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Abstract

Knowledge integration is a process of combining two
different knowledge representations together. This task
is important especially in learning where new informa-
tion is combined with prior knowledge or in understand-
ing where a coherent knowledge representation should
be generated out of several knowledge fragments. A
challenging problem in KI is handling granularity dif-
ferences, i.e. combining together two knowledge rep-
resentations with granularity differences. This paper
presents an algorithm to find such correspondences be-
tween two representations with a granularity difference
and to combine the two representations together based
on the correspondences. The algorithm uses coarsen-
ing operators which generate coarse-grained represen-
tations from a representation. At the end, we introduce
a large scale project in which the algorithm will be used.

Knowledge Integration (KI) is a process of combining two
pieces of knowledge1 together. KI is an important step in hu-
man activities such as learning, reading comprehension, rea-
soning and others. For example, in learning, one must com-
bine the new knowledge with the old, and in reading com-
prehension, one must relate together individual sentencesin
a text which often differ in level of detail. Just as in hu-
man activities, KI is also important in many AI tasks such as
knowledge acquisition, story understanding, and multidocu-
ment summarization. All these tasks commonly require the
combination of several pieces of knowledge to generate a
coherent knowledge representation.
A challenging problem in KI is integrating together two
knowledge representations with granularity differences.
Simply putting the representations together without consid-
ering the granularity differences could result in an incorrect
representation. Ideally, the two representations should be
aligned together based on identification of which parts in
the fine-grained correspond to which parts in the coarse-
grained. This paper presents an algorithm to find the corre-
spondences between two representations with a granularity
difference and to combine the representations together based
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1In this paper, by knowledge, we mean factual knowledge
which can be represented by logic. We will use conceptual graphs
or logical predicates as our notation.

on the correspondences. The algorithm uses coarsening op-
erators which generate coarse-grained representations from
a representation.

Example
This section compares a good and a bad KI on the two
texts below aboutblood circulation. These texts used in the
learning-by-reading project (Barkeret al. 2007) were ex-
cerpted from a biology textbook. Fig. 1a and fig. 1b show
the encoding of the long and the short text respectively.2 The
Component Library (Barker, Porter, & Clark 2001) was used
as the ontology for the encoding.

Text1:
Hearts pump blood through the body. Blood car-
ries oxygen to organs throughout the body. Blood
leaves the heart, then goes to the lungs where it is
oxygenated. The oxygen given to the blood by the
lungs is then burned by organs throughout the body.
Eventually the blood returns to the heart, depleted
of oxygen. It is then pumped by the heart back to the
lungs.

Text2:
Heart pumps blood to circulate around the body.

Fig. 2 shows a bad combination by a simple graph
join (Sowa 1984) on the two representations in fig. 1. In
this combination, Move3 and Move1 are unified together.
Notice that Move3 is from the coarse-grained representa-
tion (fig. 1a), and Move1 is from the fine-grained repre-
sentation(fig. 1b). Consequently, Move13, resulting from
the unification of Move1 and Move3, comes to have two
destinations (Lung1 and Heart12), such that its English in-
terpretation would be“Blood moves from the Heart to the
Heart and the Lung.” In contrast, fig. 3 illustrates a good
combination in which Move1 is identified as a superevent
of Obtain1, Move1, Carry1, Move2, and thus subevent rela-
tions are estabilished between Move1 and Obtain1, Move1,
Carry1, Move2. The English interpretation for this combi-
nation would beBlood moves from Heart to Heart. This

2Due to the limitation of space, some information in the long
text is not encoded.
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Figure 1: Encodings on the two texts on blood circulation: The fine-grained is shown in the left and the coarse-grained in the
right.
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Figure 2: Bad combination of the two representations
in fig. 1 by a simple graph join (Sowa 1984). English
glosses are given below each representation. Because
of the space limitation, the relevant parts of the repre-
setations from fig. 1 are shown. In this combination,
Move1 and Move3 are unified, and consequently the re-
sulting node, Move13, has two destinations, Lung1 and
Heart12. (<name><number1><number2> labels a node
created by the unification of<name><number1> and
<name><number2>. For example, Move13 is a node cre-
ated by the unification of Move1 and Move3.)
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movement has 4 subevents: Blood moving to the lung, Blood
obtainining oxygen, Blood carrying oxygen, and Blood mov-
ing to the heart.

Difficulties in handling granularity differences
in KI

We confine ourselves in this section to the difficulties in han-
dling granularity differences, although there are other diffi-
cult problems in KI (Murray 1995).

• finding correspondences between the fine-grained and
the coarse-grainedThe parts in the fine-grained that are
detail descriptions of parts in the coarse-grained should
be identified. Just putting them together without this con-
sideration could produce an incorrect representation as in
fig. 2.

• revealing unspecified relationsThe unspecified relations
between the fine-grained and the coarse-grained should
be explicitly represented in the combined representation.
For example, given“The heart pumps blood around the
body” and “The right ventricle contracts blood to the
lung,” the combined representation has to represent ex-
plicitly that theRIGHT VENTRICLE is a part of theHEART,
the CONTRACT action is a subevent of thePUMPING ac-
tion, theLUNG is a part of theBODY. The more related
they are, the more useful the combined knowledge would
be.

• resolving corefered entitiesEntities corefered by differ-
ent representations should be identified. For example, in
fig. 1, BLOOD, HEART, and PUMPING are entities coref-
ered by the two representations.

Problem description and Algorithm
This section presents a KI algorithm to handle granular-
ity differences. The algorithm takes in two representations
which represent the same topic: a fine-grained represen-
tation and a coarse-grained representation. The algorithm
coarsens the granularity of the fine-grained representation
repeatedly until there is an enough graph match (Sowa 1984)
between the coarsened fine-grained representation and the
coarse-grained representation (Algorithm1).

Algorithm 1 Finding correspondences between two repre-
sentations with granularity differences

Input : Kfine, a fine-grained representation
Kcoarse, a coarse-grained representation

Output : combined knowledge representation
Algorithm
while Kfine is not matched with Kcoarse well
enough (Sowa 1984)do

Kfine ← transformKfine into a more coarse-grained
represenation using the coarsening operators.
Keep the information of howKfine gets transformed.

end while
CombineKfine andKcoarse together based on the trans-
formation information recorded during the coarsening.
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Figure 4: Example of filtering:To pick up oxygenis filtered
out.

Coarsening operators
The coarsening operators convert a fine-grained represen-
tation into a more coarse-grained one. (Stell & Worboys
1999) and (Ramalingam & Hornsby 2001) identified a sim-
ilar type of coarsening operators to handle spatial granularity
differences.
We defined three types of coarsening operators: filtering,
generalization, and abstraction. Each type is representedas
a rule. The antecedent of a rule represents a pattern that is
coarsened, and the consequent represents the result of coars-
ening the antecedent. By matching an antecedent of a rule
with a part of a knowledge representation and replacing the
part with the consequent, the representation can be trans-
formed into a more coarse-grained one.
Each rule will be illustrated with a diagram in which nodes
denote instances, and edges denote relations among the in-
stances. The corresponding logical notation is provided.

1. Filtering

Some of the information in a representation can be filtered
out in a coarse granularity.

X Y X (or Y)

r(X, Y) X ( or Y)

Some of information associated with the filtered nodes
such as their properties and their partonomical descedents 
should be also filtered out.

r

Example
(before) The blood flows from the heart to the lungto
pick up oxygen3 and then circulates around the body.
(after) The blood flows from the heart to the lung and
then circulates around the body.

3Throughout the examples,italic wordsrepresent the coarsened
parts



Fig. 4 shows the example in a conceptual graph notation.
To prevent any part of a representation from being filtered
out, it is necessary to determine which parts are allowed to
be left out. For example,“The blood picks up oxygen and
then circulates around the body”, resulting from filtering out
“The blood flows from the heart to the lung”from the above
example, is not a good description of blood circulation. For
now, we leave this problem as our future research problem.
We speculate that coherence plays an important role. In the
example,FLOW is coherent withCIRCULATE in that they
together represent the continuation-of-movement viewpoint,
whereasPICK-UP andCIRCULATE do not constitue any co-
herent viewpoint.

2. Generalization

A few specific descriptions can be generalized into a more
general description.

X

Y

Z

X P

P is a superpart(or superclass) of Y and Z

r

r

r

r(X,Y) & r(X,Z) r(X,P)

Example
(before) The right ventricle is below theright atrium
in a heart. Theleft ventricleis below theleft atrium in
a heart.
(after) A ventricle is below the atrium in the heart.

Only common relations from Y and Z are carried over to P.

3. Abstraction

A detail description can be abstracted out. This abstraction
looks slightly different in different domains.

structural abstraction Structural domains describe phys-
ical objects and relations among them.

X Y Z

r

X, Y : physical objects
r : structural relations such as
    is-beside, near, etc

Z is a superpart(or superclass)
of X and Y

r(X,Y)
Z

Example
(before)A blood conduit is connected to an atrium.An
atrium is above a ventricle.A ventricle is connected to
another blood conduit.
(after) A blood conduit is connected to a heart, which
is connected to another conduit.

conduit
Atrium

Ventricle

conduit Heart
conduit conduit

Figure 5: A picture to illustrate the example. Atrium and
ventricle are abstracted into heart.

All relations associated with X and Y can be carried over to
Z.

functional abstraction Functional domains describe
events and temporal relations among them.

X Y Z

r

X, Y : Events in a subclass relation
r : next-event

Z is a superevent (or superclass)
or X and Y

r(X,Y) Z

Example
(before)Jack moves from LA to Chicago, and then
moves from Chicago to NY.
(after) Jack moves from LA to NY.

Some relations associated with X and Y should be prohibited
from being carried over to Z if they describe a state which
results from the event X but are overriden by the event Y.
In the above example, Chicago is an intermediate location
which is nullified later by the next move.

causal abstraction Causal domains describe events and
causal relations among them.

X Y

r

X, Y : events
r : causal relation

X (or Y)

r(X, Y) X (or Y)

Example
(before)John mixed oxygen and hydrogen together. As
a result, water was produced.
(after)
1. Mixing together oxygen and hydrogen by John pro-
duced water.
2. Water is produced out of oxygen and hydrogen by
John.

The difference from the above two cases is that either X or
Y is chosen in the consequent. Fig. 6 shows two ways of
abstracting thebefore text in the example.
If the cause (X in the above diagram) is retained in the con-
sequent, the information associated with Y should not be
carried over except the information describing effects by Y.
In the example, (result water) is carried over(the dotted line
in fig. 6b). If the effect (Y in the diagram) is retained in
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Figure 6: Two ways of abstracting thebefore text in the
example.

the consequent, only information describing the cause of X
such as an agent of X or a causal event of X should be car-
ried over. In the example, (agent John), (raw-material Oxy-
gen) and (raw-material Hydrogen) are carried over (the dot-
ted lines in fig. 6c)

4. Referring at different level of granularity
A same thing can be referred at different level of granularity.

X Y Z X Z
r1 r2 r1

r1(X, Y) & r2 (Y, Z) r1 (X, Z)

r2 is a relation such as partonomy 

Example
(before) John movesto Austin. Austin is a part of
Texas.
(after) John moves to Texas.

Move
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destinationobject

(before)

Move

John
Austin

destination
object

(after)

Texas

is-part-of

Figure 7: The destinations of MOVE are different in the level
of detail. Two relations,DESTINATION and IS-PART-OF,
gets abstracted intoDESTINATION

In the above example, the two knowledge representations
have different destinations (Austin and Texas respectively),
though both express the same meaning. These destina-
tions are different in the level of granularity. (Yeh, Porter,
& Barker 2003) identified a similar type of rules called
“transfers-thru” in their library of transformation rules.

Handling granularity difference as state space
search

The operators in the previous section can coarsen a fine-
grained representation in many different ways. To handle
multiple possible outputs, we reformulate our problem as a
state space search. We will useGfine andGcoarse to denote
a fine-grained representation and a coarse-grained represen-
tation to be matched, respectively.

• Initial state A pair of Gfine andGcoarse

• StateA pair of the coarsenedGfine andGcoarse

• Operators Coarsening operators

• Goal Succeed ifGfine and Gcoarse in the pair are
matched to each other well enough with a conceptual
graph match (Sowa 1984).

As in other search-based methods, it would suffer from the
state explosion problem. One heuristic of preventing the
state explosion is to use the coarse-grained input as a guid-
ance for the search. For example, the coarsening operators
may be restricted to apply only to unmatched parts between
the fine-grained and the coarse-grained.

Working Example
Fig. 8 illustrates a sequence of transformations of the fine-
grained representation in fig. 1a. This sequence would be
a solution path in a state space search. The figure shows
that the transformed representation finally comes to have the
same granularity as the coarse-grained. Based on the trans-
formation records kept during the transformations, our algo-
rithm is able to estabilish the subevent relations between the
events in the two representations. Fig. 3 shows the KI result
on the two representation in fig. 1 by our algorityhm based
on the transformation records.

Application to Learning-by-Reading
Learning-by-Reading is a large scale project in which the
goal is developing a system to build a knowledge base by
reading a text. In the system, the role of the KI module is
to integrate together logical forms generated by the NL sys-
tem. Please see (Barkeret al. 2007) for details. Failure of
handling granularity differences in logical forms during KI
was one of the brittlenesses in last year’s system. For ex-
ample, the topic sentence of a paragraph is typically coarse-
grained and the subsequent ones are more detailed. We plan
to overcome this brittleness by incorporating the algorithm
presented in this paper. The coarsening operators surfaced
with the Component Library will be used. Then, how much
the readibility is increased by our algorithm will be evalu-
ated by measuring the correctness of the representation inte-
grated out of logical forms.
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Figure 8: The fine-grained representation gets coarsened repeatedly by the coarsening operators until being aligned with the
coarse-grained input well enough by the conceptual graph match (Sowa 1984). The gray nodes are the ones on which the
operators are applied. From the transformation records, which keep the information on how the fine-grained has been converted,
we can infer that Move5 is a superevent of Obtain1, Move1, Move2 and Carry1. The above figure contains two operations which
are not decribed in this paper:elaboration andreplacement. Elaboration is an operation where more knowledge is added to
elaborate a concept. In the above example, CARRY is elaborated as having HOLD and MOVE as its subevent.Replacement
is an operation to replace a concept with its partonomical child. In the example, CARRY is replaced with MOVE, which is a
subevent of the CARRY
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