Automated modeling of complex systems
to answer prediction questions

Jeff Rickel!

Information Sciences Institute and Department of Computer Science, University

of Southern California, 4676 Admiralty Way, Marina del Rey, CA 90292, USA

Bruce Porter

Department of Computer Sciences, University of Texas at Austin, Austin, TX

78712-1188, USA

A question about the behavior of a complex, physical system can be an-
swered by simulating the system — the challenge is building a model of the
system that is appropriate for answering the question. If the model omits
relevant aspects of the system, the predicted behavior may be wrong. If,
on the other hand, the model includes many aspects that are irrelevant
to the question, it may be difficult to simulate and explain. The leading
approach to automated modeling, “compositional modeling,” constructs a
simplest adequate model for a question from building blocks (“model frag-
ments”) that are designed by knowledge engineers. This paper presents a
new compositional modeling algorithm that constructs models from sim-
pler building blocks — the individual influences among system variables
— and addresses important modeling issues that previous programs left to
the knowledge engineer. In the most rigorous test of a modeling algorithm
to date, we implemented our algorithm, applied it to a large knowledge
base for plant physiology, and asked a domain expert to evaluate the
models it produced.

Key words: automated modeling, reasoning about physical systems, large
knowledge bases

1 Introduction

Biologists, ecologists, doctors and engineers share an important skill: each
has a deep understanding of a class of complex physical systems, and each

! Corresponding author. Fax: (310) 822-0751, E-mail: rickel@isi.edu.

Preprint submitted to Elsevier Preprint 25 November 1996

can construct and simulate models of these systems to predict the system’s
response to hypothetical conditions. This skill is required for many tasks,
such as evaluating designs and control strategies, predicting the effects of
trends (e.g., global warming), testing diagnostic hypotheses, and teaching.
While there are well-developed methods for simulating models, research on
constructing models automatically is still in its early stages. Because model
construction requires expertise and is often time consuming and error prone,
our objective is to automate the modeling task: given domain knowledge (i.e.,
knowledge of how a complex system works) and a prediction question (i.e.,
hypothetical conditions and some variables of interest), construct the simplest
model of the system that can adequately predict and explain the behavior of
the variables of interest.

Current modeling programs shift important modeling decisions to the knowl-
edge engineer. For example, some early programs required a knowledge base
of all potentially useful models of the physical system (the “graph of mod-
els” approach [1]). These programs perform a relatively easy task: they select,
but do not generate, the best model for answering each question. To answer
questions about complex systems, this approach is impractical because the
knowledge engineer cannot anticipate — let alone, build — all the models re-
quired for a wide range of questions. The set of models grows combinatorially
with the number of phenomena in the system and the various levels of detail
with which each phenomenon can be modeled.

Recent modeling programs take a more practical approach, called “compo-
sitional modeling” [12]: the domain knowledge provides models of different
aspects of the system (“model fragments”), and the modeling program uses
them as building blocks to construct an appropriate model for each question.
To build an appropriate model, the program typically faces many difficult
decisions. From all the phenomena governing the system’s behavior, the pro-
gram must select, and include in the model, only those that are relevant to
the question. If it omits relevant phenomena, the model’s predictions will be
unreliable; on the other hand, if it includes many irrelevant phenomena, the
model might be difficult to simulate and understand. In addition to selecting
relevant phenomena, the program must chose an appropriate level of detail
for each one. For example, the process of photosynthesis can be described as
a single chemical reaction or as a complex sequence of more-detailed reactions
(each of which could be similarly decomposed). Because compositional mod-
eling programs automatically choose relevant phenomena and levels of detail
for each question, the knowledge engineer need not anticipate and build all
the models that might be needed.

Although the compositional modeling approach simplifies the task of encod-
ing domain knowledge, current programs still shift important modeling deci-
sions to the knowledge engineer. First, the knowledge engineer must design the

model fragments; that is, he must group domain facts into coherent, indivisible
bundles that the program can use as building blocks for constructing models.
Second, he must supply most of the criteria for making modeling decisions:
he must represent the assumptions underlying each model fragment, the de-
pendencies and incompatibilities among assumptions, and the conditions that
require choosing from among different modeling assumptions. Because this is
knowledge about constructing models, not about how a physical system works,
it is not readily available from domain experts.

This paper describes a new compositional modeling algorithm that does not
require such knowledge. Our algorithm constructs models from simple build-
ing blocks — the individual variables of the physical system, and the influences
[15] among them — and addresses the modeling issues that previous programs
left to the knowledge engineer. To address these issues, our algorithm uses
novel, domain-independent criteria that define when a model is adequate for
answering a particular prediction question and when it is simpler than al-
ternative models. (See Section 3.) With these criteria, a modeler can make
decisions while knowing little more than the variables and influences that
govern a physical system; the criteria demonstrate the central role of variables
and influences in every modeling decision. We prove that our modeling algo-
rithm will build a simplest adequate model (as defined by the criteria) for each
prediction question, assuming that one can be built from the building blocks
provided by the domain knowledge. (See Section 4.)

We implemented our modeling algorithm in a program called TRIPEL.? In
addition, we integrated TRIPEL with a qualitative simulation program (the
Qualitative Process Compiler [14]), which simulates TRIPEL’s models to gen-
erate predictions.?® Our goal is to combine the pieces needed to fully automate
the task of answering prediction questions.

We evaluated our algorithm by applying TRIPEL to the task of answering pre-
diction questions in the domain of plant physiology. (See Section 5.) While
previous modeling programs have only been tested on examples constructed
by their designers, our evaluation is considerably more rigorous, in three ways.
First, the domain knowledge was encoded by a botany expert. His goal was
to encode fundamental textbook knowledge that can support a wide range of
tasks, not just prediction. (In fact, the same knowledge base has been used
successfully for other tasks, such as answering description questions and gen-
erating English text [31,33,32].) Second, the domain knowledge he encoded

2 The name TRIPEL is an acronym for “Tailoring Relevant Influences for Predictive
and Explanatory Leverage.” It is also a style of strong ale made by Trappist Monks
in Belgium.

3 Although TRIPEL has only been used to construct qualitative models [53], we
believe that our modeling algorithm is equally capable of building numerical models,
consisting of algebraic equations and ordinary differential equations. (See Section 6.)

is extensive: it describes 700 properties of a prototypical plant and 1500 in-
fluences among them, including many different levels of detail. Finally, the
questions used to evaluate TRIPEL were produced by the botany expert, who
judged TRIPEL’s models by comparing them to his own models for answering
the questions. Our goal is to build a modeling program that is sufficiently
robust to answer unanticipated questions using large knowledge bases built
by domain experts.

The evaluation identified the most important topics for future research. In
particular, it showed that, for some modeling decisions, the expert uses more
sophisticated criteria than TRIPEL uses. TRIPEL is designed to easily incorpo-
rate new criteria: the criteria for each type of modeling decision are encapsu-
lated in an independent module of TRIPEL, and each module can be improved
without requiring other changes to the algorithm.

To lay the groundwork for these topics, the next section describes the input
to our modeling algorithm.

2 System Descriptions and Prediction Questions

Our modeling algorithm requires two inputs: domain knowledge about how
some physical system works (the system description), and a prediction ques-
tion about the system. The following question, from the domain of plant
physiology, illustrates the general form of a prediction question: “How would
decreasing soil moisture affect a plant’s transpiration® rate?” A prediction
question poses a hypothetical scenario, consisting of a physical system (e.g.,
a plant and its soil) and some driving conditions (e.g., decreasing soil mois-
ture), and asks for the resulting behavior of specified variables of interest (e.g.,
the plant’s transpiration rate). The system description for the example would
describe the variables and influences that govern the plant and its soil.

2.1 System Descriptions

A system description represents all available domain knowledge about a partic-
ular system. Although a system description could be provided to the modeler
directly, it is typically generated from general domain knowledge and a de-
scription of the physical structure of the particular system [12]. For example,
given the physical structure of a particular chemical processing factory, general
knowledge of chemical engineering could be used to generate a system descrip-

4 Transpiration is the process by which water evaporates from the leaves.

tion for the factory. The general knowledge provides principles (e.g., “the rate
of any chemical reaction is influenced by the concentration of each reactant”)
that are instantiated for the particular system, yielding rules governing the
behavior of the system (e.g., “the rate of the reaction in the reactor tank is
influenced by the concentration of nitric acid”). The system description is the
result of exhaustively instantiating the general knowledge.

Various methods are available for generating a system description this way.
The method of Falkenhainer and Forbus [12], called “scenario expansion,” ex-
haustively generates the system description before model construction begins.
In contrast, we have developed a method that interleaves generating the sys-
tem description with constructing the model, thereby generating only those
parts of the system description that are needed [44]. In this paper, we treat the
system description as given, but our modeling algorithm is compatible with
either approach.

In the compositional modeling approach, elements of the system description
serve as building blocks for model construction. We adopt the approach to
compositional modeling started by Qualitative Process Theory (QPT) [15]:
the system description consists primarily of variables and influences among
them. However, we extend QPT’s representation in several ways. Most im-
portantly, we allow systems to be described at multiple levels of detail. At
the end of this section, we discuss the differences between our language for
system descriptions and the languages used by other compositional modeling
programs.

2.1.1 Properties of Entities: Variables

A system description includes a finite set of variables, which represent those
properties of the system that are subject to change. Because our work focuses
on building lumped-parameter, differential equation models, each variable in
the system description denotes a real-valued, continuous function of time, such
as the amount of water in a plant or its rate of transpiration.

Each variable is defined as a property of some conceptual entity. For example,
many variables in plant physiology are properties of one of three types of
entities: a space, a pool, or a process. Examples include the cross-sectional
area (a property) of a conduit (a space), the amount (a property) of glucose
in a plant (a pool), and the rate (a property) of transpiration (a process).
This representation of variables is also used in QPT, where variables are called
“quantities” and properties are called “quantity types.”

Entities, properties and variables are written as ground terms in Predicate
Calculus. For example, photosynthesis in a plant, which is an entity, is writ-
ten as photosynthesis(plant). The rate of photosynthesis in a plant, which is a

variable, is written as rate(photosynthesis(plant)). Similarly, the amount of wa-
ter in a plant, also a variable, is written as amount(pool(water, plant)), where
pool is a function that maps a type of substance (or energy) and a space to
the corresponding pool. ?

2.1.2 Entities at Different Levels of Detail: The Encapsulation Relation

In a complex system, entities typically can be described at multiple levels of
detail. One entity may represent an aggregation of other entities, summariz-
ing their properties while encapsulating their details. For example, the water
in a plant can be treated as an aggregate pool; or the water in the roots,
stem and leaves can be treated individually. Analogously, processes can be
aggregated. For example, the chemical formula for photosynthesis summarizes
the net effects of many chemical reactions. Similarly, in engineering, a system
component is often treated as a black box even though it is constructed from
other components. These are examples of entity encapsulation, which is ubiq-
uitous in science and engineering because it allows modelers to create abstract
descriptions that hide irrelevant details. In our terminology, an abstract (ag-
gregate) entity encapsulates the entities that represent its underlying details.

A system description represents encapsulation relationships among entities
with the encapsulates relation. For example, encapsulates(pool(water, plant),
pool(water, leaves(plant))) specifies that the pool of water in the plant encap-
sulates the pool of water in the leaves; that is, these pools are alternative
levels of description. Of course, the pool of water in the plant also encapsu-
lates the water in the stems and roots; each such relationship is a separate
pair within the relation. The encapsulates relation is an ordering relation like
<; it is irreflexive (no entity encapsulates itself), asymmetric (no two entities
encapsulate each other), and transitive.

Note that the encapsulates relation represents relationships among alternative
levels of description, not spatial relationships. The relation is used whenever
an entity can be described as a black box or, alternatively, through its compo-
nents. While spatial relations might form the basis of some such relationships
(as with pools and subpools), this need not be the case (as with processes and
subprocesses).

> A pool consists of the substance or energy of a particular type in a particular
space. In Al the concept of a pool is the basis of the “contained stuff” ontology
[6,15]. The term “pool” is common in biology and ecology.

2.1.3 Influences

As in QPT [15], the phenomena governing a system are represented as a fi-
nite set of influences. An influence is a causally-directed relation among two
variables, the influencer and the influencee. There are two types of influences:
differential and functional.

A differential influence specifies that the rate of change (first time deriva-
tive) of the influencee is a function of the influencer (and perhaps other vari-
ables). In QPT, differential influences are called “direct” influences. Typically,
differential influences represent the effects of processes. For example, the pro-
cess of water uptake transports water into the roots of a plant; thus, the
amount of water in the roots is differentially influenced by the rate of water
uptake. Of course, a variable may be differentially influenced by more than
one process; for example, the amount of water in the roots is also differen-
tially influenced by the rate at which water is transported from the roots to
the leaves. When the differential influences on a variable are combined, they
form a first-order differential equation. We write a differential influence as
vl = v2, where the variable vl is the influencer and the variable v2 is the
influencee.

In contrast, a functional influence specifies that the influencee (rather than
its derivative) is a function of the influencer (and perhaps other variables). In
QPT, functional influences are called “indirect” influences. As with differential
influences, there may be multiple functional influences on a variable. When
combined, they form an algebraic equation. We write a functional influence
as vl — v2, where the variable vl is the influencer and the variable v2 is the
influencee.

Typically, functional influences represent one of three types of phenomena.
First, they are used to represent the factors that affect the rate of a pro-
cess. For example, the rate of photosynthesis is functionally influenced by the
amount of carbon dioxide (one of its reactants) in the leaves. Second, they are
used to represent definitional relations. For example, concentration is defined
as amount per unit volume, so the concentration of sucrose in tree sap is func-
tionally influenced by the amount of sucrose in the sap and by the volume
occupied by the sap. Finally, a functional influence may represent a quasi-
static approximation. For example, when the level of solutes in a plant cell
changes, the process of osmosis adjusts the cell’s water to a new equilibrium
level over time. If the dynamics of this process over time are irrelevant, the
modeler can simply treat the level of water as an instantaneous function of
the level of solutes, and this functional dependence can be represented with a
functional influence.

In QPT, each influence has a sign (4+ or —), which specifies the sign of the

partial derivative of the influencee with respect to the influencer. The sign
of an influence is irrelevant to our modeling algorithm, but it is required for
simulation of models.

2.1.4 Activity Preconditions

Sometimes, one variable influences another only under certain conditions. For
example, the amount of carbon dioxide in the leaves influences the rate of
photosynthesis only when the amount of light energy in the leaves is greater
than zero. The activity preconditions of an influence specify the conditions
under which it is active. As in QPT, the activity preconditions of an influ-
ence are a (possibly empty) conjunctive set of inequalities between variables
or between variables and constants. ®

2.1.5 Significance Preconditions

Sometimes, the effects of an influence are insignificant for purposes of answer-
ing a question. A model can often be greatly simplified when insignificant
influences are recognized and omitted. While human modelers use many cri-
teria to determine the significance of influences, knowledge of the time scale
of different processes is particularly important.

In complex systems, processes cause significant change on widely disparate
time scales [2,20,40,47,49]. In a plant, for example, water flows through mem-
branes on a time scale of seconds, solutes flow through membranes on a time
scale of minutes, growth requires days, and surrounding ecological processes
may occur on a time scale of months or years. Given the time scale of interest
for a question, any influence that causes significant change only on a slower
time scale is insignificant [24,28,51]. For example, to answer the question con-
cerning the effect of decreasing soil moisture on a plant’s transpiration rate, a
time scale of hours is most appropriate; since the effects of growth are signifi-
cant only on a time scale of days or longer, they are insignificant for purposes
of answering the question.

To represent such knowledge, the significance preconditions of an influence
are encoded as an inequality relating the time scale of interest and a specific
time scale. For example, for an influence representing the effect of growth on
the size of a plant, the significance preconditions would be encoded as time-
scale-of-interest > days. An influence is significant for purposes of answering
a given question if and only if the question’s time scale of interest satisfies the
inequality in the influence’s significance preconditions.

6 In QPT, activity preconditions are called “quantity conditions.”

Typically, a differential influence represents an effect of a process, so its signif-
icance preconditions should specify the fastest time scale on which the effect is
significant, as in the growth example above. If the significance preconditions of
a differential influence are empty, the modeler must treat the influence as sig-
nificant for any question. Since functional influences represent instantaneous
effects, they are significant regardless of the time scale of interest, so their
significance preconditions are always empty.

The modeling methods described in this paper do not depend on this particular
criterion for significance. In the future, we plan to incorporate other criteria as
well, as discussed in Section 6.1.1. Still, time scale is an important significance
criterion in many domains, including biology [19,49], ecology [2,40], economics
[51], and many branches of engineering [26,48]. Moreover, empirical results
(described in Section 5) show that this criterion is capable of pruning many
irrelevant phenomena from models.

2.1.6 Validity Preconditions

Many influences are approximations of the phenomena they represent, and
these approximations typically have a limited range of validity. The validity
preconditions of an influence specify the conditions under which the influence
is a valid model of the phenomenon it represents. Contrast validity precon-
ditions with activity and significance preconditions. The latter specify when
a phenomenon is inactive or insignificant, and hence need not be modeled at
all. Validity preconditions, on the other hand, specify when one particular in-
fluence is an invalid approximation of its phenomenon, but they don’t obviate
the need to model that phenomenon.

As with significance, human modelers use many criteria to assess the validity of
influences, but the time scale of interest is particularly important. Therefore,
as with significance preconditions, the validity preconditions of an influence
are encoded as an inequality relating the time scale of interest and a specific
time scale. Such a precondition might arise from cases like the following:

— The behavior of an aggregate pool is often used as an approximation to the
behavior of one of its subpools. For example, the rate of photosynthesis is
functionally influenced by the concentration of carbon dioxide in the mes-
ophyll cells of the leaves. As an approximation, a modeler might say that
the rate of photosynthesis is functionally influenced by the concentration of
carbon dioxide in the leaves. Such an approximation is reasonable when the
subpools equilibrate on a time scale faster than the time scale of interest
[24,51]. For example, if diffusion of carbon dioxide throughout the leaves
achieves a uniform concentration on a time scale of minutes, the influence
of carbon dioxide in the leaves on the rate of photosynthesis is a valid ap-

proximation to the true influence when the time scale of interest is minutes
or longer.

— An influence representing a quasi-static approximation is typically valid
only if the underlying processes reach equilibrium on a time scale at least
as fast as the time scale of interest [24,28,51]. For example, when the level
of solutes in a plant cell changes, the process of osmosis adjusts the cell’s
water to a new equilibrium level. On a time scale of minutes or longer, this
process can be treated as instantaneous. Therefore, the functional influence
of solute level on water level is valid on a time scale of minutes or longer.

An influence is valid for purposes of answering a given question if and only if
the question’s time scale of interest satisfies the inequality in the influence’s
validity preconditions. As with significance preconditions, our modeling meth-
ods do not depend on this particular criterion, but it has proven very effective.

2.1.7 Influences at Different Levels of Detail: The Frplanation Relation

For complex systems, different influences may represent the same phenomenon
at different levels of detail. To choose a suitable set of influences on a variable
in a model, a modeler must understand which influences represent indepen-
dent phenomena and which represent different levels of detail for the same
phenomenon. Influences on a given variable represent alternative levels of de-
tail in cases like the following:

— The influence of an aggregate process on a pool represents the aggregate
effect of its subprocesses on that pool. For example, the influence of photo-
synthesis on water in the leaves is due to the influence of one of its subpro-
cesses, the light reactions, on water in the leaves. In turn, the influence of
the light reactions represents the aggregate effect of two of its subprocesses:
the Hill reaction, in which light energy is used to split water molecules into
hydrogen and oxygen, and photophosphorylation, in which light energy is
converted to chemical energy and water. Thus, the influence of photosynthe-
sis on water in the leaves is explained by the influence of the light reactions,
which is explained by the influence of the Hill reaction and the influence of
photophosphorylation.

— Analogously, the influence of an aggregate pool on a process represents the
aggregate effect of its subpools on that process. For example, in many plants,
the influence of carbon dioxide in the leaves on photosynthesis is due to the
influences of two subpools: the mesophyll cells and the bundle sheath cells.

To generalize such cases, a system description can specify that one influence is
explained by other influences. The explanation for an influence, if it has one, re-
lates it to other influences of the same type (i.e., differential or functional) that
have the same influencee. (While there may be similar relationships among

10

influences with different types or influencees, our modeling criteria and algo-
rithms do not require a representation of those relationships.) The influence
being explained represents the collective effect on the influencee of the influ-
ences that explain it, and the influences that constitute the explanation fully
explain the aggregate influence. In short, the influence being explained and
the influences in its explanation represent the same underlying phenomena at
different levels of detail.

Such relationships are represented by the explanation relation. The pair
(1,i") is an element of this relation if and only if influence i’ is an element
of the set of influences that explain influence i. The transitive closure of the
explanation relation, the explanation* relation, provides an ordering among
influences; in addition to being transitive, it is irreflexive (no influence explains
itself) and asymmetric (no two influences explain each other). Note that both
the explanation relation and the encapsulates relation represent aggregation
hierarchies: the former represents a hierarchy of influences, while the latter
represents a hierarchy of entities.

2.1.8 Summary

In summary, a system description represents domain knowledge about a par-
ticular physical system. The description includes the phenomena that govern
the system as well as the levels of detail at which the phenomena can be
described. Phenomena are represented by variables and influences, which pro-
vide the building blocks for models. For each influence, the system description
specifies the conditions under which it is active, valid, and significant; such in-
formation helps the modeler decide which influences are relevant to answering
a given question. Currently, our criteria for significance and validity are based
on time scale [28,22,21], although our model construction algorithm does not
depend on any particular criteria. Finally, to help the modeler ensure a coher-
ent model, the system description represents the relationships among different
levels of detail using the encapsulates and explanation relations.

2.1.9 Previous Work on System Descriptions

QPT’s representation for variables and influences provides the basis for our
system description language. However, because QPT was not designed to rep-
resent modeling alternatives, it does not include a representation for signif-
icance preconditions, encapsulation or explanation relationships, or validity
preconditions.

The compositional modeling framework of Falkenhainer and Forbus [12] ex-
tends the ideas of QPT to represent modeling alternatives. The building blocks
for their models are “model fragments,” which provide individual influences

11

or, more typically, sets of influences (e.g., complete equations). To allow dif-
ferent model fragments to specify different modeling alternatives, each model
fragment has associated “assumptions,” symbolic labels that characterize the
phenomena it represents and its level of detail. To represent the relation-
ships among model fragments, assumptions are organized into “assumption
classes”; the assumptions in each class represent mutually incompatible mod-
eling alternatives. Several researchers [23,38,39] define interesting variants of
this compositional modeling framework, but the basic ideas are the same.

Our representation differs in two ways. First, the person encoding the domain
knowledge need not group influences into model fragments; rather, in our
approach, individual influences are the building blocks for models. As will
be shown in Section 3, important modeling decisions arise at the level of
influences, and we want the modeling program, not the knowledge engineer,
to face these decisions. Moreover, in our experience, it is rare for two influences
to necessarily occur together in models; there are typically conditions in which
only one of the influences is relevant, and alternative levels of detail for each
influence are often available. Although our approach — using influences as
building blocks for models — differs from other work in automated modeling,
the idea is not new: human modelers have taken this approach in a variety of

domains [4,18,30,43,46].

Second, Falkenhainer and Forbus require the knowledge engineer to provide
more of the criteria for making modeling decisions. In addition to requiring
the knowledge engineer to provide model fragments, assumptions, and as-
sumption classes, they require two additional types of knowledge: (1) rules
that specify dependencies among assumptions (e.g., which ones are mutually
incompatible and which ones require each other) and (2) the conditions in
which each assumption class is relevant (i.e., when the modeler must choose
one of the alternatives). For our model construction algorithm, the first type
of knowledge is unnecessary because the encapsulates and explanation relations
sufficiently describe the relationships among alternatives, in a form that we
believe will be more natural for domain experts. The second type of knowledge
has no counterpart in our approach; our model construction algorithm effec-
tively generates such knowledge automatically, as will be shown in Sections 3
and 4. Our algorithm does require the system description to provide some
criteria for modeling decisions, namely significance preconditions and validity
preconditions; however, these criteria are properties of individual influences,
and hence should be easy for a domain expert to provide. (Our botany expert
had no trouble providing such knowledge.)

12

2.2 Prediction Questions

2.2.1 Drwing Conditions and Vartables of Interest

A prediction question poses a hypothetical scenario, specified by one or more
driving conditions, and asks for the behavior of one or more variables of in-
terest. Driving conditions specify the behavior or initial condition (or both)
of particular variables in the system description. For example, “decreasing
soil moisture” is the driving condition in the question “How would decreasing
soil moisture affect a plant’s transpiration rate?” Any variable in the system
description (such as “transpiration rate” in the example) can serve as a vari-
able of interest. The goal in answering a prediction question is to predict and
explain the causal effect of the driving conditions on the variables of interest.

We currently use the same language to specify both types of driving conditions
(behaviors and initial conditions). Each driving condition is an equality or in-
equality statement relating a variable (or its derivative) to another variable
(or its derivative) or constant. For example, the initial temperature of a plant
could be specified precisely as temperature(plant) = 67°F or less precisely as
temperature(plant) > 32°F or temperature(plant) > temperature(soil). Its initial
rate of change could similarly be specified (using the differential operator D) as
D(temperature(plant)) = zero (thermal equilibrium) or D(temperature(plant))
> zero (the plant is warming up). These same statements could be specified
as behaviors rather than initial conditions, meaning that they hold through-
out the temporal extent of the scenario. We also allow a behavior to be de-
scribed as increasing or decreasing to a new equilibrium value (i.e., increasing
or decreasing for an unspecified amount of time and constant thereafter). Our
modeling methods are not restricted to this particular language for driving
conditions; for instance, we could allow behaviors to be specified as arbitrary
functions (e.g., a sine wave) as well. Our methods would simply ignore the
extra information provided by such a precise description of behavior.

2.2.2 Time Scale of Interest

As discussed in Section 2.1, a time scale of interest provides an important
source of power in modeling. It allows a modeler to (1) treat influences that
operate on a slower time scale as insignificant, (2) represent the effects of faster
processes using quasi-static approximations, and (3) treat separate pools as
a single aggregate when they equilibrate on a faster time scale. Thus, a time
scale of interest allows many important model simplifications.

Although the person posing a question may specify a time scale of interest, of-
ten a modeler must determine it automatically. Elsewhere [44,45], we describe
an algorithm for choosing an appropriate time scale of interest when none is

13

specified in the question. Whether the time scale of interest is chosen by the
modeler or provided by the person posing the question, this paper will treat
it as part of the question.

3 Scenario Models

Given a system description and a prediction question, our modeling algorithm
constructs a scenario model for answering the question. A scenario model
consists of the following:

— a set of variables (a subset of the variables in the system description) parti-
tioned into exogenous variables, whose behavior is determined by influences
external to the model, and dependent variables, whose behavior is deter-
mined by the model, and

— a set of influences (a subset of the influences in the system description),
each of whose influencee is a dependent variable in the model and whose
influencer is another variable in the model (exogenous or dependent)

For example, the scenario model in Figure 1 shows how a plant regulates
the abscisic acid hormone (ABA) in response to changes in turgor pressure
(hydraulic pressure) in its leaves (e.g., when it begins wilting). Leaf turgor
pressure is the only exogenous variable; all the others are dependent. The
model shows that ABA is synthesized and consumed in the leaf mesophyll cells
and transported to the guard cells. (The figure also describes the conventions
that are used in this and subsequent figures.)

As in previous work [12,23,34], a scenario model is intended to support the
entire simulation of the scenario. To make predictions from a particular state
of the scenario, the simulator must determine which influences in the scenario
model are active in that state. For example, turgor pressure only influences
ABA synthesis when the pressure drops below a threshold. The activity pre-
conditions of the influence would represent that fact. To simulate a turgid
(not wilting) plant whose turgor pressure is dropping, the simulator would
omit this influence until turgor pressure drops below the threshold. A variety
of simulators are capable of simulating scenario models in this way [14,15,17].
Using this approach, the modeler need only build one scenario model to an-
swer a question, rather than building a different model for different states of
the scenario.

14

ABA 4 leaf hylla—— ABA + guard
?g/tréthes,ls e ?S/Sfp Y4 ins ™ transport mins™ cell ABA

rate amount
amount \+/ <.
_ﬁ mins +
leaf
trgor éoBrgumption
pressure rate

Fig. 1. A scenario model.
This and subsequent figures use the following conventions:

— Arrows with solid tips represent differential influences, while arrows without solid
tips represent functional influences.

— Exogenous variables (in this example, leaf turgor pressure) are underlined.

— Differential influences are labeled with the time scale on which they become sig-
nificant. For example, “mins” is a shorthand for the significance precondition
time-scale-of-interest > minutes.

— Influences are labeled with the sign of their partial derivative. For example, when
leaf turgor pressure decreases, the rate of ABA synthesis increases.

— Activity preconditions of influences are not shown.

3.1 Adequacy

Intuitively, a scenario model is adequate for answering a given prediction ques-
tion if it satisfies two criteria. First, it must make the desired predictions with
sufficient accuracy. Second, to ensure a comprehensible explanation, the model
must be a coherent description of the physical system. To automate modeling,
we must formalize these two intuitive criteria.

We formalize the criteria as a set of adequacy constraints. Each constraint is a
predicate of three arguments: a system description, a prediction question, and
a scenario model. A scenario model is adequate for a given system description
and question if and only if every adequacy constraint is satisfied. Collectively,
the constraints address the key issues in model construction, and they demon-
strate the central role of variables and influences in each issue. The key issues
include choosing appropriate exogenous variables (Section 3.1.2), choosing ap-
propriate influences on each dependent variable (Section 3.1.3), modeling an
appropriate set of system entities (Section 3.1.4), and relating the driving
conditions of the question to the variables of interest (Section 3.1.5).

Our objective is to formalize the intuitive criteria that human modelers use to
achieve sufficiently accurate, coherent models. For the adequacy constraints

15

we propose, this section explains why each is intuitively necessary. Section 5
discusses the results of empirically evaluating the constraints in the domain
of plant physiology.

3.1.1 Variables in a Scenario Model

A model is only adequate if it can make the desired predictions. This motivates
the following constraint.

Adequacy constraint 1 (include variables of interest)
A scenario model is adequate only if it includes every variable of interest.

As discussed earlier, the simulator must determine which influences in the
scenario model are active in each state of the scenario. This requires the ability
to evaluate the activity preconditions of influences in the model. The following
constraint ensures that the model provides enough information to do so.

Adequacy constraint 2 (include variables in activity preconditions)
A scenario model is adequate only if it includes every variable appearing in
an activity precondition of an influence in the model.

3.1.2 Frogenous Variables

Once a variable is included in a model, the modeler must determine how to
model it. The first decision is whether to model it as exogenous or dependent.

While the phenomena governing a dependent variable are represented by in-
fluences in the model, the phenomena governing an exogenous variable are
outside the scope of the model. Conceptually, the model represents a sys-
tem, and the exogenous variables represent the system boundary, the interface
between the system and its surrounding environment. Thus, by choosing to
model some variables as exogenous, a modeler partitions the system descrip-
tion into two parts: the subsystem that is relevant to answering the given
question, and its environment (which is irrelevant). To ensure that a model
of a complex system is adequate and as simple as possible, a suitable system
boundary is crucial.

Despite the importance of a well-chosen system boundary, few previous au-
tomated modeling programs can choose exogenous variables automatically.
Moreover, as explained at the end of this subsection, these few programs use
criteria that are too weak for answering prediction questions; their choice of
exogenous variables can result in either inadequate or unnecessarily complex
models.

16

v0 => v3
activity preconditions: v1 >0
significance preconditions: time—scale—-of-interest >= hours

v2 => v3
significance preconditions: time—scale—of-interest >= minutes v0 \
3 4 vl ~ v3 v4
V3 => v
significance preconditions: time—scale—of-interest >= seconds v2 /
(A) Influences (B) Influence graph

Fig. 2. (A) A set of influences, along with their activity and significance precondi-
tions. (B) The corresponding influence graph.

Human modelers treat a variable as exogenous only if it is approximately
independent of the other variables in the model. For example, the rate of pre-
cipitation can be treated as exogenous in a model of a single plant; while the
behavior of the plant depends critically on the rate of precipitation, the phe-
nomena that govern precipitation do not depend significantly on the behavior
of the plant. Thus, to decide which variables can be treated as exogenous, a
modeler must be able to determine whether one variable significantly affects
another.

The influences in a system description determine which variables affect each
other. Clearly, one variable affects another if there is an influence from the
first variable to the second. One variable can also affect another by enabling
or disabling the influences on it; that is, one variable affects another if there
is an influence on the second variable whose activity preconditions reference
the first variable.

Therefore, we define the influence graph for a system description as follows.
The nodes of the graph are the variables. There is a directed edge from one
variable to another if and only if there is an influence whose influencee is the
second variable and either

— the first variable is the influencer or
— the first variable appears in the influence’s activity preconditions.

An influence path is a path of non-zero length in an influence graph. One
variable significantly influences another if and only if there is an influence
path leading from the first variable to the second and every influence in the
path is valid and significant for the given question.

Figure 2 illustrates these concepts. Part A shows a set of influences, and Part
B shows the corresponding influence graph. It the time scale of interest is
seconds, only v3 significantly influences v4. However, on a time scale of hours,
v4 is significantly influenced by v0, v1, v2 and v3.

17

Given the definitions above, the following constraint formalizes the intuition
that an exogenous variable is approximately independent of all other variables
in the model.

Adequacy constraint 3 (exogenous variables independent of model)
A scenario model is adequate only if none of its exogenous variables is signifi-
cantly influenced in the system description by another variable in the model.

While the previous constraint on exogenous variables ensures that they are
appropriate for the model that contains them, the next constraint ensures that
they are appropriate for the given question. Recall that a prediction question
asks for the effects of driving conditions on variables of interest. To answer
a prediction question, a modeler includes in the model those variables whose
behavior is relevant to determining the behavior of the variables of interest.
Therefore, it a variable in the model is significantly influenced by a driving
variable (a variable in a driving condition), the model should reflect this so the
effects of the driving variable’s behavior on that variable can be determined.
Thus, to ensure that the exogenous variables do not disconnect the model
from relevant driving conditions, a variable cannot be exogenous unless it is
approximately independent of the driving variables.

Adequacy constraint 4 (exogenous variables independent of question)
A scenario model is adequate only if none of its exogenous variables is signif-
icantly influenced in the system description by a driving variable (other than
itself if it is a driving variable).

Together, these two constraints specify whether a variable in a model can be
exogenous. To illustrate these system boundary criteria, consider the question
“What happens to the amount of ABA in a plant’s guard cells when the turgor
pressure in its leaves decreases?” This question is important because plants
send ABA to the guard cells to combat dehydration. The appropriate time scale
of interest for this question is minutes. (This time scale can be determined au-
tomatically if it is not specified [44,45].) Part A of Figure 3 shows a portion
of the system description for a prototypical plant; the driving variable (leaf
turgor pressure) and variable of interest (guard cell ABA amount) are shown in
bold. Part B shows the simplest adequate model for answering the question.
In this model, none of the dependent variables could be exogenous, because
each one is significantly influenced (on a time scale of minutes) by the driv-
ing variable, leaf turgor pressure (thus violating adequacy constraint 4). Leaf
turgor pressure can be exogenous in the model because it satisfies adequacy
constraints 3 and 4; that is, as shown in Part A, leaf turgor pressure is not
significantly influenced (on a time scale of minutes) by any other variable in
the model nor by any other driving variable (there are no others). On a time
scale of hours, however, leaf turgor pressure could not be treated as exogenous,
because it would be significantly influenced by guard cell ABA amount on that

18

ABA 4 leaf - ABA + guard + k+ active + guard
synthesis mine mesophyll«-~ {ransport mine~ cell ABA ——— transport=——— cell =———

rate min ABA rate amount carbon
amount —_ = ~_ + -rate - dioxide
_¢) + - ,/mlns min
mins + accessory
leaf cells k+ guard
turgor ABA amount cell k+

pressure consumption N / amount
rate
mins .
4 _K min +
+

- P k+ diffusion
leaf mesophyll<«——— transpiration rate rate
water amount hrs *
+ 0smosis
g _ stomatal rate
mins opening +

Plant . \ guard ﬁ

emperature
leaf water P cell +
uptake rate water

amount
—(mins + o

xylem water amount

G-

water uptake rate =———

(A) System Description

ABA 4 leaf il ABA + guard
ynhesis o KA ™! imin transport ins cell ABA
rate amoun
amount —_ =
+ -
_/F mins +
leaf
ABA
turgor consumption

ressure
P rate

(B) Simplest Adequate Scenario Model

Fig. 3. (A) A portion of the system description for the question “What happens
to the amount of ABA in a plant’s guard cells when the turgor pressure in its
leaves decreases?” The driving variable and variable of interest are shown in bold.
Ellipses indicate connections to the remaining variables and influences in the system
description. Alternative levels of detail are not shown. (B) The simplest adequate
scenario model for answering the question.

time scale via a path passing through guard cell water amount and transpira-
tion. Thus, the time scale of interest allows a tighter system boundary than
would otherwise be possible.

Despite its importance, no previous work in automated modeling has pro-
vided explicit criteria for choosing exogenous variables. Typically, modeling
programs require either the system description or question to specify those
variables that can be exogenous. For instance, the modeling algorithms of
Williams [54] and Iwasaki and Levy [23] take this approach. Although these
algorithms can determine which exogenous variables must be included in the
scenario model, neither algorithm can determine exogenous variables auto-
matically. For complex systems, this approach is impractical.

19

Nayak’s modeling algorithm [38] can choose exogenous variables, but it does
not have explicit criteria for doing so. Moreover, his definition of an adequate
model is suitable for his modeling task, explaining a specified causal relation,
but is not sufficient for answering prediction questions. For instance, his defini-
tion would allow a scenario model to treat a variable as exogenous even though
it is significantly influenced (in the system description) by another variable in
the model. Adequacy constraint 3 prevents our modeling algorithm from mak-
ing this mistake.

The modeling algorithm of Falkenhainer and Forbus [12] largely determines the
system boundary by identifying relevant system components. Their algorithm
requires, as input, a system decomposition. That is, each system component
is also assumed to be a system, and each system can have components that
represent its subsystems. To identify the components that are relevant to a
question, the algorithm first identifies the smallest set of components that must
be modeled to include the immediate influences on the variables of interest;
these components are marked as relevant. Next, to ensure that interactions
among these components are modeled, the algorithm determines a “minimal
covering system,” the lowest system down the system decomposition that sub-
sumes all relevant components. That component and its subsystems (down to
the level of the initially relevant components) are relevant. Any variable that
is a property of a relevant component, but is only influenced by properties of
irrelevant components, is exogenous.

Their approach has several limitations. While their modeling algorithm re-
quires a system decomposition, our criteria for choosing a system boundary
only require knowledge of the influences. Furthermore, Falkenhainer and For-
bus assume that the system decomposition is based on partonomic structure;
however, O’Neill et al. [40] argue that approximate system boundaries in nat-
ural systems arise from differences in process rates (i.e., their time scales) and
that these boundaries may not correspond to standard structural decompo-
sitions. Even in engineered systems, designed system boundaries cannot be
trusted when considering faults or unintended interactions [8]. Reasoning at
the level of influences provides more flexibility and overcomes the difficulty
of specifying an a priori system decomposition. Additionally, by specifying
the criteria for choosing exogenous variables in terms of influence paths, we
ensure that the chosen system boundary will be sufficiently sensitive to the
connections between driving conditions and variables of interest.

3.1.3 Influences on a Dependent Variable
Exogenous variables, which lie on the system boundary, are governed by phe-

nomena outside the scope of the model. In contrast, for every dependent vari-
able in a model, the modeler must choose a set of influences to represent the

20

amount(pool(water, guard-cells)) < rate(osmosis(accessory-cells, guard-cells))

amount(pool(water, guard-cells)) « amount(pool(ABA, guard-cells))
validity preconditions: time-scale-of-interest > hours

amount(pool(water, guard-cells)) « amount(pool(CO3, guard-cells))
validity preconditions: time-scale-of-interest > hours

Fig. 4. Influences on the amount of water in a plant’s guard cells.

phenomena that govern it. The four constraints in this subsection ensure that
every dependent variable in a model has an adequate set of influences.

For simulation of a model, the influences on a variable are combined to form
an equation. Human modelers use two types of equations: algebraic equations,
composed of functional influences, and differential equations, composed of dif-
ferential influences. The following constraint ensures that the influences on
each dependent variable correspond to one of these two types.

Adequacy constraint 5 (influences homogeneous)
A scenario model is adequate only if the influences on any given dependent
variable are all the same type (i.e., differential or functional).

For example, Figure 4 shows a set of influences on the amount of water in a
plant’s guard cells. The first influence represents the fact that the amount of
water is regulated by osmosis from neighboring accessory cells. The remaining
two influences represent quasi-static approximations; changes in the levels of
ABA or carbon dioxide cause osmosis to adjust the level of water to a new
equilibrium. The amount of guard cell water can be modeled by the differential
influence or the two functional influences, but it would be incoherent to mix
them.

A model must also be sufficiently accurate. For this reason, each of its influ-
ences must be a valid approximation of the phenomenon the influence repre-
sents. That is, the validity preconditions of each influence must be satisfied
for the given question, as specified in the following constraint.

Adequacy constraint 6 (influences valid)
A scenario model is adequate only if each of its influences is valid for the given
question.

For example, the two functional influences in Figure 4, which represent quasi-
static approximations, are only valid on a time scale of hours, because the
mechanisms that restore equilibrium operate on a time scale of minutes. There-
fore, for any question whose time scale of interest is less than hours (e.g.,
seconds or minutes), a scenario model that includes these influences is inade-
quate.

21

amount(pool(CO4, leaves)) < rate(CcOy-diffusion(atmosphere, leaves))
significance preconditions: time-scale-of-interest > seconds

amount(pool(CO,, leaves)) < rate(photosynthesis(leaves))
significance preconditions: time-scale-of-interest > minutes

amount(pool(COg, leaves)) < rate(dark-reactions(leaves))
significance preconditions: time-scale-of-interest > minutes

Explanation(amount(pool(COz, leaves)) < rate(photosynthesis(leaves)),
amount(pool(COg, leaves)) < rate(dark-reactions(leaves)))

Fig. 5. Influences on the amount of carbon dioxide in a plant’s leaves. The first two
are the maximally aggregate influences. The influence of photosynthesis is explained
by the influence of the dark reactions (and not by any other influences).

To further ensure that a model is sufficiently accurate, the influences on each
dependent variable should represent all the phenomena that affect the variable.
Such a set of influences is complete. Given a system description, a dependent
variable, and a type of influence (i.e., functional or differential), we define a
complete set of influences as follows:

— The set of all “maximally aggregate” influences of the specified type on
the variable is complete. A maximally aggregate influence is one that does
not explain any other influence (i.e., a maximal element of the explanation
relation).

— The result of replacing an influence in a complete set with the set of all influ-
ences that explain it (as specified by the explanation relation) is a complete
set.

For example, Figure 5 shows a set of influences on the amount of carbon dioxide
in a plant’s leaves. As shown, the influence of photosynthesis is explained by
the influence of the dark reactions (and not by any other influences). The first
two influences in the figure constitute a complete set because they are the
maximally aggregate influences. Also, the first and third influences constitute
a complete set, since the photosynthesis influence is fully explained by the
more-detailed influence of the dark reactions.

Of course, the model need only be sufficiently accurate for the given question.
Therefore, the influences on each dependent variable need only represent all
the significant phenomena that affect the variable. For a given question, a set
of influences on a variable is approximately complete if and only if it is
a subset of a complete set of influences and none of the omitted influences is
significant for the question. For example, in Figure 5, the first influence alone
constitutes an approximately complete set on a time scale of seconds. However,
on a time scale of minutes or longer, either the second or third influence must

22

be additionally included.

Given these definitions, the following constraint ensures that the model rep-
resents all phenomena that significantly affect each dependent variable.

Adequacy constraint 7 (influences complete)
A scenario model is adequate only if the set of influences on each dependent
variable is approximately complete for the given question.

Finally, to ensure that the influences on a dependent variable are coherent, a
modeler must avoid mixing different levels of detail for the same phenomenon.
The following constraint enforces this requirement.

Adequacy constraint 8 (influences not redundant)
A scenario model is adequate only if the influences on each dependent variable
do not include two influences related by the explanation* relation).

If a model’s influences on a dependent variable satisfy the four constraints in
this subsection, we say that the influences are adequate. Recall that adequacy
of a model must address two issues: accuracy of predictions, and coherence.
Constraints 6 (influences valid) and 7 (influences complete) help ensure that
the influences provide a sufficiently accurate representation of the governing
phenomena, and constraints 5 (influences homogeneous) and 8 (influences not
redundant) help ensure that the representation is coherent.

Most previous work in automated modeling does not enforce explicit con-
straints like these for the influences on a dependent variable. For those mod-
eling programs that use the assumption class representation of Falkenhainer
and Forbus [12], the person encoding the model fragments and the constraints
among assumptions must ensure that each compatible combination of model
fragments yields an adequate set of influences.

Some previous modeling programs are given a complete equation for a depen-
dent variable and they identify and discard negligible terms in the equation
[11,36,55,57]. This is analogous to identifying an approximately complete set
of influences given a complete set. However, these programs do not consider
alternative levels of detail for the elements of the equation.

3.1.4 FEntities in a Model

A scenario model is a model of selected entities in a system. Each variable in
a model is a property of an entity, so the entities in a scenario model consist
of all the entities whose properties are represented by the model’s variables.
The entities in a model are important because they indicate the model’s view
of the system.

23

To ensure consistent predictions and a comprehensible explanation, that view
must be coherent. More specifically, while entities can typically be described
at multiple levels of detail, a modeler must avoid mixing levels. In the system
description, entities at different levels of detail are related by the encapsulates
relation. Thus, the following constraint prevents a model from mixing levels
of detail.

Adequacy constraint 9 (entities coherent)
A scenario model is adequate only if it does not include two entities related

by the encapsulates relation.”

The driving variables of a question also constrain the choice of entities in
a model. A scenario model need not necessarily include all driving variables,
because some may be irrelevant to the variables of interest. However, the model
should respect the level of aggregation specified in the driving variables, for
two reasons. First, these variables indicate the level of detail in which the user
is interested. Second, if the modeler encapsulates these variables or chooses
variables at a lower level of detail, the information in the driving conditions
will be lost.® The following constraint ensures that the model respects the
level of aggregation specified in the driving variables.

Adequacy constraint 10 (entities compatible with driving variables)
A scenario model is adequate only if it does not include an entity that encap-
sulates an entity of a driving variable and it does not include an entity that
is encapsulated by an entity of a driving variable.

Elsewhere [44], we formulate additional adequacy constraints based on the
entities in a model. The constraints ensure that the model is appropriate for
the user’s level of knowledge and desired level of detail. While useful, such
constraints are tangential to the focus of this paper.

3.1.5 Influence Paths in a Model

A prediction question asks for the causal effect of driving conditions on vari-
ables of interest. Therefore, a scenario model is adequate for answering the
question only if the variables of interest are significantly influenced (in the
model) by the driving variables. Additionally, in order to predict the behavior
of the variables of interest beyond the initial state, the influence paths relating
the driving variables to the variables of interest must be capable of predicting
changes in the variables of interest.

7 Recall that the relation is transitive.

8 It may be possible to infer driving conditions at the abstract or more-detailed
levels from the given driving conditions, but we have no general method for making
such inferences.

24

Through an individual influence, one variable can cause change in another
variable in two ways: (1) with a differential influence, a specified value for
the influencer (along with values for other influencing variables) provides the
rate of change of the influencee; (2) in contrast, a functional influence can
cause change only if the influencer is changing [15]. Thus, a model can predict
the changes in a variable of interest caused by a driving variable only if the
influence path connecting them contains a differential influence or the driving
conditions specify how the driving variable is changing (in which case a path
of functional influences will propagate the change). If either case is satisfied,
the influence path is a differential influence path.

For example, the question “What happens to the amount of ABA in a plant’s
guard cells when the turgor pressure in its leaves decreases?” specifies that
turgor pressure is decreasing, so any influence path from turgor pressure to
another variable is a differential influence path, capable of causing change. In
contrast, if the question only specified that turgor pressure is above the “yield
point” (above which the pressure causes cell growth), an influence path leading
from turgor pressure is differential only if it contains a differential influence
(as is the case with the influence of turgor pressure on cell size).

Motivated by the above discussion, the following constraint ensures that a
model can predict the effect of the driving conditions on the variables of in-
terest.

Adequacy constraint 11 (variables of interest differentially influenced)
A scenario model is adequate only if, for every variable of interest, the model
includes a differential influence path leading to it from some driving variable
such that every influence in the path is valid and significant for the given
question.

The requirement that a scenario model relate driving variables to variables of
interest is not new, although previous work has not required differential influ-
ence paths. Nayak [38] requires an adequate model to provide a causal path
linking the driving variable to the variable of interest. Amsterdam [3] requires
an adequate model to provide “interaction” paths (i.e., not necessarily causal)
linking every variable of interest to some driving variable. Williams’s method
for generating a “critical abstraction” [54] is designed to ensure that the cho-
sen scenario model causally links the driving variables (in his framework, the
exogenous variables of the system) to the variables of interest. We only re-
quire differential influence paths because they are appropriate for answering
prediction questions; our model construction algorithm would work equally
well if adequacy constraint 11 only required valid, significant influence paths
(not necessarily differential) from driving variables to variables of interest.

25

3.1.6 Other Possible Adequacy Constraints

Some previous modeling programs define a model as adequate only if its pre-
dictions match the “correct” behavior (within a specified tolerance). These
programs either address tasks in which the correct behavior of the variables of
interest is known [1,52] or they assume that the approximate error introduced
by different approximations can be estimated [9-11,50]. However, a prediction
question does not provide the correct behavior, and error estimates are not
available in the domains we have studied, so we exclude such a constraint.
In Section 4.5, we suggest how TRIPEL could be extended to handle such a
constraint.

3.2 Simplicity

To answer a prediction question, a modeler should construct the simplest ade-
quate scenario model, minimizing irrelevant phenomena and details, because a
model with irrelevant information is more difficult to analyze (e.g., simulate)
and explain. Thus, a modeler requires criteria for determining whether one
candidate model is simpler than another.

Human modelers probably use a combination of many criteria to assess the
complexity of a model. Nevertheless, the number of variables in a model is a
simple measure that correlates well with most other measures of complexity,
and 1t has proven to be an effective heuristic in our experience. Simulation com-
plexity tends to increase with the number of variables, and a model with more
variables is generally more difficult to understand and explain. Furthermore,
most simplification techniques used by human modelers reduce the number of
variables in a model. Thus, we define one model as simpler than another as
follows:

— For any two scenario models m and m’, m is simpler than m’ if and only if
m has fewer variables than m’.

In contrast to our measure of simplicity, Nayak [38] and Iwasaki and Levy [23]
define one scenario model as simpler than another if, for every model fragment
in the first, either that model fragment or a more-detailed alternative is in the
second.® This is a reasonable criterion when it holds, but it leaves too many
models incomparable. For example, consider two models, one with only a few
variables and influences (i.e., representing a few phenomena), and one with
many variables and influences (i.e., representing many phenomena, some in

9 Actually, Iwasaki and Levy’s definition is in terms of “composite model frag-
ments” rather than model fragments, but the distinction is irrelevant to our
discussion.

26

great detail); if the first model treats some aspect of the system in more
detail than the second model, the two models are incomparable under their
criterion. Thus, although the first model is intuitively simpler, a modeling
algorithm based on their simplicity criterion would be content to choose the
second model as the simplest adequate model.

3.3 Summary

In summary, we define a scenario model as adequate for a given prediction
question if and only if the model satisfies the following constraints:

— Its variables include every variable of interest (adequacy constraint 1) and
every variable appearing in an activity precondition of its influences (ade-
quacy constraint 2).

— Its system boundary is adequate (adequacy constraints 3 and 4).

— Itsinfluences on each dependent variable are adequate (adequacy constraints 5,
6, 7, and 8).

— Its entities are coherent (adequacy constraint 9) and appropriate for the
question (adequacy constraint 10).

— It relates the driving variables of the question to the variables of interest
(adequacy constraint 11).

Among the adequate scenario models for a question, those with the fewest
variables are the simplest, and the modeler’s objective is to find one of these
simplest adequate models.

4 Model Construction Algorithm

Together, Sections 2 and 3 define the model construction task: given a system
description and a prediction question, construct a simplest adequate scenario
model for answering the question. This section presents algorithms for per-
forming the task and its subtasks.

4.1 FExtending Partial Models

There are many possible models of a complex system, so finding a simplest
adequate model is difficult. To find such a model efficiently, TRIPEL searches
the space of partial models of the system, ruling out most models without ever
generating them.

27

A partial model satisfies the definition of a scenario model with one possible
exception: in addition to exogenous and dependent variables, it may contain
free variables. After a modeler has chosen to include a variable in a model, but
before the modeler has decided whether to treat it as exogenous or dependent,
the variable is free. Thus, a partial model with free variables represents a model
still under construction.

Formally, a partial model consists of the following:

— a set of variables (a subset of the variables in the system description) par-
titioned into exogenous variables, dependent variables, and free variables

— a set of influences (a subset of the influences in the system description),
each of whose influencee is a dependent variable in the model and whose
influencer is another variable in the model (exogenous, dependent or free)

Note that a scenario model, as defined in Section 3, is simply a special type
of partial model, one with no free variables.

Partial models are ordered by an extension relation. Intuitively, a partial model
me is an extension of a partial model m if and only if mg can be constructed
from m by making additional modeling decisions. More precisely, mg is an
extension of m if and only if m and mg are not identical and all of the
following conditions are satisfied:

— every variable in m is also in mg

— every exogenous variable in m is an exogenous variable in mg

— every dependent variable in m is a dependent variable in mg

— the set of influences on the dependent variables of m are identical in m and
Me

These conditions allow a partial model to be extended by adding variables,
by deciding to treat a free variable as exogenous or dependent, and by adding
influences on free variables or new variables. For example, Part A of Figure 6
shows a partial model in which the amount of leaf mesophyll ABA is a free
variable, and Part B shows an extension. In the extension, the amount of leaf
mesophyll ABA is a dependent variable, the influences on it are included, and
two new free variables (the influencers) are included.

The extension relation is an ordering relation like <. That is, it is irreflexive
(no partial model is an extension of itself), asymmetric (no two partial models
are extensions of each other), and transitive. The definition of simplicity used
for scenario models applies to partial models as well, so a partial model is at
least as simple as any of its extensions, because any extension has at least as
many variables.

One key to efficient model construction is the ability to recognize that a given

28

leaf ABA + guard

RﬁBeZOphyll transport” mins™ cell ABA
rate amount
amount —____> -

+

(A) A Partial Model

ABA + leaf - ABA + guard
synthesis - = mezophyllﬁns\ transport” mins~ cell ABA

rate mi AB rate amount
amount —__ =~ -

+

mins

ABA
consumption
rate

(B) An Extension

Fig. 6. (A) A partial model. The variable leaf mesophyll ABA amount is free. (B)
An extension of that partial model. The variables ABA synthesis rate and ABA
consumption rate are free.

partial model cannot be extended into an adequate scenario model. The ade-
quacy constraints in Section 3.1, although defined in terms of scenario models,
apply to partial models as well. A partial model that violates an adequacy con-
straint can sometimes be extended to remedy the violation; for example, if a
partial model violates adequacy constraint 1 (include variables of interest), it
can be extended to include the variables of interest. However, a partial model
can be eliminated from consideration when it violates a monotonic constraint.
A monotonic constraint is an adequacy constraint which, when violated
for a partial model, is violated for each of its extensions. For instance, when a
partial model includes mutually incoherent entities, so will all its extensions.
By pruning such a partial model from consideration, TRIPEL avoids generating
any of its extensions, effectively pruning a large chunk from the search space.
(Remember, the extension relation is transitive, so a single partial model may
have many extensions.) Section 4.3.3 lists those adequacy constraints that are
monotonic.

We illustrate TRIPEL’s model construction algorithm using the familiar ques-
tion “What happens to the amount of ABA in a plant’s guard cells when the
turgor pressure in its leaves decreases?” Figure 3 (p. 19) shows a portion of
the system description for this question. As mentioned earlier, the appropriate
time scale of interest is minutes.

To construct an adequate scenario model, TRIPEL starts with a partial model

29

Find-adequate-model (S, Q)
/* S is a system description, and Q is a prediction question */
agenda « ()
let initial be a partial model consisting of the variables of interest, each free
if initial satisfies all monotonic constraints
then add initial to agenda
while agenda is not empty
remove the simplest partial model m from agenda
if m is an adequate scenario model
then return m
else for each partial model m" in Extend-model(m, S, Q)
if m’ satisfies all monotonic constraints
then add m’ to agenda
return failure
Extend-model (m, S, Q)
/* mis a partial model, S is a system description, and Q is a prediction question */
if all free variables in m can be exogenous
then mark all free variables in m as exogenous
return {m}
else let v be a free variable in m that must be dependent
models « ()
for each m, in Dv-models(v, S, Q)
m’ «— extend m with m,
add m’ to models
return models

Fig. 7. TRIPEL’s model construction algorithm

consisting only of the variables of interest, and it incrementally extends this
model until it satisfies all the adequacy constraints. At each step, there may
be alternative ways of extending the model, so it must search through the
possibilities.

The model construction algorithm, shown in Figure 7, can be viewed as graph
search. Each node in the search graph is a partial model. The initial node in
the search is a partial model consisting only of the variables of interest, each a
free variable. For instance, the initial node for the example is a partial model
consisting of one free variable, guard cell ABA amount. As will be described
below, a partial model’s successors in the search graph consist of some of its
extensions. The goal of the search is to find a simplest adequate scenario model
for the question. (Unlike some graph search problems, the path by which a
goal node is found is irrelevant.)

A best-first strategy guides the search, using the simplicity criterion as the
evaluation function. That is, TRIPEL always extends the search by removing

30

the simplest partial model (i.e., the one with the fewest variables) from the
search agenda. If the partial model is an adequate scenario model, it is returned
as a simplest adequate scenario model; every other partial model on the agenda
has as many or more variables, so they and their extensions cannot be simpler.
In the example, the initial partial model is the simplest one on the agenda (in
fact, the only one), so it is removed. Because it contains a free variable, it is
not a scenario model, hence it is not an adequate scenario model.

If the partial model is not an adequate scenario model, its successors replace
it on the search agenda. The function Extend-model returns the successors of
a given partial model m. To generate these successors, the function extends m
with alternative ways of modeling one of m’s free variables.

To accomplish this, Extend-model first asks the System Boundary Selector
(discussed in Section 4.3) whether all of m’s free variables can be exogenous
(i.e., whether they satisfy adequacy constraints 3 and 4). If so, Extend-model
marks each free variable as exogenous and returns the resulting scenario model
as the only successor. In our example, this is not the case. The free variable in
the initial partial model (guard cell ABA amount) cannot be exogenous because
it violates adequacy constraint 4; specifically, as shown in Figure 3 (p. 19), it
is significantly influenced by the driving variable (leaf turgor pressure) on the
time scale of interest (minutes).

When the System Boundary Selector’s response is “no”, it also tells Extend-
model which variable v must be dependent (in the example, guard cell ABA
amount). In this case, Extend-model asks the function Dv-models (described in
Section 4.2) for those combinations of influences on v that might be adequate
for the question (i.e., satisfy adequacy constraints 5, 6, 7, and 8). In our exam-
ple, Dv-models simply returns the only influence on guard cell ABA amount,
the influence of the ABA transport rate. In general, Extend-model returns a
set of new partial models, each the result of extending m with one of these
combinations of influences.

To extend m with a combination of influences, Extend-model marks v as depen-
dent, adds the influences on v to the model, and adds any new free variables.
A free variable is added in the following cases:

— If the influencer of a new influence is not already in m, it is added as a free
variable.

— If a variable in the activity preconditions of a new influence is not already
in m, it is added as a free variable (to satisfy adequacy constraint 2).

Before adding a partial model to the agenda (whether the partial model is the
initial node in the search or a successor returned by Extend-model), TRIPEL
checks whether the model violates a monotonic constraint. If so, it is pruned
from the search, since none of its extensions is an adequate scenario model.

31

guard
cell ABA
amount
|
Y
ABA + guard
transport” mins™ cell ABA
rate amount
|
v
leaf
ABA + guard
RWSZOphy” transport” ming™ cell ABA
rate amount
amount \:/ -
| \
Y Y
ABA + leaf ~ _ ABA + guard ABA + leat ~ _ ABA + guard
synthesis ——» RWSZOphy”W transport” mina™ cell ABA synthesis —— mgzophyllm transport” mina~ cell ABA
rate rate amount rate rate amount
amount ~_ > ~— amount —__ 7 ~—
+ - . + -
nins minsZ LN
ABA ABA
ABA \BA)
" binding degradation
E;)trésumptlon rate rate
| |
| |
\/ \/
|
|
Y
ABA 4 leaf hylla— ABA + guard
fgtréthesw e AP ing tra;nsport/mfr? cell ABtA
rate amoun
amount \:/ ~—
'? mins + -
leaf
turgor ?()Bréumption
pressure rate

Fig. 8. The search graph for the question “What happens to the amount of ABA in a
plant’s guard cells when the turgor pressure in its leaves decreases?” Boxes indicate
partial models, and dashed arrows point from a partial model to its successors. The
heavy box indicates the simplest adequate scenario model (the goal node returned
by the model construction algorithm).

The partial model in our example does not violate any monotonic constraints,
so it is added to the agenda.

The search ends with success when a simplest adequate scenario model is
found. In contrast, the search ends with failure when the search agenda be-
comes empty, because this indicates that no adequate scenario model exists.

Figure 8 illustrates the search graph that TRIPEL generates for the example.
The third node from the top has two successors because there are two adequate
combinations of influences on leaf mesophyll ABA amount: the first includes the
influence of ABA consumption, and the second includes the influences of ABA
binding and ABA degradation that explain it (for simplicity, those influences
were not shown in Figure 3).

32

4.2 Choosing Influences on Dependent Variables

A modeler must choose an adequate set of influences on each dependent vari-
able in a model. In TRIPEL, this task arises in the function Extend-model and
it is performed by the function Dv-models. After deciding to model a variable
as dependent, Extend-model asks Dv-models for an adequate set of influences
on the variable. As illustrated in Figure 7, the inputs to Dv-models include a
system description, a prediction question, and a variable whose influences are
desired.

There may be more than one adequate set of influences for a dependent vari-
able. For instance, it may be possible to use either differential influences, which
represent the dynamic effects of processes, or functional influences, which rep-
resent a quasi-static approximation of those processes. Also, one adequate
set may contain the influences that explain an influence in another adequate
set, as with the variable leaf mesophyll ABA amount in Figure 8. Dv-models
must return each alternative set of influences for consideration by the model
constructor. Extend-model creates a new partial model for each one, and the
function Find-adequate-model tests each new partial model to see which ones
represent a potentially adequate extension of the current partial model.

Section 3.1.3 specified the criteria for determining whether a set of influences
on a dependent variable is adequate:

— The influences must be approximately complete; that is, they must repre-
sent all significant influencing phenomena at some level of detail (adequacy
constraint 7).

— The influences must represent valid approximations (adequacy constraint 6).

— The influences must be mutually coherent (adequacy constraints 5 and 8).

Because adequacy constraint 5 requires the influences on a dependent variable
to have the same type (i.e., differential or functional), Dv-models can sepa-
rately consider sets of functional influences and sets of differential influences.
After separately generating the adequate sets of influences that contain only
differential influences and those that contain only functional influences, it re-
turns the union of these two sets. The remainder of this section presents the
algorithm for generating the adequate sets of influences for a given influence
type (either one).

Given a system description, a prediction question, and a dependent variable
to be modeled, Dv-models generates the adequate sets of influences of a given
type (differential or functional) as follows:

(i) It generates every complete set of influences (of the specified type) on
the dependent variable (i.e., those sets of influences that represent all

33

amount(pool(COz, leaves)) < rate(COy-diffusion(atmosphere, leaves))
significance preconditions: time-scale-of-interest > seconds

amount(pool(COz, leaves)) < rate(photosynthesis(leaves))
significance preconditions: time-scale-of-interest > minutes

amount(pool(COz, leaves)) < rate(dark-reactions(leaves))
significance preconditions: time-scale-of-interest > minutes
Explanation(amount(pool(CO4, leaves)) < rate(photosynthesis(leaves)),
amount(pool(COz, leaves)) < rate(dark-reactions(leaves)))

Fig. 9. Influences on the amount of carbon dioxide in a plant’s leaves. The first two
are the maximally aggregate influences. The influence of photosynthesis is explained
by the influence of the dark reactions (and not by any other influences).

the phenomena that affect the variable). Section 3.1.3 defined these as

follows:

— The set of all maximally aggregate influences of the specified type on the
variable (i.e., those that do not explain any other influence) is complete.

— The result of replacing an influence in a complete set with the set of all
influences that explain it (as specified by the explanation relation) is a
complete set.

(ii) From these sets, it removes any influences that are insignificant for the
given question. Each resulting set is approximately complete (as defined
in Section 3.1.3), so each satisfies adequacy constraint 7.

(iii) It discards any set that contains an influence that is invalid for the given
question. Any such set of influences is inadequate because it violates
adequacy constraint 6.

(iv) It discards any set that is incoherent. A set is incoherent if it violates
adequacy constraint 8 (i.e., it includes two influences related by the ex-
planation* relation).

For example, consider the influences shown in Figure 9 (previously shown as
Figure 5) and assume that seconds is the time scale of interest. The algorithm
proceeds as follows:

(i) As discussed in Section 3.1.3, there are two complete sets: (1) the first
and second influences and (2) the first and third influences.

(ii) In the first set, the photosynthesis influence is insignificant (on the time
scale of interest, seconds), so it is removed. Similarly, in the second set,
the dark reactions influence is insignificant, so it is removed. This leaves
two identical sets, each of which includes only the diffusion influence.
Because the sets are identical, one is pruned and the other is passed to
step iii.

ii1) The set does not include an invalid influence, so it is not discarded.

o~
NN

The set is coherent, so it is not discarded. Therefore, it is returned by
Dv-models.

1v

34

cross-section-area(stomates) « amount(pool(water, guard-cells))

cross-section-area(stomates) « amount(pool(ABA, guard-cells))
validity preconditions: time-scale-of-interest > hours

cross-section-area(stomates) « amount(pool(COs, guard-cells))
validity preconditions: time-scale-of-interest > hours
Explanation(cross-section-area(stomates) « amount(pool(ABA, guard-cells)),
cross-section-area(stomates) < amount(pool(water, guard-cells)))

(
Explanation(cross-section-area(stomates) « amount(pool(CO,, guard-cells)),
cross-section-area(stomates) < amount(pool(water, guard-cells)))

Fig. 10. Influences on the cross sectional area of a plant’s stomates. The second and
third influences are each explained by the first influence.

As another example, consider the influences shown in Figure 10 and assume
that hours is the time scale of interest. The algorithm proceeds as follows:

(i) The algorithm generates four complete sets: the second and third influ-
ences (the maximally aggregate influences), the first and third influences
(since the first explains the second), the first and second influences (since
the first explains the third), and the first influence alone (generated from
either of the previous two).

(ii) None of the influences is insignificant, so no set is changed.

(iii) None of the influences is invalid, so no set is changed. However, if the
time scale of interest were less than hours (e.g., seconds or minutes), any
set containing the second or third influence would be discarded.

(iv) Two of the four sets are incoherent (i.e., they violate adequacy con-
straint 8): the one that includes the first and second influences, and the
one that includes the first and third influences. These two sets are dis-
carded, and Dv-models returns the two surviving sets: the one that in-
cludes the second and third influences, and the one that includes only
the first influence.

Dv-models can recognize when there are no adequate sets of influences on a
variable. For example, consider the influences shown in Figure 10, but suppose
the first influence is not in the system description (i.e., that level of detail is
missing). If the time scale of interest is less than hours (e.g., seconds or min-
utes), no set will survive step iii, so Dv-models will return the empty set (i.e.,
no adequate sets of influences). Thus, Extend-model will return the empty set
(i.e., no successors); the partial model under consideration cannot be ade-
quately extended. The key is that each influence represents a phenomenon to
be modeled; if the phenomenon is significant, Dv-models must find a valid way
of modeling it, either with that influence or an alternative level of detail.

35

4.3 Choosing Exogenous Variables

System boundary decisions arise in the successor function Extend-model. Given
a system description, a prediction question, a partial model and one of its
free variables, Extend-model asks the System Boundary Selector whether the
variable can be exogenous. Such decisions are important; if the variable must
be dependent, the model must be extended to include additional influences
(on that variable) and variables (referenced by those influences).

The System Boundary Selector’s response is either “yes” (the variable can be
exogenous) or “no” (the variable must be dependent), interpreted as follows:

— If the response is “yes,” then the variable can be exogenous in any extension
of the partial model that does not contain additional variables.

— If the response is “no,” then the variable must be dependent in every ex-
tension of the partial model. That is, no extension in which the variable is
exogenous is an adequate scenario model.

Recall from Section 4.1 how Extend-model uses the System Boundary Selector’s
response. If the response is “no” (the variable must be dependent), Extend-
model marks the variable as dependent and extends the partial model to in-
clude influences on it. In contrast, if the response is “yes” (the variable can
be exogenous), Extend-model only marks the variable as exogenous if all other
free variables can also be exogenous. The System Boundary Selector’s response
justifies Extend-model’s actions.

The criteria for choosing exogenous variables were specified in Section 3.1.2:

— Adequacy constraint 3 — A variable in a scenario model cannot be exoge-
nous if it is significantly influenced in the system description by another
variable in the model.

— Adequacy constraint 4 — A variable in a scenario model cannot be exoge-
nous if it is significantly influenced in the system description by a driving
variable (other than itself if it is a driving variable).

Although these constraints are stated in terms of scenario models, they ap-
ply to partial models as well. As shown in Appendix A.1, both constraints
are monotonic; that is, if a variable in a partial model violates one of the
constraints, the variable cannot be exogenous in any extension of the partial
model either. In this case, the System Boundary Selector can answer “no” (the
variable cannot be exogenous). On the other hand, if a variable in a partial
model satisfies both constraints, it can be exogenous in any extension with the
same variables. (The variable might not satisfy adequacy constraint 3 in an ex-
tension with additional variables.) In this case, the System Boundary Selector
can answer “yes” (the variable can be exogenous). Thus, the system boundary

36

selection task simply requires the ability to test these two constraints.

These constraints can be tested by a graph connectivity algorithm. Recall
from Section 3.1.2 that one variable significantly influences another if and
only if there is an influence path (in the system description) leading from
the first variable to the second and every influence in the path is valid and
significant for the given question. Thus, a free variable in a partial model can
be exogenous if and only if the graph algorithm finds no such path leading to
the variable from any driving variable of the question or any other variable in
the model.

However, it would be inefficient to run the graph algorithm anew for each
system boundary decision. Each run of the graph algorithm will repeat much
of the search performed by previous runs. To avoid this problem, TRIPEL per-
forms a system boundary analysis before beginning the search for an adequate
scenario model. The system boundary analysis determines all variables and
influences that might be relevant to the question, and it computes and caches
connectivity relations among the variables. These potentially relevant vari-
ables and influences constitute the space that would be repeatedly searched
by the graph algorithm. The algorithm for system boundary analysis is given
in Section 4.3.1.

The result of the system boundary analysis is a Boolean connectivity matrix.
This matrix records the connectivity between every pair of potentially relevant
variables. That is, the ith variable significantly influences the jth variable for
purposes of answering the given question if and only if the (i,j) cell of the
matrix contains a 1.

Once system boundary analysis is complete, TRIPEL begins its search for the
simplest adequate scenario model as described earlier. Using the connectivity
matrix, system boundary decisions that arise during model construction are
trivial. A free variable in a partial model must be dependent if, according to
the connectivity matrix, the variable violates adequacy constraint 3 or 4. In
this case, the System Boundary Selector returns “no” (the variable cannot be
exogenous). Otherwise, it returns “yes.”

4.3.1 System Boundary Analysis

The variables in the connectivity matrix are called the potentially relevant
variables because they include all variables that might be relevant to answering
the question. More precisely, they include any variable that might be added to
a partial model during model construction. Similarly, the potentially relevant
influences include any influence that might be added to a partial model during
model construction. We define the potentially relevant variables and influences
as follows:

37

— The variables of interest are each potentially relevant.

— If a variable is potentially relevant, any influence on it that is valid and
significant (for the given question) is a potentially relevant influence.

— The influencer of every potentially relevant influence is potentially relevant.

— Any variable appearing in the activity preconditions of a potentially relevant
influence is potentially relevant.

This definition mirrors the steps that add variables and influences to partial
models during model construction.

The System Boundary Selector finds the potentially relevant variables and
influences using a breadth-first search through the influence graph. First, each
variable of interest is marked as potentially relevant and placed on the search
agenda. On each iteration of the search, a variable is removed from the agenda,
and each valid, significant influence on that variable is marked as potentially
relevant. For each such influence, its influencer and the variables in its ac-
tivity preconditions are marked as potentially relevant. Each newly marked
variable is placed on the agenda unless it had previously appeared on it. The
search ends when the agenda is empty; the terminal variables in the search
are those that are not significantly influenced (e.g., those that are regulated
on time scales slower than the time scale of interest) and those that are sig-
nificantly influenced only by variables discovered earlier in the search (i.e.,
through feedback loops). When the search ends, all potentially relevant vari-
ables and influences have been marked.

To illustrate this algorithm, consider the familiar question “What happens to
the amount of ABA in a plant’s guard cells when the turgor pressure in its
leaves decreases?” Part A of Figure 11 repeats a portion of the system de-
scription for this question. The search for potentially relevant variables and
influences begins with the influences on guard cell ABA amount. The influences
of transpiration on leaf mesophyll water (middle of left side) and water up-
take on xylem water (lower left) are insignificant on the time scale of interest
(minutes); removing these two influences disconnects the potentially relevant
variables from the remaining variables and influences, including the feedback
loop through transpiration, thus allowing TRIPEL to ignore those other vari-
ables and influences. Part B shows the result, the potentially relevant variables
and influences for the example. For comparison, Part C shows the simplest
adequate model for the question (as described in Section 4.1).

As illustrated by the example, the search for potentially relevant variables
and influences will typically have to traverse only a fraction of the influence
graph. In complex systems, such as plants, animals, and ecosystems, modular-
ity arises from the widely disparate time scales at which processes cause change
[2,28,40,47,49]. The result is a hierarchy of nearly decomposable subsystems;
processes acting within a subsystem cause significant change quickly, while

38

synthesis = ABA Pyl ins ~ transport mins™ cell ABA ———= pransport<——— cell <——
rate rate amount rate carbon
amount —_ 7 <. t - dioxide
_T . + - ,/mlns min
mins + accessory d
leaf cells k+ guar
turgor ABA amount cell k+

pressure consumption + - amount
rate
mins .
+T - min, +
+
+

- i k+ diffusion
leaf mesophyll.«——— transpiration rate rate
water amount hrs
. 0smosis
H mi - stomatal rate
mins opening .
plant \ guard Ay
temperature
leaf water cell +
uptake rate water
< amount
—{mins |+
xylem water amount
+<hrs 2_
water uptake rate =—— ...
(»)
ABA 4+ leaf - A + guard
synthesis —. xgzophyll mins ~ transport” mins™ cell ABA
rate rate amount
amount \1/ <~
4 ‘<mins 2+ -
leaf
turgor é(?rgumption
pressure rate
+T ABA 4+ leaf hyila— ABA + guard
fgtr;thess mins QSZOP V< mins tf"inSPOth cell AB{\
rate amoun
leaf mesophyll amount —_ 7 ~_
water amount _/F + Z
mins +
+<mins)— Itﬁ?f ABA
gor)
pressure cotnsumptlon
rate
leaf water
uptake rate
mins |+
xylem water amount (B) ©

Fig. 11. (A) A portion of the system description for the question “What happens
to the amount of ABA in a plant’s guard cells when the turgor pressure in its leaves
decreases?” The driving variable and variable of interest are shown in bold. Ellipses
indicate connections to the remaining variables and influences. Alternative levels of
detail are not shown. (B) The potentially relevant variables and influences for the
question. (C) The simplest adequate scenario model for the question.

processes acting across subsystems cause change more slowly [2,28,40,51]. The
time scale of interest filters out influences that are significant only on slower
time scales, thus isolating the variables of interest in their own nearly decom-
posable subsystem. The search for potentially relevant variables and influences
is confined to this subsystem because the influences from other subsystems are
insignificant.

39

After determining the graph of potentially relevant variables and influences,
the System Boundary Selector constructs the connectivity matrix. First, it
constructs the subgraph of the influence graph corresponding to the poten-
tially relevant variables and influences. Analogous to the definition in Sec-
tion 3.1.2, the nodes of this subgraph are the potentially relevant variables,
and there is a directed edge from one variable to another if there is a poten-
tially relevant influence whose influencee is the second variable and for which
the first variable is the influencer or appears in the activity preconditions. The
connectivity matrix is simply the adjacency matrix for the transitive closure of
this subgraph. Given the subgraph, the connectivity matrix can be computed
efficiently; the Floyd-Warshall algorithm computes it in ©(n?) time, where n
is the number of nodes (potentially relevant variables) in the subgraph [7].

As discussed earlier, the System Boundary Selector decides whether a vari-
able in a partial model can be exogenous by checking cells in the connectivity
matrix. The connectivity matrix is guaranteed to include every variable for
which a system boundary decision might be required, because the definition of
potentially relevant variables and influences mirrors the steps that add vari-
ables and influences to partial models during model construction. Further-
more, the following theorem ensures that the connectivity matrix accurately
reflects whether one variable significantly influences another.

Theorem 1 (Connectivity matrix is correct) For a given system descrip-
tion and prediction question, cell (i,j) of the connectivity matriz contains a 1
if and only if the ith variable significantly influences the jth variable for that
question.

Proof See Appendix A.2. O

To determine whether a variable can be exogenous, the System Boundary
Selector must ensure that the variable is not significantly influenced by any
driving variable (adequacy constraint 4). However, the definition of potentially
relevant variables does not ensure that every driving variable is potentially rel-
evant, so some driving variables may not appear in the connectivity matrix.
Nevertheless, variables in the connectivity matrix are only significantly in-
fluenced by other variables in the matrix. Therefore, when deciding whether
a variable can be exogenous, the System Boundary Selector knows that the
variable is not significantly influenced by any driving variable that is not in
the matrix.

40

4.3.2 Extensibility

Choosing exogenous variables is an important part of constructing a simple
yet adequate model. Our design encapsulates such decisions in the System
Boundary Selector, an independent module of TRIPEL. This allows changes in
the criteria for choosing exogenous variables without requiring changes in the
model construction algorithm. Similarly, the System Boundary Selector does
not depend on the particular criteria for determining whether an influence is
valid and significant. TRIPEL uses a time scale of interest, but other criteria
could be used instead or in addition.

For complex systems, in which variables are highly interconnected, the ability
to recognize insignificant influences is crucial to achieving a suitable system
boundary. This ability is also required to keep the number of potentially rele-
vant variables (and hence the size of the connectivity matrix) small. Therefore,
the performance of the System Boundary Selector will improve as more sophis-
ticated significance criteria are incorporated into TRIPEL, as will be discussed
in Section 5.

4.3.83 The Role of Fach Adequacy Constraint

The adequacy constraints from Section 3.1 serve different roles in the model
construction algorithm. Adequacy constraint 1 (include variables of interest)
is used to construct the initial partial model on the agenda, and adequacy
constraint 2 (include variables in activity preconditions) is used by Extend-
model to identify new free variables for a partial model being extended. These
constraints are both propagation constraints: when violated in a partial model,
they specify the elements that must be added for the constraint to be satisfied
(analogous to constraint propagation).

Some monotonic constraints serve as filters. As shown in Appendix A.1, ade-
quacy constraints 9 (entities coherent) and 10 (entities compatible with driving
variables) are both monotonic, and adequacy constraint 11 (variables of inter-
est differentially influenced) is monotonic when applied to models that have
no free variables. A partial model is added to the search agenda only if it
satisfies these constraints. (If it has free variables, it need only satisfy the first
two constraints.)

The remaining constraints, although monotonic (as shown in Appendix A.1),
are folded into the subroutines of Find-adequate-model. Adequacy constraints 3
(exogenous variables independent of model) and 4 (exogenous variables inde-
pendent of question) are tested by the System Boundary Selector, and ad-
equacy constraints 5 (influences homogeneous), 6 (influences valid), 7 (influ-
ences complete), and 8 (influences not redundant) are enforced by the function
Dv-models.

41

For extensibility, TRIPEL is designed to easily accommodate new monotonic
constraints and propagation constraints. This allows TRIPEL to incorporate
additional sophistication in its modeling criteria, such as new criteria for de-
termining whether models are coherent, without changes in its model con-
struction algorithm.

4.4 Properties of the Model Construction Algorithm

To ensure an efficient search for a solution, a search algorithm must avoid
redundancy. Typically, a graph search algorithm avoids redundancy by main-
taining a record of nodes it has visited. However, Find-adequate-model does
not keep a record of partial models that it has visited because of the following
theorem.

Theorem 2 (Search is not redundant) In the search graph constructed by
Find-adequate-model, a given partial model cannot be reached via more than
one path from the initial partial model.

Proof A partial model has multiple successors only when one of its free vari-
ables is chosen as dependent (by definition of Extend-model). Each successor
in this case contains a different set of influences on that variable. Since an
extension of a partial model cannot change the influences on that model’s de-
pendent variables, no two successors of a partial model can share a common
extension. Thus, if a partial model is viewed as representing itself and all its
extensions, its successors represent disjoint subsets of its extensions. Viewed
this way, Find-adequate-model starts with a single set (the initial partial model)
and repeatedly splits one set into disjoint subsets. Therefore, it is not possible
for any two partial models in the search graph to have a common descendant.
O

Thus, Find-adequate-model is a version of the well-known “split and prune”
search algorithm [41], and the search graph it constructs is a tree. Subsequent
theorems and proofs rely on this “split and prune” view of the algorithm.

Conceptually, Find-adequate-model operates by repeatedly pruning parts of
the search space from consideration. When each iteration of the while loop
begins, part of the search space has been pruned from consideration and part
remains. Specifically, the partial models on the agenda, along with all their
extensions, are still under consideration. This set of partial models is the
consideration set. The following theorem ensures that the search will always
terminate by showing that each iteration of the while loop decreases the size
of the consideration set.

42

Theorem 3 Find-adequate-model always terminates.

Proof FEvery individual step in the algorithm always terminates because the
system description is finite. Thus, Find-adequate-model will terminate if its
while loop terminates. For a finite system description, there are only a finite
set of unique partial models, so the initial consideration set is finite. Every
iteration of the while loop removes the simplest partial model on the agenda
from the consideration set, decreasing its size. Therefore, the while loop must
eventually terminate. O

Most importantly, Find-adequate-model is an admissible search algorithm. A
search algorithm is admissible if it is guaranteed to return an optimal solu-
tion whenever a solution exists [41]. Find-adequate-model is admissible because
it is guaranteed to return a simplest adequate scenario model whenever an ade-
quate scenario model exists. Conceptually, the algorithm is admissible because
it uses the following strategy:

— From its initial consideration set, which includes all adequate scenario mod-
els, it repeatedly prunes away models until only a single scenario model (if
any) remains.

— It never prunes a scenario model unless either (1) the model is inadequate
for the question or (2) if the model is adequate, there is an adequate scenario
model still in the consideration set that is at least as simple.

Theorem 4 (Model construction algorithm is admissible) Given a sys-
tem description and a prediction question for which some scenario model is
adequate, Find-adequate-model will return a simplest adequate scenario model.

Proof See Appendix A.3. O

4.5 Previous Model Construction Algorithms

Falkenhainer and Forbus [12] take a knowledge-based approach to model con-
struction. Each model fragment has associated “assumptions,” symbolic labels
that characterize the phenomena it represents and its level of detail. Domain
knowledge provides constraints on the use of assumptions:

— Assumptions are organized into “assumption classes.” The assumptions in
an assumption class represent mutually incompatible modeling alternatives.

— The domain knowledge provides domain-specific constraints among assump-
tions, such as that one assumption requires another.

43

— For each assumption class, the domain knowledge must specify the scenario
conditions under which it is relevant. An adequate scenario model must
include one alternative from each relevant assumption class.

In their modeling task, a question specifies terms (e.g., variables) of interest.
Their objective is to find a minimal set of assumptions that satisfy all the
domain constraints and ensure that the model includes the terms of inter-
est. They accomplish this with a constraint satisfaction algorithm (“dynamic
constraint satisfaction” [37]).

In their framework, unlike ours, most criteria for model adequacy are implicit
in the domain knowledge. Because they have no counterpart of our function
Dv-models, they require the domain knowledge to group influences into coher-
ent bundles (model fragments). Also, our algorithm does not require the do-
main knowledge to provide relevance conditions or domain-specific constraints
among modeling alternatives. Formulating such “modeling knowledge” so that
it ensures an adequate model could be a difficult, error prone task. Moreover,
it is not clear how to encode some constraints, such as adequacy constraint 11
(variables of interest differentially influenced), in their language. In place of
domain-specific modeling knowledge, TRIPEL relies on domain-independent
criteria that specify when a model is adequate. When a model violates these
criteria, the particular violation tells TRIPEL how to extend the model. Re-
moving the need for domain-specific modeling knowledge has been a driving
motivation for our work.

A second approach to model construction is to start with the most detailed
model and repeatedly simplify it. Williams’s method for generating a “critical
abstraction” [54] simplifies the detailed model in three ways: (1) the method
removes influences on which the variables of interest do not causally depend
(such influences are never introduced into a scenario model by our algorithm),
(2) the method algebraically eliminates certain intermediate variables if they
are neither driving variables nor variables of interest, and (3) the method al-
gebraically abstracts quantitative details that are not needed to answer the
question. Yip’s modeling algorithm [56,57] simplifies the detailed model by
removing insignificant terms in the equations (analogous to eliminating in-
significant influences). Nayak’s modeling algorithm [38] repeatedly simplifies
the detailed model by (1) eliminating irrelevant phenomena or (2) replacing
one model fragment with another that represents a “causal approximation” of
it (typically, this corresponds to omitting some of the influences in the original
model fragment).

For complex systems, which include many phenomena that can be described at
many levels of detail, the approach of repeatedly simplifying the most detailed
model is impractical. To find a simplest adequate model of a complex system,
the number of elements that would have to be removed from the most-detailed

44

model is far greater than the number of elements that would have to be added
to an empty model. For this reason, TRIPEL takes the latter approach.

Recent work by Nayak and Joskowicz [39] addresses the impracticality of sim-
plifying a most-detailed model. Their method generates an initial, overly de-
tailed model and then applies Nayak’s algorithm [38] to repeatedly simplify it.
Their hope is that the initial model will be far simpler than the most-detailed
model. Their method requires the domain knowledge to provide rules that
specify the ways in which different components of the physical system can in-
teract (“component interaction heuristics”). Starting with a model consisting
of the driving variables and variables of interest, their algorithm constructs
the initial, overly detailed model by repeatedly adding aspects of the physical
system that can interact with those aspects currently in the model. Unfor-
tunately, when applied to complex systems such as a plant, their approach
will result in a very detailed initial model, because most aspects of a com-
plex system interact either directly or indirectly. To achieve a simpler initial
model, they will require component interaction rules that are sensitive to the
question, the available levels of detail in the system description, and criteria
for determining significance of interactions, just as our adequacy criteria and
model construction algorithm are.

Nayak [38] proves that his model simplification algorithm will reach a sim-
plest adequate model in time polynomial in the size of the system description.
However, his results depend on several assumptions that are inappropriate for
the modeling task we address. First, as discussed in Section 3.2, his simplicity
criteria leave many models incomparable, even though some of these models
are intuitively much simpler than others. His algorithm exploits his simplicity
criteria by using a hill-climbing search. If more of the models were comparable,
as they are under our simplicity criterion, this search strategy would not be
guaranteed to find a simplest adequate model. Second, his hill-climbing search
strategy requires that every phenomenon in the system description has its own
set of modeling alternatives and that the modeler can choose an alternative
for modeling one phenomenon independent of how the other phenomena are
modeled. However, our modeling framework is built around aggregation of
phenomena: one entity can aggregate several other entities, and one influence
can aggregate several other influences. Aggregation hierarchies are crucial to
achieving simple models of complex systems, but they violate Nayak’s assump-
tion. We investigated the possibility of extending Nayak’s approach to handle
aggregation, but it would require assuming that, for every level of description
for a phenomenon, there is a compatible level of description for every related
phenomenon; this requires a level of completeness in the system description
that seems impractical. Finally, his proofs currently place restrictions on the
use of influences in model fragments, and these restrictions would seriously di-

45

minish the advantages of using influences as the building blocks for models. '

TRIPEL’s algorithm for model construction is most similar to the one used by
Iwasaki and Levy [23]. Their algorithm starts with a partial model consisting
of the variables of interest, and it repeatedly extends the model to include
the influences on free variables. There are three major differences between
the two algorithms. First, their algorithm has no method for automatically
choosing exogenous variables. Second, their algorithm has no counterpart of
our function Dv-models; the person encoding the model fragments and the
constraints among assumptions must ensure that each compatible combination
of model fragments yields an adequate set of influences. Finally, like Nayak
[38], their simplicity criteria leave many models incomparable, even though
some of these models are intuitively much simpler than others; if more of
the models were comparable, as they are under our simplicity criterion, their
search strategy would not necessarily find a simplest adequate model.'* In
addition to these primary differences, there are other differences:

— They allow the activity preconditions of a model fragment to include pred-
icates in addition to inequalities among variables. Thus, while TRIPEL’s
algorithm always extends a model by considering the influences on a free
variable, their algorithm can also extend a model to include influences on
these predicates. This is a natural and useful extension of TRIPEL’s ap-
proach.

— In their representation, influences in the system description do not have a
causal direction. The direction of causality is only assigned after the model
is complete, using a causal ordering algorithm [24]. This requires their algo-
rithm to extend models to include all variables that could “possibly influ-
ence” the chosen free variable, which will generally result in larger models
with more irrelevant phenomena. The question of whether influences should
be given a causal direction before model construction begins is still open
[16]. However, our approach has worked well in the plant physiology domain,
and we expect similar success in other domains. Elsewhere [44], we argue
that, regardless of the domain, most influences can be given a causal direc-
tion before model construction, and we show how TRIPEL could be extended
to handle influences for which this is not possible.

— Their algorithm relies on a strong assumption about the system description
(the “library coherence assumption”) to guarantee that the equations in
an adequate scenario model are complete (i.e., have the same number of

10 Nayak (personal communication) believes that the proofs could be extended to
accommodate our use of influences.

HTn fact, despite Levy’s proof [34], their algorithm does not necessarily find a
simplest adequate model even by their own criteria; their algorithm adds more
elements to models than are required by their definition of an adequate model.
To repair the proof, they are currently modifying the algorithm and extending the
adequacy definition (Levy, personal communication).

46

equations as dependent variables). In contrast, our modeling algorithm is
designed to ensure that the models it constructs are complete.

— Their algorithm is guaranteed to run in time polynomial in the size of the
system description [34]. However, that result does not apply to our task
since it relies on the same assumptions as the similar result of Nayak [38]
discussed earlier.

Several people have explored an approach to model construction called “dis-
crepancy-driven refinement” [1,3,52]. After constructing an initial model, the
modeler compares its predictions against the known behavior of the system.
Discrepancies suggest refinements to the model, and the process is repeated
until a sufficiently close match is obtained. We have not used this approach
because we do not assume that the correct behavior is known. However, when
it is, these algorithms are complementary to TRIPEL, because TRIPEL provides
a more sophisticated approach to constructing the initial model than these
algorithms currently use. Thus, TRIPEL could serve as a valuable subroutine
in these algorithms.

5 Empirical Evaluation

5.1 Introduction

There are two important issues that must be empirically evaluated. The first
issue concerns the quality of the models TRIPEL constructs. Section 4.4 proved
that TRIPEL always returns a simplest adequate model when there is one.
However, the proof says nothing about whether the definition of a simplest
adequate model matches our intuitive notions of simplicity and adequacy. The
second issue concerns TRIPEL’s efficiency. For complex systems, the system
description and the space of possible models are very large. TRIPEL will only
be practical if it can cope with such complexity. This section describes our
empirical evaluation of these two issues.

Previous automated modeling programs were tested on handcrafted examples.
That is, the program’s designers built a knowledge base and constructed exam-
ples to demonstrate the program’s capabilities. Our goal was a more rigorous
evaluation that could expose the strengths and weaknesses of our methods.
To accomplish this goal, we evaluated TRIPEL using knowledge and questions
constructed independently by a domain expert.

The knowledge was provided by the Botany Knowledge Base (BKB) [42]. The
BKB is an ideal test bed for evaluating TRIPEL for three reasons. First, its
knowledge is extensive. It currently contains about 200,000 facts covering

47

plant anatomy, physiology, and development. Second, it was independently
developed by a domain expert, whose main objective was a faithful and unbi-
ased representation of botany knowledge. Finally, it was developed to support
a wide range of tasks besides prediction; that is, the BKB encodes fundamen-
tal, textbook knowledge, and the representation of that knowledge was not
chosen to facilitate its use for any single task such as prediction. (Lester and
Porter [31,33,32] describe results on using the BKB to answer other types of
questions.)

Using the BKB, the domain expert constructed a system description for a pro-
totypical plant and its environment (i.e., surrounding soil and atmosphere).
Most elements of the description were generated via automated inference (i.e.,
inheritance and inference rules) from the general principles in the BKB. In
addition, the expert manually added missing elements and repaired erroneous
elements. The resulting system description includes 691 variables and 1507 in-
fluences among them. It includes 47 different spaces (e.g., roots, stems, leaves)
and 172 different pools of substances in those spaces (e.g., oxygen in the
leaves). It includes 313 processes, covering water regulation, metabolic pro-
cesses like photosynthesis and respiration, temperature regulation, and trans-
portation of gases and solutes. Moreover, the variables, influences, spaces,
pools and processes cover many different levels of detail. Thus, this system
description meets the most important requirement for evaluating TRIPEL: it
includes many phenomena at many levels of detail.

Next, we asked the domain expert to construct a large set of prediction ques-
tions concerning a prototypical plant. From these, we randomly chose a small
subset to use for evaluating TRIPEL. For each of these questions, the ex-
pert generated his answer (model and predictions) before looking at TRIPEL’s
model. '? Next, he evaluated TRIPEL’s model for each question by comparing
it to his own. Finally, after he evaluated TRIPEL’s performance on the entire
subset of questions, he presented his assessment and discussed the knowledge
he used to reach his conclusions. Appendix B lists the questions used in the
evaluation.

5.2 Adequacy and Simplicity

The evaluation results show that TRIPEL is very effective at constructing ade-
quate models. In every case where TRIPEL was given a question (including an
appropriate time scale) for which an adequate scenario model exists, it con-
structed an adequate model. That is, according to the domain expert, each

2 0ne question had to be thrown out, because the expert was not sure how to
answer it. Therefore, he could not, with confidence, determine which elements of
the system description were relevant.

48

ABA leaf leaf + ABA

synthesis mesophyll _ * mesophyll transport
rate ABA ABA rate ~
amount concentration . quard
—T T . l . _ cell ABA
- concentration
plant ABA / guard /
turgor inactivati cell ABA
pressure Inactivation amount
rate
plant guard - guard
water cell Kt =—— cell COp

amount amount amount

Fig. 12. The model TRIPEL constructed to answer the question “How does a de-
creasing amount of water in a plant affect the amount of KT in its guard cells?”

of these models includes all the information needed to generate the right pre-
dictions and explanations. For instance, Figure 12 shows the model TRIPEL
constructed to answer the question “How does a decreasing amount of water
in a plant affect the amount of KT in its guard cells?” The model correctly
shows the mechanisms by which decreasing plant water causes increased syn-
thesis of the ABA hormone, and how ABA is transported to the guard cells,
causing potassium ions to leave.

The expert also assessed whether these models include irrelevant information.
Column three of Table 1 shows the number of variables and influences in each
model, and column four shows how many of them the expert judged irrelevant
to answering the corresponding question. In comparison with the size of the
system description (691 variables and 1507 influences), these models are quite
small, and most of the models have few if any irrelevant elements.

The cases where TRIPEL included irrelevant elements are most interesting,
because they suggest opportunities for improving its methods. The raw num-
bers of irrelevant elements are somewhat misleading; one error in TRIPEL’s
judgement typically forces it to include many irrelevant elements. Most of the
irrelevant elements in these models were included because TRIPEL overesti-
mated the significance of an influence or influence path. Most of TRIPEL’s
errors result from three differences between TRIPEL’s criteria for significance
and the expert’s criteria:

— The expert uses a finer gradation of time scales than those in the system
description. For each time scale in the system description (e.g., minutes or
hours), the expert considers a variety of more specific time scales (e.g., a
few minutes versus many minutes). For example, when the expert chooses
“few minutes” as the time scale of interest, he ignores processes operating

49

Time Scale TRIPEL’s Model Irrelevant Elements
of Interest | (variables, influences) | (variables, influences)
1 | instantaneous 6,5 none
i hours 6, 7 none
1 minutes 11, 14 none
v hours 16, 25 5, 8
v minutes 19, 28 6, 9
vi hours 25, 40 none
vii minutes 25, 41 none
viii minutes 36, 60 18, 34
X minutes 41, 70 29, 55
X minutes 82, 147 64, 121
Table 1

The number of irrelevant elements in TRIPEL’s models. Each row represents a ques-
tion. The first column shows the question number (corresponding to Appendix B).
The third column shows the number of variables and influences in the simplest ade-
quate model found by TRIPEL. The last column shows the number of these variables
and influences that are not relevant to answering the question.

on a time scale of many minutes. Because the system description does not
distinguish these two time scales, TRIPEL treats the slower processes as
significant.

— When assessing an influence’s significance, TRIPEL does not try to antici-
pate the behavior of the physical system in the scenario. In contrast, the
expert sometimes determines that an influence is insignificant because it is
significant only under conditions that will not arise in the scenario. For ex-
ample, oxygen is rarely a limiting reactant for respiration; therefore, when
the expert can see that the driving conditions of a question will not cause
oxygen to become limiting, he omits the influence of oxygen on respiration.

— The expert’s criteria for determining whether an influence path is signifi-
cant are more sophisticated than TRIPEL’s. As discussed in Section 3.1.2,
TRIPEL judges an influence path as significant for a given question if each
influence in the path is valid and significant on the time scale of interest.
However, the expert’s reasoning indicates that an influence path might be
significant only on a slower time scale; the expert reasons about extra time
lags due to the length of the path or the spatial distance it covers. There-
fore, TRIPEL sometimes includes feedback loops that the expert recognizes
as insignificant.

30

In summary, TRIPEL’s performance on these ten questions indicates that it is
capable of constructing simple, adequate models despite the complexity of the
system description. The most important area for improvement is in TRIPEL’s
criteria for recognizing insignificant influences and influence paths. TRIPEL is
designed to easily incorporate additional significance criteria without requiring
changes to the model construction algorithm, so the main challenge for future
research is in formulating the criteria. We discuss this issue further in Section 6.

In addition to the ten questions discussed so far, we also tested TRIPEL on four
questions for which the BKB cannot provide an adequate scenario model. This
situation can arise in several ways: (1) the driving conditions of the question
may have no significant effect on the variables of interest (question xii in
Appendix B), (2) the system description may be missing the processes by
which the driving conditions affect the variables of interest (question xi), or
(3) the question may require a model of several phenomena for which the
system description does not provide compatible levels of detail (questions xiii
and xiv). The first case reflects a property of the question, while the other
cases reflect gaps in the system description.

Ideally, TRIPEL should recognize that no adequate scenario model exists for
these four questions. It did correctly report such a conclusion for questions xiii
and xiv. However, for the other two, TRIPEL returned what it believed to be
an adequate model. In each of these two cases, TRIPEL found what it identified
as a significant influence path relating the driving conditions and variables of
interest. In contrast, the expert judged these paths insignificant. As discussed
earlier in this section, the expert’s assessment differs from TRIPEL’s because
he additionally considers cumulative delays along an influence path. Thus, by
extending TRIPEL’s criteria to include such considerations, we can improve its
ability to recognize inadequate models as well as irrelevant phenomena.

5.3 The Importance of a Time Scale of Interest

A time scale of interest is an important source of TRIPEL’s power. TRIPEL
uses the time scale of interest to identify insignificant influences, allowing it
to prune them from its models. Its ability to identify insignificant influences
is also a crucial part of its ability to choose appropriate exogenous variables.
Finally, the time scale of interest allows TRIPEL to use some levels of detail that
are not valid on faster time scales (e.g., influences representing quasi-static
approximations). Clearly, TRIPEL’s ability to recognize insignificant influences
and valid approximations plays an important role in its success.

To quantify the importance, we ran TRIPEL without a time scale of interest on
the ten questions for which an adequate model exists. Without a time scale

51

of interest, all influences are treated as significant, and influences that are
valid only for certain time scales are treated as invalid (forcing TRIPEL to use
more-detailed influences instead). This experiment yielded two observations.
First, the simplest adequate model that TRIPEL found for each question was
significantly larger; on average, each model included 65 more variables than
when TRIPEL exploited a time scale of interest. Second, there were two ques-
tions for which TRIPEL determined that no adequate model exists, even though
it found an adequate model when using a time scale of interest. The reason
is simple: without using a time scale of interest, TRIPEL is forced to model
more phenomena, so it is more likely to need two phenomena for which the
system description does not provide compatible levels of detail. Thus, a time
scale of interest not only results in smaller models, but also makes TRIPEL less
sensitive to gaps in the system description.

5.4 Efficitency

5.4.1 Model Construction

In the theoretical worst case, the model construction algorithm (Find-adequate-
model) has a running time that is exponential in the size of the system de-
scription. In practice, however, it performs quite efficiently. For the expert’s
questions where TRIPEL constructed an adequate model, column 2 of Table 2
shows the amount of time the algorithm took to find a simplest adequate
model.® These numbers are consistent with our informal experience using
TRIPEL.

To appreciate TRIPEL’s efficiency, consider the size of the search space. Any
combination of influences defines a legal scenario model: the model’s depen-
dent variables are the influencees of the influences, and all other variables
referenced by the influences are exogenous. Furthermore, each of these sce-
nario models is different since they include different influences. Thus, since
the system description for a prototypical plant includes over 1500 influences,
the search space includes over 215%° possible scenario models.

TRIPEL searches this space efficiently because it avoids generating most of
these models. By pruning a partial model, TRIPEL avoids generating any of its
extensions. Therefore, one way to measure the efficiency of model construction
is to determine how many partial models TRIPEL explicitly generates and
considers for each question. Find-adequate-model terminates when it finds an
adequate model, so all the partial models that it generates fall in one of three
classes: the simplest adequate model, models that were pruned by monotonic

13 The timing data pertains to Harlequin Lispworks 3.2 Common Lisp running on
a DEC 3000/500 workstation.

52

| Time (seconds) | Models Pruned | Models Left on Agenda
1 .01 1 0
i .04 4
11 A 13 3
v 2 11 9
v .6 14 18
vi 1.3 60 27
vii .8 10 9
viii 11 120 49
X 2 45 14
X 80 740 121
Table 2

The efficiency of model construction. The first column shows the question number.
The second column shows the amount of time TRIPEL spent during model construc-
tion (i.e., the amount of time to execute the function Find-adequate-model). The
third column shows how many partial models TRIPEL generated and pruned with
monotonic constraints. The fourth column shows how many partial models were left
on the agenda when TRIPEL found a simplest adequate model.

constraints, and models left on the agenda at termination. For each question,
columns 3 and 4 of Table 2 show the number of partial models falling in
the latter two classes. The numbers indicate that TRIPEL only generates a
manageable number of partial models, especially compared to the size of the
search space.

5.4.2 System Boundary Analysis

Before calling Find-adequate-model, TRIPEL performs a system boundary anal-
ysis. As described in Section 4.3.1, system boundary analysis consists of two
steps. First, TRIPEL uses a breadth-first search to identify the potentially rel-
evant variables and influences. Second, it uses the Floyd-Warshall transitive
closure algorithm to compute a connectivity matrix. The time required to
perform the system boundary analysis is dominated by the transitive closure
algorithm, which requires ©(r?) time (where n is the number of potentially
relevant variables) [7].

One of the biggest surprises during the empirical evaluation was the number of
potentially relevant variables TRIPEL found for each of the expert’s questions.
The number is nearly independent of the question; it depends primarily on

33

the time scale of interest. When the time scale of interest is seconds or faster,
there are one or two dozen potentially relevant variables, and system bound-
ary analysis finishes in less than one second. However, when the time scale of
interest is minutes, there are always about 450 potentially relevant variables,
and there are always about 650 on a time scale of hours. Since the entire sys-
tem description includes 691 variables, these numbers represent a significant
fraction. Such a high number of potentially relevant variables makes the tran-
sitive closure algorithm expensive; the algorithm requires about 30 minutes
to handle 450 variables and about two hours to handle 650. Even though we
could expect significant improvements from an optimized implementation in
a more efficient language, this situation is unacceptable.

The root of the problem is TRIPEL’s criteria for determining whether an influ-
ence path is significant, as already discussed in Section 5.2. As long as every
influence in a path is valid and significant, TRIPEL considers the path sig-
nificant. When identifying potentially relevant variables and influences, this
criterion causes TRIPEL to include variables that influence the variables of
interest through very long paths. The expert can tell that these paths are in-
significant because he considers cumulative delays along influence paths. Thus,
the same problem that causes TRIPEL to include irrelevant elements in models
causes inefficiency during system boundary analysis.

There is a simple solution to this problem for some cases. Often, a wide variety
of questions can be answered from the same system description; each question
is distinguished by different driving conditions and variables of interest. This
is the case with all the expert’s questions concerning a prototypical plant. It
would also be the case for a chemical processing facility, the human body, or
an ecosystem. Given a system description, TRIPEL can generate a complete
connectivity matrix (i.e., including all variables) for each possible time scale.
Then, to answer a question, system boundary analysis simply selects the ma-
trix corresponding to the time scale of interest. We have implemented this
strategy, and it allows plant physiology questions to be answered very quickly.

Nevertheless, this strategy has limitations. It does not allow TRIPEL to ef-
ficiently answer questions until all necessary connectivity matrices are built.
Moreover, this strategy requires a complete system description, preventing the
possibility of generating only those parts of the system description needed for
model construction [44]. To make system boundary analysis efficient, as well
as to improve other areas of TRIPEL’s performance, we must improve TRIPEL’s
criteria for determining whether an influence path is significant.

o4

6 Future Work

6.1 Modeling Criteria

The empirical results show that TRIPEL is effective at building simple, ade-
quate models of complex systems. Nonetheless, its criteria for making decisions
can be improved.

6.1.1 Significance Criteria

The ability to recognize insignificant influences is an important source of power
in modeling. Currently, TRIPEL uses a time scale of interest to determine
whether an influence is significant. However, its model construction algorithm
does not depend on this particular criterion; TRIPEL can be extended to in-
clude other criteria as well. The evaluation suggests that additional criteria
would make TRIPEL more efficient and would reduce the number of irrelevant
elements in its models.

In addition to time scale, human modelers use other criteria to recognize
insignificant influences. For example, the concentration of a reactant signifi-
cantly influences the rate of a chemical reaction only if the reactant is limiting
(i.e., not available in abundance); if the reactant will not become limiting
in the context of the question, the influence can be ignored. In other cases,
one influence can be ignored because, in the context of the question, it will
be dominated by other influences. Ultimately, TRIPEL should take into ac-
count the time scale of interest, desired accuracy, expected range of behavior,
and dominance relations to determine which influences are significant. Similar
comments apply to the problem of determining whether an influence is valid.

Applied mathematicians have developed formal (albeit heuristic) methods for
recognizing insignificant terms (i.e., influences) in equations [25,35]. These
methods are interesting because they combine the considerations mentioned
above. In these methods, the modeler first “scales” the equations; that is, he
uses scales of interest (e.g., a time scale of interest) to put the equations in
nondimensional form so that the order of magnitude of each term is apparent.
Next, the modeler drops terms whose order of magnitude is very small. Finally,
the modeler solves the equations and checks whether the discarded terms
are in fact negligible. Yip [56,57] has automated this procedure. However,
Yip’s program starts with a complete, detailed set of equations and repeatedly
simplifies them. A program that could use such methods to construct an initial
model would be even more valuable. Ling’s MSG program [36] is a promising
start in this direction.

)

As discussed in Section 5, TRIPEL could also benefit from more sophisticated
criteria for determining whether an influence path is significant. Currently, it
treats an influence path as significant if every influence in the path is valid
and significant on the time scale of interest. The evaluation suggests that
TRIPEL should also consider extra time lags due to the length of the path
or the spatial distance it covers. To maintain efficiency while searching for
significant influence paths, TRIPEL uses graph algorithms (such as the Floyd-
Warshall algorithm) that do not record each path from one variable to another.
However, these algorithms are based on a very general algebraic framework
(closed semirings) [7] that allows them to efficiently summarize the properties
of paths from one variable to another. Like the expert that evaluated TRIPEL,
these algorithms can use properties of paths such as length and spatial distance
in assessing whether one variable significantly influences another. Determining
how these factors should be used in the assessment is an important area for
future work.

6.1.2 Coherence Criteria

Although the explanation and encapsulates relations are typically sufficient for
determining coherence of models, they are not, by themselves, sufficient in
general. For example, a plant can be decomposed into roots, stems, and leaves
or, alternatively, into apoplast (roughly, the network of dead parts of the plant)
and symplast (roughly, the network of living parts of the plant). The pool of
water in the roots and the pool of water in the symplast are not comparable by
the encapsulates relation, since neither encapsulates the other, yet they seem
mutually incoherent. A similar problem arises with influences; two influences
may represent overlapping phenomena, yet neither explains the other.

One solution is to extend these two relations to represent multiple decom-
positions of entities and influences. Given a method for recognizing that two
entities or two influences in a model come from incompatible decompositions,
monotonic constraints can be implemented to prune such models. As stated
earlier, TRIPEL can incorporate new monotonic constraints without any other
changes, so the main challenge is simply to formalize the coherence criteria.

6.2 Simulation

6.2.1 Qualitative Simulation

TRIPEL has been integrated with a qualitative simulation program, which sim-
ulates TRIPEL’s models to generate predictions. Given a question, TRIPEL
constructs a model and passes the model to the Qualitative Process Compiler
(QPC) [14]. QPC converts the model to a set of qualitative differential equations,

56

and it simulates the equations, using the QSIM program [27,29], to generate
the desired predictions. We chose to use a qualitative simulator rather than a
numerical simulator because the BKB does not include quantitative details.

We have run QPC on many of TRIPEL’s models, including those models from
the evaluation that the expert judged adequate. In all our experiments, when
the model is relatively simple (i.e., 15 or fewer variables), QPC predicts a
unique behavior, the one predicted by the expert.!* However, more compli-
cated models result in many possible behaviors; although these models include
all relevant influences, the qualitative information provided by the BKB is not
sufficient to uniquely determine the behavior.

The ambiguity for the larger models can be eliminated without modifying
TRIPEL. One solution is to incorporate quantitative information into the BKB.
QPC and QSIM can exploit quantitative information to reduce ambiguity. We
have been pursuing an alternative approach: the BKB could be extended to
specify those influences that typically dominate other influences, and QPC
could be extended to use this information to reduce ambiguity. We believe
such information will be easy to obtain and encode, and that it will allow QPC
to generate the desired predictions from the plant physiology models TRIPEL
constructs, but more work remains.

6.2.2 Numerical Simulation

The algorithms described in this paper should provide a foundation for build-
ing numerical models as well as qualitative models. The issues addressed in this
paper arise in both cases. However, while TRIPEL has been used to generate
qualitative models, it has not been used to generate numerical models.

There are two possible ways to generate numerical equations from influences.
First, the domain knowledge can provide a numerical equation for each useful
combination of influences on a variable. Forbus and Falkenhainer [17] have
successfully used that approach. Second, each influence can specity how it
combines with other influences, such as whether it is an additive term, a
multiplicative term, or otherwise. After the model is constructed, equations
can be generated using these specifications. Farquhar [13] has successfully used
this approach for limited types of equations, and it appears feasible for other

4 There are two extensions to QPc that help it predict a unique behavior. First,
while there may be multiple completions of the initial state, we modified QpPcC to
automatically choose the initial state closest to equilibrium (i.e., the state with the
most steady variables). This is the most natural interpretation of our prediction
questions in most cases. Second, we allowed QPC to use a QSIM extension devel-
oped by Clancy and Kuipers [5] that abstracts the behavior of chattering variables.
Typically, chatter is irrelevant to answering our questions.

57

types as well.

Thus, although TRIPEL has not been used to construct numerical models,
there are no apparent limitations that prevent such an application. Although
we expect that constructing numerical models will raise some additional issues,
we believe that TRIPEL will provide an appropriate framework for addressing
them.

6.3 Questions that Require Multiple Models

To answer a question, TRIPEL builds only a single scenario model. This ap-
proach works in most cases, aided by QPC’s ability to change the model some-
what during simulation as its influences become active or inactive (as discussed
on page 14). However, some questions require using a combination of models
that differ in more fundamental ways (e.g., models with different time scales).
Most modeling algorithms, including ours, cannot construct such combina-
tions, although Iwasaki [21] has begun to explore the issues.

6.4 Other Domains

TRIPEL has been designed to apply to a wide variety of domains. We have been
careful to avoid representations and methods that lacked such wide applica-
bility. Although we have been influenced by the modeling issues that arise in
plant physiology, we have also been guided by the practices of human model-
ers in ecology, economics, several branches of engineering (chemical, electrical,
and mechanical), and other areas of biology. We have also tried to ensure that
TRIPEL handles the issues addressed by related modeling programs, or at least
that these issues can be addressed as natural extensions of TRIPEL. Nonethe-
less, our only large-scale application of TRIPEL has been in plant physiology,
so our claim that TRIPEL can handle other domains remains untested.

While we believe it can handle many other domains, we expect it to handle
some more naturally than others. In particular, its representation is especially
suitable for reasoning about pools of substance or energy and the processes
that regulate them. Thus, the domains of ecology, human physiology, and
chemical engineering seem especially promising as a next step.

38

7 Conclusions

This paper has described TRIPEL, a compositional modeling program for an-
swering prediction questions about complex systems. Unlike previous modeling
programs, TRIPEL constructs models from simple building blocks: individual
variables and influences. Although this approach gives TRIPEL considerable
flexibility in constructing models, the program must address modeling issues
that are solved implicitly in the domain knowledge required by previous pro-
grams. TRIPEL addresses these issues with a set of domain-independent, declar-
ative constraints that define an adequate model. In these constraints, variables
and influences play a central role in every modeling decision. Based on these
constraints, TRIPEL constructs a simplest adequate model for any given pre-
diction question.

We evaluated TRIPEL in the domain of plant physiology using questions and
domain knowledge constructed independently by an expert. The evaluation
shows that TRIPEL can construct simple, adequate models of a truly complex
system. More importantly, the evaluation suggests the most important area
for future research: incorporating more sophisticated criteria for determining
whether one variable significantly influences another. Because TRIPEL is de-
signed to be extensible, sophistication can be added to this and other areas
without requiring other changes to the program.

8 Acknowledgments

The following people provided valuable comments on this work: Giorgio Bra-
jnik, Dan Clancy, Peter Clark, Brian Falkenhainer, Yumi Iwasaki, Bert Kay,
Ben Kuipers, James Lester, Alon Levy, Rich Mallory, Ray Mooney, and Gor-
don Novak. We also thank Pandu Nayak for helpful discussions on his work.
Our work benefited from several tools built by others, including the Qualita-
tive Process Compiler developed by Adam Farquhar and Jimi Crawford, the
KM system developed by Erik Eilerts, and several QSIM extensions developed
by Dan Clancy. We especially appreciate the help of our domain expert, Art
Souther.

Support for this research was provided by grants from Digital Equipment Cor-
poration and the National Science Foundation (IRI-9120310) and a contract
from the Air Force Office of Scientific Research (F49620-93-1-0239). The re-

search was conducted at the University of Texas at Austin.

39

A Proofs

A.1 Monotonic Constraints

Lemma 1 Adequacy constraints 3 and 4 are monotonic constraints.

Proof If an exogenous variable v in a partial model m violates adequacy con-
straint 4, there must be an influence path in the system description, leading to
v from a driving variable of the question, consisting of influences that are each
valid and significant for the given question (by definition of the constraint).
Since every extension of m contains v as an exogenous variable (by definition
of an extension), every extension violates the constraint as well. Similarly, if v
violates adequacy constraint 3, there must be an influence path in the system
description, leading to v from another variable v’ in m, consisting of influences
that are each valid and significant for the given question (by definition of the
constraint). Since every extension of m also contains v’ and contains v as an
exogenous variable (by definition of an extension), every extension violates
the constraint as well. O

Lemma 2 Adequacy constraints 5, 6, 7, and 8 are monotonic constraints.

Proof Any influence in a partial model is also in each of its extensions
(by definition of an extension). Therefore, if an influence in a partial model
violates constraint 6, or a pair of influences violates constraint 5 or 8, the
constraint will also be violated in every extension. Similarly, if the influences
on a dependent variable in a partial model violate constraint 7, the constraint
will also be violated in every extension, because an extension cannot change
the influences on a partial model’s dependent variables (by definition of an
extension). O

Lemma 3 Adequacy constraints 9 and 10 are monotonic constraints.

Proof As discussed in Section 3.1.4, the entities in a partial model are de-
termined by the model’s variables. Therefore, every entity in a partial model
is also in each of the model’s extensions, since the variables in each extension
are a superset of those in the partial model (by definition of an extension).
Thus, if a partial model includes entities that violate one of these constraints,
every extension will also violate the constraint. O

Lemma 4 For a given system description and prediction question, let M be
a scenario model that satisfies adequacy constraints 1 (include variables of

60

interest) and 2 (include variables in activity preconditions). If M has no free

variables and it violates adequacy constraint 11, every extension of M also

violates the constraint.

Proof Assume that E is an extension of M that satisfies constraint 11. We
show by contradiction that such an extension cannot exist.

(i)

(i)

(iii)

M violates constraint 11 (given). Therefore, for some variable of interest
v, there is no differential influence path in M, leading to it from a driving
variable of the question, such that every influence in the path is valid and
significant for the given question.

E satisfies adequacy constraint 11 (by assumption). Therefore, there is a
differential influence path in E from a driving variable to v, consisting of
influences that are valid and significant for the given question.

Let 1 be the last influence in this influence path that is not in M. There
must be such an influence because if every influence in the path were
in M, all the variables in the path would also be in M (since M satisfies
adequacy constraint 2), and hence the influence path would be in M,
which contradicts step 1.

The influencee of | must be in M. If i is the last influence in the path,
its influencee is the variable of interest v. Since M satisfies adequacy
constraint 1, v is in M. If i is not the last influence, the next influence in
the path is in M (by definition of i), and so i’s influencee is in M (since
M satisfies adequacy constraint 2).

The influencee of 1 cannot be an exogenous variable in M. If it were, it
would also be exogenous in E (by definition of an extension). But then E
could not include any influences on it (by definition of a partial model),
and hence i could not be in E.

The influencee of 1 cannot be a dependent variable in M. An extension
cannot change the influences on a partial model’s dependent variables
(by definition of an extension), so i could be in E only if it was also in M
(which contradicts the definition of i).

Since the influencee of i cannot be dependent or exogenous in M, and since
M has no free variables (given), the influencee of i cannot be a variable in
M. This contradicts step iv. That step follows from the assumption that
E satisfies adequacy constraint 11. Therefore, that assumption is false.

61

A.2 Proof of Theorem 1

The “only if” follows directly from the definition of the connectivity matrix. To
prove the “if,” suppose that p is the influence path by which i (the ith variable)
significantly influences j (the jth variable). If p consists only of variables and
influences that are potentially relevant, cell (i,j) will contain a 1 (by definition
of the connectivity matrix). Otherwise, let e be the last influence in the path
that is not potentially relevant. There must be such an influence because
if every influence in the path were potentially relevant, all the variables in
the path would also be potentially relevant (by definition of the potentially
relevant variables and influences).

The influencee of e must be potentially relevant. If e is the last influence in
the path, its influencee is j, which is in the connectivity matrix and hence is
potentially relevant. Otherwise, if e is not the last influence, the next influ-
ence in the path is potentially relevant (by definition of e), so e’s influencee
is potentially relevant (by definition of the potentially relevant variables and
influences). But since e is a valid and significant influence on a potentially
relevant variable, it must be potentially relevant (by definition of the poten-
tially relevant variables and influences). This contradicts the definition of e.
Therefore, p must consist only of variables and influences that are potentially
relevant, and the theorem must hold.

A.3 Proof of Theorem 4

A.3.1 Overview

This section proves that Find-adequate-model is admissible; that is, it is guar-
anteed to return a simplest adequate scenario model whenever an adequate
scenario model exists. To prove this, we view the algorithm as repeatedly
eliminating scenario models from consideration until only a simplest adequate
scenario model remains. Conceptually, when the algorithm begins, the entire
set of legal partial models for the given system description (including all legal
scenario models) is under consideration. As earlier, we call the set of partial
models under consideration the “consideration set.” Each step of the algo-
rithm implicitly eliminates some elements of the consideration set. However,
Find-adequate-model never eliminates a scenario model unless either (1) the
model is inadequate for the question or (2) if the model is adequate, there is
an adequate scenario model still under consideration that is at least as simple.
The remainder of this section proves that Find-adequate-model is admissible
by proving that it follows this strategy.

62

A.3.2 Auziliary Lemmas

The proof of Theorem 4 requires several lemmas. The first two lemmas address
the case where the System Boundary Selector says that all remaining variables
in a partial model can be exogenous. In this case, Extend-model marks the
variables exogenous and returns the resulting scenario model. This effectively
eliminates from consideration any extension in which one of these variables is
dependent. These two lemmas justify this approach; the first lemma simply
establishes one of the antecedents of the second lemma.

Lemma 5 Every partial model that Find-adequate-model passes to Extend-
model satisfies all adequacy constraints except perhaps adequacy constraint 11
(variables of interest differentially influenced).

Proof Adequacy constraint 1 (include variables of interest) is satisfied be-
cause the partial model is an extension of the initial partial model. Adequacy
constraint 2 (include variables in activity preconditions) is satisfied because,
whenever Extend-model adds an influence to a partial model, it also adds
any variables appearing in the influence’s activity preconditions. Adequacy
constraints 3 (exogenous variables independent of model) and 4 (exogenous
variables independent of question) are satisfied because no model passed to
Extend-model has any exogenous variables. Adequacy constraints 5 (influences
homogeneous), 6 (influences valid), 7 (influences complete), and 8 (influences
not redundant) are satisfied because (1) Dv-models only returns influences
that satisfy these constraints and (2) if the influences on a variable in a par-
tial model satisfy these constraints, they will in any extension as well (i.e.,
the constraints are independent of the rest of the model). Finally, adequacy
constraints 9 (entities coherent) and 10 (entities compatible with driving vari-
ables) are satisfied because a partial model is only added to the agenda if it
satisfies these constraints. O

Lemma 6 Let P be a partial model for a given system description, let Q be
a prediction question, and suppose P satisfies all adequacy constraints except
perhaps adequacy constraint 11 (variables of interest differentially influenced).
Suppose that all free variables in P can be treated as exogenous (i.e., they
satisfy adequacy constraints 3 and 4). Let E be the scenario model that results
from making each free variable in P an exogenous variable. Then there is an
extension of P that is a simplest adequate scenario model for Q only if E is
a simplest adequate scenario model for Q.

Proof The extension E has the same number of variables as the partial model
P, so E is at least as simple as any other extension of P (by the definition of
an extension). Therefore, if E is adequate and some other extension of P is

63

a simplest adequate scenario model, E must be a simplest adequate scenario
model as well. We complete the proof by showing that if E is not adequate,
no other extension of P is adequate.

(i)

a

E must satisfy all adequacy constraints except perhaps adequacy con-
straint 11 because (a) P satisfies all these constraints (given), (b) the
new exogenous variables satisfy adequacy constraints 3 and 4 (given),
and (c) E has the same variables and influences as P.

Thus, if E is inadequate, it violates adequacy constraint 11. That is, for
some variable of interest v, there is no differential influence path in E,
leading to it from a driving variable of the question, such that every
influence in the path is valid and significant on the time scale of interest.
Assume there is an extension E" of P that is an adequate scenario model.
Then E’ satisfies adequacy constraint 11, and hence there is a differential
influence path in E’ from a driving variable to v, consisting of influences
that are valid and significant on the time scale of interest.

Let 1 be the last influence in this influence path that is not in E. There
must be such an influence because if every influence in the path were
in E, all the variables in the path would also be in E (since E satisfies
adequacy constraint 2), and hence the influence path would be in E, which
contradicts step ii.

The influencee of 1 must be in E. If 1 is the last influence in the path,
its influencee is the variable of interest v. If not, the next influence in
the path is in E (by definition of i), and so i’s influencee is in E (since E
satisfies adequacy constraint 2).

The influencee of i must be a free variable in P. Otherwise, no extension
of P can add an influence on it, and | would have to be in both P and E.
However, all the free variables in P can be exogenous (given), so there is
no influence path from a driving variable to any of these free variables
consisting of influences that are valid and significant on the time scale of
interest.

Thus, the influence path implied by the assumption in step iii cannot
exist, so E" cannot be an adequate scenario model. Thus, if E is not an
adequate scenario model, no other extension of P is an adequate scenario
model.

The next two lemmas justify the function Dv-models. Given a partial model
with a variable v that must be dependent, Extend-model only considers those
sets of influences on v returned by Dv-models, thereby implicitly pruning any
extension with a different set of influences on v. To justify pruning these

extensions, the first lemma ensures that every other set of influences is either
inadequate or simply adds some insignificant influences, and the second lemma
ensures that those sets containing insignificant influences can be discarded.

64

Lemma 7 For a given system description and prediction question, if a set of
influences on a variable is not returned by the function Dv-models, the set is
either inadequate (i.e., violates adequacy constraint 5, 6, 7 or 8) or simply
adds insignificant influences to a set that is returned.

Proof Stepiin the function Dv-models generates every complete set of influ-
ences, and step i1 discards any insignificant influences from these sets. A set
of influences will not make it past these steps in two cases: (1) the set is not
approximately complete, or (2) the set is identical to one that makes it past
these steps except it includes some insignificant influences. In the first case,
the set violates adequacy constraint 7 (influences complete). The second case
satisfies the lemma because the remaining steps of the algorithm only discard
inadequate sets of influences: Step iii only discards sets that violate adequacy
constraint 6, and step iv only discards sets that violate adequacy constraint 8.
O

Lemma 8 Given a system description and prediction question, let M be a
partial model with a variable v. Suppose the influences on v in M include
some that are insignificant for the question. Let M’ be a partial model that
is the same as M except it does not include the insignificant influences on v.
Then if M or one of its extensions is an adequate scenario model, either M’
or one of its extensions is also an adequate scenario model and is at least as
simple.

Proof If M or one if its extensions is an adequate scenario model, call that
model A. We show by construction that M" or one of its extensions is also an
adequate scenario model and is at least as simple. Construct A’ from A by
simply removing the insignificant influences on v. If A = M, then A" = M".
Otherwise, A’ is an extension of M'. A" is at least as simple as A because it has
the same variables. Furthermore, A" is an adequate scenario model because
it contains no free variables (since A has none) and it satisfies all adequacy
constraints:

— Constraint 7 is satisfied because A’ contains all influences from A except
insignificant ones.

— Constraint 11 is satisfied for the following reasons. A is adequate, so it
satisfies this constraint. Therefore, for every variable of interest, there is an
influence path in A leading from a driving variable to the variable of interest,
and every influence in the path is valid and significant for the question. A’
includes all the variables and influences in A except some influences that
are insignificant, so A" must include every such influence path that A does,
and hence A" must satisfy adequacy constraint 11.

65

— All the other constraints are satisfied because the exogenous variables in A
and A" are the same, the dependent variables in A and A’ are the same, and
the influences in A" are a subset of those in A.

A.3.3 Key Lemma

We can now prove the key lemma in the proof of Theorem 4. When Find-
adequate-model is invoked, we define the consideration set to be the entire set
of legal partial models (including all legal scenario models) for the given sys-
tem description. As Find-adequate-model repeatedly eliminates elements of the
consideration set, this lemma shows that it always retains a simplest adequate
scenario model if one exists.

Lemma 9 For a given system description and prediction question, Find-adequate-
model never prunes a scenario model from the consideration set unless either
(1) the model is inadequate or (2) there is an adequate scenario model still in
the consideration set that is at least as simple.

Proof There are only seven ways in which Find-adequate-model prunes ele-
ments of the consideration set, and each satisfies the lemma:

(i) (Initializing the Agenda) Initially, the agenda contains a partial model
consisting of the variables of interest, each a free variable. At that point,
the consideration set has been reduced to that partial model and all
of its extensions, implicitly eliminating those scenario models that do
not contain the variables of interest. However, none of the eliminated
models is adequate, because each violates adequacy constraint 1 (include
variables of interest).

(ii) (Monotonic Constraints) If a partial model violates a monotonic con-
straint, it is not added to the agenda, thereby pruning it and its extensions
from the consideration set. The partial model itself is inadequate because
it violates the constraint. By definition, a monotonic constraint, when vi-
olated for a partial model, is violated for any extension of that model.
Thus, each extension is inadequate for the question as well.

(iii) (Free Variable Cannot Be Exogenous) When the System Bound-
ary Selector says that a variable in a partial model must be dependent,
Extend-model effectively prunes any extension in which the variable is
exogenous. By definition of the System Boundary Selector, the partial
model would violate adequacy constraint 3 or adequacy constraint 4 if
the variable were exogenous. Since these two constraints are monotonic
(Lemma 1), any extension of the partial model in which the variable is

66

(iv)

(vi)

(vii)

exogenous will also be inadequate.

(All Free Variables Can Be Exogenous) When the System Bound-
ary Selector says that all remaining variables in a partial model can be
exogenous, Extend-model marks the variables exogenous and returns the
resulting scenario model. This effectively prunes any extension in which
one of these variables is dependent. If any of the pruned extensions is
an adequate scenario model, Lemmas 5 and 6 ensure that the scenario
model returned by Extend-model is also, and it is at least as simple.
(Influences on a Dependent Variable) Given a partial model with
a variable v that must be dependent, Extend-model only considers those
sets of influences on v returned by Dv-models, thereby implicitly pruning
any extension with a different set of influences on v. Lemmas 7 and 8
ensure that these extensions can be pruned without violating the current
lemma.

(Variables in Activity Preconditions) For each partial model to be
returned, Extend-model adds variables that are required by adequacy con-
straint 2 (include variables in activity preconditions). This effectively
prunes those extensions without the variables. However, all the influ-
ences in the partial model will also be in each extension (by definition
of an extension). Thus, if an extension lacks some variable appearing in
the activity preconditions of those influences, the extension will violate
adequacy constraint 2. Therefore, no such extension can be an adequate
scenario model.

(Returning the First Adequate Model) Find-adequate-model returns
the first adequate scenario model M that it finds, effectively pruning the
remainder of the consideration set. Since it always removes the simplest
partial model from the agenda, no other model on the agenda can be
simpler than M. The definition of an extension ensures that M is as simple
as any of its extensions and that every model on the agenda is as simple
as any of their extensions, so no model in the consideration set is simpler
than M. Thus, since M is an adequate scenario model, no other scenario
model in the consideration set can be a simplest adequate model unless
M is also.

A.3.4 Main Proof

Finally, building on the previous lemmas, we can prove Theorem 4: Given «
system description and a prediction question for which some scenario model is
adequate, Find-adequate-model will return a simplest adequate scenario model.

Proof (of Theorem 4) Lemma 9 ensures that Find-adequate-model never

67

prunes an adequate scenario model unless another adequate scenario model,
at least as simple, remains in the consideration set. If there is an adequate
scenario model, then the lemma ensures that the consideration set cannot
become empty. Furthermore, if there is an adequate scenario model and the
consideration set is reduced to a single adequate scenario model, that model
must be a simplest adequate scenario model.

Theorem 3 ensures that Find-adequate-model eventually terminates. Upon ter-
mination, either the agenda (and hence consideration set) is empty or the
consideration set consists of a single adequate scenario model (which is re-
turned). If there is an adequate scenario model for the question, the previous
paragraph ensures that the first case cannot arise, and it ensures that the
model in the second case must be a simplest adequate scenario model. O

B Evaluation Details

This appendix lists all the plant physiology questions, constructed by the
expert, on which TRIPEL was formally evaluated (as described in Section 5).
Most of the models that TRIPEL constructed for these questions can be found
elsewhere [44].

(i) How would an increasing amount of CO4 in a plant’s leaves affect the rate
of photosynthesis in the leaves?
(ii) How does increasing soil water potential affect a plant’s water distribution
rate?
(iii) How does a decreasing amount of water in a plant affect the amount of
KT in its guard cells?
(iv) What happens to a plant’s water potential as the temperature of the
environment decreases?
(v) How would an increasing rate of solar irradiation to a plant’s leaves affect
the temperature of the leaves?
(vi) What happens to turgor pressure in a plant’s leaves as root water ab-
sorption decreases?
(vii) How would a decreasing amount of water in the earth’s atmosphere affect
a plant’s photosynthesis rate?
(viii) How does an increasing level of ABA in a plant’s leaves affect transpiration
from the leaves?
(ix) How does increasing water potential in a plant’s leaves affect the rate of
KT efflux from the guard cells in the leaves?
(x) How does an increasing amount of ABA in the guard cells of a plant’s

leaves affect osmosis to the leaves” accessory cells from the leaves’ guard
cells?

63

(xi) How does an increasing rate of diffusion of heat from the stems of a plant
to the atmosphere surrounding the stems affect the water potential of the
symplast in the stems?

(xii) How does a decreasing rate of evaporation from a plant’s leaves affect the
amount of COj in the atmosphere surrounding the leaves?

(xiii) How does a decreasing rate of photosynthesis in a plant’s shoot system
affect the pressure potential in the phloem of its leaves?

(xiv) As the amount of water in a plant’s cell walls increases, what happens to
the plant’s turgor pressure?

References

[1] S. Addanki, R. Cremonini, and J.S. Penberthy. Graphs of models. Artificial
Intelligence, 51:145-177, 1991.

[2] T.F.H. Allen and T.B. Starr. Hierarchy. University of Chicago Press, Chicago,
1982.

[3] Jonathan Amsterdam. Automated Qualitative Modeling of Dynamic Physical
Systems. PhD thesis, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, 1993. Technical Report 1412.

[4] Catherine A. Catino. Automated Modeling of Chemical Plants with Application
to Hazard and Operability Studies. PhD thesis, University of Pennsylvania,
1993.

[5] D.J. Clancy and B.J. Kuipers. Behavior abstraction for tractable simulation. In
The Seventh International Workshop on Qualitative Reasoning about Physical
Systems, pages 5764, Orcas Island, Washington, 1993.

[6] John W. Collins and Kenneth D. Forbus. Reasoning about fluids via
molecular collections. In Proceedings of the Sizth National Conference on
Artificial Intelligence (AAAI-87), pages 590-595, Los Altos, CA, 1987. Morgan
Kaufmann.

[7] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. McGraw-Hill, New York, 1989.

[8] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial
Intelligence, 24:347-410, 1984.

[9] Thomas Ellman, John Keane, and Mark Schwabacher. Intelligent model
selection for hillclimbing search in computer-aided design. In Proceedings of
the Eleventh National Conference on Artificial Intelligence (AAAI-93), pages
594-599, Menlo Park, CA, 1993. AAAI Press.

[10] Brian Falkenhainer. Modeling without amnesia: Making experience-sanctioned
approximations. In The Sizth International Workshop on Qualitative Reasoning

69

about Physical Systems, pages 44-55, Edinburgh, Scotland, 1992. Heriot-Watt
University.

[11] Brian Falkenhainer. Ideal physical systems. In Proceedings of the Eleventh
National Conference on Artificial Intelligence (AAAI-93), pages 600-605,
Menlo Park, CA, 1993. AAAI Press.

[12] Brian Falkenhainer and Kenneth D. Forbus. Compositional modeling: Finding
the right model for the job. Artificial Intelligence, 51:95-143, 1991.

[13] Adam Farquhar. Automated Modeling of Physical Systems in the Presence
of Incomplete Knowledge. PhD thesis, Department of Computer Science,
University of Texas at Austin, 1993. Technical Report AI93-207.

[14] Adam Farquhar. A qualitative physics compiler. In Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94), pages 1168-1174,
Menlo Park, CA, 1994. AAAI Press.

[15] Kenneth D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85—
168, 1984.

[16] Kenneth D. Forbus. Qualitative physics: Past, present, and future. In Daniel S.
Weld and Johan de Kleer, editors, Readings in Qualitative Reasoning about
Physical Systems, pages 11-39. Morgan Kaufmann, San Mateo, CA, 1990.

[17] Kenneth D. Forbus and Brian Falkenhainer. Self-explanatory simulations: An
integration of qualitative and quantitative knowledge. In Proceedings of the
Fighth National Conference on Artificial Intelligence (AAAI-90), pages 380—
387, Menlo Park, CA, 1990. AAAT Press.

[18] Jay W. Forrester. Principles of Systems. Wright-Allen Press, Cambridge, MA,
1968.

[19] H.J. Gold. Mathematical Modeling of Biological Systems. John Wiley and Sons,
New York, 1977.

[20] Arthur C. Guyton. Textbook of Medical Physiology. W.B. Saunders,
Philadelphia, 1981.

[21] Yumi Iwasaki. Reasoning with multiple abstraction models. In Boi Faltings
and Peter Struss, editors, Recent Advances in Qualitative Physics, pages 67-82.
MIT Press, Cambridge, 1992.

[22] Yumi Iwasaki and Inderpal Bhandari. Formal basis for commonsense
abstraction of dynamic systems. In Proceedings of the Seventh National
Conference on Artificial Intelligence (AAAI-88), pages 307-312, San Mateo,
CA, 1988. Morgan Kaufmann.

[23] Yumi Iwasaki and Alon Y. Levy. Automated model selection for simulation.
In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI-94), pages 1183-1190, Menlo Park, CA, 1994. AAAT Press.

70

[24] Yumi Iwasaki and Herbert A. Simon. Causality and model abstraction.
Artificial Intelligence, 67(1):143-194, May 1994.

[25] Stephen J. Kline. Similitude and Approzimation Theory. McGraw-Hill, New
York, 1965.

[26] P.V. Kokotovic, R.E. O’Malley, Jr., and P. Sannuti. Singular perturbations
and order reduction in control theory — an overview. Automatica, 12:123-132,
1976.

[27] Benjamin Kuipers. Qualitative simulation. Artificial Intelligence, 29:289-338,
1986.

[28] Benjamin Kuipers. Abstraction by time scale in qualitative simulation. In
Proceedings of the Sizth National Conference on Artificial Intelligence (AAAI-
87), pages 621-625, Los Altos, CA, 1987. Morgan Kaufmann.

[29] Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with
Incomplete Knowledge. MIT Press, Cambridge, MA, 1994.

[30] S.A. Lapp and G.J. Powers. Computer-aided synthesis of fault trees. IFFF
Transactions on Reliability, April 1977.

[31] James Lester. Generating Natural Language Fxplanations from Large-Scale
Knowledge Bases. PhD thesis, Department of Computer Science, University of
Texas at Austin, 1994.

[32] James Lester and Bruce Porter. Developing and empirically evaluating robust
explanation generators: The knight experiments. Computational Linguistics.
Forthcoming.

[33] James Lester and Bruce Porter. Scaling up explanation generation: Large-
scale knowledge bases and empirical studies. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), pages 416-423,
Menlo Park, CA, 1996. AAAI Press/MIT Press.

[34] Alon Y. Levy. Irrelevance Reasoning in Knowledge Based Systems. PhD thesis,
Department of Computer Science, Stanford University, July 1993. Report No.
STAN-CS-93-1482.

[35] C.C. Lin and L.A. Segal. Mathematics Applied to Deterministic Problems in
the Natural Sciences. Macmillan, New York, 1974.

[36] Sui-ky Ringo Ling. Using a domain theory to guide automated modeling of
complex physical phenomena. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI-95), pages 1766-1772, San
Mateo, CA, 1995. Morgan Kaufmann.

[37] Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction
problems. In Proceedings of the Fighth National Conference on Artificial
Intelligence (AAAI-90), pages 25-32, Menlo Park, 1990. AAAI Press.

71

[38] P. Pandurang Nayak. Causal approximations. Artificial Intelligence, 70:277—
334, 1994.

[39] P. Pandurang Nayak and Leo Joskowicz. Efficient compositional modeling for
generating causal explanations. Artificial Intelligence, 83:193-227, 1996.

[40] R.V. O’Neill, D.L. DeAngelis, J.B. Waide, and T.F.H. Allen. A Hierarchical
Concept of Ecosystems. Princeton University Press, Princeton, NJ, 1986.

[41] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, Reading, MA, 1984.

[42] B. Porter, J. Lester, K. Murray, K. Pittman, A. Souther, L. Acker, and T. Jones.
AT research in the context of a multifunctional knowledge base: The botany
knowledge base project. Technical Report AI88-88, University of Texas at
Austin, 1988.

[43] C.J. Puccia and R. Levins. Qualitative Modeling of Complex Systems. Harvard
University Press, Cambridge, MA, 1985.

[44] Jeff Rickel. Automated Modeling of Complex Systems to Answer Prediction
Questions. PhD thesis, Department of Computer Science, University of Texas
at Austin, May 1995. Technical Report AI95-234.

[45] Jeff Rickel and Bruce Porter. Automated modeling for answering prediction
questions: Selecting the time scale and system boundary. In Proceedings of
the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages
1191-1198, Menlo Park, CA, 1994. AAAT Press.

[46] Nancy Roberts, David Andersen, Ralph Deal, Michael Garet, and William
Shaffer. Introduction to Computer Simulation. Addison-Wesley, Reading, MA,
1983.

[47] T. Rosswall, R.G. Woodmansee, and P.G. Risser, editors. Scales and Global
Change: Spatial and Temporal Variability in Biospheric Processes. John Wiley
and Sons, New York, 1988.

[48] V.R. Saksena, J. O’Reilly, and P.V. Kokotovic. Singular perturbations
and time-scale methods in control theory: Survey 1976-1983. Automatica,
20(3):273-293, 1984.

[49] L.A. Segal, editor. Mathematical Models in Molecular and Cellular Biology,
chapter 3. Cambridge University Press, Cambridge, 1980.

[50] Mark Shirley and Brian Falkenhainer. Explicit reasoning about accuracy for
approximating physical systems. In T. Ellman, R. Keller, and J. Mostow,
editors, Working Notes of the AAAI Workshop on Automatic Generation of
Approximations and Abstractions, pages 153-162, 1990.

[61] H.A. Simon and A. Ando. Aggregation of variables in dynamic systems.
Econometrica, 29:111-138, 1961.

72

[62] Daniel S. Weld. Reasoning about model accuracy. Artificial Intelligence,
56:255-300, 1992.

[53] Daniel S. Weld and Johan de Kleer, editors. Readings in Qualitative Reasoning
about Physical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

[54] Brian C. Williams. Critical abstraction: Generating simplest models for causal
explanation. In The Fifth International Workshop on Qualitative Reasoning
about Physical Systems, pages 77-92, Austin, TX, 1991. University of Texas at
Austin.

[55] Brian C. Williams and Olivier Raiman. Decompositional modeling through
caricatural reasoning. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94), pages 1199-1204, Menlo Park, CA, 1994.
AAAT Press.

[56] Kenneth Man-kam Yip. Model simplification by asymptotic order of magnitude
reasoning. In Proceedings of the Eleventh National Conference on Artificial

Intelligence (AAAI-93), pages 634-641, Menlo Park, CA, 1993. AAAI Press.

[57] Kenneth Man-kam Yip. Model simplification by asymptotic order of magnitude
reasoning. Artificial Intelligence, 80:309-348, 1996.

73

