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Abstract

When extending a scientific knowledge base with new
information, particularly information presented in nat-
ural language, it is important that the information be
encoded in a form that is compatible with the existing
knowledge base. Hand built systems for semantic in-
terpretation and knowledge integration can suffer from
brittleness. Methods for learning semantic interpreta-
tion and integration exist, but typically require large
numbers of aligned training examples. Our approach
to semantic integration learns rules mapping from syn-
tactic forms to semantic forms using a knowledge base
and a text corpus from the same domain.

A Framework for Scientific Knowledge
Integration

The overall goal is to interpret and integrate natural language
descriptions of science (chemistry, physics and biology) into
a knowledge base. We assume an architecture with the fol-
lowing components: a syntactic parser, a non-empty knowl-
edge base and a (possibly ambiguous) mapping from words
in the domain to concepts in the knowledge base.

The semantic interpretation and integration proceeds in
steps. First a syntactic parser processes a sentence. Then
the resulting syntactic dependency tree is transformed into
a logical form. The logical form is then integrated into the
knowledge base using a representation that is consistent with
the knowledge base. The resulting, augmented, knowledge
base is then capable of drawing inferences or answering
questions it could not previously answer. The goal of this
research is to learn rules for transforming the syntactic parse
into a logical form consistent with the existing knowledge
base. We adapt research in the field of paraphrase acqui-
sition to learn a mapping from syntactic paths to semantic
paths.

Previous Work
The method of semantic integration presented here builds
on two lines of research: semantic interpretation and para-
phrase learning. Direct Memory Access Parsing (DMAP)
tightly integrates semantic interpretation with a knowledge

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

base. Work on this method has used hand coded rules to map
sentences to their interpretations. (Martin 1991) In other
work, supervised learning algorithms processed sentences
annotated with an interpretation to learn a model of the syn-
tactic to semantic mapping, such as a synchronous grammar.
(Wong & Mooney 2007)

Research in paraphrase acquisition has focused on two
methods. The use of parallel, though not necessarily aligned,
corpora is the most common. (Barzilay & McKeown 2001)
More recently, distributional paraphrase acquisition hasal-
lowed paraphrase acquisition without parallel corpora.(Lin
& Pantel 2001)

Parsing
The syntactic parser used in this research was Minipar (Lin
1993), though any parser capable of generating dependency
trees could be used without significantly altering the algo-
rithm. Although, it is significant that Minipar generates la-
beled dependencies. The key assumption is that syntactic
dependencies will correspond to semantic dependencies.

Knowledge Representation
The method for improving knowledge integration described
here assumes that there is an ontology and a significant exist-
ing knowledge base about the domain of interest, in this case
chemistry, physics and biology. The knowledge base used in
this research was The Component Library (Barker, Porter, &
Clark 2001), though the method can be generalized to any
knowledge representation system that can be viewed in a se-
mantic graph form. The logical forms generated by the se-
mantic interpretation and integration do not leverage the full
representational power of KM (Clark & Porter 1998), they
are simply graphs of instances.



Syntactic and Semantic Triples
Rather than representing the syntactic and semantic struc-
tures as graphs we use triples. Every triple (both syntactic
and semantic) has the same basic form. There are two slot
fillers that are the endpoints of the triple. These correspond
to the words or concepts being related. There is also a path
connecting these concepts: either a series of dependency re-
lations and words for syntactic paths or a Component Li-
brary relation for semantic paths.

In the example above of the parsed sentence “Hydro-
gen reacts with oxygen” one syntactic triple isreacts
V : subj : N hydrogen. The path isV : subj : N and
the slot fillers arereacts andhydrogen. The correspond-
ing semantic triple isReaction raw-material Hydrogen-
Substancewhose path israw-material and whose slot
fillers areReactionandHydrogen-Substance.

A Baseline System
First we explain a baseline system that can be used in the
presence of a parser, knowledge base and word to concept
mapping. First the dependency tree is transformed into a
simplified syntactic graph. The noun phrases and verbs are
identified, these form the nodes in the syntactic graph. Then
the paths between noun phrases and verbs are found, these
make up the edges in the graph. The rest of the sentence
is discarded. (See Figure 1) The word to concept mapping
is then used to find a list of candidate concepts for each
node, these are ranked according to their WordNet (Fell-
baum 1998) sense number.

A candidate interpretation is defined as a semantic graph
that is isomorphic to the syntactic graph and whose nodes
are labeled with one of the candidate concepts from the cor-
responding syntactic node.(See Figure 2) The concepts on
the nodes of the canidate are called the concept selections.
The edges of the semantic graph are labeled with paths from
the knowledge base, called the relation selections. Here we
consider only paths of length one, a single relation. The
likelihood of a candidate interpretation is the product of the
likelihood for its concept selections and the likelihood ofthe
relation selections.

The likelihood for any concept selection is related in a
simple way to its WordNet sense numbern (beginning with

zero). Since more common senses are listed first, the likeli-
hood for any particular concept selection ispn. Wherep is a
parameter chosen with the property that each WordNet sense
is approximatelyp times as common the WordNet sense be-
fore it. The likelihood for a set of concept selections is sim-
ply the product of the likelihood for each of them.

A relation selected between two concepts induces a triple.
The likelihood for any relation selection is related to the
most similar triple in the knowledge base. For any two
triples their similarity is zero if their path is different and
if the path is the same then the similarity is the product of
their corresponding concept’s similarities. The likelihood
for a set of relation selections is the product of each relation
selection.

The interpretation of a syntactic graph is chosen accord-
ing to heuristics designed to select the candidate semantic
graph with the maximum likelihood. The intuition behind
this approach is that there are only so many ways two con-
cepts can be related in a given knowledge base. Many pairs
of concepts are not related at all. This constrains the con-
cept selection. When selecting the relation between two
concepts, if there is a relation between the concepts in the
existing knowledge base that relation is selected. If there
are multiple such relations one is chosen arbitrarily. If there
are no such relations then two concepts are found that are
most similar to the two given concepts such that the found
concepts are related in the knowledge base. The relation be-
tween those concepts is chosen as the relation between the
original concepts. So concept selection and relation selec-
tion are mutually constraining.

Limitations
The baseline approach has some obvious limitations. First,
it depends on the correctness of the syntactic parse. Addi-
tionally, any part of the sentence other than noun phrases,
verbs and paths between them is discarded. In particular,
determiners such assomeand all are discarded. The se-
mantic graph will always be existentially quantified. There
is also no attempt at anaphora resolution. These limitations
will be retained in the refinement presented below. The only
enhancement made here is that instead of unlabeled edges in
the syntactic graph, the edges will be labeled with the syn-
tactic path. The relation between nodes will be selected in a
way that takes this path into consideration.

Extracting Training Data
In order to determine which syntactic paths are indicative of
which semantic paths it is necessary to do some learning. A
key advantage of our approach is that it requires no anno-
tated data. Instead, we can extract syntactic triples from a
corpus of scientific text and extract semantic triples from a
knowledge base. The syntactic triples are extracted from the
dependency trees of the parses and the semantic triples are
extracted from the frames in the knowledge base.

Similarity Between Paths
Once each list of triples is extracted, the similarity of each
pair of paths can be determined by the Extended Distribu-



Figure 1: A syntactic graph from the dependency graph.

Figure 2: Candidate interpretations.



tional Hypothesis. This is an extension of the distributional
hypothesis for words, that similar words occur in similar
contexts. This hypothesis states that if two paths occur in
similar contexts, the meanings of the paths tend to be sim-
ilar. This hypothesis has found significant support in the
work of Dekang Lin and Patrick Pantel whose system DIRT
(Discovery of Inference Rules from Text) was able to learn
paraphrases from a single corpus rather than a pair of paral-
lel corpora.(Lin & Pantel 2001) The context of each path is
the set of its slot fillers. So to find the semantic path most
likely to be the interpretation for a particular syntactic path
we can compare the set of slot fillers for the syntactic path
to the set of slot fillers for each semantic path.

In the continuing example of “Hydrogen reacts with
oxygen”, both hydrogen and oxygen can be eitherraw-
materials or results of a reaction. In general, chemicals
can be either reactants or products of reactions. So it is
not obvious how a distributional learner can associate any
syntactic path with one and not the other. The answer is
that while some chemicals are common as both reactants
and products others exhibit a bias to one or the otherin
introductory chemistry texts. Since both the knowledge
base and the proposed syntactic corpus are drawn from
this distribution, chemicals that are commonly given as
reactants in example reactions will be common in both the
raw-material slot filler and in syntactic paths suggestive of
a reactant such asReactionV : subj : N Thing. Below
is a table of the slot fillers more specific thanChemical in
the triples matchingReaction raw-material Chemicaland
Reaction result Chemical.

Concept raw-material result
H2O-Substance 7 8
CO2-Substance 2 10
Ionic-Compound-Substance 3 5
H2-Substance 0 6
Ionic-Substance 0 6
Carbonate-Substance 3 2
NaNO3-Substance 0 4
Nitrate-Substance 3 1
O2-Substance 2 1
Metal 2 0
Chloride-Substance 0 2
Anion-Substance 0 2
Cation-Substance 0 2
NaOH-Substance 0 2

Although some chemicals, such as H20-Substance (wa-
ter) and Ionic-Compound-Substance (a general concept for
any ionic compound) are common as both reactants and
products, some chemicals do exhibit a bias. If this bias is
exhibited in the corpus of syntactic triples, the proper corre-
spondences can be learned.

Word to Concept and Concept to Concept
Aside from the usual problems of finding a suitable simi-
larity metric, there is the additional problem that syntactic
fillers are noun phrases or verbs, while semantic fillers are
concepts. Fortunately, there is a mapping from WordNet

synsets to Component Library concepts. (Clarket al. 2005)
The mapping of words to synsets is, however, many to many.
So because of word sense ambiguity, the mapping of words
to concepts is many to many. There is an additional compli-
cation in the form of the concept hierarchy. A pair of distinct
concepts may be more similar than another pair of concepts.
So to determine the similarity of syntactic fillers to semantic
fillers it is necessary to first map the words to concepts and
compare the concepts for similarity.

We use some simple methods for each task. We use a sim-
ple word sense disambiguation method based on choosing
word senses that will allow an interpretation of the sentence
consistent with the knowledge base. This is the same method
used in the baseline system to select concepts for words. To
determine the similarity of two distinct concepts we take the
ratio of the number of shared superclasses to the total num-
ber of superclasses of each. If we consider the superclasses
to be the features of a concept, this is the Jaccard similarity
metric.

Learning Semantic Paraphrases
The conventional idea of paraphrases is to learn a path to
path mapping. However, the syntactic paths can often be
very general whereas the semantic paths are often specific
to the particular concepts. For example in the sentence “A
strong acid dissolves in water.” the path from “strong acid”
to “dissolves” isV : subj : N just as in the sentence “Hy-
drogen reacts with oxygen.”. The proper semantic path in
the case of dissolve isobject but in the case of react it is
raw-material . To address this difficulty we specialize the
path to path mapping with a concept in one of the slot fillers.
So rather than estimating the similarity ofV : subj : N to
object we estimate the similarity ofDissolveV : subj : N
Thing to Dissolve object Thingand the similarity ofThing
V : subj : N Strong-Acid to Thing object Strong-Acid.
In order to avoid data sparsity we use the concept hierarchy
to abstract the paths until they are general enough to have
reliable samples.

The learned semantic paraphrases could be integrated into
the baseline system to give an improved semantic interpre-
tation and integration system. The paraphrases could also
be used to assist another semantic interpretation system in
selecting relations between concepts.

Conclusion and Experimental Design
The goal of this research is to learn a mapping from syntactic
paths to semantic paths to aid in the intepretation of scien-
tific text. This can be useful both for question answering and
in integrating additional information into a knowledge base.

In order to evaluate this approach it will be necessary
to construct a corpus of introductory level sentences in ei-
ther the domain of chemistry, physics or biology. In theory,
it would be possible to use the same textbooks the knowl-
edge engineers used when constructing the knowledge base.
However, the texts are too complex to even receive a even
a correct parse on most sentences, and the word to con-
cept assignment is even more challenging on complex sen-
tences. Instead, a simplified version of English will be used



to write the key facts from the textbook. These sentences can
be accurately parsed and contain only the simplest cases of
anaphora. Once the corpus is constructed it can serve to both
train the semantic integration and to extend the knowledge
base.

This model is to “pump prime” a knowledge base with
basic information authored by knowledge engineers, then to
allow a much more accessible knowledge authoring system,
such as a simplified English, to extend it. A comparison
of performance on question answering before and after the
knowledge base is extended will evaluate the success of the
knowledge integration system.
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