A promising approach we began to investigate in the 
prototype is to use the semantic properties of entities and 
relations in an inference framework to unify propositions 
where possible and abductively add propositions licensed 
by axioms, to recover the missing linkages between the 
independent fragments of logical form. Our experiments 
indicate that using abduction to overcome shortcomings in 
the parser helps to “mend” inadequate parses. 

Learning by Reading holds several more specific 
challenges: word sense disambiguation, coreference 
resolution and a host of additional issues in semantics 
proper, including an adequate (though not necessarily 
complete) treatment of negation, modality, numerical 
expressions, and other phenomena. Handling discourse 
structure, and in general dealing with shifting focus and 
emphasis that often signals metonymy or quasi-metonymy, 
so pervasive in technical literature, is a challenge best 
addressed by integrating NLP with reasoning systems.  

We estimate that the “semantic fragmentation” from 
interpreting sentences in isolation was responsible for 25% 
of the errors of omission by the system. We propose to 
investigate (1) identifying semantic coreferences in text, 
including indirect reference and reference across sentences, 
and (2) exposing information that is only implicit in text. 
Both of these tasks involve elaborating an interpretation 
using background knowledge, knowledge that typically 
only matches the textual interpretation imperfectly. 



Building on our previous work, our focus will be on 
flexible matching of knowledge structures and adaptation 
(Yeh et al., 2005, Fan et al., 2005, Fan and Porter, 2004). 
We will continue to pursue our hypothesis that general 
background knowledge (like that encoded in our existing 
knowledge base) is key to these tasks. 

Summary 

In this paper we have chronicled the teaming of NLP and 
KR&R research groups to build a prototype Learning-by-
Reading system. We described the system’s components in 
the context of learning models of the heart from untreated 
encyclopedia-level natural language text. We evaluated the 
prototype against human performance, establishing a 
baseline for future systems. 

The exercise taught us several interesting lessons: well-
known types of NLP errors have significant consequences 
in representation and reasoning; there is considerable 
duplication in addressing common tasks between NLP and 
KR&R research; corpus-based training can “widen the 
funnel” of facts available for knowledge integration; 
flexible matching of automatically generated content to 
engineered content is essential; research in each 
community can assist with tasks that prove difficult when 
approached in isolation; it is feasible to build a system that 
learns formal models of topics from unrestricted text. 

The modest success of the prototype encourages us to 
continue the experiment and work towards a more tightly 
integrated system more deserving of the description 
“Learning by Reading”. More importantly, the stimulation 
of working across research communities has inspired us. 
We hope that this lesson will persuade others to “cross the 
line” and move us closer to the goal of machine reading. 

Acknowledgments 

This research was funded by DARPA’s “Learning by 
Reading: The Möbius Project” (NBCHD030010 TO #0007). 

References 

Banko, M., Cafarella, M., Soderland, S., Broadhead, M., and 
Etzioni, O. (2007). “Open Information Extraction from the Web.” 
Proceedings of the 20th International Joint Conference on 
Artificial Intelligence. Hyderabad. 
Barker, K., Clark, P., and Porter, B. (2001). “A Library of 
Generic Concepts for Composing Knowledge Bases.” 
Proceedings of The First International Conference on Knowledge 
Capture (K-CAP 2001). Victoria. 
Buitelaar, P., Handschuh, S., and Magnini, B. 2004. “Towards 
Evaluation of Text-based Methods in the Semantic Web and 
Knowledge Discovery Life Cycle.” A Workshop at The 16th 
European Conference on Artificial Intelligence. 
Carreras, X. and Màrquez, L. 2004. “Introduction to the CoNLL-
2004 shared task: Semantic role labeling.” Proceedings of The 8th 
Conference on Computational Natural Language Learning. 

Chaw, S., and Porter, B., 2007. “A Knowledge-Based Approach 
to Answering Novel Questions.” Proceedings of the 3rd 
International Workshop on Knowledge and Reasoning for 
Answering Questions. Hyderabad. 
Edmonds, P. and Kilgarriff, A. 2003. “Special Issue on Senseval-
2”. Journal of Natural Language Engineering 9(1). 
Fan, J., Barker, K., and Porter, B. 2005. “Indirect Anaphora 
Resolution as Semantic Path Search.” Proceedings of The Third 
International Conference on Knowledge Capture. Banff. 
Fan, J. and Porter, B. 2004. “Interpreting Loosely Encoded 
Questions.” Proceedings of The Nineteenth National Conference 
on Artificial Intelligence, 399–405. 
Forbus, K., Riesbeck, C., Birnbaum, L., Livingston, K., Sharma, 
A., and Ureel, L. 2007. “A Prototype System that Learns by 
Reading Simplified Texts.” Proceedings of the 2007 AAAI Spring 
Symposium on Machine Reading. Palo Alto. 
Ge, R. and Mooney, R. 2005. “A statistical semantic parser that 
integrates syntax and semantics.” Proceedings of the 9th 
Conference on Computational Natural Language Learning, 9-16. 
Hahn, Udo, Romacker, M., and Schulz, S. 2002. “Creating 
Knowledge Repositories from Biomedical Reports: The 
medSynDiKATe Text Mining System.” Pacific Symposium on 
Biocomputing, Lihue, Hawaii. 
Hermjakob, U. 1997. Learning Parse and Translation Decisions 
from Examples with Rich Context. Ph.D. dissertation, University 
of Texas at Austin.  
Hermjakob, U. 2001. “Parsing and Question Classification for 
Question Answering”. Proceedings of the Workshop on Question 
Answering at the Conference ACL-2001. Toulouse.  
Hobbs, J., Stickel, M., Appelt, D., and Martin, P. 1993. 
“Interpretation as Abduction”. Artificial Intelligence 63(1-2), 
69-142. 
Hobbs, J. 1998. “The Logical Notation:Ontological Promiscuity”. 
In Discourse and Inference: Magnum Opus in Progress. 
Hovy, E. 2006. Learning by Reading: An Experiment in Text 
Analysis. Invited paper. Proceedings of the Text, Speech, and 
Discourse (TSD) conference. Brno, Czech Republic. 
Miller, G. 1990. “WordNet: An On-Line Lexical Database.” 
International Journal of Lexicography 3(4). 
Mulkar, R., Hobbs, J., and Hovy, E. 2007a. Learning from 
Reading Syntactically Complex Biology Texts. Proceedings of 
the 8th International Symposium on Logical Formalizations of 
Commonsense Reasoning. Palo Alto. 
Mulkar, R., Hobbs, J., Hovy, E., Chalupsky, H., and Lin, C.-Y. 
2007b. Learning by Reading: Two Experiments. Proceedings of 
3rd international workshop on Knowledge and Reasoning for 
Answering Questions. 
Murray, K. and Porter, B. 1989. “Controlling search for the 
consequences of new information during knowledge integration.” 
Proceedings of The Sixth International Workshop on Machine 
Learning, 290-295. 
Rathod, N. and Hobbs, J. 2005. LFToolkit.  http://www.isi.edu/ 
˜nrathod /wne /LFToolkit /index.html. 
Yeh, P., Porter, B., and Barker, K. 2005. “Matching Utterances to 
Rich Knowledge Structures to Acquire a Model of the Speaker’s 
Goal.” Proceedings of The Third International Conference on 
Knowledge Capture. Banff. 
 


