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The View Retriever will be evaluated more extensively when it supports our tutoring system for plant

anatomy and physiology. It will be the primary method used by the tutor to access the Botany Knowledge

Base as it constructs qualitative models [47] and generates explanations [26]. We are currently building this

tutoring system, and we have found that knowledge base access at the level of viewpoints (as opposed to

either individual facts or frames) greatly simpli�es system design and implementation.
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The KI System Murray's KI is a tool for assisting knowledge enterers in making extensions to a large

knowledge base [37]. Given a proposed knowledge-base extension, KI identi�es how the new information

violates or conforms to expectations arising from the existing knowledge. KI uses views to constrain the

search for consequences of new information by applying inference methods to only the knowledge within the

selected view(s). KI generates views using prede�ned view types.

This research extends KI's ability to dynamically generate viewpoints. Although KI's mechanism for

generating views is general-purpose, the set of view types Murray provides is quite limited, as it is not

intended to provide broad coverage. An emphasis of this work has been to provide a fairly complete set of

viewpoint types useful in all physical domains.

3.7.3 Representing Viewpoints

Although the knowledge base from which a viewpoint is generated contains all of the facts the viewpoint

comprises, representing the boundaries of the viewpoint itself in the knowledge base is also useful. This

allows caching of commonly used viewpoints, and it provides a means for hand-coding viewpoints that are

speci�c to a particular task or domain. Furthermore, storing a viewpoint in the knowledge base allows

assertions about the viewpoint to be represented, such as the tasks for which it is likely to be useful or

whether a user is expected to be familiar with its contents. Several suitable formalisms exist for representing

viewpoints within a knowledge base, including Hendrix's net spaces [18] (as extended by Grosz [13]), Sowa's

perspectives [51], Crawford's views [8], CycL's multiple models [25], and the most general approach, Guha's

contexts [15, 4, 16].

4 Summary

The results of this research are methods for accessing information in large, structured knowledge bases. The

advantages of our access methods compared with conventional methods are twofold.

First, our methods help users to locate concepts by providing an abstraction of the knowledge base, a

content addressable, virtual knowledge base. A content addressable knowledge base allows users to locate a

frame using a partial description of the frame's contents. A virtual knowledge base allows users to access

concepts that are implicit in the knowledge base but are not rei�ed as frames. Computing subsumption

relationships is the crucial step in providing a content addressable, virtual knowledge base, and empirical

evidence suggests that our approach is practical.

When an access method provides both content addressability and access to concepts in the virtual knowl-

edge base, users need not know whether concepts are explicit in the knowledge base or where they are located.

Users simply supply a description of the concept, embedded in an access request. If the concept has a frame

associated with it, then the system will �nd and use that frame to service the request. Otherwise, the system

will create and use a new frame. From the user's point of view, there is no distinction between accessing

concepts by description and accessing concepts in the virtual knowledge base.

The second advantage of our access methods is that, after locating a concept, they extract viewpoints,

coherent sets of facts that describe the concept from a particular perspective. We have identi�ed many

types of viewpoints and developed methods for extracting them from knowledge bases, either singly or

in combinations. Our evaluation indicates that viewpoints extracted by our methods are comparable in

coherence to those people construct.
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system's attention on the knowledge that is most salient at a given point in the dialogue [13]. The KING

system uses views to guide linguistic and conceptual choices that arise in natural language generation [21].

Other systems use knowledge similar to viewpoints to constrain automated reasoning. For example,

Falkenhainer and Forbus use perspectives to construct models of physical devices [10]. Perspectives ensure

that the model makes consistent simplifying assumptions and that the model is relevant to the reasoning

task for which it is constructed. Perspectives also yield simpli�ed models, which are more e�cient to reason

with, are more generally applicable (because they require less data), and yield more coherent explanations

of problem-solving behavior.

The ability to take multiple viewpoints of an object is also important for solving physics problems. For

example, the ISAAC and APEX problem solvers construct a formal representation of the given problem by

viewing each object in the problem as a canonical object , an idealized or abstract object such as a point

mass or a lever [39, 22]. Viewing actual objects as canonical objects is important because, while problems

are stated in terms of complex, real-world objects, the principles and laws of physics are stated in terms of

canonical objects. In addition, viewing a real-world object as a canonical object restricts the information

about the actual object that may be used to solve the problem, which greatly reduces the size of the problem

space [39, 40].

Finally, Algernon uses views for default reasoning [8]. Many default reasoning schemes are intractable,

because they require the system to ensure that a default assumption is consistent with everything that is

known before making that assumption. Restricting inference to the information found within a chosen view

makes default reasoning more e�cient.

3.7.2 Generating Viewpoints

Previous discussions of related work in sections 3.2, 3.3.2, and 3.5 described systems that generate viewpoints

of one of the major types. This section discusses two systems, TEXT and KI, that are not limited to

viewpoints of a single type.

The TEXT System McKeown's TEXT is a system that answers questions about the structure of a

database [33]. TEXT treats the database schema as a source of domain knowledge and uses it to generate

de�nitions, descriptions, and comparisons of domain concepts.

McKeown recognizes that to convey information about several properties of an entity, the system should

not generate an arbitrary list of properties. To ensure coherence, the system should group together \prop-

erties that are in some way related to each other." Stated in the terminology used here, coherence requires

organizing information according to viewpoints.

In an e�ort to structure knowledge according to viewpoints, TEXT uses the following heuristic (called

a focus constraint) for selecting the next proposition to include in a response: choose the proposition with

the greatest number of links to previously selected propositions. The result is a sequence of propositions

in which each proposition is related to some preceding proposition. Although this heuristic increases the

coherence of the responses TEXT generates, selecting propositions one at a time is not an optimal strategy

for achieving viewpoint coherence. Because viewpoints often overlap, TEXT may unknowingly progress from

one viewpoint to another related viewpoint without completing the �rst viewpoint. This results in fragmented

or incomplete viewpoints, which degrade the coherence of the response. Using complete viewpoints, rather

than atomic propositions, as the building blocks of a response yields greater coherence.
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Coherence

Source Mean Standard Deviation

(1) Textbook Viewpoints 4.23 0.56

(2) View Retriever's Viewpoints 3.76 0.74

(3) Degraded Viewpoints 2.86 0.94

(4) Random Collections of Facts 2.62 0.86

Table 1: Ten judges rated the coherence of sets of facts from four sources (1=incoherent; 5=coherent). A

statistical analysis using the T-test with 0.95 level of con�dence shows no signi�cant di�erence in coherence

between sources (1) and (2) or between sources (3) and (4). There is a signi�cant di�erence between all

other pairs.

� the variance in coherence scores assigned by di�erent judges, and

� the variance in coherence scores for passages from di�erent sources (e.g., textbooks, the View Re-

triever).

Thus, although judges varied in their harshness, they largely agreed on relative orderings.

In summary, we have not attempted to de�ne \coherence." Instead, we have built access methods that

purport to extract coherent viewpoints from large knowledge bases, applied them to our Botany Knowledge

Base, and asked judges to compare the coherence of their viewpoints with collections of facts from other

sources. This study determined that collections of facts vary signi�cantly in their coherence and that

viewpoints extracted by the View Retriever are comparable in coherence to textbook passages.

3.7 Related Work

This section discusses related work in three areas: applications of viewpoints, dynamically generating view-

points, and representing viewpoints in a knowledge base.

3.7.1 Applications of Viewpoints

An important application of viewpoints is to ensure the coherence of the explanations that a question-

answering or explanation-generation system produces. (Other sources of coherence, such as discourse co-

herence and textual coherence, also contribute to the overall coherence of an explanation.) In selecting the

content of an explanation, it is important for a system to be sensitive to the current context, because the

coherence of the explanation will be judged relative to that context. Di�erent viewpoints provide di�erent

explanations of domain knowledge, each appropriate for di�erent levels of expertise [54, 41, 42, 57], di�erent

user needs [34], di�erent system goals [35, 36], and di�erent dialogue contexts [31, 32, 35]. Suthers points out

an additional bene�t of constructing explanations from viewpoints rather than from atomic facts: accessing

the knowledge base at the right level of abstraction (i.e., at the viewpoint level) allows an explanation gen-

erator to concentrate on issues of discourse management, and it facilitates portability across domains and

representational formalisms [53].

Viewpoints are also important for a variety of other applications, such as natural language processing.

In discourse understanding, Grosz uses viewpoint-like knowledge structures called focus spaces to focus the
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3.6 Evaluation of the View Retriever

The purpose of our evaluation was to measure the coherence of viewpoints the View Retriever extracts, as

compared to the coherence of viewpoints found in human-generated text. For each of 12 topics in botany,

sets of facts were drawn from 3 sources:

� a college-level botany textbook [46],

� the View Retriever applied to the Botany Knowledge Base, and

� facts selected randomly from a particular frame in the Botany Knowledge Base.

The viewpoints ranged in size from 3 to 11 facts. For each topic, textbook passages and random sets of facts

were chosen to be roughly the same size as the viewpoint on that topic. Each group of facts (including the

textbook passages) was translated manually into \simple English" to normalize presentation style.

Ten subjects (senior undergraduates and graduate students from the Botany and Biology Departments

of the University of Texas at Austin) judged the coherence of several passages from each source. Subjects

were given the following instructions:

Each of the following pages contains a brief passage of text along with its subject. Please judge

the coherence of the passage on a scale of 1 to 5. A passage should be scored \1" if it is seems

no more coherent than a randomly selected group of facts on the subject. A passage should be

scored \5" if it is as coherent as a passage of comparable length on the subject from a good

textbook.

Limit your consideration to the contents of each passage, and ignore issues of organization and

rhetoric (such as writing style, wording, and diction). If you feel that the presentation of the

material is poor, give the passage the same score that you would give a passage containing the

same information but organized and presented in a better fashion.

Table 1 summarizes the subjects' responses. Statistical analysis (using a T-test with 0.95 level of con�-

dence) yields the following results:

� The mean coherence of viewpoints from textbooks did not di�er signi�cantly from the mean coherence

of viewpoints extracted by the View Retriever.

� The mean coherence of extracted viewpoints did di�er signi�cantly from the mean coherence of random

collections of facts drawn from the same frame.

A further study gives additional evidence that the View Retriever extracts coherent viewpoints. Along

with passages from the three sources described above, the subjects were given passages from a fourth source:

viewpoints extracted by the View Retriever and then \degraded" by replacing some of their facts with

randomly selected facts on the same topic. Twenty-eight such degraded viewpoints were constructed, each

with between one and seven facts replaced. Of the twenty-eight, each subject received six. Table 1 shows

the mean coherence score of the degraded viewpoints. Statistical analysis shows a signi�cant di�erence in

the mean coherence of \pure" viewpoints and degraded viewpoints.

A �nal study adds more evidence that passages vary in coherence based on their source and that view-

points extracted by the View Retriever are consistently judged to be coherent. A two-way analysis of

variance, computed by Paul Cohen

2

, determined that there was no signi�cant interaction e�ect between:

2

Computer Science Department, University of Massachusetts at Amherst
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Figure 11: The composite viewpoint that describes the stage relations between the parts of the fruit and the

parts of the ovary. The View Retriever extracted this viewpoint from the Botany Knowledge Base.

(composite (Fruit dimension structural) (Ovary dimension structural) stages)

The composite viewpoint, shown in Figure 11 includes the parts of the fruit (the pericarp and the seed),

the parts of the ovary (the ovule and the ovarian wall), and the stage relations between them, such as the

facts that the ovule is a developmental stage of the seed and the ovarian wall is a developmental stage of the

pericarp.

Other examples involve two taxonomic viewpoints put into correspondence. For example, living things

participate in reproduction, so the View Retriever can put di�erent specializations of Reproducing-Structure

into correspondence with the di�erent specializations of Reproduction they engage in. Similarly, angiosperms

have 
owers, so the View Retriever can put di�erent specializations of Angiosperm into correspondence with

di�erent specializations of Flower .
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Figure 10: The composite viewpoint that describes the roles of the 
ower's parts in the subevents of an-

giosperm reproduction. The View Retriever extracted this viewpoint from the Botany Knowledge Base.
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determines the correspondence. For the third type of composite viewpoint, a relation (part-of, actor-in,

etc.) determines the correspondence. In this type of composite viewpoint, a group of entities from the �rst

viewpoint all have the same kind of relationship to entities from the second viewpoint. For example, the

View Retriever can put a structural viewpoint of an object (which describes the object's parts) into corre-

spondence with a procedural viewpoint of an event (which describes the event's steps or subevents) along

actor-in relations. This correspondence links each of the object's parts to the subevent(s) in which it is an

actor of some kind. The resulting viewpoint describes the roles that the object's parts play in the subevents

of the event. (Paris's \process strategy" extracts similar descriptions of how the components of a device

enable it to perform some function [41, 42]. The View Retriever extracts this and other kinds of composite

viewpoints.)

The speci�cation for a composite viewpoint has one of the following forms:

(composite hviewpoint1i hviewpoint2i compare)

(composite hviewpoint1i hviewpoint2i contrast)

(composite hviewpoint1i hviewpoint2i hslot-namei)

where viewpoint1 and viewpoint2 are individual viewpoints (or speci�cations for them). For the third type

of composite viewpoint, slot-name is a relation that holds between the concepts of interest of viewpoint1 and

viewpoint2. It speci�es the correspondence to be established between the viewpoints. The remainder of this

section focuses on the third type of composite viewpoint.

Consider the composite viewpoint that puts a structural viewpoint of an object into correspondence with

a procedural viewpoint of an event along actor-in relations. This composite viewpoint, which describes

the function of an object (and its parts) in an event (and its subevents), is requested by the following

speci�cation:

(composite (hobjecti dimension structural) (heventi dimension procedural) actor-in)

For example, the viewpoint that describes the roles of a 
ower's parts in the steps of angiosperm (
owering

plant) reproduction is speci�ed as follows:

(composite (Flower dimension structural) (Angiosperm-Sexual-Reproduction dimension procedural)

actor-in)

Figure 10 shows the contents of this viewpoint, as extracted from the Botany Knowledge Base by the View

Retriever.

The View Retriever extracts this composite viewpoint by the following procedure. First, it extracts the

two individual viewpoints (the structural viewpoint of Flower and the procedural viewpoint of Angiosperm-

Sexual-Reproduction). Then, it determines which of the 
ower parts in the structural viewpoint are related

to Angiosperm-Sexual-Reproduction or one of its subevents (as given in the procedural viewpoint) by an

actor-in relation (or some more speci�c relation, such as location-of ). The View Retriever omits from the

composite viewpoint those parts that are not actors in any subevent ofAngiosperm-Sexual-Reproduction. For

example, Corolla (the 
ower's petals) appears in the structural viewpoint of Flower , but the View Retriever

excludes it from the composite viewpoint because the corolla doesn't participate in reproduction. Similarly,

the View Retriever omits those subevents of Angiosperm-Sexual-Reproduction that do not involve any of the

parts in the structural viewpoint of Flower , such as Fruit-Ripening .

Another example of the third type of composite viewpoint is one that describes the parts of a plant ovary

as related to the parts of the fruit of which the ovary is a developmental stage. This viewpoint has the

following speci�cation:
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Figure 9: Composite viewpoint that compares the structure of a root to the structure of a stem, as extracted

from the the Botany Knowledge Base by the View Retriever.
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(Squirrel as-having agent-in Seed-Dispersal)

using the stored viewpoint

(Animal as-having agent-in Transportation).

If the stored viewpoint contains the fact that animals are usually larger than the things they transport, then

the View Retriever would include in the new viewpoint the fact that squirrels are usually larger than the

seeds they disperse.

If the concepts of interest of the two viewpoints are siblings, as with Squirrel and Bird , then �nding

corresponding features is more di�cult. It involves �nding pairs of features that share a common abstraction,

such as hBird, mode-of-travel, Flighti and hSquirrel, mode-of-travel, Walkingi. This matching task is similar

to the task of constructing an analogy, given the target and base concepts and the relevant features of the

base concept.

If the View Retriever does not �nd a similar viewpoint in the knowledge base from which to construct the

requested viewpoint, then the View Retriever determines what other type of viewpoint includes the feature

of interest and returns that viewpoint. This involves determining which basic dimension includes the feature

of interest and extracting a viewpoint of the concept of interest along that basic dimension. For example, to

extract

(Squirrel as-having agent-in Seed-Dispersal)

the View Retriever recognizes that the slot agent-in belongs to the functional basic dimension (by retrieving

the value of (agent-in slot-dimension), so it extracts instead the viewpoint

(Squirrel dimension Functional),

which includes information about other activities in which squirrels engage. This method of extracting

as-having viewpoints takes advantage of the inter-relevance of features within the same basic dimension.

3.5 Composite Viewpoints

In addition to extracting individual viewpoints as described above, the View Retriever also extracts composite

viewpoints. This involves more than simply concatenating the contents of two individual viewpoints. Rather,

it involves putting them into correspondence and removing the portions that do not correspond.

The View Retriever extracts three types of composite viewpoints. The �rst two are compare and contrast ,

wherein the View Retriever highlights the similarities or di�erences between two concepts under a particular

viewpoint. For example, the View Retriever can compare a structural viewpoint of a root to a structural

viewpoint of a stem, as shown in Figure 9. To compare two viewpoints, the View Retriever retains only

those features that are common to both viewpoints or that share a common abstraction. For example,

one part of Root is Root-Intercellular-Space, and one part of Stem is Stem-Intercellular-Space, so the View

Retriever includes in the comparison the feature has-part = Intercellular-Space. To contrast two viewpoints,

the View Retriever retains only the facts that appear in one viewpoint but not the other. McCoy stresses

the importance of adhering to a single type of viewpoint when comparing or contrasting two concepts [32].

Extracting composite viewpoints involves �nding the elements of two individual viewpoints that corre-

spond. For comparisons, equality or similarity determines the correspondence. For contrasts, inequality
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3.4 As-having Viewpoints

An as-having viewpoint contains information about a concept that is relevant to some speci�ed feature of

the concept. For example, the viewpoint \seed coat as having no chlorophyll" contains facts like \a seed

coat is usually not green" and \a seed coat is not photosynthetic."

The speci�cation of an as-having viewpoint has the following form:

(hconcept of interesti as-having hsloti hvaluei)

As with other types of viewpoints, the concept of interest can be given by description or by address, and it

can be a concept in the actual or virtual knowledge base. The slot and value in the speci�cation indicate the

feature of interest , the feature to which facts in the viewpoint must be relevant. For example, the viewpoint

\seed coat as having no chlorophyll" is speci�ed by

(Seed-Coat as-having percent-chlorophyll Zero)

The ideal method for extracting as-having viewpoints is to use a theory of relevance to determine what

facts about the concept of interest are most relevant to the feature of interest. The View Retriever would

compare each fact known about the concept of interest to the feature of interest using a relevance measure,

and it would include in the as-having viewpoint only the facts judged most relevant. Unfortunately, a general,

prescriptive measure of relevance is not yet available. (Hobbs's coherence relations [19, 20] and Mann and

Thompson's rhetorical predicates [29] characterize some of the ways in which one fact is relevant to another,

but most of these characterize discourse coherence rather than viewpoint coherence.) Therefore, to select the

facts that constitute an as-having viewpoint, the View Retriever depends on stored knowledge of relevance.

This knowledge takes the form of viewpoints stored in the knowledge base.

To extract an as-having viewpoint, the View Retriever �rst looks for a stored as-having viewpoint whose

feature of interest is the same as (or more general than) the speci�ed feature of interest, but with a di�erent

concept of interest. For example, to extract the following viewpoint:

(Squirrel as-having agent-in Seed-Dispersal)

the View Retriever �rst searches the knowledge base for a similar stored viewpoint, such as one of the

following:

� (Mammal as-having agent-in Seed-Dispersal)

� (Bird as-having agent-in Seed-Dispersal)

� (Animal as-having agent-in Transportation)

Note that although the stored viewpoint's feature of interest must be either the same as or more general

than the speci�ed feature of interest, the stored viewpoint's concept of interest need not be related to the

speci�ed concept of interest (as with Squirrel and Bird).

If a similar viewpoint is found in the knowledge base, the View Retriever uses it to determine which facts

to include in the new viewpoint. For each feature in the stored viewpoint, the View Retriever looks for a

corresponding feature of the speci�ed concept of interest. The way this is done depends on the taxonomic

relationship between the concepts of interest of the two viewpoints.

If the stored viewpoint's concept of interest is a generalization of the speci�ed concept of interest, then

�nding corresponding features involves �nding features of the speci�ed concept of interest that specialize

features in the stored viewpoint. For example, consider extracting the viewpoint
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dimension(s). For example, to request a viewpoint of photosynthesis as a kind of production, but one that

only includes information about the actors in photosynthesis (i.e., information within the behavioral basic

dimension), the user gives the following viewpoint speci�cation:

(Photosynthesis as-kind-of (Production dimension Behavioral)

This is the viewpoint actually shown in Figure 6. The complete viewpoint of \photosynthesis as-kind-of

production" additionally includes information from the procedural and modulatory dimensions, such as the

subevents of photosynthesis and what other processes it a�ects. The viewpoint (Photosynthesis as-kind-of

Energy-Transduction) shown in Figure 7 is likewise restricted to the behavioral dimension.

3.3.2 Related Work

Viewpoints created by the View Retriever along basic dimensions are similar to the perspectives Suthers

suggests for explanation generation [55, 56]. Suthers describes a perspective as \an abstract characterization

of the kind of knowledge provided by a class of models." Suthers's set of perspectives appears to be a

subset of the basic dimensions given here, although he gives only their names: structural, functional, causal,

constraint, and process. Suthers uses perspectives to restrict the information selected for an explanation so

as to minimize the number of unfamiliar concepts. A concept is considered familiar if its relation to a known

concept lies within a chosen perspective.

Viewpoints extracted along basic dimensions are also similar to the domain perspectives ROMPER uses

to correct users' misconceptions about domain objects [31, 32]. A domain perspective is a group of slots and

their salience values. They are de�ned and represented independently of the generalization hierarchy (unlike

as-kind-of viewpoints). When applied to a domain object, a perspective acts as a �lter on its attributes;

only the attributes with the highest salience values under that perspective are included in the response.

To correct a user's misconception, ROMPER selects an appropriate domain perspective by analyzing the

discourse history and the model of the user, then it uses this perspective to select information that is most

relevant to the source of the misconception.

ROMPER's perspectives are unlike the basic dimensions given here in that perspectives are speci�c to the

domain of �nancial securities, but the basic dimensions are generally applicable. The advantage of McCoy's

approach is that the slots within a perspective have di�erent degrees of relevance, rather than being simply

relevant or irrelevant.

ROMPER does not include a type of perspective analogous to as-kind-of viewpoints. Because viewpoints

that are tied to the generalization hierarchy (e.g., as-kind-of viewpoints) are insu�cient to characterize the

breadth of viewpoints that people use, and because McCoy's method for generating domain perspectives (and

the method given here for basic dimensions) is at least as powerful as a method for generating as-kind-of

viewpoints, McCoy rejects the latter in favor of the former. The advantage of including a mechanism for

generating as-kind-of viewpoints, even if redundant, is that as-kind-of viewpoints impose fewer demands

on the knowledge engineer. The knowledge engineer must explicitly represent the group of slots making up

each perspective (and each basic dimension), but the system extracts as-kind-of viewpoints using only pre-

existing domain knowledge. For this reason, the View Retriever includes methods for generating as-kind-of

viewpoints. It also includes methods for generating as-having viewpoints, as the next section describes.

25



Seed

Seed-Coat

Embryo Endosperm

has-parts

contains

Figure 8: A structural viewpoint of Seed as extracted from the Botany Knowledge Base by the View Retriever.

frame is has-part , so the View Retriever retrieves the following triples, using traditional frame-slot access

methods:

� hSeed, has-parts, Seed-Coati,

� hSeed, has-parts, Embryoi, and

� hSeed, has-parts, Endospermi.

Next, the View Retriever selects interconnection relations for the speci�ed basic dimension. For the

structural dimension, interconnection relations are connected-to, contains, surrounds, etc. The View Re-

triever looks for these sorts of relationships between the selected parts of the seed (the seed coat, embryo,

and endosperm). The View Retriever �nds these relationships even if they are not represented directly on

the Seed frame. The View Retriever �nds the following triples:

� hSeed-Coat, contains, Embryoi

� hSeed-Coat, contains, Endospermi

The resulting viewpoint, shown in Figure 8, contains the information that the seed is made up of a seed coat

containing an embryo and an endosperm.

3.3.1 Combining Basic Dimensions with As-kind-of Viewpoints

As the previous section mentioned, basic dimensions can be combined with as-kind-of viewpoints to enhance

their coherence. To do so, the user requests an as-kind-of viewpoint as before, except that instead of

specifying a reference concept, the user speci�es a viewpoint of the reference concept along some basic
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This set of basic dimensions is designed for domains concerned with physical objects and processes. It is a

compilation of knowledge types drawn from several sources, including Lako� and Johnson [24], instructional

text analyses [52], and large knowledge-engineering e�orts [25, 45]. The list must be extended to re
ect the

kinds of knowledge found in other kinds of domains and to re
ect types of knowledge speci�c to a particular

domain. For example, Lako� and Johnson suggest two basic dimensions for human artifacts in addition to

those given above for objects: purposive, which includes information about the human goals that the object

was designed to satisfy, and motor-activity , which includes information about how people use or interact

with the object. For human activities, they suggest the purpose dimension in addition to those given above

for processes.

To extract viewpoints along basic dimensions, the View Retriever requires knowledge of which slots in

the knowledge base are within each dimension. Experience with our knowledge base indicates that this

knowledge is easily represented directly in the knowledge base, because the distinctions the basic dimensions

make also occur in the slot hierarchy, and because it is usually appropriate for a slot to inherit the basic

dimension(s) of its generalizations. In the Botany Knowledge Base, each frame that represents a slot has

a slot-dimension facet to indicate which basic dimension(s) the slot belongs to. If no value is speci�ed for

slot-dimension, then the slot inherits the slot-dimension of more general slots. Most slots belong to exactly

one basic dimension, but this is not required by the View Retriever.

Representing knowledge of basic dimensions directly in the knowledge base has two advantages. First, the

set of basic dimensions is easily re�ned and extended. Second, the View Retriever's algorithm for extracting

viewpoints is independent of the particular set of basic dimensions used.

The speci�cation for a viewpoint extracted along a basic dimension has two required parameters, the

concept of interest and the name of the basic dimension. For example, a structural viewpoint of Seed has

the following speci�cation:

(Seed dimension structural)

As with as-kind-of viewpoints, the concept of interest can be given by description or by address, and it can

be a concept in the actual or virtual knowledge base.

Some basic dimensions have as optional parameters relation restrictions and value restrictions. When

the speci�cation includes a relation restriction, the View Retriever extracts a viewpoint that includes only

triples involving slots that are specializations of (or equal to) the given relation. For example,

(Chloroplast dimension functional (relation-restriction producer))

speci�es a viewpoint that includes only information about processes in which a chloroplast is the producer.

When the speci�cation includes a value restriction, the View Retriever extracts a viewpoint that includes

only triples whose values are specializations of (or equal to) the given concept. For example,

(Xylem dimension functional (value-restriction Transportation))

speci�es a viewpoint that includes only information about transportation processes involving the xylem (the

conduit for water 
ow in a plant).

The View Retriever extracts a viewpoint along a basic dimension �rst by retrieving facts about the

concept of interest that belong to the basic dimension. For example, to extract a structural viewpoint of a

plant seed, speci�ed by (Seed dimension Structural), the View Retriever �rst retrieves from the Seed frame

the values of all slots that belong to the structural dimension. A structural slot that appears on the Seed
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� Spatial-Superstructural, which includes the object(s) of which the object is a part, the other sibling

parts, and the connections and spatial relations among them.

� Perceptual, which includes information regarding how people perceive (see, hear, etc.) the object.

This dimension includes the shape, symmetry, size, color, and temperature of the object.

� Functional, which includes what the object \does" (the processes in which it is an actor). The

Active-Functional dimension is a subtype of the functional dimension that includes only information

about processes in which the object is an active, rather than a passive, actor. (For example, the

producer in a production process is an active actor, but the location of the process is a passive actor.)

� Temporal, which includes the temporal parts of an object (its stages or states). It also includes, as

interconnection relations, the temporal ordering constraints among the stages or states.

� Temporal-Superstructural, which includes the objects of which this object is a stage or state, the

other sibling stages/states, and their temporal ordering constraints.

Basic dimensions for processes:

� Behavioral, which includes the types and roles of the actors in the process and the changes that the

process e�ects upon them. The behavioral dimension also includes initial and �nal conditions of the

process, the relative amounts/sizes of the actors, and the forms of the actors.

� Procedural, which includes the steps (subevents) of the process and, as interconnection relations, the

temporal ordering constraints among the steps.

� Event-Superstructural, which includes the process(es) of which the process is a step, the other

sibling steps, and the temporal ordering constraints among them.

Basic dimensions for both objects and processes:

� Taxonomic, which includes the subcategories (specializations) of a category, the relative sizes of the

subcategories, the criteria for the breakdown, and, as interconnection relations, information about

which subcategories are disjoint.

� Taxonomic-Superstructural, which includes the generalization(s) of the given category, other cat-

egories that share the same generalization(s), their relative sizes, and disjointness relations among

them.

� Modulatory, which includes information about how one object or process a�ects other objects or

processes. This dimension includes causal relationships (e.g. causes, enables, prevents, facilitates),

which constitute the subtypes Causal-Agent and Causal-Recipient, and qualitative in
uences [11,

23] between quantities (e.g. directly-a�ects, inversely-in
uences, correlated-with), which constitute

the subtypes In
uence-Agent and In
uence-Recipient. The latter subtypes include information

about the relative strengths of in
uences, the conditions under which they hold, and their saturation

points.
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Figure 7: The viewpoint of \photosynthesis as-kind-of energy transduction" as extracted from the Botany

Knowledge Base by the View Retriever.
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When extracting a viewpoint of a concept, the View Retriever �lters out many facts about the concept

that are irrelevant to the viewpoint. As-kind-of viewpoints provide two kinds of �ltering. The �rst �lter

removes redundant features, those that the concept of interest and the reference concept have in common. For

example, the View Retriever excludes from the \photosynthesis as-kind-of production" viewpoint the fact

that photosynthesis has a temporal duration, because this is true of any production event, and the viewpoint

contains the fact that photosynthesis is a kind of production. (If, on the other hand, Photosynthesis had

a more speci�c value for duration than Production has, then the View Retriever would include duration

in the viewpoint.) The second �lter removes irrelevant features, features of the concept of interest that

do not �t within the conceptual structure of the reference concept. For example, although the knowledge

base contains the information that photosynthesis converts light energy into carbon bond energy, the View

Retriever excludes this information because it does not �t within the conceptual structure of production, as

represented in the Botany Knowledge Base. (That is, Production is not within the domain of slots input-

energy-form and output-energy-form.) The View Retriever does, however, include that information in the

viewpoint \photosynthesis as-kind-of energy transduction," shown in Figure 7.

The central notion behind as-kind-of viewpoints is that one can emphasize di�erent aspects of a concept

by di�erentiating it with respect to di�erent generalizations. This, of course, is not a novel idea; it has

appeared in a variety of disciplines since the time of Aristotle [3]. In the �eld of arti�cial intelligence, it

appeared as early as 1977 as the basis of KRL, one of the �rst frame-based representation languages [5].

More recently, McKeown and Suthers have designed systems that automatically extract concept descriptions

of this sort [33, 34, 56].

The problem with as-kind-of viewpoints that the View Retriever extracts (and with the descriptions

McKeown's and Suthers's systems extract, when applied to a large knowledge base) is that, even though

they focus on a single aspect of a concept, they are nonetheless too unconstrained. They often mix several

di�erent kinds of information. For example, the complete viewpoint \pine tree as-kind-of tree" includes

facts about how a pine tree looks di�erent from a prototypical tree, how its internal structure is di�erent,

how its development di�ers, how its physiology di�ers, etc.

As a solution, this research includes an additional, orthogonal method of structuring concepts, one that

the View Retriever can combine with the method for generating as-kind-of viewpoints to further constrain

their contents. The next section discusses this method of generating viewpoints and how the View Retriever

uses it to enhance the coherence of as-kind-of viewpoints.

3.3 Viewpoints Constructed Along Basic Dimensions

Lako� and Johnson say that people structure their concepts in two ways, by relating them to other concepts

(as with as-kind-of viewpoints) and according to basic dimensions [24]. Basic dimensions are general types

of facts, such as facts about an object's structure, function, or appearance or facts about a process's actors

or steps. Facts within the same basic dimension convey similar kinds of information. The View Retriever

constructs viewpoints along the following basic dimensions for objects and processes:

Basic dimensions for objects:

� Structural, which includes the parts or substances that make up the object and their relative sizes

and numbers. It also includes the connections and spatial relations among them, called interconnection

relations.
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Figure 6: The viewpoint of \photosynthesis as-kind-of production" as extracted from the Botany Knowledge

Base by the View Retriever.
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A user speci�es a viewpoint by indicating the type of viewpoint required and the concept of interest.

The concept of interest can be speci�ed by description or by frame address, and it can be a concept in the

actual or virtual knowledge base.

A second major contribution of this work is a collection of methods for dynamically extracting viewpoints

from large knowledge bases. The following sections describe the methods the View Retriever uses to extract

viewpoints of the four types given above.

3.2 As-kind-of Viewpoints

An as-kind-of viewpoint describes a concept in terms of a more general concept. For example, the viewpoint

\photosynthesis as-kind-of production" consists of those facts that explain how photosynthesis is a special

kind of production, such as what its raw materials and products are. Figure 6 shows a portion of this

viewpoint as produced by the View Retriever.

The speci�cation of an as-kind-of viewpoint requires two parameters:

� the concept of interest , the concept that is the focus of the viewpoint, and

� the reference concept , a generalization of the concept of interest (although not necessarily an immediate

generalization).

For example, the viewpoint shown in Figure 6 has the following speci�cation:

(Photosynthesis as-kind-of Production).

The View Retriever extracts as-kind-of viewpoints by �rst selecting relevant facts about the concept of

interest (i.e., triples of the form hconcept-of-interest, slot, valuei). A triple is considered relevant if some

more general triple appears on the frame for the reference concept. The triple hreference-concept, slot

0

,

value

0

i is more general than hconcept-of-interest, slot, valuei if both of the following conditions hold:

1. value = value

0

or value is a specialization of value

0

.

2. slot = slot

0

or slot is a specialization of slot

0

and the domain of slot is some concept that is a

specialization of the reference concept and a generalization of the concept of interest.

For example, the viewpoint shown in Figure 6 contains the fact that photosynthesis produces glucose,

because it is known that production processes typically produce some substance and glucose is a special

kind of substance. More speci�cally, the View Retriever includes hPhotosynthesis, product, Glucosei in

the viewpoint \photosynthesis as-kind-of production" because the knowledge base contains hProduction,

product, Substancei, which is more general than hPhotosynthesis, product, Glucosei because Substance is a

generalization of Glucose [condition (1) above].

After the View Retriever selects relevant facts involving the concept of interest, it adds to the viewpoint

the connections between these facts and the more general facts involving the reference concept. For example,

the viewpoint in Figure 6 includes not only the fact that photosynthesis produces glucose, but also the facts

that photosynthesis is a kind of production, that production processes produce some substance(s), and that

glucose is a kind of substance. These connections provide the justi�cation for the viewpoint's contents and

are sometimes useful for application programs. For example, a tutoring system can use them to relate new

information in an explanation to the student's background knowledge.
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that textual coherence involves \making sure an object is named before it is described, or making sure that

if an object's components are mentioned, they are mentioned in one place, not scattered about the text"

[49].

The third factor contributing to coherence is contextual coherence, the degree to which the facts in an

explanation are related to the context in which they are presented. For example, discourse coherence re
ects

the degree to which new information relates to earlier passages in a discourse. Hobbs [19, 20] and Rhetorical

Structure Theory [29] propose coherence relations and rhetorical relations as the \legal moves" connecting

portions of a coherent discourse. Similarly, global coherence [19] is the degree to which the utterances in a

discourse pertain to the speaker's speci�c communication plan [14, 35, 36].

Viewpoint coherence is the focus of this research. Because it is determined entirely by the associations

among the facts comprising an explanation, viewpoint coherence is typically a precursor for the other factors

contributing to coherence. Even with this restricted focus, coherence remains an ill-de�ned notion. The goal

of this work, however, is not to provide a precise, operational de�nition of coherence, but to understand how

an access method can generate viewpoints that will be judged coherent by people. This is the basis for the

empirical evaluation of our access method, as described in section 3.6.

3.1 Task Description

The task of extracting viewpoints can be described as follows:

Given:

� a knowledge base containing declarative knowledge of domain concepts, and

� a viewpoint speci�cation, which indicates the type of viewpoint required and the concept of which the

viewpoint will be taken (the concept of interest).

Return: A collection of facts (hframe, slot, valuei triples) from the knowledge base that constitutes the

speci�ed viewpoint. This collection includes both facts that are explicit in the knowledge base as well as

facts that must be computed (i.e., facts that are in the virtual knowledge base).

Our methods for accessing viewpoints are implemented in a component of KASTL called the View Re-

triever (a term proposed by Suthers [54]). The View Retriever is currently used with our Botany Knowledge

Base, but it is designed to work for any physical domain and to be easily extended to work in nonphysical

domains, such as those involving abstract concepts or mental processes.

A major contribution of this work is a framework of viewpoint types that are independent of any domain

and task. The current framework of viewpoint types includes

� as-kind-of viewpoints, which describe the concept of interest by relating it to a more general concept.

� viewpoints constructed along basic dimensions, which describe particular kinds of features of the con-

cept of interest (structural features, functional features, etc.).

� as-having viewpoints, which include features about the concept of interest that are relevant to a user-

speci�ed feature of the concept.

� composite viewpoints, which combine, and put into correspondence, two individual viewpoints.
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access operations.

The cost of classifying a new concept, then, is the product of

� the number of frames to be compared with the input description, and

� the number of frame-slot accesses required to compare a particular frame with the input description

(and compute the subsumption relationship between them).

Because this research deals with accessing large knowledge bases, the above cost analysis has focused on

the cost of classi�cation as a function of the number of frames in the knowledge base. In this way, we

can determine how classi�cation scales up as the knowledge base grows. Woods's theoretical analysis,

corroborated by the empirical evidence given here, indicates that, as a function of the number of frames in

the knowledge base to be compared with the input description, the complexity of KASTL's classi�cation

algorithm is logarithmic for typical inputs and linear in the worst case. For the current size of the Botany

Knowledge Base and the 53 concepts selected from a biology textbook, the number of frames to be compared

to the input description to classify the concept averaged 4.3%.

3 Extracting Viewpoints from Large Knowledge Bases

After our access methods locate a concept, they enable users to extract viewpoints of it. A viewpoint is

a coherent collection of facts (i.e., hframe, slot, valuei triples) that describes a concept from a particular

perspective. For example, a structural viewpoint of the concept Seed-Coat describes the substances and parts

that make up a seed coat and how they are connected. The viewpoint of Seed-Coat as a kind of Container

includes information about what parts of the seed the seed coat contains, whether the seed coat has openings,

etc. Each concept has multiple (possibly overlapping) viewpoints, which give di�erent perspectives of the

concept.

Extracting viewpoints from the potentially large set of facts about each concept is important for virtually

all users of large knowledge bases, as discussed further in section 3.3.2. Brie
y, many explanation-generation

systems require viewpoints to produce explanations that are complete and coherent [56, 34, 27, 32, 35]. Qual-

itative modeling systems use viewpoints to increase e�ciency and to make consistent modeling assumptions

(e.g., the perspectives of [10], the views of [11], and the ontological perspectives of [28].)

The coherence of a set of facts is determined by three factors. The �rst factor is viewpoint coherence, the

degree to which the facts are interrelated by their contents. For example, all the facts in a coherent viewpoint

of \photosynthesis as a carbon dioxide utilization process" must pertain to the fact that photosynthesis

utilizes carbon dioxide. Hobbs points out that viewpoint coherence is not simply sharing a common referent

[19]. That is, a set of facts that describe the same concept is not necessarily coherent. Consider the following

example from [19]:

Ronald Reagan used to act in cowboy movies. He appointed Caspar Weinberger as Secretary of

Defense.

Although the statements are cohesive, because they both refer to Ronald Reagan [17, 12, 9], they are not

coherent. Viewpoint coherence requires a stronger relationship between facts.

The second factor contributing to the coherence of a set of facts is textual coherence, the degree to which

a collection of facts is well organized. Sibun, who de�nes coherence in terms of these �rst two factors, says
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concept description being classi�ed. The size of the taxonomy has a much greater impact on the overall cost

of classi�cation, because description size is typically small, but taxonomy size may be quite large.

To address the limitations of past research, Woods has analyzed the complexity of classi�cation based

on intensional subsumption [58]. Woods shows that the complexity of classi�cation, as a function of how

many of the frames in the taxonomy are compared to the input concept description, is logarithmic or less

for typical inputs and linear in the worst case.

Woods uses three parameters to capture how the characteristics of the knowledge base a�ect the cost of

classi�cation. The �rst is the downward branching ratio, r, the average number of immediate specializations

for concepts that are not leaves of the taxonomy. The second is a parameter B, which re
ects how \out

of balance" the taxonomy is. The third is a parameter W , the width of the ancestor chain above a typical

concept due to multiple generalizations. Woods estimates that B and W are in the range of one to three for

most knowledge bases.

The cost-dominant steps of KASTL's classi�cation algorithm (shown in Figure 3) are steps 1, 2, and

3. For steps 1 and 2, which �nd the most speci�c generalizations of the new concept, Woods estimates

the maximum cost for typical inputs is rBWlogN frames compared to the input description, where N is

the number of frames in the knowledge base. For step 3, which �nds the most general specializations of

the new concept, Woods estimates that, for typical inputs, r(r + 1) frames must be compared to the input

description. Thus the total number of comparisons is rBWlogN + r(r + 1) frames. The value of r (the

downward branching ratio) for the Botany Knowledge Base is 4. Using this value of r and an estimate of

2 for parameters B and W , as suggested by Woods, yields an estimated maximum cost of 16logN + 20

comparisons for typical inputs. For the Botany Knowledge Base, this would mean comparing a typical input

description with at most 5.6% of the 2,665 frames in the knowledge base.

To empirically evaluate the above cost estimate based on Woods's analysis, 53 botanical concepts that are

not explicitly represented in the Botany Knowledge Base, such as \nucleus of an epidermal cell" and \tree

that grows in a swamp," were selected. These concepts were chosen at random from a biology textbook,

so presumably the sample is representative of the domain. The evaluation consisted of measuring, for each

concept, the maximum number of frames that KASTL would compare with the input description to classify

the concept in the Botany Knowledge Base taxonomy. The average was 117 of the 2,665 total frames,

about 4.3%, not signi�cantly di�erent from Woods's estimate. The minimum was 32 frames (1%), and the

maximum was 804 frames (30%). (Recall that in the worst case, KASTL would have to examine 100% of

the frames in the taxonomy.) The cost of classifying a particular concept depends largely on the position of

the concept in the taxonomy. The more general the concept, (i.e., the closer the concept is to the root of

the taxonomy), the more costly it is to classify.

The above analysis determined the number of frames to be examined when classifying a new concept.

For each frame examined, KASTL must determine the subsumption relationship between the concept the

frame represents and the input concept description. Woods estimates the typical-case cost of determining

intensional subsumption as (2m

2

+ p

2

) frame-slot access operations, where m is the number of features in

the input concept description and p is the number of base concepts in the input description.

1

Of 155 concept descriptions found in a chapter of a biology textbook, all but four had a single base

concept (i.e., p � 1 on average), and the average number of features modifying the base concept was 1.3.

Thus, the average cost of computing intensional subsumption for these concepts would be 4.4 frame-slot

1

Woods's estimate is only for non-disjunctive concept descriptions and for those not involving binding constraints among

variables.
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source: Soil−Region
destination: Plant

Figure 5: Snapshots of the knowledge base before and after rei�cation of Water195 ,

described by (Water (transportee-in (Di�usion (source Soil-Region) (destination Plant)))).
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terminates. The only specialization found is Oxygen-of-Leaf-Photosynthesis, which will be installed as an

immediate specialization of the new concept.

Step 4 of the procedure is to create a frame to represent the new concept (e.g., Oxygen

0

) and reorganize

the knowledge base to accommodate it. Reorganization involves installing generalization relations from the

new frame to the frames found in steps 1 and 2, installing specialization relations from the new frame to the

frames found in step 3, and installing each feature given in the concept description on the new frame. It also

involves removing taxonomic relations that become redundant after installing the new taxonomic relations.

The bottom portion of Figure 4 shows the result of this reorganization for the knowledge-base fragment

shown in the top portion of Figure 4, following the creation of a new frame for the concept described by

(Oxygen (end-product-of Photosynthesis)). The specialization relation from Biologically-Produced-Oxygen to

Oxygen-of-Leaf-Photosynthesis is removed, because it is redundant given the new specialization relations from

Biologically-Produced-Oxygen to Oxygen

0

and from Oxygen

0

to Oxygen-of-Leaf-Photosynthesis. Similarly,

the redundant specialization relation from Product-of-Photosynthesis to Oxygen-of-Leaf-Photosynthesis is

removed.

The �nal step in reifying concepts in the virtual knowledge base is to infer new information about the

concept and install it on the new frame. This can be done using standard inference methods such as induction

from specializations or instances, deduction from rules, or inheritance. This step can be done as the system

installs the new frame in the knowledge base, or it can be done on demand as users request slot values.

KASTL takes the latter approach.

As a �nal example, when KASTL is given the request

(Water (transportee-in (Di�usion (source Soil-Region) (destination Plant)))),

which describes \Water moved by di�usion from a soil region to a plant," and the knowledge-base fragment

shown in the top portion of Figure 5, KASTL modi�es the knowledge base as shown in the bottom portion of

Figure 5. In addition to creating a frame to represent the new specialization of Water , KASTL also creates

a frame to represent the new specialization of Di�usion, \di�usion of water from a soil region to a plant,"

referenced by the nested description.

2.3 Cost Analysis

This section presents a cost analysis of automatic classi�cation, adding new concepts to an existing taxonomy.

Automatic classi�cation is the primary and most costly activity in accessing concepts in the virtual knowledge

base. This analysis compares the estimated costs computed by Woods [58] with actual costs of adding new

concepts to our Botany Knowledge Base [45]. Our knowledge base currently contains 2,665 frames and over

28,000 facts about plant anatomy and physiology.

Previous complexity analyses have four limitations [58]. First, most past research has focused only on

the cost of subsumption, rather than the cost of classi�cation. Subsumption, determining whether one

concept is more general than another, is but one step in classi�cation; more important is the complexity

of the overall classi�cation task. Second, past research has analyzed the cost of determining extensional

subsumption. As described in Section 2.2.1, KASTL uses a classi�cation algorithm based on intensional

subsumption rather than extensional subsumption. Intensional subsumption is tractable for a much wider

range of representation language expressiveness. The third limitation of past results is that most of them give

only worst-case complexity analyses. Users of the knowledge base are often more interested in average-case

predictions. The fourth limitation is that most complexity analyses are given in terms of the size of the
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thesis), so KASTL repeats the search from Biologically-Produced-Oxygen. None of the specializations of

Biologically-Produced-Oxygen can be pursued further, however, because none of them match or subsume

the given concept description. Thus, the only failure point is Biologically-Produced-Oxygen. After failing

to �nd a match for the speci�ed concept, KASTL proceeds to create it. KASTL recalls the single failure

point, Biologically-Produced-Oxygen, to be installed as an immediate generalization of the new concept.

Biologically-Produced-Oxygen is guaranteed to be the only immediate generalization of the new concept in

the portion of the taxonomy rooted at the base concept, Oxygen.

Step 2 of the procedure �nds the generalizations of the new concept that are outside the portion of the

taxonomy rooted at the base concept. Although the search for an exact match for a concept description can

be limited to the portion of the taxonomy rooted at the base concept, the search for generalizations of the

described concept must originate at the root of the taxonomy. Because KASTL is searching for maximally

speci�c generalizations only, it need not examine ancestors of the base concept. (The base concept subsumes

the described concept by construction, and it is more speci�c than any of its generalizations.) Specializations

of ancestors of the base concept, however, must be examined. For example, although the ancestors of

Oxygen (Substance and Thing) will not be maximally speci�c generalizations of the concept described by

(Oxygen (end-product-of Photosynthesis)), the immediate specializations of Substance and Thing (Soil,

Product-of-Photosynthesis, Object, Process, and Slot) must be examined. If any of these concepts subsumes

the given description, then KASTL must also examine its specializations.

KASTL continues searching the taxonomy in this way until it �nds no more concepts that subsume

the input description. The most speci�c concepts found will be immediate generalizations of the newly

created concept. For example, although none of Soil, Object, Process, or Slot subsumes the concept de-

scribed by (Oxygen (end-product-of Photosynthesis)), Product-of-Photosynthesis does subsume it. Because

Product-of-Photosynthesis has no explicit specializations, it is a maximally speci�c generalization of the given

description, and KASTL will install it as an immediate generalization of the new concept.

Step 3 of the procedure is to �nd the immediate specializations of the concept to be created. This involves

�nding the most general concepts in the knowledge base that the given concept description subsumes. (The

given description subsumes a concept in the knowledge base if every feature in the description is necessary for

the concept or generalizes some feature that is necessary.) The search for specializations can originate with

any of the generalizations found in steps 1 and 2, preferably the one with the fewest specializations. KASTL

chooses a starting concept and examines its immediate specializations. If a concept is subsumed by the given

concept description, then KASTL retains it as a maximally general specialization. (Its specializations need

not be examined because KASTL is searching for the maximally general specializations.) If a concept is not

subsumed by the given description, then KASTL must also examine all of its specializations. In the worst

case, the search continues to the most speci�c concepts in that portion of the taxonomy. The most general

specializations found will be immediate specializations of the new concept.

Recall that for the hypothetical knowledge-base fragment shown in the bottom portion of Figure 4,

the most speci�c generalizations of the concept description (Oxygen (end-product-of Photosynthesis)) are

Product-of-Photosynthesis and Biologically-Produced-Oxygen. Assume that KASTL chooses Biologically-

Produced-Oxygen as the starting point of the search for specializations. The �rst specialization of Biologically-

Produced-Oxygen, Oxygen-of-Leaf-Photosynthesis, is subsumed by the given description, because Leaf-Photo-

synthesis is a specialization of Photosynthesis. Thus, Oxygen-of-Leaf-Photosynthesis is a maximally general

specialization and its specializations (if it had any) would not be examined. The second specialization

of Biologically-Produced-Oxygen, Respired-Oxygen, is not subsumed by the given description, thus KASTL

must also examine its specializations. In this example, Respired-Oxygen has no specializations, so the search
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Figure 4: Knowledge-base fragments before and after reorganization to accommodate the new concept

Oxygen

0

, described by (Oxygen (end-product-of Photosynthesis)). Only the relevant portions are shown.
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1. Find immediate generalizations of the new concept. Recall the failure points of the search for a match.

(Figure 1 gives the algorithm for this search.) These failure points are the most speci�c concepts that

are more speci�c than the base concept but more general than the new concept.

2. Find additional immediate generalizations of the new concept. Find the most speci�c concepts that

are both

� neither more general nor more speci�c than the base concept, and

� more general than the given description.

3. Find the immediate specializations of the new concept. Choose one of the generalizations G found in

step 1 or 2, and �nd the most general concepts that are specializations of G and that are more speci�c

than the given description.

4. Create a new frame.

(a) Install generalization relations to concepts found in steps 1 and 2.

(b) Install specialization relations to concepts found in step 3.

(c) Assert on the new frame each feature given in the input description.

(d) Remove redundant taxonomic relations.

5. Infer new features for the new concept (optional).

Figure 3: KASTL's procedure for accessing concepts in the virtual knowledge base.
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carries no assertional import [7, 6]. Extensional subsumption cannot always be computed solely from ter-

minological or de�nitional knowledge (such as the information in KRYPTON's TBox [6]). For example, if

\Triangle" is de�ned as \Polygon with three angles," determining that \Polygon with three or more sides"

subsumes \Triangle" requires the fact that \every angle of a polygon has a corresponding side," knowledge

that is strictly assertional rather than de�nitional (and hence would appear in KRYPTON's ABox rather

than its TBox).

If subsumption is to be computed using only de�nitional knowledge, a new criterion for subsumption must

be used, such as one that is based on concept intensions rather than extensions. Woods introduces such a

criterion, called intensional subsumption [58]. Intensional subsumption means that the de�nition (intension)

of the subsuming concept is more general than the de�nition of the subsumed concept. De�nition D1 is

more general than de�nition D2 when every su�cient feature of D1 is necessary for D2 or generalizes some

feature that is necessary for D2. For example, under intensional subsumption, \Person whose children are

professionals" subsumes \Woman whose children are doctors" (assuming that \Woman" is de�ned as a kind

of \Person" and \Doctor" is de�ned as a kind of \Professional"), but \Polygon with three or more sides"

does not subsume \Polygon with three angles."

To overcome the limitations of traditional classi�ers, KASTL's classi�cation algorithm is based on in-

tensional subsumption rather than extensional subsumption. Although Woods proposes intensional sub-

sumption as a more tractable alternative to extensional subsumption, he retains extensional subsumption as

the criterion of completeness. That is, Woods says that intensional subsumption should entail extensional

subsumption, and that, all else being equal, it is desirable to be as complete as possible with respect to

extensional subsumption. This work, by contrast, rejects extensional subsumption in favor of intensional

subsumption because extensional subsumption has the undesirable property that two concepts that have

empty extensions in all possible worlds are considered to subsume one another (i.e., to be equivalent).

Under intensional subsumption, concepts are equivalent only when they have identical intensions.

2.2.2 KASTL's Approach to Accessing Concepts in the Virtual Knowledge Base

Figure 3 gives the procedure KASTL uses to access concepts in the virtual knowledge base. The �rst two

steps of the procedure �nd the immediate generalizations of the concept to be created. This involves �nding

the most speci�c concepts in the knowledge base that subsume the given concept description. (Recall that

a concept in the knowledge base subsumes the given description if it has at least one su�cient feature, and

each such feature appears in the description or generalizes some feature in the description.) Step 1 takes

advantage of the fact that KASTL creates a new concept only after having failed to �nd the concept in the

knowledge base. If KASTL fails to �nd an exact match for the given concept description, it terminates its

search after encountering the most speci�c specializations of the base concept that are more general than the

given concept description. These concepts will be immediate generalizations of the concept to be created.

Thus, KASTL avoids repeating the search for these generalizations by recording the failure points of the

search for a match.

For example, consider the concept description (Oxygen (end-product-of Photosynthesis)) and the knowledge-

base fragment shown in the top portion of Figure 4. To search the knowledge base for a concept matching

the description, KASTL begins at the base concept, Oxygen. One specialization of Oxygen, Liquid-Oxygen,

neither matches nor is more general than the given description, so KASTL does not pursue it further.

The other specialization, Biologically-Produced-Oxygen, is more general than the given description (because

product-of is more general than end-product-of , and Biological-Process is more general than Photosyn-
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� The name of the frame created to represent the described concept, and

� A new knowledge base reorganized to accommodate the new frame.

For example, given the concept description (Oxygen (end-product-of Photosynthesis)), the task is to create

a frame representing \Oxygen produced by photosynthesis" and to modify the taxonomy to include that

frame.

The same concept description language used to provide content addressability is also used to provide

access to concepts in the virtual knowledge base. The semantics of the language is the same for both uses;

the base concept is a generalization of the described concept, features modifying the base concept are jointly

necessary and su�cient, and nested descriptions are matched or created from the inside out. Using the same

concept description language for both content addressability and accessing concepts in the virtual knowledge

base allows a single user interface. In this way, users do not need to know whether they are accessing existing

concepts or virtual concepts.

2.2.1 Related Work

Providing access to concepts in the virtual knowledge base is essentially an automatic classi�cation task.

Automatic classi�cation involves inserting a new concept into a taxonomy so that it is directly linked to

the most speci�c concepts that subsume it and to the most general concepts that it subsumes [59]. Auto-

matic classi�cation originated with KL-ONE [7] and continued with most of KL-ONE's successors, including

KRYPTON [6].

As implemented in KL-ONE, KRYPTON, and their descendants, automatic classi�cation has several lim-

itations. First, many of these languages, including KRYPTON, KANDOR, and CLASSIC, limit expressive

power of the knowledge representation language in an e�ort to achieve tractable subsumption algorithms

[59]. However, this approach results in languages so limited that they are no longer generally useful. KRYP-

TON, one of the few languages (if not the only language) to achieve a tractable subsumption algorithm, never

found its way into applications, partially because of the limited expressiveness of its knowledge representation

language [59].

A second limitation of traditional classi�ers is that they use ill-characterized subsumption algorithms.

These systems use the following criterion for subsumption [7]:

A concept X subsumes a concept Y if and only if, in all possible interpretations, the extension

of X is a superset of the extension of Y .

Woods calls this de�nition of subsumption extensional subsumption [58]. This criterion for subsumption

leads to undecidability for languages similar to ours, such as NIKL [44] and KL-ONE [48] (see [2] for

details of our knowledge representation language). Even for languages with limited expressiveness, such as

many of the descendents of KL-ONE, extensional subsumption leads to intractability [59, 38]. As a result,

most classi�ers have retreated to tractable but incomplete subsumption algorithms [43]. These algorithms

are sound with respect to the above subsumption criterion, but they lack a precise speci�cation of what

subsumption relationships they detect (their degree of completeness). This is surprising given the strong

KL-ONE tradition of grounding the representational system in formal semantics. (A notable exception is

Patel-Schneider's approximate account of the subsumptions that the NIKL classi�er detects [44].)

The third limitation of traditional classi�ers is that they are based on the extensional subsumption cri-

terion, but they are restricted to using only terminological (i.e., de�nitional) knowledge, knowledge that
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Figure 2: Knowledge base fragment used to illustrate content addressability for Sexually-Reproducing-

Organism, described by (Living-Thing (parent-in Sexual-Reproduction)). Only the relevant features of

each concept are shown.
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as necessary or su�cient on that frame is present in the description and every feature in the description is

present on the frame and is both necessary and su�cient. For example, for the Living-Thing frame to match

the above description, parent-in =Sexual-Reproduction must be necessary and su�cient for Living-Thing and

Living-Thing must have no other de�ning features. In this example, the match fails, so KASTL proceeds to

the next step.

Step 4 of the procedure is to examine each immediate specialization of the base concept for a match.

If a match is found, it is returned. Otherwise, KASTL repeats steps 3 and 4 for each specialization whose

de�nition is more general than the given concept description. A specialization S is more general than the

concept description if S has at least one su�cient feature (i.e., S has a de�nition) and each such feature

appears in the concept description or generalizes some feature in the concept description. If no specialization

of the base concept is more general than the given description, KASTL fails to �nd an exact match.

The knowledge-base fragment shown in Figure 2 can be used to illustrate step 4 for the concept descrip-

tion (Living-Thing (parent-in Sexual-Reproduction)). The search for a match is restricted to the portion of

the taxonomy rooted at Living-Thing. KASTL �rst attempts to match each specialization of Living-Thing

with the given description. Neither Nonreproducing-Structure nor Reproducing-Structure is an exact match,

but Reproducing-Structure is more general than the concept description, because the feature parent-in = Re-

production on Reproducing-Structure subsumes the feature parent-in = Sexual-Reproduction in the concept

description. Therefore KASTL repeats the matching process for the specializations of Reproducing-Structure.

On this iteration a match is found, Sexually-Reproducing-Organism.

If KASTL fails to �nd an exact match for a given concept description, the described concept is not

explicitly represented in the knowledge base. KASTL's response to this failure depends on whether the

user asked for an exact match or was willing to settle for a partial match. If asked for a partial match,

KASTL returns the list of (maximally general) concepts in the knowledge base that are more speci�c than

the described concept. This facility allows users to locate a concept through a description more general

than the one that uniquely identi�es a concept, and it allows users to access by description concepts that

cannot be completely de�ned (e.g. \natural kinds"). KASTL's algorithm for searching the knowledge base

for partial matches is a slight variant of step 3 of KASTL's algorithm for accessing the virtual knowledge

base (shown in Figure 3 and discussed in the next section) in which the search originates with the base

concept.

If, on the other hand, the user asked KASTL to �nd the frame that matches the concept description

exactly, KASTL accesses the concept in the virtual knowledge base, as described next.

2.2 Accessing Concepts in the Virtual Knowledge Base

The task of accessing concepts in the virtual knowledge base can be described informally as \given a de-

scription of a concept, modify the knowledge base to include that concept." A more precise formulation of

the task as performed by KASTL is shown below:

Given: A concept description consisting of

� A base concept, and

� A set of features (i.e., slot-value pairs),

Return:

6



1. Insure that the given concept description is meaningful. Each frame name and slot name must exist,

and each feature must be valid for the speci�ed base concept.

2. Convert the base concept B to a more speci�c concept, B

0

, if possible, by examining the features given

in the description and the constraints contained in the knowledge base.

3. If B

0

matches the input description, return B

0

.

4. If B

0

is more general than the input description, then repeat steps 3 and 4 for all specializations of B

0

.

Figure 1: KASTL's procedure for providing content addressability.

(Water (transportee-in (Di�usion (source Soil-Region) (destination Plant))

describes \water transported by di�usion from the soil into a plant." KASTL matches nested descriptions

from the inside out. For example, KASTL �rst searches for a frame matching

(Di�usion (source Soil-Region) (destination Plant)),

such as Plant-Water-Uptake. It then substitutes that frame name for the nested description to yield

(Water (transportee-in Plant-Water-Uptake)).

Finally, KASTL searches for a frame matching the modi�ed description.

In addition to concepts, users can also access slots in the virtual knowledge base by their description. A

list of slots in place of a slot name refers to the disjunction of those slots. For example, (husband wife) would

refer to the slot spouse. Users can also refer to the transitive closure (Kleene star) of a slot. For example,

(transitive-closure-of parent) would refer to the slot ancestor .

Figure 1 gives the procedure KASTL uses to provide content addressability for exact matches. The �rst

step is to insure that the given concept description is meaningful. This involves checking that each frame

name and slot name in the description exists and that each feature is valid. A feature slot = value is valid

when value is in the range of slot. For example, the description (Glucose (product-of Photosynthetic-Cell))

is not valid if slot product-of has range Process, because Photosynthetic-Cell is not a Process.

The next step is an e�ciency measure. To reduce search, KASTL converts the base concept within

the given concept description to a more speci�c concept if the conversion does not change the meaning

of the description. For example, given the concept description (Object (parent-in Sexual-Reproduction),

\an object that reproduces sexually," KASTL modi�es the description to (Living-Thing (parent-in Sexual-

Reproduction)). Changing the base concept from Object to Living-Thing does not change the meaning of

the description because KASTL determines from examining the knowledge base that only a living thing can

reproduce (i.e., the domain of slot parent-in is Living-Thing). This modi�cation greatly simpli�es the search

for a match; specializations of Object that are not specializations of Living-Thing need not be examined.

The third step of the procedure is to determine whether the (possibly modi�ed) base concept matches the

given description. For example, KASTL determines whether the Living-Thing frame matches the description

(Living-Thing (parent-in Sexual-Reproduction)). A frame matches the description if every feature annotated
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knowledge base or the virtual knowledge base). For example, if the concepts Eukaryotic-Cell and Cytoplasm

and the relation part-of are rei�ed in the knowledge base, then the concept \Cytoplasm of a Eukaryotic

Cell" can be completely de�ned. Hence, it can be uniquely identi�ed by description (if it is already rei�ed)

or created (if it is not). Furthermore, since this concept is in the virtual knowledge base, it can be used to

de�ne other concepts that are also in the virtual knowledge base, and so on.

Although only concepts that can be completely de�ned can be uniquely identi�ed in a content addressable,

virtual knowledge base, such concepts appear to occur frequently enough to make developing methods for

accessing them worthwhile. In an analysis of a chapter from a biology textbook, of the 899 concepts referenced

in 55 paragraphs, approximately 29% of them referred to concepts that could be completely de�ned.

The second mode of operation for our access methods is to �nd the concept(s) in the knowledge base

that best match the input description. This mode of operation is useful for �nding concepts that have no

strict de�nitions, such as \natural kinds." The Krypton system also distinguished between concepts with

complete de�nitions (which were represented in Krypton's TBox) and those with partial de�nitions (which

were represented in the ABox) [6].

2.1 Accessing Concepts by Description (Content Addressability)

The task of accessing concepts by description can be described informally as \given a description of a

concept, �nd the knowledge-base frame that represents the concept." A more precise formulation of the task

as performed by KASTL is given below:

Given: A concept description, in a formal language, consisting of

� a base concept B (more precisely, the name of the frame representing B),

� a set F of features (i.e., slot-value pairs), and

� mode: exact match or best match

Return: The name of the frame representing the concept C that matches the description. C matches the

description if and only if

� C is a specialization of B (although not necessarily an immediate specialization), and

� all features in F are necessary for membership in C and (if mode = \exact match") the features in F

are jointly su�cient for membership in C for all members of B.

For example, in the concept description (Cell (part-of Plant)), the base concept is Cell and the only

feature is part-of = Plant. The task is to �nd a frame that represents a specialization of Cell for which the

feature part-of = Plant is necessary and (for exact match) su�cient. In other words, the task is to �nd the

frame representing the concept whose de�nition is \cell that is part of a plant."

Concept descriptions may have multiple features, as in

(Cell (part-of Plant) (producer-in Photosynthesis)).

Multiple features are interpreted conjunctively; all of the speci�ed features must appear on the matching

concept. Thus, the above example describes \photosynthetic plant cell." Concept descriptions may also be

nested. For example, the description
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2 A Content Addressable, Virtual Knowledge Base

While representing knowledge, a knowledge engineer makes numerous decisions, many of them arbitrarily.

For example, the choice of what name to give each frame is often arbitrary (e.g., \Plant-Stem" vs. \Stem-

of-Plant"). Similarly, the choice of which domain concepts to reify (create a frame for) in the knowledge

base depends on the knowledge engineer's subjective judgment of the relative importance of concepts. For

instance, the knowledge engineer might create a frame for Condensation and a frame for Water , but not a

frame for Water-Condensation. Because relative importance varies from one task to another, decisions the

knowledge engineer makes regarding which concepts to reify in a knowledge base will not be appropriate for

all tasks in all situations. A goal of this research is to insulate users of the knowledge base from the e�ects

of the (sometimes arbitrary) choices made during knowledge representation.

To insulate users from the internals of the knowledge base, our access methods provide an abstraction

of the knowledge base, a content addressable, virtual knowledge base. A content addressable knowledge base

allows users to locate a frame using a partial description of the frame's contents. For example, to locate the

frame for \plant cell," the user might provide the description \cell that is part of a plant." When given this

description in place of a frame name in an access request, the access method searches the knowledge base

for the frame that matches the description. It then uses the name of that frame in servicing the request.

A virtual knowledge base is one that contains all the concepts and facts that are implicit in the actual

knowledge base. In the actual knowledge base, the only concepts that are accessible are those that are rei�ed

as frames, and the only facts that are accessible are those represented by an explicit hframe; slot; valuei

triple. In a virtual knowledge base, by contrast, concepts and facts that are implicit in the knowledge base

are also accessible. That is, the virtual knowledge base consists of all concepts that can be de�ned in terms

of other concepts and relations in the knowledge base, and all facts implied by other facts in the knowledge

base. Several methods exist for accessing facts in the virtual knowledge base (inheritance, rule chaining,

etc.). This research provides methods for accessing concepts in the virtual knowledge base.

When an access method provides both content addressability and access to concepts in the virtual knowl-

edge base, users need not know whether concepts are explicit in the knowledge base or where they are located.

Users simply supply a concept description embedded in an access request. If the concept has a frame asso-

ciated with it, then the system will �nd and use that frame to service the request. Otherwise, the system

will create and use a new frame. From the user's point of view, there is no distinction between accessing

concepts by description and accessing concepts in the virtual knowledge base.

For an access method to provide content addressability and to provide access to concepts in the virtual

knowledge base, it must determine, for each concept in the knowledge base, whether the input description

matches it exactly, is more general than it, is more speci�c than it, or is neither more general nor more

speci�c. This step is called subsumption [59, 58]. The subsumption calculation is deterministic only when the

input description provides a complete de�nition of the concept to be accessed, one containing necessary and

su�cient criteria that completely delineate the concept. (It is not possible to determine whether two partial

de�nitions describe exactly the same concept.) This implies that, although any concept in the knowledge

base can be identi�ed as a potential match for a given description, only completely de�ned concepts can be

uniquely identi�ed by description (i.e., identi�ed as the only possible match for the description), and only

completely de�ned concepts exist in the virtual knowledge base.

For this reason, our access methods operate in two modes. First, they can �nd or create the concept that

exactly matches the input description. This mode of operation requires that the input description completely

de�ne the desired concept in terms of other concepts and relations in the knowledge base (either the actual
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simulation [47], machine learning [37], and supporting knowledge engineers [30]), we have found that current

access methods for structured knowledge bases are inadequate. The goal of this research is to improve them.

Consider, for example, locating information about \Leaf photosynthesis" from a knowledge base of frames

using conventional methods. The �rst problem the user faces is that conventional access methods require the

user to provide the address within the knowledge base of the data object (henceforth, \frame") that represents

the concept. This address might be the frame's name, such as Leaf-Photosynthesis, Photosynthesis-In-A-Leaf,

or Leaf-Energy-Production, or it might be a path consisting of frames and slots, such as (Leaf producer-in).

Because the names of frames and slots are often arbitrary, it is problematic for a user to locate a frame by

its address.

The second problem faced by the user attempting to locate information about \Leaf photosynthesis"

is that a frame representing the concept might not exist in the knowledge base. Knowledge engineers

decide which concepts to explicitly represent (reify) based on a priori assessments of importance, which are

often inappropriate for particular users or tasks. Consequently, the knowledge base might contain frames

representing the concepts \Leaf" and \Photosynthesis," but not \Leaf photosynthesis." With traditional

access methods, knowledge base users can only overcome these two problems by increasing their familiarity

with (and thus, their dependence on) the internal details of the knowledge base.

In contrast, our solution to these problems in locating information is to provide, through our access

methods, an abstraction of the knowledge base. Our methods, implemented in a program named KASTL,

locate frames by their contents (in addition to locating frames by their addresses, as with conventional

methods). The user provides a partial description of the desired concept, such as \photosynthesis in which

the producer is a leaf," and KASTL searches the knowledge base for the frame representing that concept. If

no such frame exists in the knowledge base, KASTL creates one and splices it into the taxonomy to yield a

virtual knowledge base.

After locating a concept, our access methods provide an additional service: extracting viewpoints, coherent

sets of facts that describe a concept from a particular perspective. We have identi�ed many types of

viewpoints and developed methods for extracting them from structured knowledge bases, either singly or

in combinations. For example, our methods can extract many viewpoints of leaf, such as a leaf's structure

and its functional role in transpiration. In contrast, conventional access methods either extract a single

fact (when asked for the the �ller of a particular frame-slot) or they extract all the facts about a concept

(when asked for the frame representing the concept). Our evaluation indicates that viewpoints extracted by

KASTL are comparable in coherence to those people construct.

These capabilities | locating concepts by description and extracting viewpoints of them | are par-

ticularly important for users accessing large knowledge bases. A large knowledge base is costly to search,

prohibitively so if the knowledge base lacks structure (i.e., if it is represented with �rst order logic or some

other nonindexed formalism). For this reason, our research assumes a structured knowledge base. A struc-

tured knowledge base is inherently easier to search because the taxonomy of frames provides an index: each

frame collects all the information about the concept it represents. This research addresses the problem of

automatically extending this index when the user accesses an implicit concept, and it addresses the problem

of selecting coherent portions of the extensive information about each concept.
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Abstract

The access methods for a knowledge base provide ways to locate information. Although they are

critically important for virtually all applications of a knowledge base, current methods are inadequate,

especially for large, structured knowledge bases. To locate information about a concept using current

access methods, the user must provide the address (usually a frame name) of the concept within the

knowledge base, which requires an unrealistic level of omniscience. Moreover, only those concepts rei�ed

in the knowledge base can be located, which excludes information about the many concepts that are

implicit in the knowledge base. Our solution to these problems is to provide, through our access methods,

an abstraction of the knowledge base, one in which concepts can be located by a partial description of

their contents and in which implicit concepts are automatically rei�ed when they are requested.

After locating a concept, our access methods provide an additional service: selecting coherent subsets

of facts about the concept. Conventional methods either return all the facts about the concept or select

a single fact (usually the �ller of a speci�ed frame-slot). Our access methods extract viewpoints |

coherent collections of facts that describe a concept from a particular perspective. We have identi�ed

many types of viewpoints and developed methods for extracting them from knowledge bases, either singly

or in combinations. Our evaluation indicates that viewpoints extracted by our methods are comparable

in coherence to those people construct.

1 Introduction

The access methods for a knowledge base provide ways for users (both knowledge engineers and application

programs) to locate information. While building a large knowledge base for one area of biology [45] and

developing systems to perform a variety of tasks using that knowledge base (such as tutoring [1, 50, 26],
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