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can construct and simulate models of these systems to predict the system'sresponse to hypothetical conditions. This skill is required for many tasks,such as evaluating designs and control strategies, predicting the e�ects oftrends (e.g., global warming), testing diagnostic hypotheses, and teaching.While there are well-developed methods for simulating models, research onconstructing models automatically is still in its early stages. Because modelconstruction requires expertise and is often time consuming and error prone,our objective is to automate the modeling task: given domain knowledge (i.e.,knowledge of how a complex system works) and a prediction question (i.e.,hypothetical conditions and some variables of interest), construct the simplestmodel of the system that can adequately predict and explain the behavior ofthe variables of interest.Current modeling programs shift important modeling decisions to the knowl-edge engineer. For example, some early programs required a knowledge baseof all potentially useful models of the physical system (the \graph of mod-els" approach [1]). These programs perform a relatively easy task: they select,but do not generate, the best model for answering each question. To answerquestions about complex systems, this approach is impractical because theknowledge engineer cannot anticipate { let alone, build { all the models re-quired for a wide range of questions. The set of models grows combinatoriallywith the number of phenomena in the system and the various levels of detailwith which each phenomenon can be modeled.Recent modeling programs take a more practical approach, called \compo-sitional modeling" [12]: the domain knowledge provides models of di�erentaspects of the system (\model fragments"), and the modeling program usesthem as building blocks to construct an appropriate model for each question.To build an appropriate model, the program typically faces many di�cultdecisions. From all the phenomena governing the system's behavior, the pro-gram must select, and include in the model, only those that are relevant tothe question. If it omits relevant phenomena, the model's predictions will beunreliable; on the other hand, if it includes many irrelevant phenomena, themodel might be di�cult to simulate and understand. In addition to selectingrelevant phenomena, the program must chose an appropriate level of detailfor each one. For example, the process of photosynthesis can be described asa single chemical reaction or as a complex sequence of more-detailed reactions(each of which could be similarly decomposed). Because compositional mod-eling programs automatically choose relevant phenomena and levels of detailfor each question, the knowledge engineer need not anticipate and build allthe models that might be needed.Although the compositional modeling approach simpli�es the task of encod-ing domain knowledge, current programs still shift important modeling deci-sions to the knowledge engineer. First, the knowledge engineer must design the2



model fragments; that is, he must group domain facts into coherent, indivisiblebundles that the program can use as building blocks for constructing models.Second, he must supply most of the criteria for making modeling decisions:he must represent the assumptions underlying each model fragment, the de-pendencies and incompatibilities among assumptions, and the conditions thatrequire choosing from among di�erent modeling assumptions. Because this isknowledge about constructing models, not about how a physical system works,it is not readily available from domain experts.This paper describes a new compositional modeling algorithm that does notrequire such knowledge. Our algorithm constructs models from simple build-ing blocks { the individual variables of the physical system, and the in
uences[15] among them { and addresses the modeling issues that previous programsleft to the knowledge engineer. To address these issues, our algorithm usesnovel, domain-independent criteria that de�ne when a model is adequate foranswering a particular prediction question and when it is simpler than al-ternative models. (See Section 3.) With these criteria, a modeler can makedecisions while knowing little more than the variables and in
uences thatgovern a physical system; the criteria demonstrate the central role of variablesand in
uences in every modeling decision. We prove that our modeling algo-rithm will build a simplest adequate model (as de�ned by the criteria) for eachprediction question, assuming that one can be built from the building blocksprovided by the domain knowledge. (See Section 4.)We implemented our modeling algorithm in a program called tripel. 2 Inaddition, we integrated tripel with a qualitative simulation program (theQualitative Process Compiler [14]), which simulates tripel's models to gen-erate predictions. 3 Our goal is to combine the pieces needed to fully automatethe task of answering prediction questions.We evaluated our algorithm by applying tripel to the task of answering pre-diction questions in the domain of plant physiology. (See Section 5.) Whileprevious modeling programs have only been tested on examples constructedby their designers, our evaluation is considerably more rigorous, in three ways.First, the domain knowledge was encoded by a botany expert. His goal wasto encode fundamental textbook knowledge that can support a wide range oftasks, not just prediction. (In fact, the same knowledge base has been usedsuccessfully for other tasks, such as answering description questions and gen-erating English text [31,33,32].) Second, the domain knowledge he encoded2 The name tripel is an acronym for \Tailoring Relevant In
uences for Predictiveand Explanatory Leverage." It is also a style of strong ale made by Trappist Monksin Belgium.3 Although tripel has only been used to construct qualitative models [53], webelieve that our modeling algorithm is equally capable of building numerical models,consisting of algebraic equations and ordinary di�erential equations. (See Section 6.)3



is extensive: it describes 700 properties of a prototypical plant and 1500 in-
uences among them, including many di�erent levels of detail. Finally, thequestions used to evaluate tripel were produced by the botany expert, whojudged tripel's models by comparing them to his own models for answeringthe questions. Our goal is to build a modeling program that is su�cientlyrobust to answer unanticipated questions using large knowledge bases builtby domain experts.The evaluation identi�ed the most important topics for future research. Inparticular, it showed that, for some modeling decisions, the expert uses moresophisticated criteria than tripel uses. tripel is designed to easily incorpo-rate new criteria: the criteria for each type of modeling decision are encapsu-lated in an independent module of tripel, and each module can be improvedwithout requiring other changes to the algorithm.To lay the groundwork for these topics, the next section describes the inputto our modeling algorithm.2 System Descriptions and Prediction QuestionsOur modeling algorithm requires two inputs: domain knowledge about howsome physical system works (the system description), and a prediction ques-tion about the system. The following question, from the domain of plantphysiology, illustrates the general form of a prediction question: \How woulddecreasing soil moisture a�ect a plant's transpiration 4 rate?" A predictionquestion poses a hypothetical scenario, consisting of a physical system (e.g.,a plant and its soil) and some driving conditions (e.g., decreasing soil mois-ture), and asks for the resulting behavior of speci�ed variables of interest (e.g.,the plant's transpiration rate). The system description for the example woulddescribe the variables and in
uences that govern the plant and its soil.2.1 System DescriptionsA system description represents all available domain knowledge about a partic-ular system. Although a system description could be provided to the modelerdirectly, it is typically generated from general domain knowledge and a de-scription of the physical structure of the particular system [12]. For example,given the physical structure of a particular chemical processing factory, generalknowledge of chemical engineering could be used to generate a system descrip-4 Transpiration is the process by which water evaporates from the leaves.4



tion for the factory. The general knowledge provides principles (e.g., \the rateof any chemical reaction is in
uenced by the concentration of each reactant")that are instantiated for the particular system, yielding rules governing thebehavior of the system (e.g., \the rate of the reaction in the reactor tank isin
uenced by the concentration of nitric acid"). The system description is theresult of exhaustively instantiating the general knowledge.Various methods are available for generating a system description this way.The method of Falkenhainer and Forbus [12], called \scenario expansion," ex-haustively generates the system description before model construction begins.In contrast, we have developed a method that interleaves generating the sys-tem description with constructing the model, thereby generating only thoseparts of the system description that are needed [44]. In this paper, we treat thesystem description as given, but our modeling algorithm is compatible witheither approach.In the compositional modeling approach, elements of the system descriptionserve as building blocks for model construction. We adopt the approach tocompositional modeling started by Qualitative Process Theory (qpt) [15]:the system description consists primarily of variables and in
uences amongthem. However, we extend qpt's representation in several ways. Most im-portantly, we allow systems to be described at multiple levels of detail. Atthe end of this section, we discuss the di�erences between our language forsystem descriptions and the languages used by other compositional modelingprograms.2.1.1 Properties of Entities: VariablesA system description includes a �nite set of variables, which represent thoseproperties of the system that are subject to change. Because our work focuseson building lumped-parameter, di�erential equation models, each variable inthe system description denotes a real-valued, continuous function of time, suchas the amount of water in a plant or its rate of transpiration.Each variable is de�ned as a property of some conceptual entity. For example,many variables in plant physiology are properties of one of three types ofentities: a space, a pool, or a process. Examples include the cross-sectionalarea (a property) of a conduit (a space), the amount (a property) of glucosein a plant (a pool), and the rate (a property) of transpiration (a process).This representation of variables is also used in qpt, where variables are called\quantities" and properties are called \quantity types."Entities, properties and variables are written as ground terms in PredicateCalculus. For example, photosynthesis in a plant, which is an entity, is writ-ten as photosynthesis(plant). The rate of photosynthesis in a plant, which is a5



variable, is written as rate(photosynthesis(plant)). Similarly, the amount of wa-ter in a plant, also a variable, is written as amount(pool(water, plant)), wherepool is a function that maps a type of substance (or energy) and a space tothe corresponding pool. 52.1.2 Entities at Di�erent Levels of Detail: The Encapsulation RelationIn a complex system, entities typically can be described at multiple levels ofdetail. One entity may represent an aggregation of other entities, summariz-ing their properties while encapsulating their details. For example, the waterin a plant can be treated as an aggregate pool; or the water in the roots,stem and leaves can be treated individually. Analogously, processes can beaggregated. For example, the chemical formula for photosynthesis summarizesthe net e�ects of many chemical reactions. Similarly, in engineering, a systemcomponent is often treated as a black box even though it is constructed fromother components. These are examples of entity encapsulation, which is ubiq-uitous in science and engineering because it allows modelers to create abstractdescriptions that hide irrelevant details. In our terminology, an abstract (ag-gregate) entity encapsulates the entities that represent its underlying details.A system description represents encapsulation relationships among entitieswith the encapsulates relation. For example, encapsulates(pool(water, plant),pool(water, leaves(plant))) speci�es that the pool of water in the plant encap-sulates the pool of water in the leaves; that is, these pools are alternativelevels of description. Of course, the pool of water in the plant also encapsu-lates the water in the stems and roots; each such relationship is a separatepair within the relation. The encapsulates relation is an ordering relation like<; it is irre
exive (no entity encapsulates itself), asymmetric (no two entitiesencapsulate each other), and transitive.Note that the encapsulates relation represents relationships among alternativelevels of description, not spatial relationships. The relation is used wheneveran entity can be described as a black box or, alternatively, through its compo-nents. While spatial relations might form the basis of some such relationships(as with pools and subpools), this need not be the case (as with processes andsubprocesses).5 A pool consists of the substance or energy of a particular type in a particularspace. In AI, the concept of a pool is the basis of the \contained stu�" ontology[6,15]. The term \pool" is common in biology and ecology.6



2.1.3 In
uencesAs in qpt [15], the phenomena governing a system are represented as a �-nite set of in
uences. An in
uence is a causally-directed relation among twovariables, the in
uencer and the in
uencee. There are two types of in
uences:di�erential and functional.A di�erential in
uence speci�es that the rate of change (�rst time deriva-tive) of the in
uencee is a function of the in
uencer (and perhaps other vari-ables). In qpt, di�erential in
uences are called \direct" in
uences. Typically,di�erential in
uences represent the e�ects of processes. For example, the pro-cess of water uptake transports water into the roots of a plant; thus, theamount of water in the roots is di�erentially in
uenced by the rate of wateruptake. Of course, a variable may be di�erentially in
uenced by more thanone process; for example, the amount of water in the roots is also di�eren-tially in
uenced by the rate at which water is transported from the roots tothe leaves. When the di�erential in
uences on a variable are combined, theyform a �rst-order di�erential equation. We write a di�erential in
uence asv1 ) v2, where the variable v1 is the in
uencer and the variable v2 is thein
uencee.In contrast, a functional in
uence speci�es that the in
uencee (rather thanits derivative) is a function of the in
uencer (and perhaps other variables). Inqpt, functional in
uences are called \indirect" in
uences. As with di�erentialin
uences, there may be multiple functional in
uences on a variable. Whencombined, they form an algebraic equation. We write a functional in
uenceas v1 ! v2, where the variable v1 is the in
uencer and the variable v2 is thein
uencee.Typically, functional in
uences represent one of three types of phenomena.First, they are used to represent the factors that a�ect the rate of a pro-cess. For example, the rate of photosynthesis is functionally in
uenced by theamount of carbon dioxide (one of its reactants) in the leaves. Second, they areused to represent de�nitional relations. For example, concentration is de�nedas amount per unit volume, so the concentration of sucrose in tree sap is func-tionally in
uenced by the amount of sucrose in the sap and by the volumeoccupied by the sap. Finally, a functional in
uence may represent a quasi-static approximation. For example, when the level of solutes in a plant cellchanges, the process of osmosis adjusts the cell's water to a new equilibriumlevel over time. If the dynamics of this process over time are irrelevant, themodeler can simply treat the level of water as an instantaneous function ofthe level of solutes, and this functional dependence can be represented with afunctional in
uence.In qpt, each in
uence has a sign (+ or �), which speci�es the sign of the7



partial derivative of the in
uencee with respect to the in
uencer. The signof an in
uence is irrelevant to our modeling algorithm, but it is required forsimulation of models.2.1.4 Activity PreconditionsSometimes, one variable in
uences another only under certain conditions. Forexample, the amount of carbon dioxide in the leaves in
uences the rate ofphotosynthesis only when the amount of light energy in the leaves is greaterthan zero. The activity preconditions of an in
uence specify the conditionsunder which it is active. As in qpt, the activity preconditions of an in
u-ence are a (possibly empty) conjunctive set of inequalities between variablesor between variables and constants. 62.1.5 Signi�cance PreconditionsSometimes, the e�ects of an in
uence are insigni�cant for purposes of answer-ing a question. A model can often be greatly simpli�ed when insigni�cantin
uences are recognized and omitted. While human modelers use many cri-teria to determine the signi�cance of in
uences, knowledge of the time scaleof di�erent processes is particularly important.In complex systems, processes cause signi�cant change on widely disparatetime scales [2,20,40,47,49]. In a plant, for example, water 
ows through mem-branes on a time scale of seconds, solutes 
ow through membranes on a timescale of minutes, growth requires days, and surrounding ecological processesmay occur on a time scale of months or years. Given the time scale of interestfor a question, any in
uence that causes signi�cant change only on a slowertime scale is insigni�cant [24,28,51]. For example, to answer the question con-cerning the e�ect of decreasing soil moisture on a plant's transpiration rate, atime scale of hours is most appropriate; since the e�ects of growth are signi�-cant only on a time scale of days or longer, they are insigni�cant for purposesof answering the question.To represent such knowledge, the signi�cance preconditions of an in
uenceare encoded as an inequality relating the time scale of interest and a speci�ctime scale. For example, for an in
uence representing the e�ect of growth onthe size of a plant, the signi�cance preconditions would be encoded as time-scale-of-interest � days. An in
uence is signi�cant for purposes of answeringa given question if and only if the question's time scale of interest satis�es theinequality in the in
uence's signi�cance preconditions.6 In qpt, activity preconditions are called \quantity conditions."8



Typically, a di�erential in
uence represents an e�ect of a process, so its signif-icance preconditions should specify the fastest time scale on which the e�ect issigni�cant, as in the growth example above. If the signi�cance preconditions ofa di�erential in
uence are empty, the modeler must treat the in
uence as sig-ni�cant for any question. Since functional in
uences represent instantaneouse�ects, they are signi�cant regardless of the time scale of interest, so theirsigni�cance preconditions are always empty.The modeling methods described in this paper do not depend on this particularcriterion for signi�cance. In the future, we plan to incorporate other criteria aswell, as discussed in Section 6.1.1. Still, time scale is an important signi�cancecriterion in many domains, including biology [19,49], ecology [2,40], economics[51], and many branches of engineering [26,48]. Moreover, empirical results(described in Section 5) show that this criterion is capable of pruning manyirrelevant phenomena from models.2.1.6 Validity PreconditionsMany in
uences are approximations of the phenomena they represent, andthese approximations typically have a limited range of validity. The validitypreconditions of an in
uence specify the conditions under which the in
uenceis a valid model of the phenomenon it represents. Contrast validity precon-ditions with activity and signi�cance preconditions. The latter specify whena phenomenon is inactive or insigni�cant, and hence need not be modeled atall. Validity preconditions, on the other hand, specify when one particular in-
uence is an invalid approximation of its phenomenon, but they don't obviatethe need to model that phenomenon.As with signi�cance, humanmodelers use many criteria to assess the validity ofin
uences, but the time scale of interest is particularly important. Therefore,as with signi�cance preconditions, the validity preconditions of an in
uenceare encoded as an inequality relating the time scale of interest and a speci�ctime scale. Such a precondition might arise from cases like the following:{ The behavior of an aggregate pool is often used as an approximation to thebehavior of one of its subpools. For example, the rate of photosynthesis isfunctionally in
uenced by the concentration of carbon dioxide in the mes-ophyll cells of the leaves. As an approximation, a modeler might say thatthe rate of photosynthesis is functionally in
uenced by the concentration ofcarbon dioxide in the leaves. Such an approximation is reasonable when thesubpools equilibrate on a time scale faster than the time scale of interest[24,51]. For example, if di�usion of carbon dioxide throughout the leavesachieves a uniform concentration on a time scale of minutes, the in
uenceof carbon dioxide in the leaves on the rate of photosynthesis is a valid ap-9



proximation to the true in
uence when the time scale of interest is minutesor longer.{ An in
uence representing a quasi-static approximation is typically validonly if the underlying processes reach equilibrium on a time scale at leastas fast as the time scale of interest [24,28,51]. For example, when the levelof solutes in a plant cell changes, the process of osmosis adjusts the cell'swater to a new equilibrium level. On a time scale of minutes or longer, thisprocess can be treated as instantaneous. Therefore, the functional in
uenceof solute level on water level is valid on a time scale of minutes or longer.An in
uence is valid for purposes of answering a given question if and only ifthe question's time scale of interest satis�es the inequality in the in
uence'svalidity preconditions. As with signi�cance preconditions, our modeling meth-ods do not depend on this particular criterion, but it has proven very e�ective.2.1.7 In
uences at Di�erent Levels of Detail: The Explanation RelationFor complex systems, di�erent in
uences may represent the same phenomenonat di�erent levels of detail. To choose a suitable set of in
uences on a variablein a model, a modeler must understand which in
uences represent indepen-dent phenomena and which represent di�erent levels of detail for the samephenomenon. In
uences on a given variable represent alternative levels of de-tail in cases like the following:{ The in
uence of an aggregate process on a pool represents the aggregatee�ect of its subprocesses on that pool. For example, the in
uence of photo-synthesis on water in the leaves is due to the in
uence of one of its subpro-cesses, the light reactions, on water in the leaves. In turn, the in
uence ofthe light reactions represents the aggregate e�ect of two of its subprocesses:the Hill reaction, in which light energy is used to split water molecules intohydrogen and oxygen, and photophosphorylation, in which light energy isconverted to chemical energy and water. Thus, the in
uence of photosynthe-sis on water in the leaves is explained by the in
uence of the light reactions,which is explained by the in
uence of the Hill reaction and the in
uence ofphotophosphorylation.{ Analogously, the in
uence of an aggregate pool on a process represents theaggregate e�ect of its subpools on that process. For example, in many plants,the in
uence of carbon dioxide in the leaves on photosynthesis is due to thein
uences of two subpools: the mesophyll cells and the bundle sheath cells.To generalize such cases, a system description can specify that one in
uence isexplained by other in
uences. The explanation for an in
uence, if it has one, re-lates it to other in
uences of the same type (i.e., di�erential or functional) thathave the same in
uencee. (While there may be similar relationships among10



in
uences with di�erent types or in
uencees, our modeling criteria and algo-rithms do not require a representation of those relationships.) The in
uencebeing explained represents the collective e�ect on the in
uencee of the in
u-ences that explain it, and the in
uences that constitute the explanation fullyexplain the aggregate in
uence. In short, the in
uence being explained andthe in
uences in its explanation represent the same underlying phenomena atdi�erent levels of detail.Such relationships are represented by the explanation relation. The pair(i,i') is an element of this relation if and only if in
uence i' is an elementof the set of in
uences that explain in
uence i. The transitive closure of theexplanation relation, the explanation* relation, provides an ordering amongin
uences; in addition to being transitive, it is irre
exive (no in
uence explainsitself) and asymmetric (no two in
uences explain each other). Note that boththe explanation relation and the encapsulates relation represent aggregationhierarchies: the former represents a hierarchy of in
uences, while the latterrepresents a hierarchy of entities.2.1.8 SummaryIn summary, a system description represents domain knowledge about a par-ticular physical system. The description includes the phenomena that governthe system as well as the levels of detail at which the phenomena can bedescribed. Phenomena are represented by variables and in
uences, which pro-vide the building blocks for models. For each in
uence, the system descriptionspeci�es the conditions under which it is active, valid, and signi�cant; such in-formation helps the modeler decide which in
uences are relevant to answeringa given question. Currently, our criteria for signi�cance and validity are basedon time scale [28,22,21], although our model construction algorithm does notdepend on any particular criteria. Finally, to help the modeler ensure a coher-ent model, the system description represents the relationships among di�erentlevels of detail using the encapsulates and explanation relations.2.1.9 Previous Work on System Descriptionsqpt's representation for variables and in
uences provides the basis for oursystem description language. However, because qpt was not designed to rep-resent modeling alternatives, it does not include a representation for signif-icance preconditions, encapsulation or explanation relationships, or validitypreconditions.The compositional modeling framework of Falkenhainer and Forbus [12] ex-tends the ideas of qpt to represent modeling alternatives. The building blocksfor their models are \model fragments," which provide individual in
uences11



or, more typically, sets of in
uences (e.g., complete equations). To allow dif-ferent model fragments to specify di�erent modeling alternatives, each modelfragment has associated \assumptions," symbolic labels that characterize thephenomena it represents and its level of detail. To represent the relation-ships among model fragments, assumptions are organized into \assumptionclasses"; the assumptions in each class represent mutually incompatible mod-eling alternatives. Several researchers [23,38,39] de�ne interesting variants ofthis compositional modeling framework, but the basic ideas are the same.Our representation di�ers in two ways. First, the person encoding the domainknowledge need not group in
uences into model fragments; rather, in ourapproach, individual in
uences are the building blocks for models. As willbe shown in Section 3, important modeling decisions arise at the level ofin
uences, and we want the modeling program, not the knowledge engineer,to face these decisions. Moreover, in our experience, it is rare for two in
uencesto necessarily occur together in models; there are typically conditions in whichonly one of the in
uences is relevant, and alternative levels of detail for eachin
uence are often available. Although our approach { using in
uences asbuilding blocks for models { di�ers from other work in automated modeling,the idea is not new: human modelers have taken this approach in a variety ofdomains [4,18,30,43,46].Second, Falkenhainer and Forbus require the knowledge engineer to providemore of the criteria for making modeling decisions. In addition to requiringthe knowledge engineer to provide model fragments, assumptions, and as-sumption classes, they require two additional types of knowledge: (1) rulesthat specify dependencies among assumptions (e.g., which ones are mutuallyincompatible and which ones require each other) and (2) the conditions inwhich each assumption class is relevant (i.e., when the modeler must chooseone of the alternatives). For our model construction algorithm, the �rst typeof knowledge is unnecessary because the encapsulates and explanation relationssu�ciently describe the relationships among alternatives, in a form that webelieve will be more natural for domain experts. The second type of knowledgehas no counterpart in our approach; our model construction algorithm e�ec-tively generates such knowledge automatically, as will be shown in Sections 3and 4. Our algorithm does require the system description to provide somecriteria for modeling decisions, namely signi�cance preconditions and validitypreconditions; however, these criteria are properties of individual in
uences,and hence should be easy for a domain expert to provide. (Our botany experthad no trouble providing such knowledge.)12



2.2 Prediction Questions2.2.1 Driving Conditions and Variables of InterestA prediction question poses a hypothetical scenario, speci�ed by one or moredriving conditions, and asks for the behavior of one or more variables of in-terest. Driving conditions specify the behavior or initial condition (or both)of particular variables in the system description. For example, \decreasingsoil moisture" is the driving condition in the question \How would decreasingsoil moisture a�ect a plant's transpiration rate?" Any variable in the systemdescription (such as \transpiration rate" in the example) can serve as a vari-able of interest. The goal in answering a prediction question is to predict andexplain the causal e�ect of the driving conditions on the variables of interest.We currently use the same language to specify both types of driving conditions(behaviors and initial conditions). Each driving condition is an equality or in-equality statement relating a variable (or its derivative) to another variable(or its derivative) or constant. For example, the initial temperature of a plantcould be speci�ed precisely as temperature(plant) = 67�F or less precisely astemperature(plant) > 32�F or temperature(plant) > temperature(soil). Its initialrate of change could similarly be speci�ed (using the di�erential operator D) asD(temperature(plant)) = zero (thermal equilibrium) or D(temperature(plant))> zero (the plant is warming up). These same statements could be speci�edas behaviors rather than initial conditions, meaning that they hold through-out the temporal extent of the scenario. We also allow a behavior to be de-scribed as increasing or decreasing to a new equilibrium value (i.e., increasingor decreasing for an unspeci�ed amount of time and constant thereafter). Ourmodeling methods are not restricted to this particular language for drivingconditions; for instance, we could allow behaviors to be speci�ed as arbitraryfunctions (e.g., a sine wave) as well. Our methods would simply ignore theextra information provided by such a precise description of behavior.2.2.2 Time Scale of InterestAs discussed in Section 2.1, a time scale of interest provides an importantsource of power in modeling. It allows a modeler to (1) treat in
uences thatoperate on a slower time scale as insigni�cant, (2) represent the e�ects of fasterprocesses using quasi-static approximations, and (3) treat separate pools asa single aggregate when they equilibrate on a faster time scale. Thus, a timescale of interest allows many important model simpli�cations.Although the person posing a question may specify a time scale of interest, of-ten a modeler must determine it automatically. Elsewhere [44,45], we describean algorithm for choosing an appropriate time scale of interest when none is13



speci�ed in the question. Whether the time scale of interest is chosen by themodeler or provided by the person posing the question, this paper will treatit as part of the question.3 Scenario ModelsGiven a system description and a prediction question, our modeling algorithmconstructs a scenario model for answering the question. A scenario modelconsists of the following:{ a set of variables (a subset of the variables in the system description) parti-tioned into exogenous variables, whose behavior is determined by in
uencesexternal to the model, and dependent variables, whose behavior is deter-mined by the model, and{ a set of in
uences (a subset of the in
uences in the system description),each of whose in
uencee is a dependent variable in the model and whosein
uencer is another variable in the model (exogenous or dependent)For example, the scenario model in Figure 1 shows how a plant regulatesthe abscisic acid hormone (aba) in response to changes in turgor pressure(hydraulic pressure) in its leaves (e.g., when it begins wilting). Leaf turgorpressure is the only exogenous variable; all the others are dependent. Themodel shows that aba is synthesized and consumed in the leaf mesophyll cellsand transported to the guard cells. (The �gure also describes the conventionsthat are used in this and subsequent �gures.)As in previous work [12,23,34], a scenario model is intended to support theentire simulation of the scenario. To make predictions from a particular stateof the scenario, the simulator must determine which in
uences in the scenariomodel are active in that state. For example, turgor pressure only in
uencesaba synthesis when the pressure drops below a threshold. The activity pre-conditions of the in
uence would represent that fact. To simulate a turgid(not wilting) plant whose turgor pressure is dropping, the simulator wouldomit this in
uence until turgor pressure drops below the threshold. A varietyof simulators are capable of simulating scenario models in this way [14,15,17].Using this approach, the modeler need only build one scenario model to an-swer a question, rather than building a di�erent model for di�erent states ofthe scenario. 14
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uences, while arrows without solidtips represent functional in
uences.{ Exogenous variables (in this example, leaf turgor pressure) are underlined.{ Di�erential in
uences are labeled with the time scale on which they become sig-ni�cant. For example, \mins" is a shorthand for the signi�cance preconditiontime-scale-of-interest � minutes.{ In
uences are labeled with the sign of their partial derivative. For example, whenleaf turgor pressure decreases, the rate of aba synthesis increases.{ Activity preconditions of in
uences are not shown.3.1 AdequacyIntuitively, a scenario model is adequate for answering a given prediction ques-tion if it satis�es two criteria. First, it must make the desired predictions withsu�cient accuracy. Second, to ensure a comprehensible explanation, the modelmust be a coherent description of the physical system. To automate modeling,we must formalize these two intuitive criteria.We formalize the criteria as a set of adequacy constraints. Each constraint is apredicate of three arguments: a system description, a prediction question, anda scenario model. A scenario model is adequate for a given system descriptionand question if and only if every adequacy constraint is satis�ed. Collectively,the constraints address the key issues in model construction, and they demon-strate the central role of variables and in
uences in each issue. The key issuesinclude choosing appropriate exogenous variables (Section 3.1.2), choosing ap-propriate in
uences on each dependent variable (Section 3.1.3), modeling anappropriate set of system entities (Section 3.1.4), and relating the drivingconditions of the question to the variables of interest (Section 3.1.5).Our objective is to formalize the intuitive criteria that human modelers use toachieve su�ciently accurate, coherent models. For the adequacy constraints15



we propose, this section explains why each is intuitively necessary. Section 5discusses the results of empirically evaluating the constraints in the domainof plant physiology.3.1.1 Variables in a Scenario ModelAmodel is only adequate if it can make the desired predictions. This motivatesthe following constraint.Adequacy constraint 1 (include variables of interest)A scenario model is adequate only if it includes every variable of interest.As discussed earlier, the simulator must determine which in
uences in thescenario model are active in each state of the scenario. This requires the abilityto evaluate the activity preconditions of in
uences in the model. The followingconstraint ensures that the model provides enough information to do so.Adequacy constraint 2 (include variables in activity preconditions)A scenario model is adequate only if it includes every variable appearing inan activity precondition of an in
uence in the model.3.1.2 Exogenous VariablesOnce a variable is included in a model, the modeler must determine how tomodel it. The �rst decision is whether to model it as exogenous or dependent.While the phenomena governing a dependent variable are represented by in-
uences in the model, the phenomena governing an exogenous variable areoutside the scope of the model. Conceptually, the model represents a sys-tem, and the exogenous variables represent the system boundary, the interfacebetween the system and its surrounding environment. Thus, by choosing tomodel some variables as exogenous, a modeler partitions the system descrip-tion into two parts: the subsystem that is relevant to answering the givenquestion, and its environment (which is irrelevant). To ensure that a modelof a complex system is adequate and as simple as possible, a suitable systemboundary is crucial.Despite the importance of a well-chosen system boundary, few previous au-tomated modeling programs can choose exogenous variables automatically.Moreover, as explained at the end of this subsection, these few programs usecriteria that are too weak for answering prediction questions; their choice ofexogenous variables can result in either inadequate or unnecessarily complexmodels. 16
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significance preconditions: time−scale−of−interest >= hours

(B) Influence graphFig. 2. (A) A set of in
uences, along with their activity and signi�cance precondi-tions. (B) The corresponding in
uence graph.Human modelers treat a variable as exogenous only if it is approximatelyindependent of the other variables in the model. For example, the rate of pre-cipitation can be treated as exogenous in a model of a single plant; while thebehavior of the plant depends critically on the rate of precipitation, the phe-nomena that govern precipitation do not depend signi�cantly on the behaviorof the plant. Thus, to decide which variables can be treated as exogenous, amodeler must be able to determine whether one variable signi�cantly a�ectsanother.The in
uences in a system description determine which variables a�ect eachother. Clearly, one variable a�ects another if there is an in
uence from the�rst variable to the second. One variable can also a�ect another by enablingor disabling the in
uences on it; that is, one variable a�ects another if thereis an in
uence on the second variable whose activity preconditions referencethe �rst variable.Therefore, we de�ne the in
uence graph for a system description as follows.The nodes of the graph are the variables. There is a directed edge from onevariable to another if and only if there is an in
uence whose in
uencee is thesecond variable and either{ the �rst variable is the in
uencer or{ the �rst variable appears in the in
uence's activity preconditions.An in
uence path is a path of non-zero length in an in
uence graph. Onevariable signi�cantly in
uences another if and only if there is an in
uencepath leading from the �rst variable to the second and every in
uence in thepath is valid and signi�cant for the given question.Figure 2 illustrates these concepts. Part A shows a set of in
uences, and PartB shows the corresponding in
uence graph. If the time scale of interest isseconds, only v3 signi�cantly in
uences v4. However, on a time scale of hours,v4 is signi�cantly in
uenced by v0, v1, v2 and v3.17



Given the de�nitions above, the following constraint formalizes the intuitionthat an exogenous variable is approximately independent of all other variablesin the model.Adequacy constraint 3 (exogenous variables independent of model)A scenario model is adequate only if none of its exogenous variables is signi�-cantly in
uenced in the system description by another variable in the model.While the previous constraint on exogenous variables ensures that they areappropriate for the model that contains them, the next constraint ensures thatthey are appropriate for the given question. Recall that a prediction questionasks for the e�ects of driving conditions on variables of interest. To answera prediction question, a modeler includes in the model those variables whosebehavior is relevant to determining the behavior of the variables of interest.Therefore, if a variable in the model is signi�cantly in
uenced by a drivingvariable (a variable in a driving condition), the model should re
ect this so thee�ects of the driving variable's behavior on that variable can be determined.Thus, to ensure that the exogenous variables do not disconnect the modelfrom relevant driving conditions, a variable cannot be exogenous unless it isapproximately independent of the driving variables.Adequacy constraint 4 (exogenous variables independent of question)A scenario model is adequate only if none of its exogenous variables is signif-icantly in
uenced in the system description by a driving variable (other thanitself if it is a driving variable).Together, these two constraints specify whether a variable in a model can beexogenous. To illustrate these system boundary criteria, consider the question\What happens to the amount of aba in a plant's guard cells when the turgorpressure in its leaves decreases?" This question is important because plantssend aba to the guard cells to combat dehydration. The appropriate time scaleof interest for this question is minutes. (This time scale can be determined au-tomatically if it is not speci�ed [44,45].) Part A of Figure 3 shows a portionof the system description for a prototypical plant; the driving variable (leafturgor pressure) and variable of interest (guard cell aba amount) are shown inbold. Part B shows the simplest adequate model for answering the question.In this model, none of the dependent variables could be exogenous, becauseeach one is signi�cantly in
uenced (on a time scale of minutes) by the driv-ing variable, leaf turgor pressure (thus violating adequacy constraint 4). Leafturgor pressure can be exogenous in the model because it satis�es adequacyconstraints 3 and 4; that is, as shown in Part A, leaf turgor pressure is notsigni�cantly in
uenced (on a time scale of minutes) by any other variable inthe model nor by any other driving variable (there are no others). On a timescale of hours, however, leaf turgor pressure could not be treated as exogenous,because it would be signi�cantly in
uenced by guard cell aba amount on that18



leaf
mesophyll
ABA
amount

ABA
consumption
rate

ABA
synthesis
rate

ABA
transport
rate

guard
cell ABA
amount

leaf
turgor
pressure

water uptake rate

xylem water amount

leaf water
uptake rate

leaf mesophyll
water amount

mins

hrs

minsmins

mins

mins

mins

transpiration rate

stomatal
opening

guard
cell
water
amount

osmosis
rate

guard
cell k+
amount

k+ diffusion
rate

k+ active
transport
rate

accessory
cells k+
amount

plant 
temperature

guard
cell
carbon
dioxide

hrs

mins

secs

mins

mins
mins

. . .

. . .

. . .

+ − + + +

   −    − +
  +  −

  + −

  −

+    −

+
+

  −

+

+

+

−

   +

  + −
   +

  − +

  + −

leaf
mesophyll
ABA
amount

ABA
consumption
rate

ABA
synthesis
rate

ABA
transport
rate

guard
cell ABA
amount

leaf
turgor
pressure

minsminsmins

mins   −

+

   −

−

+
  +

+

  −

(B)  Simplest Adequate Scenario Model

(A)  System Description

Fig. 3. (A) A portion of the system description for the question \What happensto the amount of aba in a plant's guard cells when the turgor pressure in itsleaves decreases?" The driving variable and variable of interest are shown in bold.Ellipses indicate connections to the remaining variables and in
uences in the systemdescription. Alternative levels of detail are not shown. (B) The simplest adequatescenario model for answering the question.time scale via a path passing through guard cell water amount and transpira-tion. Thus, the time scale of interest allows a tighter system boundary thanwould otherwise be possible.Despite its importance, no previous work in automated modeling has pro-vided explicit criteria for choosing exogenous variables. Typically, modelingprograms require either the system description or question to specify thosevariables that can be exogenous. For instance, the modeling algorithms ofWilliams [54] and Iwasaki and Levy [23] take this approach. Although thesealgorithms can determine which exogenous variables must be included in thescenario model, neither algorithm can determine exogenous variables auto-matically. For complex systems, this approach is impractical.19



Nayak's modeling algorithm [38] can choose exogenous variables, but it doesnot have explicit criteria for doing so. Moreover, his de�nition of an adequatemodel is suitable for his modeling task, explaining a speci�ed causal relation,but is not su�cient for answering prediction questions. For instance, his de�ni-tion would allow a scenario model to treat a variable as exogenous even thoughit is signi�cantly in
uenced (in the system description) by another variable inthe model. Adequacy constraint 3 prevents our modeling algorithm from mak-ing this mistake.The modeling algorithm of Falkenhainer and Forbus [12] largely determines thesystem boundary by identifying relevant system components. Their algorithmrequires, as input, a system decomposition. That is, each system componentis also assumed to be a system, and each system can have components thatrepresent its subsystems. To identify the components that are relevant to aquestion, the algorithm �rst identi�es the smallest set of components that mustbe modeled to include the immediate in
uences on the variables of interest;these components are marked as relevant. Next, to ensure that interactionsamong these components are modeled, the algorithm determines a \minimalcovering system," the lowest system down the system decomposition that sub-sumes all relevant components. That component and its subsystems (down tothe level of the initially relevant components) are relevant. Any variable thatis a property of a relevant component, but is only in
uenced by properties ofirrelevant components, is exogenous.Their approach has several limitations. While their modeling algorithm re-quires a system decomposition, our criteria for choosing a system boundaryonly require knowledge of the in
uences. Furthermore, Falkenhainer and For-bus assume that the system decomposition is based on partonomic structure;however, O'Neill et al. [40] argue that approximate system boundaries in nat-ural systems arise from di�erences in process rates (i.e., their time scales) andthat these boundaries may not correspond to standard structural decompo-sitions. Even in engineered systems, designed system boundaries cannot betrusted when considering faults or unintended interactions [8]. Reasoning atthe level of in
uences provides more 
exibility and overcomes the di�cultyof specifying an a priori system decomposition. Additionally, by specifyingthe criteria for choosing exogenous variables in terms of in
uence paths, weensure that the chosen system boundary will be su�ciently sensitive to theconnections between driving conditions and variables of interest.3.1.3 In
uences on a Dependent VariableExogenous variables, which lie on the system boundary, are governed by phe-nomena outside the scope of the model. In contrast, for every dependent vari-able in a model, the modeler must choose a set of in
uences to represent the20



amount(pool(water, guard-cells)) ( rate(osmosis(accessory-cells, guard-cells))amount(pool(water, guard-cells))  amount(pool(aba, guard-cells))validity preconditions: time-scale-of-interest � hoursamount(pool(water, guard-cells))  amount(pool(co2, guard-cells))validity preconditions: time-scale-of-interest � hoursFig. 4. In
uences on the amount of water in a plant's guard cells.phenomena that govern it. The four constraints in this subsection ensure thatevery dependent variable in a model has an adequate set of in
uences.For simulation of a model, the in
uences on a variable are combined to forman equation. Human modelers use two types of equations: algebraic equations,composed of functional in
uences, and di�erential equations, composed of dif-ferential in
uences. The following constraint ensures that the in
uences oneach dependent variable correspond to one of these two types.Adequacy constraint 5 (in
uences homogeneous)A scenario model is adequate only if the in
uences on any given dependentvariable are all the same type (i.e., di�erential or functional).For example, Figure 4 shows a set of in
uences on the amount of water in aplant's guard cells. The �rst in
uence represents the fact that the amount ofwater is regulated by osmosis from neighboring accessory cells. The remainingtwo in
uences represent quasi-static approximations; changes in the levels ofaba or carbon dioxide cause osmosis to adjust the level of water to a newequilibrium.The amount of guard cell water can be modeled by the di�erentialin
uence or the two functional in
uences, but it would be incoherent to mixthem.A model must also be su�ciently accurate. For this reason, each of its in
u-ences must be a valid approximation of the phenomenon the in
uence repre-sents. That is, the validity preconditions of each in
uence must be satis�edfor the given question, as speci�ed in the following constraint.Adequacy constraint 6 (in
uences valid)A scenario model is adequate only if each of its in
uences is valid for the givenquestion.For example, the two functional in
uences in Figure 4, which represent quasi-static approximations, are only valid on a time scale of hours, because themechanisms that restore equilibriumoperate on a time scale of minutes. There-fore, for any question whose time scale of interest is less than hours (e.g.,seconds or minutes), a scenario model that includes these in
uences is inade-quate. 21



amount(pool(co2, leaves))( rate(co2-di�usion(atmosphere, leaves))signi�cance preconditions: time-scale-of-interest � secondsamount(pool(co2, leaves))( rate(photosynthesis(leaves))signi�cance preconditions: time-scale-of-interest � minutesamount(pool(co2, leaves))( rate(dark-reactions(leaves))signi�cance preconditions: time-scale-of-interest � minutesExplanation(amount(pool(co2, leaves))( rate(photosynthesis(leaves)),amount(pool(co2, leaves))( rate(dark-reactions(leaves)))Fig. 5. In
uences on the amount of carbon dioxide in a plant's leaves. The �rst twoare the maximally aggregate in
uences. The in
uence of photosynthesis is explainedby the in
uence of the dark reactions (and not by any other in
uences).To further ensure that a model is su�ciently accurate, the in
uences on eachdependent variable should represent all the phenomena that a�ect the variable.Such a set of in
uences is complete. Given a system description, a dependentvariable, and a type of in
uence (i.e., functional or di�erential), we de�ne acomplete set of in
uences as follows:{ The set of all \maximally aggregate" in
uences of the speci�ed type onthe variable is complete. A maximally aggregate in
uence is one that doesnot explain any other in
uence (i.e., a maximal element of the explanationrelation).{ The result of replacing an in
uence in a complete set with the set of all in
u-ences that explain it (as speci�ed by the explanation relation) is a completeset.For example, Figure 5 shows a set of in
uences on the amount of carbon dioxidein a plant's leaves. As shown, the in
uence of photosynthesis is explained bythe in
uence of the dark reactions (and not by any other in
uences). The �rsttwo in
uences in the �gure constitute a complete set because they are themaximally aggregate in
uences. Also, the �rst and third in
uences constitutea complete set, since the photosynthesis in
uence is fully explained by themore-detailed in
uence of the dark reactions.Of course, the model need only be su�ciently accurate for the given question.Therefore, the in
uences on each dependent variable need only represent allthe signi�cant phenomena that a�ect the variable. For a given question, a setof in
uences on a variable is approximately complete if and only if it isa subset of a complete set of in
uences and none of the omitted in
uences issigni�cant for the question. For example, in Figure 5, the �rst in
uence aloneconstitutes an approximately complete set on a time scale of seconds. However,on a time scale of minutes or longer, either the second or third in
uence must22



be additionally included.Given these de�nitions, the following constraint ensures that the model rep-resents all phenomena that signi�cantly a�ect each dependent variable.Adequacy constraint 7 (in
uences complete)A scenario model is adequate only if the set of in
uences on each dependentvariable is approximately complete for the given question.Finally, to ensure that the in
uences on a dependent variable are coherent, amodeler must avoid mixing di�erent levels of detail for the same phenomenon.The following constraint enforces this requirement.Adequacy constraint 8 (in
uences not redundant)A scenario model is adequate only if the in
uences on each dependent variabledo not include two in
uences related by the explanation* relation).If a model's in
uences on a dependent variable satisfy the four constraints inthis subsection, we say that the in
uences are adequate. Recall that adequacyof a model must address two issues: accuracy of predictions, and coherence.Constraints 6 (in
uences valid) and 7 (in
uences complete) help ensure thatthe in
uences provide a su�ciently accurate representation of the governingphenomena, and constraints 5 (in
uences homogeneous) and 8 (in
uences notredundant) help ensure that the representation is coherent.Most previous work in automated modeling does not enforce explicit con-straints like these for the in
uences on a dependent variable. For those mod-eling programs that use the assumption class representation of Falkenhainerand Forbus [12], the person encoding the model fragments and the constraintsamong assumptions must ensure that each compatible combination of modelfragments yields an adequate set of in
uences.Some previous modeling programs are given a complete equation for a depen-dent variable and they identify and discard negligible terms in the equation[11,36,55,57]. This is analogous to identifying an approximately complete setof in
uences given a complete set. However, these programs do not consideralternative levels of detail for the elements of the equation.3.1.4 Entities in a ModelA scenario model is a model of selected entities in a system. Each variable ina model is a property of an entity, so the entities in a scenario model consistof all the entities whose properties are represented by the model's variables.The entities in a model are important because they indicate the model's viewof the system. 23



To ensure consistent predictions and a comprehensible explanation, that viewmust be coherent. More speci�cally, while entities can typically be describedat multiple levels of detail, a modeler must avoid mixing levels. In the systemdescription, entities at di�erent levels of detail are related by the encapsulatesrelation. Thus, the following constraint prevents a model from mixing levelsof detail.Adequacy constraint 9 (entities coherent)A scenario model is adequate only if it does not include two entities relatedby the encapsulates relation. 7The driving variables of a question also constrain the choice of entities ina model. A scenario model need not necessarily include all driving variables,because some may be irrelevant to the variables of interest. However, the modelshould respect the level of aggregation speci�ed in the driving variables, fortwo reasons. First, these variables indicate the level of detail in which the useris interested. Second, if the modeler encapsulates these variables or choosesvariables at a lower level of detail, the information in the driving conditionswill be lost. 8 The following constraint ensures that the model respects thelevel of aggregation speci�ed in the driving variables.Adequacy constraint 10 (entities compatible with driving variables)A scenario model is adequate only if it does not include an entity that encap-sulates an entity of a driving variable and it does not include an entity thatis encapsulated by an entity of a driving variable.Elsewhere [44], we formulate additional adequacy constraints based on theentities in a model. The constraints ensure that the model is appropriate forthe user's level of knowledge and desired level of detail. While useful, suchconstraints are tangential to the focus of this paper.3.1.5 In
uence Paths in a ModelA prediction question asks for the causal e�ect of driving conditions on vari-ables of interest. Therefore, a scenario model is adequate for answering thequestion only if the variables of interest are signi�cantly in
uenced (in themodel) by the driving variables. Additionally, in order to predict the behaviorof the variables of interest beyond the initial state, the in
uence paths relatingthe driving variables to the variables of interest must be capable of predictingchanges in the variables of interest.7 Recall that the relation is transitive.8 It may be possible to infer driving conditions at the abstract or more-detailedlevels from the given driving conditions, but we have no general method for makingsuch inferences. 24



Through an individual in
uence, one variable can cause change in anothervariable in two ways: (1) with a di�erential in
uence, a speci�ed value forthe in
uencer (along with values for other in
uencing variables) provides therate of change of the in
uencee; (2) in contrast, a functional in
uence cancause change only if the in
uencer is changing [15]. Thus, a model can predictthe changes in a variable of interest caused by a driving variable only if thein
uence path connecting them contains a di�erential in
uence or the drivingconditions specify how the driving variable is changing (in which case a pathof functional in
uences will propagate the change). If either case is satis�ed,the in
uence path is a di�erential in
uence path.For example, the question \What happens to the amount of aba in a plant'sguard cells when the turgor pressure in its leaves decreases?" speci�es thatturgor pressure is decreasing, so any in
uence path from turgor pressure toanother variable is a di�erential in
uence path, capable of causing change. Incontrast, if the question only speci�ed that turgor pressure is above the \yieldpoint" (above which the pressure causes cell growth), an in
uence path leadingfrom turgor pressure is di�erential only if it contains a di�erential in
uence(as is the case with the in
uence of turgor pressure on cell size).Motivated by the above discussion, the following constraint ensures that amodel can predict the e�ect of the driving conditions on the variables of in-terest.Adequacy constraint 11 (variables of interest di�erentially in
uenced)A scenario model is adequate only if, for every variable of interest, the modelincludes a di�erential in
uence path leading to it from some driving variablesuch that every in
uence in the path is valid and signi�cant for the givenquestion.The requirement that a scenario model relate driving variables to variables ofinterest is not new, although previous work has not required di�erential in
u-ence paths. Nayak [38] requires an adequate model to provide a causal pathlinking the driving variable to the variable of interest. Amsterdam [3] requiresan adequate model to provide \interaction" paths (i.e., not necessarily causal)linking every variable of interest to some driving variable. Williams's methodfor generating a \critical abstraction" [54] is designed to ensure that the cho-sen scenario model causally links the driving variables (in his framework, theexogenous variables of the system) to the variables of interest. We only re-quire di�erential in
uence paths because they are appropriate for answeringprediction questions; our model construction algorithm would work equallywell if adequacy constraint 11 only required valid, signi�cant in
uence paths(not necessarily di�erential) from driving variables to variables of interest.25



3.1.6 Other Possible Adequacy ConstraintsSome previous modeling programs de�ne a model as adequate only if its pre-dictions match the \correct" behavior (within a speci�ed tolerance). Theseprograms either address tasks in which the correct behavior of the variables ofinterest is known [1,52] or they assume that the approximate error introducedby di�erent approximations can be estimated [9{11,50]. However, a predictionquestion does not provide the correct behavior, and error estimates are notavailable in the domains we have studied, so we exclude such a constraint.In Section 4.5, we suggest how tripel could be extended to handle such aconstraint.3.2 SimplicityTo answer a prediction question, a modeler should construct the simplest ade-quate scenario model, minimizing irrelevant phenomena and details, because amodel with irrelevant information is more di�cult to analyze (e.g., simulate)and explain. Thus, a modeler requires criteria for determining whether onecandidate model is simpler than another.Human modelers probably use a combination of many criteria to assess thecomplexity of a model. Nevertheless, the number of variables in a model is asimple measure that correlates well with most other measures of complexity,and it has proven to be an e�ective heuristic in our experience. Simulation com-plexity tends to increase with the number of variables, and a model with morevariables is generally more di�cult to understand and explain. Furthermore,most simpli�cation techniques used by human modelers reduce the number ofvariables in a model. Thus, we de�ne one model as simpler than another asfollows:{ For any two scenario models m and m', m is simpler than m' if and only ifm has fewer variables than m'.In contrast to our measure of simplicity, Nayak [38] and Iwasaki and Levy [23]de�ne one scenario model as simpler than another if, for every model fragmentin the �rst, either that model fragment or a more-detailed alternative is in thesecond. 9 This is a reasonable criterion when it holds, but it leaves too manymodels incomparable. For example, consider two models, one with only a fewvariables and in
uences (i.e., representing a few phenomena), and one withmany variables and in
uences (i.e., representing many phenomena, some in9 Actually, Iwasaki and Levy's de�nition is in terms of \composite model frag-ments" rather than model fragments, but the distinction is irrelevant to ourdiscussion. 26



great detail); if the �rst model treats some aspect of the system in moredetail than the second model, the two models are incomparable under theircriterion. Thus, although the �rst model is intuitively simpler, a modelingalgorithm based on their simplicity criterion would be content to choose thesecond model as the simplest adequate model.3.3 SummaryIn summary, we de�ne a scenario model as adequate for a given predictionquestion if and only if the model satis�es the following constraints:{ Its variables include every variable of interest (adequacy constraint 1) andevery variable appearing in an activity precondition of its in
uences (ade-quacy constraint 2).{ Its system boundary is adequate (adequacy constraints 3 and 4).{ Its in
uences on each dependent variable are adequate (adequacy constraints 5,6, 7, and 8).{ Its entities are coherent (adequacy constraint 9) and appropriate for thequestion (adequacy constraint 10).{ It relates the driving variables of the question to the variables of interest(adequacy constraint 11).Among the adequate scenario models for a question, those with the fewestvariables are the simplest, and the modeler's objective is to �nd one of thesesimplest adequate models.4 Model Construction AlgorithmTogether, Sections 2 and 3 de�ne the model construction task: given a systemdescription and a prediction question, construct a simplest adequate scenariomodel for answering the question. This section presents algorithms for per-forming the task and its subtasks.4.1 Extending Partial ModelsThere are many possible models of a complex system, so �nding a simplestadequate model is di�cult. To �nd such a model e�ciently, tripel searchesthe space of partial models of the system, ruling out most models without evergenerating them. 27



A partial model satis�es the de�nition of a scenario model with one possibleexception: in addition to exogenous and dependent variables, it may containfree variables. After a modeler has chosen to include a variable in a model, butbefore the modeler has decided whether to treat it as exogenous or dependent,the variable is free. Thus, a partial model with free variables represents a modelstill under construction.Formally, a partial model consists of the following:{ a set of variables (a subset of the variables in the system description) par-titioned into exogenous variables, dependent variables, and free variables{ a set of in
uences (a subset of the in
uences in the system description),each of whose in
uencee is a dependent variable in the model and whosein
uencer is another variable in the model (exogenous, dependent or free)Note that a scenario model, as de�ned in Section 3, is simply a special typeof partial model, one with no free variables.Partial models are ordered by an extension relation. Intuitively, a partial modelme is an extension of a partial model m if and only if me can be constructedfrom m by making additional modeling decisions. More precisely, me is anextension of m if and only if m and me are not identical and all of thefollowing conditions are satis�ed:{ every variable in m is also in me{ every exogenous variable in m is an exogenous variable in me{ every dependent variable in m is a dependent variable in me{ the set of in
uences on the dependent variables of m are identical in m andmeThese conditions allow a partial model to be extended by adding variables,by deciding to treat a free variable as exogenous or dependent, and by addingin
uences on free variables or new variables. For example, Part A of Figure 6shows a partial model in which the amount of leaf mesophyll aba is a freevariable, and Part B shows an extension. In the extension, the amount of leafmesophyll aba is a dependent variable, the in
uences on it are included, andtwo new free variables (the in
uencers) are included.The extension relation is an ordering relation like <. That is, it is irre
exive(no partial model is an extension of itself), asymmetric (no two partial modelsare extensions of each other), and transitive. The de�nition of simplicity usedfor scenario models applies to partial models as well, so a partial model is atleast as simple as any of its extensions, because any extension has at least asmany variables.One key to e�cient model construction is the ability to recognize that a given28
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(A)  A Partial Model

(B)  An ExtensionFig. 6. (A) A partial model. The variable leaf mesophyll aba amount is free. (B)An extension of that partial model. The variables aba synthesis rate and abaconsumption rate are free.partial model cannot be extended into an adequate scenario model. The ade-quacy constraints in Section 3.1, although de�ned in terms of scenario models,apply to partial models as well. A partial model that violates an adequacy con-straint can sometimes be extended to remedy the violation; for example, if apartial model violates adequacy constraint 1 (include variables of interest), itcan be extended to include the variables of interest. However, a partial modelcan be eliminated from consideration when it violates a monotonic constraint.A monotonic constraint is an adequacy constraint which, when violatedfor a partial model, is violated for each of its extensions. For instance, when apartial model includes mutually incoherent entities, so will all its extensions.By pruning such a partial model from consideration, tripel avoids generatingany of its extensions, e�ectively pruning a large chunk from the search space.(Remember, the extension relation is transitive, so a single partial model mayhave many extensions.) Section 4.3.3 lists those adequacy constraints that aremonotonic.We illustrate tripel's model construction algorithm using the familiar ques-tion \What happens to the amount of aba in a plant's guard cells when theturgor pressure in its leaves decreases?" Figure 3 (p. 19) shows a portion ofthe system description for this question. As mentioned earlier, the appropriatetime scale of interest is minutes.To construct an adequate scenario model, tripel starts with a partial model29



Find-adequate-model (S, Q)/* S is a system description, and Q is a prediction question */agenda  ;let initial be a partial model consisting of the variables of interest, each freeif initial satis�es all monotonic constraintsthen add initial to agendawhile agenda is not emptyremove the simplest partial model m from agendaif m is an adequate scenario modelthen return melse for each partial model m' in Extend-model(m, S, Q)if m' satis�es all monotonic constraintsthen add m' to agendareturn failureExtend-model (m, S, Q)/* m is a partial model, S is a system description, and Q is a prediction question */if all free variables in m can be exogenousthen mark all free variables in m as exogenousreturn fmgelse let v be a free variable in m that must be dependentmodels  ;for each mv in Dv-models(v, S, Q)m' extend m with mvadd m' to modelsreturn modelsFig. 7. tripel's model construction algorithmconsisting only of the variables of interest, and it incrementally extends thismodel until it satis�es all the adequacy constraints. At each step, there maybe alternative ways of extending the model, so it must search through thepossibilities.The model construction algorithm, shown in Figure 7, can be viewed as graphsearch. Each node in the search graph is a partial model. The initial node inthe search is a partial model consisting only of the variables of interest, each afree variable. For instance, the initial node for the example is a partial modelconsisting of one free variable, guard cell aba amount. As will be describedbelow, a partial model's successors in the search graph consist of some of itsextensions. The goal of the search is to �nd a simplest adequate scenario modelfor the question. (Unlike some graph search problems, the path by which agoal node is found is irrelevant.)A best-�rst strategy guides the search, using the simplicity criterion as theevaluation function. That is, tripel always extends the search by removing30



the simplest partial model (i.e., the one with the fewest variables) from thesearch agenda. If the partial model is an adequate scenario model, it is returnedas a simplest adequate scenario model; every other partial model on the agendahas as many or more variables, so they and their extensions cannot be simpler.In the example, the initial partial model is the simplest one on the agenda (infact, the only one), so it is removed. Because it contains a free variable, it isnot a scenario model, hence it is not an adequate scenario model.If the partial model is not an adequate scenario model, its successors replaceit on the search agenda. The function Extend-model returns the successors ofa given partial model m. To generate these successors, the function extends mwith alternative ways of modeling one of m's free variables.To accomplish this, Extend-model �rst asks the System Boundary Selector(discussed in Section 4.3) whether all of m's free variables can be exogenous(i.e., whether they satisfy adequacy constraints 3 and 4). If so, Extend-modelmarks each free variable as exogenous and returns the resulting scenario modelas the only successor. In our example, this is not the case. The free variable inthe initial partial model (guard cell aba amount) cannot be exogenous becauseit violates adequacy constraint 4; speci�cally, as shown in Figure 3 (p. 19), itis signi�cantly in
uenced by the driving variable (leaf turgor pressure) on thetime scale of interest (minutes).When the System Boundary Selector's response is \no", it also tells Extend-model which variable v must be dependent (in the example, guard cell abaamount). In this case, Extend-model asks the function Dv-models (described inSection 4.2) for those combinations of in
uences on v that might be adequatefor the question (i.e., satisfy adequacy constraints 5, 6, 7, and 8). In our exam-ple, Dv-models simply returns the only in
uence on guard cell aba amount,the in
uence of the aba transport rate. In general, Extend-model returns aset of new partial models, each the result of extending m with one of thesecombinations of in
uences.To extend m with a combination of in
uences, Extend-model marks v as depen-dent, adds the in
uences on v to the model, and adds any new free variables.A free variable is added in the following cases:{ If the in
uencer of a new in
uence is not already in m, it is added as a freevariable.{ If a variable in the activity preconditions of a new in
uence is not alreadyin m, it is added as a free variable (to satisfy adequacy constraint 2).Before adding a partial model to the agenda (whether the partial model is theinitial node in the search or a successor returned by Extend-model), tripelchecks whether the model violates a monotonic constraint. If so, it is prunedfrom the search, since none of its extensions is an adequate scenario model.31
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Fig. 8. The search graph for the question \What happens to the amount of aba in aplant's guard cells when the turgor pressure in its leaves decreases?" Boxes indicatepartial models, and dashed arrows point from a partial model to its successors. Theheavy box indicates the simplest adequate scenario model (the goal node returnedby the model construction algorithm).The partial model in our example does not violate any monotonic constraints,so it is added to the agenda.The search ends with success when a simplest adequate scenario model isfound. In contrast, the search ends with failure when the search agenda be-comes empty, because this indicates that no adequate scenario model exists.Figure 8 illustrates the search graph that tripel generates for the example.The third node from the top has two successors because there are two adequatecombinations of in
uences on leaf mesophyllaba amount: the �rst includes thein
uence of aba consumption, and the second includes the in
uences of ababinding and aba degradation that explain it (for simplicity, those in
uenceswere not shown in Figure 3). 32



4.2 Choosing In
uences on Dependent VariablesA modeler must choose an adequate set of in
uences on each dependent vari-able in a model. In tripel, this task arises in the function Extend-model andit is performed by the function Dv-models. After deciding to model a variableas dependent, Extend-model asks Dv-models for an adequate set of in
uenceson the variable. As illustrated in Figure 7, the inputs to Dv-models include asystem description, a prediction question, and a variable whose in
uences aredesired.There may be more than one adequate set of in
uences for a dependent vari-able. For instance, it may be possible to use either di�erential in
uences, whichrepresent the dynamic e�ects of processes, or functional in
uences, which rep-resent a quasi-static approximation of those processes. Also, one adequateset may contain the in
uences that explain an in
uence in another adequateset, as with the variable leaf mesophyll aba amount in Figure 8. Dv-modelsmust return each alternative set of in
uences for consideration by the modelconstructor. Extend-model creates a new partial model for each one, and thefunction Find-adequate-model tests each new partial model to see which onesrepresent a potentially adequate extension of the current partial model.Section 3.1.3 speci�ed the criteria for determining whether a set of in
uenceson a dependent variable is adequate:{ The in
uences must be approximately complete; that is, they must repre-sent all signi�cant in
uencing phenomena at some level of detail (adequacyconstraint 7).{ The in
uences must represent valid approximations (adequacy constraint 6).{ The in
uences must be mutually coherent (adequacy constraints 5 and 8).Because adequacy constraint 5 requires the in
uences on a dependent variableto have the same type (i.e., di�erential or functional), Dv-models can sepa-rately consider sets of functional in
uences and sets of di�erential in
uences.After separately generating the adequate sets of in
uences that contain onlydi�erential in
uences and those that contain only functional in
uences, it re-turns the union of these two sets. The remainder of this section presents thealgorithm for generating the adequate sets of in
uences for a given in
uencetype (either one).Given a system description, a prediction question, and a dependent variableto be modeled, Dv-models generates the adequate sets of in
uences of a giventype (di�erential or functional) as follows:(i) It generates every complete set of in
uences (of the speci�ed type) onthe dependent variable (i.e., those sets of in
uences that represent all33



amount(pool(CO2, leaves))( rate(CO2-di�usion(atmosphere, leaves))signi�cance preconditions: time-scale-of-interest � secondsamount(pool(CO2, leaves))( rate(photosynthesis(leaves))signi�cance preconditions: time-scale-of-interest � minutesamount(pool(CO2, leaves))( rate(dark-reactions(leaves))signi�cance preconditions: time-scale-of-interest � minutesExplanation(amount(pool(CO2, leaves))( rate(photosynthesis(leaves)),amount(pool(CO2, leaves))( rate(dark-reactions(leaves)))Fig. 9. In
uences on the amount of carbon dioxide in a plant's leaves. The �rst twoare the maximally aggregate in
uences. The in
uence of photosynthesis is explainedby the in
uence of the dark reactions (and not by any other in
uences).the phenomena that a�ect the variable). Section 3.1.3 de�ned these asfollows:{ The set of all maximally aggregate in
uences of the speci�ed type on thevariable (i.e., those that do not explain any other in
uence) is complete.{ The result of replacing an in
uence in a complete set with the set of allin
uences that explain it (as speci�ed by the explanation relation) is acomplete set.(ii) From these sets, it removes any in
uences that are insigni�cant for thegiven question. Each resulting set is approximately complete (as de�nedin Section 3.1.3), so each satis�es adequacy constraint 7.(iii) It discards any set that contains an in
uence that is invalid for the givenquestion. Any such set of in
uences is inadequate because it violatesadequacy constraint 6.(iv) It discards any set that is incoherent. A set is incoherent if it violatesadequacy constraint 8 (i.e., it includes two in
uences related by the ex-planation* relation).For example, consider the in
uences shown in Figure 9 (previously shown asFigure 5) and assume that seconds is the time scale of interest. The algorithmproceeds as follows:(i) As discussed in Section 3.1.3, there are two complete sets: (1) the �rstand second in
uences and (2) the �rst and third in
uences.(ii) In the �rst set, the photosynthesis in
uence is insigni�cant (on the timescale of interest, seconds), so it is removed. Similarly, in the second set,the dark reactions in
uence is insigni�cant, so it is removed. This leavestwo identical sets, each of which includes only the di�usion in
uence.Because the sets are identical, one is pruned and the other is passed tostep iii.(iii) The set does not include an invalid in
uence, so it is not discarded.(iv) The set is coherent, so it is not discarded. Therefore, it is returned byDv-models. 34



cross-section-area(stomates)  amount(pool(water, guard-cells))cross-section-area(stomates)  amount(pool(aba, guard-cells))validity preconditions: time-scale-of-interest � hourscross-section-area(stomates)  amount(pool(CO2, guard-cells))validity preconditions: time-scale-of-interest � hoursExplanation(cross-section-area(stomates)  amount(pool(aba, guard-cells)),cross-section-area(stomates)  amount(pool(water, guard-cells)))Explanation(cross-section-area(stomates)  amount(pool(CO2, guard-cells)),cross-section-area(stomates)  amount(pool(water, guard-cells)))Fig. 10. In
uences on the cross sectional area of a plant's stomates. The second andthird in
uences are each explained by the �rst in
uence.As another example, consider the in
uences shown in Figure 10 and assumethat hours is the time scale of interest. The algorithm proceeds as follows:(i) The algorithm generates four complete sets: the second and third in
u-ences (the maximally aggregate in
uences), the �rst and third in
uences(since the �rst explains the second), the �rst and second in
uences (sincethe �rst explains the third), and the �rst in
uence alone (generated fromeither of the previous two).(ii) None of the in
uences is insigni�cant, so no set is changed.(iii) None of the in
uences is invalid, so no set is changed. However, if thetime scale of interest were less than hours (e.g., seconds or minutes), anyset containing the second or third in
uence would be discarded.(iv) Two of the four sets are incoherent (i.e., they violate adequacy con-straint 8): the one that includes the �rst and second in
uences, and theone that includes the �rst and third in
uences. These two sets are dis-carded, and Dv-models returns the two surviving sets: the one that in-cludes the second and third in
uences, and the one that includes onlythe �rst in
uence.Dv-models can recognize when there are no adequate sets of in
uences on avariable. For example, consider the in
uences shown in Figure 10, but supposethe �rst in
uence is not in the system description (i.e., that level of detail ismissing). If the time scale of interest is less than hours (e.g., seconds or min-utes), no set will survive step iii, so Dv-models will return the empty set (i.e.,no adequate sets of in
uences). Thus, Extend-model will return the empty set(i.e., no successors); the partial model under consideration cannot be ade-quately extended. The key is that each in
uence represents a phenomenon tobe modeled; if the phenomenon is signi�cant, Dv-models must �nd a valid wayof modeling it, either with that in
uence or an alternative level of detail.35



4.3 Choosing Exogenous VariablesSystem boundary decisions arise in the successor function Extend-model. Givena system description, a prediction question, a partial model and one of itsfree variables, Extend-model asks the System Boundary Selector whether thevariable can be exogenous. Such decisions are important; if the variable mustbe dependent, the model must be extended to include additional in
uences(on that variable) and variables (referenced by those in
uences).The System Boundary Selector's response is either \yes" (the variable can beexogenous) or \no" (the variable must be dependent), interpreted as follows:{ If the response is \yes," then the variable can be exogenous in any extensionof the partial model that does not contain additional variables.{ If the response is \no," then the variable must be dependent in every ex-tension of the partial model. That is, no extension in which the variable isexogenous is an adequate scenario model.Recall from Section 4.1 how Extend-model uses the SystemBoundary Selector'sresponse. If the response is \no" (the variable must be dependent), Extend-model marks the variable as dependent and extends the partial model to in-clude in
uences on it. In contrast, if the response is \yes" (the variable canbe exogenous), Extend-model only marks the variable as exogenous if all otherfree variables can also be exogenous. The SystemBoundary Selector's responsejusti�es Extend-model's actions.The criteria for choosing exogenous variables were speci�ed in Section 3.1.2:{ Adequacy constraint 3 | A variable in a scenario model cannot be exoge-nous if it is signi�cantly in
uenced in the system description by anothervariable in the model.{ Adequacy constraint 4 | A variable in a scenario model cannot be exoge-nous if it is signi�cantly in
uenced in the system description by a drivingvariable (other than itself if it is a driving variable).Although these constraints are stated in terms of scenario models, they ap-ply to partial models as well. As shown in Appendix A.1, both constraintsare monotonic; that is, if a variable in a partial model violates one of theconstraints, the variable cannot be exogenous in any extension of the partialmodel either. In this case, the System Boundary Selector can answer \no" (thevariable cannot be exogenous). On the other hand, if a variable in a partialmodel satis�es both constraints, it can be exogenous in any extension with thesame variables. (The variable might not satisfy adequacy constraint 3 in an ex-tension with additional variables.) In this case, the System Boundary Selectorcan answer \yes" (the variable can be exogenous). Thus, the system boundary36



selection task simply requires the ability to test these two constraints.These constraints can be tested by a graph connectivity algorithm. Recallfrom Section 3.1.2 that one variable signi�cantly in
uences another if andonly if there is an in
uence path (in the system description) leading fromthe �rst variable to the second and every in
uence in the path is valid andsigni�cant for the given question. Thus, a free variable in a partial model canbe exogenous if and only if the graph algorithm �nds no such path leading tothe variable from any driving variable of the question or any other variable inthe model.However, it would be ine�cient to run the graph algorithm anew for eachsystem boundary decision. Each run of the graph algorithm will repeat muchof the search performed by previous runs. To avoid this problem, tripel per-forms a system boundary analysis before beginning the search for an adequatescenario model. The system boundary analysis determines all variables andin
uences that might be relevant to the question, and it computes and cachesconnectivity relations among the variables. These potentially relevant vari-ables and in
uences constitute the space that would be repeatedly searchedby the graph algorithm. The algorithm for system boundary analysis is givenin Section 4.3.1.The result of the system boundary analysis is a Boolean connectivity matrix.This matrix records the connectivity between every pair of potentially relevantvariables. That is, the ith variable signi�cantly in
uences the jth variable forpurposes of answering the given question if and only if the (i,j) cell of thematrix contains a 1.Once system boundary analysis is complete, tripel begins its search for thesimplest adequate scenario model as described earlier. Using the connectivitymatrix, system boundary decisions that arise during model construction aretrivial. A free variable in a partial model must be dependent if, according tothe connectivity matrix, the variable violates adequacy constraint 3 or 4. Inthis case, the System Boundary Selector returns \no" (the variable cannot beexogenous). Otherwise, it returns \yes."4.3.1 System Boundary AnalysisThe variables in the connectivity matrix are called the potentially relevantvariables because they include all variables thatmight be relevant to answeringthe question. More precisely, they include any variable that might be added toa partial model during model construction. Similarly, the potentially relevantin
uences include any in
uence that might be added to a partial model duringmodel construction. We de�ne the potentially relevant variables and in
uencesas follows: 37



{ The variables of interest are each potentially relevant.{ If a variable is potentially relevant, any in
uence on it that is valid andsigni�cant (for the given question) is a potentially relevant in
uence.{ The in
uencer of every potentially relevant in
uence is potentially relevant.{ Any variable appearing in the activity preconditions of a potentially relevantin
uence is potentially relevant.This de�nition mirrors the steps that add variables and in
uences to partialmodels during model construction.The System Boundary Selector �nds the potentially relevant variables andin
uences using a breadth-�rst search through the in
uence graph. First, eachvariable of interest is marked as potentially relevant and placed on the searchagenda. On each iteration of the search, a variable is removed from the agenda,and each valid, signi�cant in
uence on that variable is marked as potentiallyrelevant. For each such in
uence, its in
uencer and the variables in its ac-tivity preconditions are marked as potentially relevant. Each newly markedvariable is placed on the agenda unless it had previously appeared on it. Thesearch ends when the agenda is empty; the terminal variables in the searchare those that are not signi�cantly in
uenced (e.g., those that are regulatedon time scales slower than the time scale of interest) and those that are sig-ni�cantly in
uenced only by variables discovered earlier in the search (i.e.,through feedback loops). When the search ends, all potentially relevant vari-ables and in
uences have been marked.To illustrate this algorithm, consider the familiar question \What happens tothe amount of aba in a plant's guard cells when the turgor pressure in itsleaves decreases?" Part A of Figure 11 repeats a portion of the system de-scription for this question. The search for potentially relevant variables andin
uences begins with the in
uences on guard cell aba amount. The in
uencesof transpiration on leaf mesophyll water (middle of left side) and water up-take on xylem water (lower left) are insigni�cant on the time scale of interest(minutes); removing these two in
uences disconnects the potentially relevantvariables from the remaining variables and in
uences, including the feedbackloop through transpiration, thus allowing tripel to ignore those other vari-ables and in
uences. Part B shows the result, the potentially relevant variablesand in
uences for the example. For comparison, Part C shows the simplestadequate model for the question (as described in Section 4.1).As illustrated by the example, the search for potentially relevant variablesand in
uences will typically have to traverse only a fraction of the in
uencegraph. In complex systems, such as plants, animals, and ecosystems, modular-ity arises from the widely disparate time scales at which processes cause change[2,28,40,47,49]. The result is a hierarchy of nearly decomposable subsystems;processes acting within a subsystem cause signi�cant change quickly, while38
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uences that are signi�cant only on slowertime scales, thus isolating the variables of interest in their own nearly decom-posable subsystem. The search for potentially relevant variables and in
uencesis con�ned to this subsystem because the in
uences from other subsystems areinsigni�cant. 39



After determining the graph of potentially relevant variables and in
uences,the System Boundary Selector constructs the connectivity matrix. First, itconstructs the subgraph of the in
uence graph corresponding to the poten-tially relevant variables and in
uences. Analogous to the de�nition in Sec-tion 3.1.2, the nodes of this subgraph are the potentially relevant variables,and there is a directed edge from one variable to another if there is a poten-tially relevant in
uence whose in
uencee is the second variable and for whichthe �rst variable is the in
uencer or appears in the activity preconditions. Theconnectivity matrix is simply the adjacency matrix for the transitive closure ofthis subgraph. Given the subgraph, the connectivity matrix can be computede�ciently; the Floyd-Warshall algorithm computes it in �(n3) time, where nis the number of nodes (potentially relevant variables) in the subgraph [7].As discussed earlier, the System Boundary Selector decides whether a vari-able in a partial model can be exogenous by checking cells in the connectivitymatrix. The connectivity matrix is guaranteed to include every variable forwhich a system boundary decision might be required, because the de�nition ofpotentially relevant variables and in
uences mirrors the steps that add vari-ables and in
uences to partial models during model construction. Further-more, the following theorem ensures that the connectivity matrix accuratelyre
ects whether one variable signi�cantly in
uences another.Theorem 1 (Connectivity matrix is correct) For a given system descrip-tion and prediction question, cell (i,j) of the connectivity matrix contains a 1if and only if the ith variable signi�cantly in
uences the jth variable for thatquestion.Proof See Appendix A.2. 2To determine whether a variable can be exogenous, the System BoundarySelector must ensure that the variable is not signi�cantly in
uenced by anydriving variable (adequacy constraint 4). However, the de�nition of potentiallyrelevant variables does not ensure that every driving variable is potentially rel-evant, so some driving variables may not appear in the connectivity matrix.Nevertheless, variables in the connectivity matrix are only signi�cantly in-
uenced by other variables in the matrix. Therefore, when deciding whethera variable can be exogenous, the System Boundary Selector knows that thevariable is not signi�cantly in
uenced by any driving variable that is not inthe matrix. 40



4.3.2 ExtensibilityChoosing exogenous variables is an important part of constructing a simpleyet adequate model. Our design encapsulates such decisions in the SystemBoundary Selector, an independent module of tripel. This allows changes inthe criteria for choosing exogenous variables without requiring changes in themodel construction algorithm. Similarly, the System Boundary Selector doesnot depend on the particular criteria for determining whether an in
uence isvalid and signi�cant. tripel uses a time scale of interest, but other criteriacould be used instead or in addition.For complex systems, in which variables are highly interconnected, the abilityto recognize insigni�cant in
uences is crucial to achieving a suitable systemboundary. This ability is also required to keep the number of potentially rele-vant variables (and hence the size of the connectivity matrix) small. Therefore,the performance of the System Boundary Selector will improve as more sophis-ticated signi�cance criteria are incorporated into tripel, as will be discussedin Section 5.4.3.3 The Role of Each Adequacy ConstraintThe adequacy constraints from Section 3.1 serve di�erent roles in the modelconstruction algorithm. Adequacy constraint 1 (include variables of interest)is used to construct the initial partial model on the agenda, and adequacyconstraint 2 (include variables in activity preconditions) is used by Extend-model to identify new free variables for a partial model being extended. Theseconstraints are both propagation constraints: when violated in a partial model,they specify the elements that must be added for the constraint to be satis�ed(analogous to constraint propagation).Some monotonic constraints serve as �lters. As shown in Appendix A.1, ade-quacy constraints 9 (entities coherent) and 10 (entities compatible with drivingvariables) are both monotonic, and adequacy constraint 11 (variables of inter-est di�erentially in
uenced) is monotonic when applied to models that haveno free variables. A partial model is added to the search agenda only if itsatis�es these constraints. (If it has free variables, it need only satisfy the �rsttwo constraints.)The remaining constraints, although monotonic (as shown in Appendix A.1),are folded into the subroutines of Find-adequate-model. Adequacy constraints 3(exogenous variables independent of model) and 4 (exogenous variables inde-pendent of question) are tested by the System Boundary Selector, and ad-equacy constraints 5 (in
uences homogeneous), 6 (in
uences valid), 7 (in
u-ences complete), and 8 (in
uences not redundant) are enforced by the functionDv-models. 41



For extensibility, tripel is designed to easily accommodate new monotonicconstraints and propagation constraints. This allows tripel to incorporateadditional sophistication in its modeling criteria, such as new criteria for de-termining whether models are coherent, without changes in its model con-struction algorithm.4.4 Properties of the Model Construction AlgorithmTo ensure an e�cient search for a solution, a search algorithm must avoidredundancy. Typically, a graph search algorithm avoids redundancy by main-taining a record of nodes it has visited. However, Find-adequate-model doesnot keep a record of partial models that it has visited because of the followingtheorem.Theorem 2 (Search is not redundant) In the search graph constructed byFind-adequate-model, a given partial model cannot be reached via more thanone path from the initial partial model.Proof A partial model has multiple successors only when one of its free vari-ables is chosen as dependent (by de�nition of Extend-model). Each successorin this case contains a di�erent set of in
uences on that variable. Since anextension of a partial model cannot change the in
uences on that model's de-pendent variables, no two successors of a partial model can share a commonextension. Thus, if a partial model is viewed as representing itself and all itsextensions, its successors represent disjoint subsets of its extensions. Viewedthis way, Find-adequate-model starts with a single set (the initial partial model)and repeatedly splits one set into disjoint subsets. Therefore, it is not possiblefor any two partial models in the search graph to have a common descendant.2Thus, Find-adequate-model is a version of the well-known \split and prune"search algorithm [41], and the search graph it constructs is a tree. Subsequenttheorems and proofs rely on this \split and prune" view of the algorithm.Conceptually, Find-adequate-model operates by repeatedly pruning parts ofthe search space from consideration. When each iteration of the while loopbegins, part of the search space has been pruned from consideration and partremains. Speci�cally, the partial models on the agenda, along with all theirextensions, are still under consideration. This set of partial models is theconsideration set. The following theorem ensures that the search will alwaysterminate by showing that each iteration of the while loop decreases the sizeof the consideration set. 42



Theorem 3 Find-adequate-model always terminates.Proof Every individual step in the algorithm always terminates because thesystem description is �nite. Thus, Find-adequate-model will terminate if itswhile loop terminates. For a �nite system description, there are only a �niteset of unique partial models, so the initial consideration set is �nite. Everyiteration of the while loop removes the simplest partial model on the agendafrom the consideration set, decreasing its size. Therefore, the while loop musteventually terminate. 2Most importantly, Find-adequate-model is an admissible search algorithm. Asearch algorithm is admissible if it is guaranteed to return an optimal solu-tion whenever a solution exists [41]. Find-adequate-model is admissible becauseit is guaranteed to return a simplest adequate scenario model whenever an ade-quate scenario model exists. Conceptually, the algorithm is admissible becauseit uses the following strategy:{ From its initial consideration set, which includes all adequate scenario mod-els, it repeatedly prunes away models until only a single scenario model (ifany) remains.{ It never prunes a scenario model unless either (1) the model is inadequatefor the question or (2) if the model is adequate, there is an adequate scenariomodel still in the consideration set that is at least as simple.Theorem 4 (Model construction algorithm is admissible) Given a sys-tem description and a prediction question for which some scenario model isadequate, Find-adequate-model will return a simplest adequate scenario model.Proof See Appendix A.3. 24.5 Previous Model Construction AlgorithmsFalkenhainer and Forbus [12] take a knowledge-based approach to model con-struction. Each model fragment has associated \assumptions," symbolic labelsthat characterize the phenomena it represents and its level of detail. Domainknowledge provides constraints on the use of assumptions:{ Assumptions are organized into \assumption classes." The assumptions inan assumption class represent mutually incompatible modeling alternatives.{ The domain knowledge provides domain-speci�c constraints among assump-tions, such as that one assumption requires another.43



{ For each assumption class, the domain knowledge must specify the scenarioconditions under which it is relevant. An adequate scenario model mustinclude one alternative from each relevant assumption class.In their modeling task, a question speci�es terms (e.g., variables) of interest.Their objective is to �nd a minimal set of assumptions that satisfy all thedomain constraints and ensure that the model includes the terms of inter-est. They accomplish this with a constraint satisfaction algorithm (\dynamicconstraint satisfaction" [37]).In their framework, unlike ours, most criteria for model adequacy are implicitin the domain knowledge. Because they have no counterpart of our functionDv-models, they require the domain knowledge to group in
uences into coher-ent bundles (model fragments). Also, our algorithm does not require the do-main knowledge to provide relevance conditions or domain-speci�c constraintsamong modeling alternatives. Formulating such \modeling knowledge" so thatit ensures an adequate model could be a di�cult, error prone task. Moreover,it is not clear how to encode some constraints, such as adequacy constraint 11(variables of interest di�erentially in
uenced), in their language. In place ofdomain-speci�c modeling knowledge, tripel relies on domain-independentcriteria that specify when a model is adequate. When a model violates thesecriteria, the particular violation tells tripel how to extend the model. Re-moving the need for domain-speci�c modeling knowledge has been a drivingmotivation for our work.A second approach to model construction is to start with the most detailedmodel and repeatedly simplify it. Williams's method for generating a \criticalabstraction" [54] simpli�es the detailed model in three ways: (1) the methodremoves in
uences on which the variables of interest do not causally depend(such in
uences are never introduced into a scenario model by our algorithm),(2) the method algebraically eliminates certain intermediate variables if theyare neither driving variables nor variables of interest, and (3) the method al-gebraically abstracts quantitative details that are not needed to answer thequestion. Yip's modeling algorithm [56,57] simpli�es the detailed model byremoving insigni�cant terms in the equations (analogous to eliminating in-signi�cant in
uences). Nayak's modeling algorithm [38] repeatedly simpli�esthe detailed model by (1) eliminating irrelevant phenomena or (2) replacingone model fragment with another that represents a \causal approximation" ofit (typically, this corresponds to omitting some of the in
uences in the originalmodel fragment).For complex systems, which include many phenomena that can be described atmany levels of detail, the approach of repeatedly simplifying the most detailedmodel is impractical. To �nd a simplest adequate model of a complex system,the number of elements that would have to be removed from the most-detailed44



model is far greater than the number of elements that would have to be addedto an empty model. For this reason, tripel takes the latter approach.Recent work by Nayak and Joskowicz [39] addresses the impracticality of sim-plifying a most-detailed model. Their method generates an initial, overly de-tailed model and then applies Nayak's algorithm [38] to repeatedly simplify it.Their hope is that the initial model will be far simpler than the most-detailedmodel. Their method requires the domain knowledge to provide rules thatspecify the ways in which di�erent components of the physical system can in-teract (\component interaction heuristics"). Starting with a model consistingof the driving variables and variables of interest, their algorithm constructsthe initial, overly detailed model by repeatedly adding aspects of the physicalsystem that can interact with those aspects currently in the model. Unfor-tunately, when applied to complex systems such as a plant, their approachwill result in a very detailed initial model, because most aspects of a com-plex system interact either directly or indirectly. To achieve a simpler initialmodel, they will require component interaction rules that are sensitive to thequestion, the available levels of detail in the system description, and criteriafor determining signi�cance of interactions, just as our adequacy criteria andmodel construction algorithm are.Nayak [38] proves that his model simpli�cation algorithm will reach a sim-plest adequate model in time polynomial in the size of the system description.However, his results depend on several assumptions that are inappropriate forthe modeling task we address. First, as discussed in Section 3.2, his simplicitycriteria leave many models incomparable, even though some of these modelsare intuitively much simpler than others. His algorithm exploits his simplicitycriteria by using a hill-climbing search. If more of the models were comparable,as they are under our simplicity criterion, this search strategy would not beguaranteed to �nd a simplest adequate model. Second, his hill-climbing searchstrategy requires that every phenomenon in the system description has its ownset of modeling alternatives and that the modeler can choose an alternativefor modeling one phenomenon independent of how the other phenomena aremodeled. However, our modeling framework is built around aggregation ofphenomena: one entity can aggregate several other entities, and one in
uencecan aggregate several other in
uences. Aggregation hierarchies are crucial toachieving simple models of complex systems, but they violate Nayak's assump-tion. We investigated the possibility of extending Nayak's approach to handleaggregation, but it would require assuming that, for every level of descriptionfor a phenomenon, there is a compatible level of description for every relatedphenomenon; this requires a level of completeness in the system descriptionthat seems impractical. Finally, his proofs currently place restrictions on theuse of in
uences in model fragments, and these restrictions would seriously di-45



minish the advantages of using in
uences as the building blocks for models. 10tripel's algorithm for model construction is most similar to the one used byIwasaki and Levy [23]. Their algorithm starts with a partial model consistingof the variables of interest, and it repeatedly extends the model to includethe in
uences on free variables. There are three major di�erences betweenthe two algorithms. First, their algorithm has no method for automaticallychoosing exogenous variables. Second, their algorithm has no counterpart ofour function Dv-models; the person encoding the model fragments and theconstraints among assumptions must ensure that each compatible combinationof model fragments yields an adequate set of in
uences. Finally, like Nayak[38], their simplicity criteria leave many models incomparable, even thoughsome of these models are intuitively much simpler than others; if more ofthe models were comparable, as they are under our simplicity criterion, theirsearch strategy would not necessarily �nd a simplest adequate model. 11 Inaddition to these primary di�erences, there are other di�erences:{ They allow the activity preconditions of a model fragment to include pred-icates in addition to inequalities among variables. Thus, while tripel'salgorithm always extends a model by considering the in
uences on a freevariable, their algorithm can also extend a model to include in
uences onthese predicates. This is a natural and useful extension of tripel's ap-proach.{ In their representation, in
uences in the system description do not have acausal direction. The direction of causality is only assigned after the modelis complete, using a causal ordering algorithm [24]. This requires their algo-rithm to extend models to include all variables that could \possibly in
u-ence" the chosen free variable, which will generally result in larger modelswith more irrelevant phenomena. The question of whether in
uences shouldbe given a causal direction before model construction begins is still open[16]. However, our approach has worked well in the plant physiology domain,and we expect similar success in other domains. Elsewhere [44], we arguethat, regardless of the domain, most in
uences can be given a causal direc-tion before model construction, and we show how tripel could be extendedto handle in
uences for which this is not possible.{ Their algorithm relies on a strong assumption about the system description(the \library coherence assumption") to guarantee that the equations inan adequate scenario model are complete (i.e., have the same number of10Nayak (personal communication) believes that the proofs could be extended toaccommodate our use of in
uences.11 In fact, despite Levy's proof [34], their algorithm does not necessarily �nd asimplest adequate model even by their own criteria; their algorithm adds moreelements to models than are required by their de�nition of an adequate model.To repair the proof, they are currently modifying the algorithm and extending theadequacy de�nition (Levy, personal communication).46



equations as dependent variables). In contrast, our modeling algorithm isdesigned to ensure that the models it constructs are complete.{ Their algorithm is guaranteed to run in time polynomial in the size of thesystem description [34]. However, that result does not apply to our tasksince it relies on the same assumptions as the similar result of Nayak [38]discussed earlier.Several people have explored an approach to model construction called \dis-crepancy-driven re�nement" [1,3,52]. After constructing an initial model, themodeler compares its predictions against the known behavior of the system.Discrepancies suggest re�nements to the model, and the process is repeateduntil a su�ciently close match is obtained. We have not used this approachbecause we do not assume that the correct behavior is known. However, whenit is, these algorithms are complementary to tripel, because tripel providesa more sophisticated approach to constructing the initial model than thesealgorithms currently use. Thus, tripel could serve as a valuable subroutinein these algorithms.5 Empirical Evaluation5.1 IntroductionThere are two important issues that must be empirically evaluated. The �rstissue concerns the quality of the models tripel constructs. Section 4.4 provedthat tripel always returns a simplest adequate model when there is one.However, the proof says nothing about whether the de�nition of a simplestadequate model matches our intuitive notions of simplicity and adequacy. Thesecond issue concerns tripel's e�ciency. For complex systems, the systemdescription and the space of possible models are very large. tripel will onlybe practical if it can cope with such complexity. This section describes ourempirical evaluation of these two issues.Previous automated modeling programs were tested on handcrafted examples.That is, the program's designers built a knowledge base and constructed exam-ples to demonstrate the program's capabilities. Our goal was a more rigorousevaluation that could expose the strengths and weaknesses of our methods.To accomplish this goal, we evaluated tripel using knowledge and questionsconstructed independently by a domain expert.The knowledge was provided by the Botany Knowledge Base (bkb) [42]. Thebkb is an ideal test bed for evaluating tripel for three reasons. First, itsknowledge is extensive. It currently contains about 200,000 facts covering47



plant anatomy, physiology, and development. Second, it was independentlydeveloped by a domain expert, whose main objective was a faithful and unbi-ased representation of botany knowledge. Finally, it was developed to supporta wide range of tasks besides prediction; that is, the bkb encodes fundamen-tal, textbook knowledge, and the representation of that knowledge was notchosen to facilitate its use for any single task such as prediction. (Lester andPorter [31,33,32] describe results on using the bkb to answer other types ofquestions.)Using the bkb, the domain expert constructed a system description for a pro-totypical plant and its environment (i.e., surrounding soil and atmosphere).Most elements of the description were generated via automated inference (i.e.,inheritance and inference rules) from the general principles in the bkb. Inaddition, the expert manually added missing elements and repaired erroneouselements. The resulting system description includes 691 variables and 1507 in-
uences among them. It includes 47 di�erent spaces (e.g., roots, stems, leaves)and 172 di�erent pools of substances in those spaces (e.g., oxygen in theleaves). It includes 313 processes, covering water regulation, metabolic pro-cesses like photosynthesis and respiration, temperature regulation, and trans-portation of gases and solutes. Moreover, the variables, in
uences, spaces,pools and processes cover many di�erent levels of detail. Thus, this systemdescription meets the most important requirement for evaluating tripel: itincludes many phenomena at many levels of detail.Next, we asked the domain expert to construct a large set of prediction ques-tions concerning a prototypical plant. From these, we randomly chose a smallsubset to use for evaluating tripel. For each of these questions, the ex-pert generated his answer (model and predictions) before looking at tripel'smodel. 12 Next, he evaluated tripel's model for each question by comparingit to his own. Finally, after he evaluated tripel's performance on the entiresubset of questions, he presented his assessment and discussed the knowledgehe used to reach his conclusions. Appendix B lists the questions used in theevaluation.5.2 Adequacy and SimplicityThe evaluation results show that tripel is very e�ective at constructing ade-quate models. In every case where tripel was given a question (including anappropriate time scale) for which an adequate scenario model exists, it con-structed an adequate model. That is, according to the domain expert, each12One question had to be thrown out, because the expert was not sure how toanswer it. Therefore, he could not, with con�dence, determine which elements ofthe system description were relevant. 48
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Fig. 12. The model tripel constructed to answer the question \How does a de-creasing amount of water in a plant a�ect the amount of k+ in its guard cells?"of these models includes all the information needed to generate the right pre-dictions and explanations. For instance, Figure 12 shows the model tripelconstructed to answer the question \How does a decreasing amount of waterin a plant a�ect the amount of k+ in its guard cells?" The model correctlyshows the mechanisms by which decreasing plant water causes increased syn-thesis of the aba hormone, and how aba is transported to the guard cells,causing potassium ions to leave.The expert also assessed whether these models include irrelevant information.Column three of Table 1 shows the number of variables and in
uences in eachmodel, and column four shows how many of them the expert judged irrelevantto answering the corresponding question. In comparison with the size of thesystem description (691 variables and 1507 in
uences), these models are quitesmall, and most of the models have few if any irrelevant elements.The cases where tripel included irrelevant elements are most interesting,because they suggest opportunities for improving its methods. The raw num-bers of irrelevant elements are somewhat misleading; one error in tripel'sjudgement typically forces it to include many irrelevant elements. Most of theirrelevant elements in these models were included because tripel overesti-mated the signi�cance of an in
uence or in
uence path. Most of tripel'serrors result from three di�erences between tripel's criteria for signi�canceand the expert's criteria:{ The expert uses a �ner gradation of time scales than those in the systemdescription. For each time scale in the system description (e.g., minutes orhours), the expert considers a variety of more speci�c time scales (e.g., afew minutes versus many minutes). For example, when the expert chooses\few minutes" as the time scale of interest, he ignores processes operating49



# Time Scale tripel's Model Irrelevant Elementsof Interest (variables, in
uences) (variables, in
uences)i instantaneous 6, 5 noneii hours 6, 7 noneiii minutes 11, 14 noneiv hours 16, 25 5, 8v minutes 19, 28 6, 9vi hours 25, 40 nonevii minutes 25, 41 noneviii minutes 36, 60 18, 34ix minutes 41, 70 29, 55x minutes 82, 147 64, 121Table 1The number of irrelevant elements in tripel's models. Each row represents a ques-tion. The �rst column shows the question number (corresponding to Appendix B).The third column shows the number of variables and in
uences in the simplest ade-quate model found by tripel. The last column shows the number of these variablesand in
uences that are not relevant to answering the question.on a time scale of many minutes. Because the system description does notdistinguish these two time scales, tripel treats the slower processes assigni�cant.{ When assessing an in
uence's signi�cance, tripel does not try to antici-pate the behavior of the physical system in the scenario. In contrast, theexpert sometimes determines that an in
uence is insigni�cant because it issigni�cant only under conditions that will not arise in the scenario. For ex-ample, oxygen is rarely a limiting reactant for respiration; therefore, whenthe expert can see that the driving conditions of a question will not causeoxygen to become limiting, he omits the in
uence of oxygen on respiration.{ The expert's criteria for determining whether an in
uence path is signi�-cant are more sophisticated than tripel's. As discussed in Section 3.1.2,tripel judges an in
uence path as signi�cant for a given question if eachin
uence in the path is valid and signi�cant on the time scale of interest.However, the expert's reasoning indicates that an in
uence path might besigni�cant only on a slower time scale; the expert reasons about extra timelags due to the length of the path or the spatial distance it covers. There-fore, tripel sometimes includes feedback loops that the expert recognizesas insigni�cant. 50



In summary, tripel's performance on these ten questions indicates that it iscapable of constructing simple, adequate models despite the complexity of thesystem description. The most important area for improvement is in tripel'scriteria for recognizing insigni�cant in
uences and in
uence paths. tripel isdesigned to easily incorporate additional signi�cance criteria without requiringchanges to the model construction algorithm, so the main challenge for futureresearch is in formulating the criteria.We discuss this issue further in Section 6.In addition to the ten questions discussed so far, we also tested tripel on fourquestions for which the bkb cannot provide an adequate scenario model. Thissituation can arise in several ways: (1) the driving conditions of the questionmay have no signi�cant e�ect on the variables of interest (question xii inAppendix B), (2) the system description may be missing the processes bywhich the driving conditions a�ect the variables of interest (question xi), or(3) the question may require a model of several phenomena for which thesystem description does not provide compatible levels of detail (questions xiiiand xiv). The �rst case re
ects a property of the question, while the othercases re
ect gaps in the system description.Ideally, tripel should recognize that no adequate scenario model exists forthese four questions. It did correctly report such a conclusion for questions xiiiand xiv. However, for the other two, tripel returned what it believed to bean adequate model. In each of these two cases, tripel found what it identi�edas a signi�cant in
uence path relating the driving conditions and variables ofinterest. In contrast, the expert judged these paths insigni�cant. As discussedearlier in this section, the expert's assessment di�ers from tripel's becausehe additionally considers cumulative delays along an in
uence path. Thus, byextending tripel's criteria to include such considerations, we can improve itsability to recognize inadequate models as well as irrelevant phenomena.5.3 The Importance of a Time Scale of InterestA time scale of interest is an important source of tripel's power. tripeluses the time scale of interest to identify insigni�cant in
uences, allowing itto prune them from its models. Its ability to identify insigni�cant in
uencesis also a crucial part of its ability to choose appropriate exogenous variables.Finally, the time scale of interest allows tripel to use some levels of detail thatare not valid on faster time scales (e.g., in
uences representing quasi-staticapproximations). Clearly, tripel's ability to recognize insigni�cant in
uencesand valid approximations plays an important role in its success.To quantify the importance, we ran tripel without a time scale of interest onthe ten questions for which an adequate model exists. Without a time scale51



of interest, all in
uences are treated as signi�cant, and in
uences that arevalid only for certain time scales are treated as invalid (forcing tripel to usemore-detailed in
uences instead). This experiment yielded two observations.First, the simplest adequate model that tripel found for each question wassigni�cantly larger; on average, each model included 65 more variables thanwhen tripel exploited a time scale of interest. Second, there were two ques-tions for which tripel determined that no adequate model exists, even thoughit found an adequate model when using a time scale of interest. The reasonis simple: without using a time scale of interest, tripel is forced to modelmore phenomena, so it is more likely to need two phenomena for which thesystem description does not provide compatible levels of detail. Thus, a timescale of interest not only results in smaller models, but also makes tripel lesssensitive to gaps in the system description.5.4 E�ciency5.4.1 Model ConstructionIn the theoretical worst case, the model construction algorithm (Find-adequate-model) has a running time that is exponential in the size of the system de-scription. In practice, however, it performs quite e�ciently. For the expert'squestions where tripel constructed an adequate model, column 2 of Table 2shows the amount of time the algorithm took to �nd a simplest adequatemodel. 13 These numbers are consistent with our informal experience usingtripel.To appreciate tripel's e�ciency, consider the size of the search space. Anycombination of in
uences de�nes a legal scenario model: the model's depen-dent variables are the in
uencees of the in
uences, and all other variablesreferenced by the in
uences are exogenous. Furthermore, each of these sce-nario models is di�erent since they include di�erent in
uences. Thus, sincethe system description for a prototypical plant includes over 1500 in
uences,the search space includes over 21500 possible scenario models.tripel searches this space e�ciently because it avoids generating most ofthese models. By pruning a partial model, tripel avoids generating any of itsextensions. Therefore, one way to measure the e�ciency of model constructionis to determine how many partial models tripel explicitly generates andconsiders for each question. Find-adequate-model terminates when it �nds anadequate model, so all the partial models that it generates fall in one of threeclasses: the simplest adequate model, models that were pruned by monotonic13The timing data pertains to Harlequin Lispworks 3.2 Common Lisp running ona DEC 3000/500 workstation. 52



# Time (seconds) Models Pruned Models Left on Agendai .01 1 0ii .04 4 0iii .1 13 3iv .2 11 9v .6 14 18vi 1.3 60 27vii .8 10 9viii 11 120 49ix 2 45 14x 80 740 121Table 2The e�ciency of model construction. The �rst column shows the question number.The second column shows the amount of time tripel spent during model construc-tion (i.e., the amount of time to execute the function Find-adequate-model). Thethird column shows how many partial models tripel generated and pruned withmonotonic constraints. The fourth column shows how many partial models were lefton the agenda when tripel found a simplest adequate model.constraints, and models left on the agenda at termination. For each question,columns 3 and 4 of Table 2 show the number of partial models falling inthe latter two classes. The numbers indicate that tripel only generates amanageable number of partial models, especially compared to the size of thesearch space.5.4.2 System Boundary AnalysisBefore calling Find-adequate-model, tripel performs a system boundary anal-ysis. As described in Section 4.3.1, system boundary analysis consists of twosteps. First, tripel uses a breadth-�rst search to identify the potentially rel-evant variables and in
uences. Second, it uses the Floyd-Warshall transitiveclosure algorithm to compute a connectivity matrix. The time required toperform the system boundary analysis is dominated by the transitive closurealgorithm, which requires �(n3) time (where n is the number of potentiallyrelevant variables) [7].One of the biggest surprises during the empirical evaluation was the number ofpotentially relevant variables tripel found for each of the expert's questions.The number is nearly independent of the question; it depends primarily on53



the time scale of interest. When the time scale of interest is seconds or faster,there are one or two dozen potentially relevant variables, and system bound-ary analysis �nishes in less than one second. However, when the time scale ofinterest is minutes, there are always about 450 potentially relevant variables,and there are always about 650 on a time scale of hours. Since the entire sys-tem description includes 691 variables, these numbers represent a signi�cantfraction. Such a high number of potentially relevant variables makes the tran-sitive closure algorithm expensive; the algorithm requires about 30 minutesto handle 450 variables and about two hours to handle 650. Even though wecould expect signi�cant improvements from an optimized implementation ina more e�cient language, this situation is unacceptable.The root of the problem is tripel's criteria for determining whether an in
u-ence path is signi�cant, as already discussed in Section 5.2. As long as everyin
uence in a path is valid and signi�cant, tripel considers the path sig-ni�cant. When identifying potentially relevant variables and in
uences, thiscriterion causes tripel to include variables that in
uence the variables ofinterest through very long paths. The expert can tell that these paths are in-signi�cant because he considers cumulative delays along in
uence paths. Thus,the same problem that causes tripel to include irrelevant elements in modelscauses ine�ciency during system boundary analysis.There is a simple solution to this problem for some cases. Often, a wide varietyof questions can be answered from the same system description; each questionis distinguished by di�erent driving conditions and variables of interest. Thisis the case with all the expert's questions concerning a prototypical plant. Itwould also be the case for a chemical processing facility, the human body, oran ecosystem. Given a system description, tripel can generate a completeconnectivity matrix (i.e., including all variables) for each possible time scale.Then, to answer a question, system boundary analysis simply selects the ma-trix corresponding to the time scale of interest. We have implemented thisstrategy, and it allows plant physiology questions to be answered very quickly.Nevertheless, this strategy has limitations. It does not allow tripel to ef-�ciently answer questions until all necessary connectivity matrices are built.Moreover, this strategy requires a complete system description, preventing thepossibility of generating only those parts of the system description needed formodel construction [44]. To make system boundary analysis e�cient, as wellas to improve other areas of tripel's performance, we must improve tripel'scriteria for determining whether an in
uence path is signi�cant.54



6 Future Work6.1 Modeling CriteriaThe empirical results show that tripel is e�ective at building simple, ade-quate models of complex systems. Nonetheless, its criteria for making decisionscan be improved.6.1.1 Signi�cance CriteriaThe ability to recognize insigni�cant in
uences is an important source of powerin modeling. Currently, tripel uses a time scale of interest to determinewhether an in
uence is signi�cant. However, its model construction algorithmdoes not depend on this particular criterion; tripel can be extended to in-clude other criteria as well. The evaluation suggests that additional criteriawould make tripel more e�cient and would reduce the number of irrelevantelements in its models.In addition to time scale, human modelers use other criteria to recognizeinsigni�cant in
uences. For example, the concentration of a reactant signi�-cantly in
uences the rate of a chemical reaction only if the reactant is limiting(i.e., not available in abundance); if the reactant will not become limitingin the context of the question, the in
uence can be ignored. In other cases,one in
uence can be ignored because, in the context of the question, it willbe dominated by other in
uences. Ultimately, tripel should take into ac-count the time scale of interest, desired accuracy, expected range of behavior,and dominance relations to determine which in
uences are signi�cant. Similarcomments apply to the problem of determining whether an in
uence is valid.Applied mathematicians have developed formal (albeit heuristic) methods forrecognizing insigni�cant terms (i.e., in
uences) in equations [25,35]. Thesemethods are interesting because they combine the considerations mentionedabove. In these methods, the modeler �rst \scales" the equations; that is, heuses scales of interest (e.g., a time scale of interest) to put the equations innondimensional form so that the order of magnitude of each term is apparent.Next, the modeler drops terms whose order of magnitude is very small. Finally,the modeler solves the equations and checks whether the discarded termsare in fact negligible. Yip [56,57] has automated this procedure. However,Yip's program starts with a complete, detailed set of equations and repeatedlysimpli�es them. A program that could use such methods to construct an initialmodel would be even more valuable. Ling's msg program [36] is a promisingstart in this direction. 55



As discussed in Section 5, tripel could also bene�t from more sophisticatedcriteria for determining whether an in
uence path is signi�cant. Currently, ittreats an in
uence path as signi�cant if every in
uence in the path is validand signi�cant on the time scale of interest. The evaluation suggests thattripel should also consider extra time lags due to the length of the pathor the spatial distance it covers. To maintain e�ciency while searching forsigni�cant in
uence paths, tripel uses graph algorithms (such as the Floyd-Warshall algorithm) that do not record each path from one variable to another.However, these algorithms are based on a very general algebraic framework(closed semirings) [7] that allows them to e�ciently summarize the propertiesof paths from one variable to another. Like the expert that evaluated tripel,these algorithms can use properties of paths such as length and spatial distancein assessing whether one variable signi�cantly in
uences another. Determininghow these factors should be used in the assessment is an important area forfuture work.6.1.2 Coherence CriteriaAlthough the explanation and encapsulates relations are typically su�cient fordetermining coherence of models, they are not, by themselves, su�cient ingeneral. For example, a plant can be decomposed into roots, stems, and leavesor, alternatively, into apoplast (roughly, the network of dead parts of the plant)and symplast (roughly, the network of living parts of the plant). The pool ofwater in the roots and the pool of water in the symplast are not comparable bythe encapsulates relation, since neither encapsulates the other, yet they seemmutually incoherent. A similar problem arises with in
uences; two in
uencesmay represent overlapping phenomena, yet neither explains the other.One solution is to extend these two relations to represent multiple decom-positions of entities and in
uences. Given a method for recognizing that twoentities or two in
uences in a model come from incompatible decompositions,monotonic constraints can be implemented to prune such models. As statedearlier, tripel can incorporate new monotonic constraints without any otherchanges, so the main challenge is simply to formalize the coherence criteria.6.2 Simulation6.2.1 Qualitative Simulationtripel has been integrated with a qualitative simulation program, which sim-ulates tripel's models to generate predictions. Given a question, tripelconstructs a model and passes the model to the Qualitative Process Compiler(qpc) [14]. qpc converts the model to a set of qualitative di�erential equations,56



and it simulates the equations, using the qsim program [27,29], to generatethe desired predictions. We chose to use a qualitative simulator rather than anumerical simulator because the bkb does not include quantitative details.We have run qpc on many of tripel's models, including those models fromthe evaluation that the expert judged adequate. In all our experiments, whenthe model is relatively simple (i.e., 15 or fewer variables), qpc predicts aunique behavior, the one predicted by the expert. 14 However, more compli-cated models result in many possible behaviors; although these models includeall relevant in
uences, the qualitative information provided by the bkb is notsu�cient to uniquely determine the behavior.The ambiguity for the larger models can be eliminated without modifyingtripel. One solution is to incorporate quantitative information into the bkb.qpc and qsim can exploit quantitative information to reduce ambiguity. Wehave been pursuing an alternative approach: the bkb could be extended tospecify those in
uences that typically dominate other in
uences, and qpccould be extended to use this information to reduce ambiguity. We believesuch information will be easy to obtain and encode, and that it will allow qpcto generate the desired predictions from the plant physiology models tripelconstructs, but more work remains.6.2.2 Numerical SimulationThe algorithms described in this paper should provide a foundation for build-ing numericalmodels as well as qualitative models. The issues addressed in thispaper arise in both cases. However, while tripel has been used to generatequalitative models, it has not been used to generate numerical models.There are two possible ways to generate numerical equations from in
uences.First, the domain knowledge can provide a numerical equation for each usefulcombination of in
uences on a variable. Forbus and Falkenhainer [17] havesuccessfully used that approach. Second, each in
uence can specify how itcombines with other in
uences, such as whether it is an additive term, amultiplicative term, or otherwise. After the model is constructed, equationscan be generated using these speci�cations. Farquhar [13] has successfully usedthis approach for limited types of equations, and it appears feasible for other14There are two extensions to qpc that help it predict a unique behavior. First,while there may be multiple completions of the initial state, we modi�ed qpc toautomatically choose the initial state closest to equilibrium (i.e., the state with themost steady variables). This is the most natural interpretation of our predictionquestions in most cases. Second, we allowed qpc to use a qsim extension devel-oped by Clancy and Kuipers [5] that abstracts the behavior of chattering variables.Typically, chatter is irrelevant to answering our questions.57



types as well.Thus, although tripel has not been used to construct numerical models,there are no apparent limitations that prevent such an application. Althoughwe expect that constructing numericalmodels will raise some additional issues,we believe that tripel will provide an appropriate framework for addressingthem.6.3 Questions that Require Multiple ModelsTo answer a question, tripel builds only a single scenario model. This ap-proach works in most cases, aided by qpc's ability to change the model some-what during simulation as its in
uences become active or inactive (as discussedon page 14). However, some questions require using a combination of modelsthat di�er in more fundamental ways (e.g., models with di�erent time scales).Most modeling algorithms, including ours, cannot construct such combina-tions, although Iwasaki [21] has begun to explore the issues.6.4 Other Domainstripel has been designed to apply to a wide variety of domains. We have beencareful to avoid representations and methods that lacked such wide applica-bility. Although we have been in
uenced by the modeling issues that arise inplant physiology, we have also been guided by the practices of human model-ers in ecology, economics, several branches of engineering (chemical, electrical,and mechanical), and other areas of biology. We have also tried to ensure thattripel handles the issues addressed by related modeling programs, or at leastthat these issues can be addressed as natural extensions of tripel. Nonethe-less, our only large-scale application of tripel has been in plant physiology,so our claim that tripel can handle other domains remains untested.While we believe it can handle many other domains, we expect it to handlesome more naturally than others. In particular, its representation is especiallysuitable for reasoning about pools of substance or energy and the processesthat regulate them. Thus, the domains of ecology, human physiology, andchemical engineering seem especially promising as a next step.58



7 ConclusionsThis paper has described tripel, a compositional modeling program for an-swering prediction questions about complex systems. Unlike previous modelingprograms, tripel constructs models from simple building blocks: individualvariables and in
uences. Although this approach gives tripel considerable
exibility in constructing models, the program must address modeling issuesthat are solved implicitly in the domain knowledge required by previous pro-grams. tripel addresses these issues with a set of domain-independent, declar-ative constraints that de�ne an adequate model. In these constraints, variablesand in
uences play a central role in every modeling decision. Based on theseconstraints, tripel constructs a simplest adequate model for any given pre-diction question.We evaluated tripel in the domain of plant physiology using questions anddomain knowledge constructed independently by an expert. The evaluationshows that tripel can construct simple, adequate models of a truly complexsystem. More importantly, the evaluation suggests the most important areafor future research: incorporating more sophisticated criteria for determiningwhether one variable signi�cantly in
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A ProofsA.1 Monotonic ConstraintsLemma 1 Adequacy constraints 3 and 4 are monotonic constraints.Proof If an exogenous variable v in a partial model m violates adequacy con-straint 4, there must be an in
uence path in the system description, leading tov from a driving variable of the question, consisting of in
uences that are eachvalid and signi�cant for the given question (by de�nition of the constraint).Since every extension of m contains v as an exogenous variable (by de�nitionof an extension), every extension violates the constraint as well. Similarly, if vviolates adequacy constraint 3, there must be an in
uence path in the systemdescription, leading to v from another variable v' in m, consisting of in
uencesthat are each valid and signi�cant for the given question (by de�nition of theconstraint). Since every extension of m also contains v' and contains v as anexogenous variable (by de�nition of an extension), every extension violatesthe constraint as well. 2Lemma 2 Adequacy constraints 5, 6, 7, and 8 are monotonic constraints.Proof Any in
uence in a partial model is also in each of its extensions(by de�nition of an extension). Therefore, if an in
uence in a partial modelviolates constraint 6, or a pair of in
uences violates constraint 5 or 8, theconstraint will also be violated in every extension. Similarly, if the in
uenceson a dependent variable in a partial model violate constraint 7, the constraintwill also be violated in every extension, because an extension cannot changethe in
uences on a partial model's dependent variables (by de�nition of anextension). 2Lemma 3 Adequacy constraints 9 and 10 are monotonic constraints.Proof As discussed in Section 3.1.4, the entities in a partial model are de-termined by the model's variables. Therefore, every entity in a partial modelis also in each of the model's extensions, since the variables in each extensionare a superset of those in the partial model (by de�nition of an extension).Thus, if a partial model includes entities that violate one of these constraints,every extension will also violate the constraint. 2Lemma 4 For a given system description and prediction question, let M bea scenario model that satis�es adequacy constraints 1 (include variables of60



interest) and 2 (include variables in activity preconditions). If M has no freevariables and it violates adequacy constraint 11, every extension of M alsoviolates the constraint.Proof Assume that E is an extension of M that satis�es constraint 11. Weshow by contradiction that such an extension cannot exist.(i) M violates constraint 11 (given). Therefore, for some variable of interestv, there is no di�erential in
uence path in M, leading to it from a drivingvariable of the question, such that every in
uence in the path is valid andsigni�cant for the given question.(ii) E satis�es adequacy constraint 11 (by assumption). Therefore, there is adi�erential in
uence path in E from a driving variable to v, consisting ofin
uences that are valid and signi�cant for the given question.(iii) Let i be the last in
uence in this in
uence path that is not in M. Theremust be such an in
uence because if every in
uence in the path werein M, all the variables in the path would also be in M (since M satis�esadequacy constraint 2), and hence the in
uence path would be in M,which contradicts step i.(iv) The in
uencee of i must be in M. If i is the last in
uence in the path,its in
uencee is the variable of interest v. Since M satis�es adequacyconstraint 1, v is in M. If i is not the last in
uence, the next in
uence inthe path is in M (by de�nition of i), and so i's in
uencee is in M (sinceM satis�es adequacy constraint 2).(v) The in
uencee of i cannot be an exogenous variable in M. If it were, itwould also be exogenous in E (by de�nition of an extension). But then Ecould not include any in
uences on it (by de�nition of a partial model),and hence i could not be in E.(vi) The in
uencee of i cannot be a dependent variable in M. An extensioncannot change the in
uences on a partial model's dependent variables(by de�nition of an extension), so i could be in E only if it was also in M(which contradicts the de�nition of i).(vii) Since the in
uencee of i cannot be dependent or exogenous inM, and sinceM has no free variables (given), the in
uencee of i cannot be a variable inM. This contradicts step iv. That step follows from the assumption thatE satis�es adequacy constraint 11. Therefore, that assumption is false.2 61



A.2 Proof of Theorem 1The \only if" follows directly from the de�nition of the connectivitymatrix. Toprove the \if," suppose that p is the in
uence path by which i (the ith variable)signi�cantly in
uences j (the jth variable). If p consists only of variables andin
uences that are potentially relevant, cell (i,j) will contain a 1 (by de�nitionof the connectivity matrix). Otherwise, let e be the last in
uence in the paththat is not potentially relevant. There must be such an in
uence becauseif every in
uence in the path were potentially relevant, all the variables inthe path would also be potentially relevant (by de�nition of the potentiallyrelevant variables and in
uences).The in
uencee of e must be potentially relevant. If e is the last in
uence inthe path, its in
uencee is j, which is in the connectivity matrix and hence ispotentially relevant. Otherwise, if e is not the last in
uence, the next in
u-ence in the path is potentially relevant (by de�nition of e), so e's in
uenceeis potentially relevant (by de�nition of the potentially relevant variables andin
uences). But since e is a valid and signi�cant in
uence on a potentiallyrelevant variable, it must be potentially relevant (by de�nition of the poten-tially relevant variables and in
uences). This contradicts the de�nition of e.Therefore, p must consist only of variables and in
uences that are potentiallyrelevant, and the theorem must hold.A.3 Proof of Theorem 4A.3.1 OverviewThis section proves that Find-adequate-model is admissible; that is, it is guar-anteed to return a simplest adequate scenario model whenever an adequatescenario model exists. To prove this, we view the algorithm as repeatedlyeliminating scenario models from consideration until only a simplest adequatescenario model remains. Conceptually, when the algorithm begins, the entireset of legal partial models for the given system description (including all legalscenario models) is under consideration. As earlier, we call the set of partialmodels under consideration the \consideration set." Each step of the algo-rithm implicitly eliminates some elements of the consideration set. However,Find-adequate-model never eliminates a scenario model unless either (1) themodel is inadequate for the question or (2) if the model is adequate, there isan adequate scenario model still under consideration that is at least as simple.The remainder of this section proves that Find-adequate-model is admissibleby proving that it follows this strategy.62



A.3.2 Auxiliary LemmasThe proof of Theorem 4 requires several lemmas. The �rst two lemmas addressthe case where the System Boundary Selector says that all remaining variablesin a partial model can be exogenous. In this case, Extend-model marks thevariables exogenous and returns the resulting scenario model. This e�ectivelyeliminates from consideration any extension in which one of these variables isdependent. These two lemmas justify this approach; the �rst lemma simplyestablishes one of the antecedents of the second lemma.Lemma 5 Every partial model that Find-adequate-model passes to Extend-model satis�es all adequacy constraints except perhaps adequacy constraint 11(variables of interest di�erentially in
uenced).Proof Adequacy constraint 1 (include variables of interest) is satis�ed be-cause the partial model is an extension of the initial partial model. Adequacyconstraint 2 (include variables in activity preconditions) is satis�ed because,whenever Extend-model adds an in
uence to a partial model, it also addsany variables appearing in the in
uence's activity preconditions. Adequacyconstraints 3 (exogenous variables independent of model) and 4 (exogenousvariables independent of question) are satis�ed because no model passed toExtend-model has any exogenous variables. Adequacy constraints 5 (in
uenceshomogeneous), 6 (in
uences valid), 7 (in
uences complete), and 8 (in
uencesnot redundant) are satis�ed because (1) Dv-models only returns in
uencesthat satisfy these constraints and (2) if the in
uences on a variable in a par-tial model satisfy these constraints, they will in any extension as well (i.e.,the constraints are independent of the rest of the model). Finally, adequacyconstraints 9 (entities coherent) and 10 (entities compatible with driving vari-ables) are satis�ed because a partial model is only added to the agenda if itsatis�es these constraints. 2Lemma 6 Let P be a partial model for a given system description, let Q bea prediction question, and suppose P satis�es all adequacy constraints exceptperhaps adequacy constraint 11 (variables of interest di�erentially in
uenced).Suppose that all free variables in P can be treated as exogenous (i.e., theysatisfy adequacy constraints 3 and 4). Let E be the scenario model that resultsfrom making each free variable in P an exogenous variable. Then there is anextension of P that is a simplest adequate scenario model for Q only if E isa simplest adequate scenario model for Q.Proof The extension E has the same number of variables as the partial modelP, so E is at least as simple as any other extension of P (by the de�nition ofan extension). Therefore, if E is adequate and some other extension of P is63



a simplest adequate scenario model, E must be a simplest adequate scenariomodel as well. We complete the proof by showing that if E is not adequate,no other extension of P is adequate.(i) E must satisfy all adequacy constraints except perhaps adequacy con-straint 11 because (a) P satis�es all these constraints (given), (b) thenew exogenous variables satisfy adequacy constraints 3 and 4 (given),and (c) E has the same variables and in
uences as P.(ii) Thus, if E is inadequate, it violates adequacy constraint 11. That is, forsome variable of interest v, there is no di�erential in
uence path in E,leading to it from a driving variable of the question, such that everyin
uence in the path is valid and signi�cant on the time scale of interest.(iii) Assume there is an extension E' of P that is an adequate scenario model.Then E' satis�es adequacy constraint 11, and hence there is a di�erentialin
uence path in E' from a driving variable to v, consisting of in
uencesthat are valid and signi�cant on the time scale of interest.(iv) Let i be the last in
uence in this in
uence path that is not in E. Theremust be such an in
uence because if every in
uence in the path werein E, all the variables in the path would also be in E (since E satis�esadequacy constraint 2), and hence the in
uence path would be in E, whichcontradicts step ii.(v) The in
uencee of i must be in E. If i is the last in
uence in the path,its in
uencee is the variable of interest v. If not, the next in
uence inthe path is in E (by de�nition of i), and so i's in
uencee is in E (since Esatis�es adequacy constraint 2).(vi) The in
uencee of i must be a free variable in P. Otherwise, no extensionof P can add an in
uence on it, and i would have to be in both P and E.(vii) However, all the free variables in P can be exogenous (given), so there isno in
uence path from a driving variable to any of these free variablesconsisting of in
uences that are valid and signi�cant on the time scale ofinterest.(viii) Thus, the in
uence path implied by the assumption in step iii cannotexist, so E' cannot be an adequate scenario model. Thus, if E is not anadequate scenario model, no other extension of P is an adequate scenariomodel.2The next two lemmas justify the function Dv-models. Given a partial modelwith a variable v that must be dependent, Extend-model only considers thosesets of in
uences on v returned by Dv-models, thereby implicitly pruning anyextension with a di�erent set of in
uences on v. To justify pruning theseextensions, the �rst lemma ensures that every other set of in
uences is eitherinadequate or simply adds some insigni�cant in
uences, and the second lemmaensures that those sets containing insigni�cant in
uences can be discarded.64



Lemma 7 For a given system description and prediction question, if a set ofin
uences on a variable is not returned by the function Dv-models, the set iseither inadequate (i.e., violates adequacy constraint 5, 6, 7 or 8) or simplyadds insigni�cant in
uences to a set that is returned.Proof Step i in the function Dv-models generates every complete set of in
u-ences, and step ii discards any insigni�cant in
uences from these sets. A setof in
uences will not make it past these steps in two cases: (1) the set is notapproximately complete, or (2) the set is identical to one that makes it pastthese steps except it includes some insigni�cant in
uences. In the �rst case,the set violates adequacy constraint 7 (in
uences complete). The second casesatis�es the lemma because the remaining steps of the algorithm only discardinadequate sets of in
uences: Step iii only discards sets that violate adequacyconstraint 6, and step iv only discards sets that violate adequacy constraint 8.2Lemma 8 Given a system description and prediction question, let M be apartial model with a variable v. Suppose the in
uences on v in M includesome that are insigni�cant for the question. Let M' be a partial model thatis the same as M except it does not include the insigni�cant in
uences on v.Then if M or one of its extensions is an adequate scenario model, either M'or one of its extensions is also an adequate scenario model and is at least assimple.Proof If M or one if its extensions is an adequate scenario model, call thatmodel A. We show by construction that M' or one of its extensions is also anadequate scenario model and is at least as simple. Construct A' from A bysimply removing the insigni�cant in
uences on v. If A = M, then A' = M'.Otherwise, A' is an extension of M'. A' is at least as simple as A because it hasthe same variables. Furthermore, A' is an adequate scenario model becauseit contains no free variables (since A has none) and it satis�es all adequacyconstraints:{ Constraint 7 is satis�ed because A' contains all in
uences from A exceptinsigni�cant ones.{ Constraint 11 is satis�ed for the following reasons. A is adequate, so itsatis�es this constraint. Therefore, for every variable of interest, there is anin
uence path in A leading from a driving variable to the variable of interest,and every in
uence in the path is valid and signi�cant for the question. A'includes all the variables and in
uences in A except some in
uences thatare insigni�cant, so A' must include every such in
uence path that A does,and hence A' must satisfy adequacy constraint 11.65



{ All the other constraints are satis�ed because the exogenous variables in Aand A' are the same, the dependent variables in A and A' are the same, andthe in
uences in A' are a subset of those in A.2A.3.3 Key LemmaWe can now prove the key lemma in the proof of Theorem 4. When Find-adequate-model is invoked, we de�ne the consideration set to be the entire setof legal partial models (including all legal scenario models) for the given sys-tem description. As Find-adequate-model repeatedly eliminates elements of theconsideration set, this lemma shows that it always retains a simplest adequatescenario model if one exists.Lemma 9 For a given system description and prediction question, Find-adequate-model never prunes a scenario model from the consideration set unless either(1) the model is inadequate or (2) there is an adequate scenario model still inthe consideration set that is at least as simple.Proof There are only seven ways in which Find-adequate-model prunes ele-ments of the consideration set, and each satis�es the lemma:(i) (Initializing the Agenda) Initially, the agenda contains a partial modelconsisting of the variables of interest, each a free variable. At that point,the consideration set has been reduced to that partial model and allof its extensions, implicitly eliminating those scenario models that donot contain the variables of interest. However, none of the eliminatedmodels is adequate, because each violates adequacy constraint 1 (includevariables of interest).(ii) (Monotonic Constraints) If a partial model violates a monotonic con-straint, it is not added to the agenda, thereby pruning it and its extensionsfrom the consideration set. The partial model itself is inadequate becauseit violates the constraint. By de�nition, a monotonic constraint, when vi-olated for a partial model, is violated for any extension of that model.Thus, each extension is inadequate for the question as well.(iii) (Free Variable Cannot Be Exogenous) When the System Bound-ary Selector says that a variable in a partial model must be dependent,Extend-model e�ectively prunes any extension in which the variable isexogenous. By de�nition of the System Boundary Selector, the partialmodel would violate adequacy constraint 3 or adequacy constraint 4 ifthe variable were exogenous. Since these two constraints are monotonic(Lemma 1), any extension of the partial model in which the variable is66



exogenous will also be inadequate.(iv) (All Free Variables Can Be Exogenous) When the System Bound-ary Selector says that all remaining variables in a partial model can beexogenous, Extend-model marks the variables exogenous and returns theresulting scenario model. This e�ectively prunes any extension in whichone of these variables is dependent. If any of the pruned extensions isan adequate scenario model, Lemmas 5 and 6 ensure that the scenariomodel returned by Extend-model is also, and it is at least as simple.(v) (In
uences on a Dependent Variable) Given a partial model witha variable v that must be dependent, Extend-model only considers thosesets of in
uences on v returned by Dv-models, thereby implicitly pruningany extension with a di�erent set of in
uences on v. Lemmas 7 and 8ensure that these extensions can be pruned without violating the currentlemma.(vi) (Variables in Activity Preconditions) For each partial model to bereturned, Extend-model adds variables that are required by adequacy con-straint 2 (include variables in activity preconditions). This e�ectivelyprunes those extensions without the variables. However, all the in
u-ences in the partial model will also be in each extension (by de�nitionof an extension). Thus, if an extension lacks some variable appearing inthe activity preconditions of those in
uences, the extension will violateadequacy constraint 2. Therefore, no such extension can be an adequatescenario model.(vii) (Returning the First Adequate Model) Find-adequate-model returnsthe �rst adequate scenario model M that it �nds, e�ectively pruning theremainder of the consideration set. Since it always removes the simplestpartial model from the agenda, no other model on the agenda can besimpler than M. The de�nition of an extension ensures that M is as simpleas any of its extensions and that every model on the agenda is as simpleas any of their extensions, so no model in the consideration set is simplerthan M. Thus, since M is an adequate scenario model, no other scenariomodel in the consideration set can be a simplest adequate model unlessM is also.2A.3.4 Main ProofFinally, building on the previous lemmas, we can prove Theorem 4: Given asystem description and a prediction question for which some scenario model isadequate, Find-adequate-model will return a simplest adequate scenario model.Proof (of Theorem 4) Lemma 9 ensures that Find-adequate-model never67



prunes an adequate scenario model unless another adequate scenario model,at least as simple, remains in the consideration set. If there is an adequatescenario model, then the lemma ensures that the consideration set cannotbecome empty. Furthermore, if there is an adequate scenario model and theconsideration set is reduced to a single adequate scenario model, that modelmust be a simplest adequate scenario model.Theorem 3 ensures that Find-adequate-model eventually terminates. Upon ter-mination, either the agenda (and hence consideration set) is empty or theconsideration set consists of a single adequate scenario model (which is re-turned). If there is an adequate scenario model for the question, the previousparagraph ensures that the �rst case cannot arise, and it ensures that themodel in the second case must be a simplest adequate scenario model. 2B Evaluation DetailsThis appendix lists all the plant physiology questions, constructed by theexpert, on which tripel was formally evaluated (as described in Section 5).Most of the models that tripel constructed for these questions can be foundelsewhere [44].(i) How would an increasing amount of co2 in a plant's leaves a�ect the rateof photosynthesis in the leaves?(ii) How does increasing soil water potential a�ect a plant's water distributionrate?(iii) How does a decreasing amount of water in a plant a�ect the amount ofk+ in its guard cells?(iv) What happens to a plant's water potential as the temperature of theenvironment decreases?(v) How would an increasing rate of solar irradiation to a plant's leaves a�ectthe temperature of the leaves?(vi) What happens to turgor pressure in a plant's leaves as root water ab-sorption decreases?(vii) How would a decreasing amount of water in the earth's atmosphere a�ecta plant's photosynthesis rate?(viii) How does an increasing level of aba in a plant's leaves a�ect transpirationfrom the leaves?(ix) How does increasing water potential in a plant's leaves a�ect the rate ofk+ e�ux from the guard cells in the leaves?(x) How does an increasing amount of aba in the guard cells of a plant'sleaves a�ect osmosis to the leaves' accessory cells from the leaves' guardcells? 68



(xi) How does an increasing rate of di�usion of heat from the stems of a plantto the atmosphere surrounding the stems a�ect the water potential of thesymplast in the stems?(xii) How does a decreasing rate of evaporation from a plant's leaves a�ect theamount of co2 in the atmosphere surrounding the leaves?(xiii) How does a decreasing rate of photosynthesis in a plant's shoot systema�ect the pressure potential in the phloem of its leaves?(xiv) As the amount of water in a plant's cell walls increases, what happens tothe plant's turgor pressure?References[1] S. Addanki, R. Cremonini, and J.S. Penberthy. Graphs of models. Arti�cialIntelligence, 51:145{177, 1991.[2] T.F.H. Allen and T.B. Starr. Hierarchy. University of Chicago Press, Chicago,1982.[3] Jonathan Amsterdam. Automated Qualitative Modeling of Dynamic PhysicalSystems. PhD thesis, Arti�cial Intelligence Laboratory, Massachusetts Instituteof Technology, 1993. Technical Report 1412.[4] Catherine A. Catino. Automated Modeling of Chemical Plants with Applicationto Hazard and Operability Studies. PhD thesis, University of Pennsylvania,1993.[5] D.J. Clancy and B.J. Kuipers. Behavior abstraction for tractable simulation. InThe Seventh International Workshop on Qualitative Reasoning about PhysicalSystems, pages 57{64, Orcas Island, Washington, 1993.[6] John W. Collins and Kenneth D. Forbus. Reasoning about 
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