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Abstract

As information technology progresses, computers of
these days can access more information than in the past,
and thereby the need to integrate many pieces of knowl-
edge increases. This paper discusses the integration of
declarative knowledge. More specifically, it discusses
the construction of a coherent knowledge representa-
tion out of small pieces of knowledge using a back-
ground KB. The paper will cover several challenging
issues arising in knowledge integration, our approach
and future work.

One of the goals of AI is to build a comprehensive
knowledge base incrementally by acquiring fragments of
knowledge from multiple sources, probably by reading
texts(fig. 1). The key facility in a system - apart from natural
language processing, which is beyond the scope of this paper
- is knowledge integration: the ability to combine fragments
of knowledge into a coherent whole. Although some recent
systems (Harrington & Clark 2007) (Yatskevich, Welty, &
Murdock 2006) (Noy 2004) provided aspects of this facility,
their main focus was on identifying co-references among the
snippets of knowledge. In contrast, in this paper, KI entails
considerably more than coreference identification. A KI fa-
cility, such as the one we are developing, would have ap-
plication for a variety of AI tasks, such as NLP, Knowledge
Actuisition, and computational models of human learning.

Challenges in KI
Fig. 2 shows an example of KI which combines two pieces
of information aboutBlood Circulation. Background knowl-
edge, in this case, about the concept, PUMPING, is used to
improve the coherence of the combination. With the exam-
ple, this section presents challenging issues of KI which re-
ceived little attention in AI.

• Maximizing coherence Typically, multiple snippets of
knowledge can be combined in many ways. A challenge
in knowledge integration is finding the combination that
maximizes coherence. While researchers have identified
some of the factors that influence coherence, a complete
theory has not emerged.
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Figure 1: Integration of small pieces of knowledge from dif-
ferent sources. The figure illustrates a symbiotic relationship
between a knowledge base (KB) and knowledge integration
(KI) in which KB assists KI and KI enriches KB.

• Semantic matching Integrating multiple knowledge rep-
resentations requires aligning them. The alignement
process involves identifying semantically matched parts
among the representations. This can be challenging be-
cause same information can be represented in different
ways. For example, “Blood moves from the heart to the
lung” and “A lung receives the blood from the heart” ex-
press the same meaning, though their formal representa-
tions would be different.

• Implicit information Humans are so good at filling in
unspecified gaps in several pieces of knowledge that are
related. One of the challenges to KI is to identify such un-
specified information. For example, fig. 2 shows a causal
relation between MOVement of BLOOD in source1 and
PUMPING of HEART in source2 (dashed line).

• Granularity difference A special case of previous two
challenges is that representations could be different in the
level of detail. For example, source2 uses HEART and
LUNG as an origin and a destination of MOVEment of
BLOOD, whereas background knowledge, PUMPING, en-
codes that FLUID moves from CHAMBER to CONDUIT
(shaded parts of fig. 2). KI has to identify such granular-
ity differences and combine the representations based on
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Figure 2: Integration of two logical forms aboutBlood circulation. Background knowledge, PUMPING, improves the coherence
of the integration by revealing a causal relation between the input representations (dashed line). The bold lines in theresulting
knowledge structure signify the representations in source1 and source2.

the identification. (Kim & Porter 2007) identified sev-
eral types of granularity mismatches commonly arising in
knowledge integration.

Because of these challenges, simple graph-matching (Sowa
1984) is insufficient.

Our approach and algorithm
This section introduces an algorithm, KI (Algorithm1), to
handle the challenges in Section 2. The algorithm consists
of two steps:stitch andelaborate. In the stitch phase, two
representations are combined using GRAPH-MATCH (Al-
gorithm3), and in the elaboration phase, the combined result
is further elaborated by a knowledge base (KB). The elabo-
ration phase also uses GRAPH-MATCH. GRAPH-MATCH
extends simple graph-matching (Algorithm2) in the follow-
ing ways:

• Demons In simple graph-matching (Algorithm2), two
triples are aligned if one subsumes the other. For exam-
ple, (Animal has-part Limb) can be aligned with (Human
has-part Leg) in that way. GRAPH-MATCH extends this
alignment by considering not only subsumption relations
but other types of alignment, such as resolution of gran-
ularity differences. More specifically, GRAPH-MATCH
runs multiple demons, each of which looks for a specific
pattern and combines the two representations if the pat-
tern is found. If more than one demon is applicable, the
algorithm branches to create all possible alignments. The
next section describes the use of demons in more detail.

• Use of beam Reasoning in KI is uncertain, so the graph
match algorithm maintains a beam of multiple states, each
of which corresponds to a different way of integrating the

representations. Because the beam size is limited, the al-
gorithm requires an intelligent way of selecting beam el-
ements which will be retained. Devising such a selection
method is one of our future goals.

Algorithm 1 (KI) Top-level algorithm for KI. It first relates
two input representations and then elaborates further the re-
lated representations using a background KB.

Input : G1, G2 : input graphs
KB, a background KB

Output : combined knowledge representation
Algorithm
result1← Use GRAPH-MATCH to combineG1 andG2

(stitch phase)
result2← Use GRAPH-MATCH to combine result1 and
a knowledge structureGKB in KB (elaboration phase)
return result2

Demons
The demons introduced in this section are mainly aimed
at handling granularity differences introduced in (Kim &
Porter 2007). But, the use of demons can apply for other
types of alignment in a framework of GRAPH-MATCH as
well. We will explain each demon with a specific pattern
that it looks for and an action that it executes. In this sec-
tion, the Component Library (Barker, Porter, & Clark 2001)
is used as our ontology.

Subsumption-based alignment This demon aligns two
triples in a subsumption relation. This is a pattern used in
simple graph-matching.



Algorithm 2 simple graph-matching (Variable names are
shown ina slanted style)

Input : G1, G2 : input graphs
Output : combined knowledge representation
Algorithm
node-pair-queue← initial starting nodes from G1 and G2
that are aligned with each other
while node-pair-queueis not emptydo

(c1, c2)← the top element innode-pair-queue
for all triples, t1, adjacent to c1 in G1do

find a triple in G2, t2, that t1 subsumes (or vice
verca), and then add (t1, t2) tomappings
add tonode-pair-queuea new node mapping from t1
and t2

end for
end while
JoinG1 andG2 based onmappings

X Y
r1

A B
r2

Pat te rn

Action

X and Y are aligned with A and B respectively

G1 has (X r1 Y) and G2 has (A r2 B) such that
   X, r1, Y are in a subsumption relation with A, r2, B respectively

Pumping-Device Chamber

has-part

Heart Atrium
has-part

Example

A pump has a chamber.

A heart has atria.

X-onomy based alignment This pattern generalizes the
one used in subsumption-based alignment. During graph
matching, the algorithm determines co-references among
the entities and events mentioned in the graph. This can
be challenging because the entities and events can differ in
level of granularity. The algorithm uses a demon to han-
dle this case. The pattern of this demon uses a relation, X-
onomy. X-onomy is a general relation that includes all re-
lations that involve hierarchy, such as has-part(partonomy),
enclose, isa(taxonomy), etc.

X Y
r1

G1 has (X r1 Y) and G2 has (A r2 B) (B X-onomy C) such that 
    X, r1, Y are in a subsumption relation with A, r2, C respectively..

A B
r2

Pat te rn

Action
X and Y are aligned with A and C respectively.

C

X-onomy

Algorithm 3 (GRAPH-MATCH) This algorithm extends
Algorithm2. Italic partsare new steps added to Algorithm2.

Input : G1, G2 : input graphs
Output : combined knowledge representation
Internal Data Structure

State ::={node-pair-queue}
Algorithm
node-pair-queue← initial starting nodes from G1 and G2
that are aligned with each other
create stateS1 with node-pair-queue
add S1 to beam
for all states S in beamwhosenode-pair-queueis not
emptydo

(c1, c2)← the top element innode-pair-queueof S
for all triples, t1, adjacent to c1 in G1do

Each demon aligns t1 with G2 in its own way and
then updates node-pair-queue.
Create a new state, Snew, with the updated node-
pair-queue and add Snew into beam

end for
If beam contains more states than the threshold, select
the top N states

end for
JoinG1 andG2 based on themappingsof the best state in
beam
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The above demon can be transformed to another one that
can align two triples whose heads and relations are taxo-
nomically aligned with each other but tails are not aligned.
This is a pattern in which (B X-onomy C) is ablated from
X-onomy based demon. On detecting such pattern, this new
demon aligns the partially-aligned triples by installing aX-
onomy relation between the tails.



X Y
r1

A B
r2

Pat te rn

Action

1) X is aligned with A
2) Add a new triple (Y X-onomy B) in the combined representation

G1 has (X r1 Y) and G2 has (A r2 B) such that 
    X and r1 are in a subsumption relation with A, r2 respectively
    but, Y is not with B

Move

Blood

Left-Ventricle

destinat ion

object

Example

Body origin

Move

Blood

destinat ion

object

HeartBody

origin

Move

Blood

destinat ion

object

Heart
X-onomy

Body origin

(before KI)

(after KI)

Blood moves from the heart to the body.Blood moves from the left ventr icle 
to the body.

Blood moves from the left  ventr icle to the body 
The left ventricle is in X-onomy relation with the heart.

Left-Ventricle

Replication-based alignment Another common case in
granularity mismatch is when one representation contains
many repetitions of a triple in the other.
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 X and Y are in a subsumption relation with A and Bx respectively.
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Generalization-based alignment In this case, several
pieces of similar information can be generalized. For ex-
ample, “A heart has a left atrium” and “A heart has a right
atrium” can be generalized into “A heart has atria”.
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Abstraction-based alignment In this case, two things
that are consecutive temporally or spatially can be viewed
as one thing. The pattern of this demon uses a relation, “lat-
eral relation”, which connects concepts in the same level of
detail (e.g. next-event, beside, etc.).
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Note that if only Subsumption-based alignment is
used, the algorithm3 becomes simple graph-matching (al-
gorithm2).

Application to Learning-by-Reading

The goal of Learning-by-Reading project (Barkeret al.
2007) is to develop a system that reads a scientific text
and generates a formal representation of it. The role of KI
in the system is to produce a text-level representation by
combining together logical forms of individual sentences
generated by natural language software. We plan an
experiment to measure the contribution of KI to improving
the coherence and cohesiveness of the final representation.
In particular, connectivity will be measured among the
logical forms, since the much connected representations
are typically coherent and cohesive (Zadrozny & Jensen
1991). The connectivity can be calculated by the ratio of
the associated parts of the logical forms to the sum of the
sizes of them. Since connectivity alone is not enough, the
correctness of integration made by the algorithms will be
evaluated by human judges.

Related Work
KI has been a key component in learning, knowledge ac-
quisition and natural language systems, although it has not
been named as KI in many of these systems (Harrington
& Clark 2007) (Yatskevich, Welty, & Murdock 2006) (Noy
2004) (Cullingford 1978).
One closely related area attempts to build a large-scale
common-sense KB by reading texts in the Internet (Harring-
ton & Clark 2007) (Yatskevich, Welty, & Murdock 2006).
These systems typically focus on identifying corefered enti-
ties. Ontology merging (Noy 2004) is similar to KI in that
both aim at aligning two different representations. However,
ontology merging often takes input representations written
in different KR languages, whereas KI in this paper assumes
the same underlying language.
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