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and to usefully interleave reuse with from-scratch problem solving. Fi-nally, this research describes a fundamental tradeo� between e�ciencyand solution quality, and proposes a derivational analogy algorithmthat can improve its adaptation strategy with experience.1 The derivational analogy techniqueDerivational analogy is a technique for reusing problem solving experienceto improve problem solving performance. Since its proposal [Car83, Car86],it has been applied to a number of domains, including circuit design, matrixmanipulation, non-linear planning, and more recently, computer programtransformations, DC circuit problem solving, and the design of human-computer interfaces [Mos89, MB87, MF89, HA87, Kam89a, CV88, Bax90,HL90, Blu90a]. While this diversity shows that derivational analogy iswidely applicable, it makes it di�cult to determine how and why deriva-tional analogy works.The goal of the research described here is to examine derivational analogyin two ways. First, the research analyzes the fundamental structure of theproblem addressed by derivational analogy and the inherent limitations inthe technique. Second, the research empirically evaluates the relative successof various approaches to the derivational analogy technique by implementingexisting and original derivational analogy techniques and testing them ona number of problems in the same domain. Although there are a numberof di�cult issues that a derivational analogy algorithm must address, thispaper concentrates on the problem of reducing the di�erences between priorproblem solving experiences and new problems to facilitate reuse.In principle, the derivational analogy technique of recording and reusingexperience can be applied to any kind of problem. However, in practicederivational analogy has been applied to problems in design, search-basedheuristic problem solving, and hierarchical non-linear planning. Problemsolving in these three areas typically proceeds by top-down decompositionof the problem combined with instantiation of atomic solution steps. Designreuse is representative of the domain areas that derivational analogy hasbeen applied to, and following Mostow [Mos89], the two terms are usedinterchangeably.A derivational analogy algorithm proceeds through four phases: record-ing an experience, retrieving a recorded experience1 when faced with a new1Terms commonly used in this paper appear in italics when they are �rst introduced.2



Derivational Analogy:Record one or more experiences;Retrieve a recorded experience;Reuse the retrieved experience on a new problem;Improve Reuse;Retrieve Experience:Select recorded experience from memory;Establish correspondences between recorded experience and new problem;Evaluate correspondences;If necessary, select a di�erent recorded experienceor establish new correspondences;Return recorded experience and correspondences;Reuse Experience:While there are unaddressed goals left in the new problemand unused goals left in the recorded experiencebegin1. Select goal(s)Choose next goal to be reused from the ordered listof goals in the recorded experience;Use the recorded goal ordering information to attempt to selecta corresponding goal (or goals) from the new problem;2. Address goal(s)Determine which of the goal (or goals) selected fromthe new problem can be addressed with therecorded problem solving information;If an appropriate goal (or goals) is (are) selected andthe recorded problem solving information can be applied thenThe problem solving information is applied and reuse succeeds; elseAdapt the recorded experience and/or the new problemso that reuse can continue; If adaptation fails,fall back on a from-scratch problem solver.�end whileImprove Reuse:Evaluate solution quality and e�ciency;Record evaluation on both the recorded experience and the new problem;Alter retrieval and/or reuse strategies based on evaluation;Figure 1: The skeletal derivational analogy algorithm.3



problem, reusing the recorded experience to solve the new problem, and eval-uating and improving the performance of the retrieval and reuse phases (see�gure 1).First, a derivational analogy algorithm must have a record of some prob-lem solving experience. The simplest way to produce such a record is to havea knowledge engineer construct it. A more automatic way is to have thealgorithm record the actions of a person solving solving a problem. Alter-natively, instead of working with a person, a derivational analogy algorithmmight record the actions taken by a from-scratch problem solver (e.g., anon-linear planner [Kam89b, Vel90], a system for solving circuit analysisproblems [HL90], or an automatic human-interface design system [Blu90a]).Second, a derivational analogy algorithm must select one of its recordedexperiences based on features of the new problem. The recording, index-ing, and retrieval of experience is a di�cult problem, and some prelim-inary solutions have been suggested in the derivational analogy research[BH91, Kam90b, Vel90] and in the knowledge acquisition and case-basedreasoning literature [PBH90, Ham90, Kol87].Third, the derivational analogy algorithm must adapt the selected re-corded experience for reuse on a new problem that is similar, but notidentical, to the original problem. This ability to adapt to di�erences be-tween a recorded experience and a new problem during the course of prob-lem solving is what distinguishes derivational analogy from other methodsfor reusing recorded experience. Compared to derivational analogy, mostother methods concentrate on reusing groups of steps without adaptation[LRN86, MKKC86, DM86] or on doing adaptation after all of the recordedexperience has been applied [Ham90]. This is not to say that the other partsof the derivational analogy algorithm do not present formidable problems.However, the better a derivational analogy algorithm is at adaptation, theless important it is to select just the right recorded experience.In attempting to solve a new problem by reusing a recorded experience,derivational analogy iteratively performs two steps: selecting goals and ad-dressing goals (see �gure 1). During each iteration of derivational analogy,one or more goals are selected from the new problem that are consideredsimilar to a goal in the recorded experience.2 Some algorithms select goalsby simply reusing the order in which goals were selected in the recorded2Di�erent algorithms for derivational analogy use di�erent criteria for similarity. How-ever, this paper is more concerned with adaptation than goal selection. Therefore, the algo-rithms tested in the experiments described in section 4 use a common similarity criterion.4



experience. Others select goals by reusing the rationale behind the order inwhich the goals were selected.Once goals in the new problem are selected, they are addressed by reusingthe problem-solving information (i.e., rules, variable bindings, and con-straints) that were applied in the recorded experience. However, becausethe recorded experience and the new problem are not identical, this infor-mation might be inapplicable to the selected goals. Such a failure surfacesas an unsatis�ed precondition for a rule, an illegal variable binding, or aconstraint violation. If the steps of selecting and addressing goals are un-successful, either because the recorded goal ordering information does notselect any goals from the new problem, or the recorded problem solving in-formation cannot be applied to the goals that are selected, then derivationalanalogy attempts to adapt either the new problem or the recorded expe-rience so that reuse can continue. When di�erences between the recordedexperience and the new problem cause reuse to fail, a derivational analogyalgorithm must fall back on from-scratch problem solving, either a humanexpert or a search-based, heuristic problem solver.The last step in the basic derivational analogy algorithm is to analyzethe results of reusing the experience and to use that analysis to change theperformance of the derivational analogy algorithm in subsequent problems.Such modi�cations may involve changes to the features used for indexingthe recorded experience [VC89] or improvements to the adaptation process[HL91].Because of its crucial role in derivational analogy, the ability of a deriva-tional analogy algorithm to adapt a recorded experience or a new problemto enable reuse is the focus of this research. We will measure this abilityin two ways. First, the total amount of e�ort expended by a derivationalanalogy system to solve a problem (including the e�ort expended during anyfrom-scratch problem solving) is a measure of that system's e�ciency. Sec-ond, the proportion of the new problem that is solved by reuse, rather thanby from-scratch problem solving, is a measure of that system's autonomy.2 Obstacles to reuse { The need for adaptationA derivational analogy algorithm attempts to adapt a recorded experienceand a new problem when it encounters an obstacle to reuse. An obstacle isa mismatch between the structure of the solution stored in the recorded ex-perience and the structure of the desired (but unknown) solution to a new5



problem. As noted above, derivational analogy algorithms have typicallybeen applied to domains where problem solving proceeds by problem de-composition. In such domains, the goals addressed in the process of solvinga problem form an and-tree structure, with subgoals represented as childrennodes of their supergoal. The topology of such a goal tree is the structureof the tree as determined by its overall depth, its breadth at each level, andthe relationships between the parent and children nodes. When the desiredsolution to the new problem matches the solution in the recorded experi-ence, the two goal trees have the same topology, and corresponding nodesrepresent corresponding goals. When the topologies are not the same, amismatch occurs and adaptation is required.2.1 A testbed for studying adaptationIn order to present concrete examples of the kinds of obstacles that a deriva-tional analogy algorithm encounters, this section introduces the domain ofautomated metaphoric human interface design, which is used as the testbeddomain for comparing derivational analogy systems.Brie
y, a metaphoric interface is one that uses features from the realworld to present the appearance and behavior of the objects and operationsthat a computer application makes available to the user. Perhaps the mostfamiliar metaphoric interface is the desktop metaphor for operating systems.This interface uses pictures of pieces of paper to represent �les, pictures of �lefolders to represent directories, and animations of putting pictures of piecesof paper into pictures of folders to represent putting �les into directories.The domain of human interface design has a number of advantages as atestbed for comparing the various derviational analogy algorithms. Most im-portant for the purposes of the empirical evaluations, this domain exhibits alarge number of mismatches among di�erent interface design problems, whilestill retaining enough similarity among problems that reuse is bene�cial.A second advantage of the interface design domain is that the qualityof the solutions produced in this domain is sensitive to the order in whichgoals are addressed. The reasons for this sensitivity are discussed more fullyelsewhere [Blu90a]; however, one example involves the design of direct ma-nipulation interfaces [HHN86]. If an operation in an interface acts on anentity that is displayed on the screen, it is often desirable to implement thegesture for that operation as a direct manipulation action on that entity. Interms of automated interface design, this requires that the screen area forthat entity be allocated before the interface to the operation is designed.6



Otherwise, a non-direct manipulation operation will be designed instead.The implication of this sensitivity for our empirical study of derivationalanalogy algorithms is that the performance of the algorithms can be mea-sured not only in terms of autonomy and e�ciency, but also in terms ofsolution quality (as discussed in section 5).Even in domains that have some formal criteria for correctness, solutionquality may be an issue. While a circuit design can be formally shownto implement the logic given in a speci�cation, it cannot necessarily beformally shown to be the best circuit in terms of size, power consumption,heat dissipation, ease of manufacturing, and so on.To illustrate the variety of mismatches that arise among di�erent in-terface design problems, we present two interfaces generated by MAID, afrom-scratch problem solver. 3 The interfaces are for a simple data managerapplication, which maintains a list of records, each of which has a name �eld,an address �eld, and a phone number �eld. In addition, the application al-lows the user to add and delete records and browse through the records oneat a time, either forwards or backwards.One metaphoric interface that MAID designs for the data manager ap-plication has some of the appearances and behaviors of a note pad (�gure 2shows the appearance of part of this interface). This particular interfacedesign presents the information in a data manager record in the way thata name, address, and phone number would canonically be written at thebottom of a notepad page. To create this design, MAID adds entities tothe interface corresponding to notepad pages, the spine holding the pagestogether, extra entries for names, addresses, and phone numbers on thenotepad page, etc.A second metaphoric interface that MAID designs for the data managerapplication uses the characteristics of a Rolodex4 to determine the appear-ance and behavior of the interface. The design of this interface uses theappearance of the top Rolodex card on a Rolodex to present a data man-ager record and introduces a number of new entities to the application,including a spindle, a frame, and a face-down bottom card (see �gure 3).As may be clear from a cursory glance at the note pad and Rolodexexamples, there are a number of di�erences between the two interface de-signs. For example, the spindle in the Rolodex corresponds to the spine3MAID is an acronym for Metaphoric Application Interface Designer. It is describedmore fully elsewhere [Blu90b, Blu90a, Blu90c].4Rolodex is a trademark of the Rolodex Company.7
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Figure 2: A MAID metaphoric interface design for the data manager ap-plication using characteristics from the note pad. Hashed lines indicatemouse-sensitive regions.
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on the notepad, but the Rolodex frame does not correspond to anythingin the notepad. If the Rolodex design is used as the recorded experiencewhen designing the notepad interface, then a derivational analogy algorithmmust adapt to this di�erence. Another example is the notepad page, whichdoes not correspond to anything in the Rolodex-inspired interface. Besidesadding an extra entity that must be adapted to, the notepad page introducesa di�erent organization of the problem that must be adapted to. The nextsection enumerates the kinds of di�erences that a derivational analogy mustadapt to and gives examples from the human interface design domain.2.2 Topology mismatches { a bird's eye viewUpon examining the topologies of various solution trees, it becomes clearthat there are several distinct kinds of mismatches occurring during thereuse of recorded experience. Furthermore, the empirical evidence gatheredin the course of this research (reported in section 4) convincingly argues thata derivational analogy algorithm must be sensitive to these di�erences if itis to give the best performance on any but the most trivial applications ofderivational analogy. In particular, di�erent strategies are necessary to copewith the various kinds of mismatches, and a strategy that is appropriatefor one kind of mismatch may be disastrously expensive when applied to adi�erent kind of mismatch.Looking at the complete solution trees for the recorded experience andthe new problem solution, there are essentially three ways the two topologiescan fail to match. There can be goals in the new problem that fail to matchgoals in the recorded experience, goals in the recorded experience that fail tomatch goals in the new problem, and goals in both the recorded experienceand the new problem that fail to match goals in the other. These mismatchesare called detours, pretours, and combinations respectively.There are a number of ways these mismatches can manifest themselvesbetween di�erent solution trees, some of which may not be as straightforwardas the descriptions and diagrams presented here. However, the linear orderimposed on the goals by a sequential problem solver makes detours, pretours,and combinations adequate for describing the mismatches encountered bya derivational analogy algorithm. Describing mismatches in terms of thesolution trees gives a better picture of the di�culties involved in overcomingthese obstacles, and the linear order imposed during sequential problemsolving collapses a number of di�erent solution tree mismatches into thecategories described in the next sections.9



In the discussion of mismatches, and in the implementations of replayalgorithms described in section 4, the match criteria is loosely based onBOGART's [MB87]. Two goals match if: 1) the goals are of the sametype, 2) the goals address the same or similar entities, and 3) the super-goals of the two goals satisfy conditions 1) and 2). Determining whetherthe two entities being addressed are similar is a domain-speci�c problem.In the MAID domain of metaphoric human-computer interface design, twoentities are similar if they are instances of the same class of entity or if thereis a metaphoric mapping between the two entities. Metaphoric mappingsare either given by the designer as part of the initial problem statement, orestablished by the MAID design rules (for a detailed discussion of how MAIDautomatically establishes new mappings see [Blu90c, Blu90b, Blu90a].2.2.1 DetoursWhen a new problem contains goals that do not correspond to anything inthe recorded experience, these goals are referred to as detours. Since nothingin the experience indicates when or how these goals should be addressed,the derivational analogy program must notice these new goals and addressthem appropriately.In practice, there are two kinds of detours that may be encountered.The less troublesome of the two is a horizontal detour which occurs whenthe extra goal in the new problem is a sibling of a goal that matches somegoal in the recorded experience (see �gure 4).As an example, in the note pad design, MAID addresses the goal ofdesigning the note pad spine before it addresses the goals for the variousoperations (goals of addressing objects are usually chosen before goals ofaddressing operations so that direct manipulation operations can be imple-mented). When this design is used as the recorded experience to solve theRolodex design problem, a horizontal detour is encountered. The goal ofdesigning the Rolodex spindle matches the goal of designing the note padspine, but the goal of designing the Rolodex frame does not match any goalon the retrieved experience.If a derivational analogy algorithm fails to recognize this sort of detour,then the extra goal and all of its descendants may not be addressed at all.If they are eventually noticed (e.g., as goals left unaddressed after reuse has�nished), they will have to be addressed in some other way (e.g., by callingon a person or calling on a from-scratch problem solver). It can be arguedthat leaving such goals unaddressed is a reasonable course of action for10
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yin section 5 and in detail elsewhere [Blu90a]).A more troublesome kind of detour is the vertical detour. Like a hor-izontal detour, this sort of detour occurs when there are some extra goalsin the new problem that do not correspond to anything in the recordedexperience. The di�erence is that in a vertical detour these new goals arespliced between a parent goal and its subgoals in the recorded experience(see �gure 5).An example of a vertical detour is encountered when the Rolodex designis used as the recorded experience for the note pad design. The goal ofdesigning an entry on the notepad corresponds to the goal of designing aRolodex card (since a notepad entry and Rolodex card both record onename, address, and phone number). However, these goals are not aligned inthe solution trees, as shown in �gure 6.The reason that vertical detours are more di�cult to handle is thatthe intervening, unmatched goals in the new problem must be addressed11
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(somehow) in order to spawn the goals below the detour that do correspondto goals in the recorded experience. In the example above, the goal ofdesigning the note pad entry is not added to the list of pending goals untilthe goal of designing the note pad page is addressed. If a vertical detour isnot addressed, it may block the appearance of a large number of goals in thenew problem that could be addressed by derivational analogy. In addition,it should be emphasized that the number of goals in a detour, as well asany other mismatch, is arbitrary. There can be a large number of goals thatmust be addressed by the adaptation mechanism before derivational analogycan resume.2.2.2 PretoursIf the recorded experience contains goals that do not match any goals thatoccur in the new problem, such goals are referred to as pretours5 (see �g-ure 7). Since these goals cannot be reused to address goals in the newproblem, it is up to the derivational analogy algorithm to skip these goalsand continue reuse at some appropriate later point.An example of a pretour occurs when the note pad design is used asthe recorded experience for the Rolodex design, that is, when the roles arereversed from the previous example of a vertical detour. In this case, thegoal of designing a note pad page (from the recorded experience) must beignored. If there were always just one intervening goal, then simply skippinga goal might be an e�ective adaptation method. However, as there may bemany intervening goals, a derivational analogy algorithm needs an e�cientway of determining how many goals to skip.Although, technically, there are horizontal and vertical pretours in thesame sense that there are horizontal and vertical detours, in practice there isessentially no di�erence between the two. In both cases, goals in the recordedexperience must be ignored, and since goals in the recorded experience areconsidered in a linear order, they can be ignored in the same way. This isan example of how the linear order imposed by a sequential problem solvercan con
ate apparently di�erent kinds of topology mismatches into a singleclass for the purposes of a derivational analogy adaptation algorithm.5This is a contraction of \previous detour," indicating that such goals are similar todetours, but in the previously recorded experience.14
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2.2.3 CombinationsWhen both a pretour in the recorded experience and a detour in the newproblem exist at the same time, the situation is referred to as a combina-tion (see �gure 8). Combinations are especially di�cult to adapt to becausethey are di�cult to distinguish from pretours and detours, and many of thestrategies that work for pretours and detours are not e�ective for combina-tions (see section 2.3).One example of a combination occurs when the Rolodex interface designis used as the recorded experience for the note pad interface. The goals fordesigning the Rolodex frame constitute a pretour. In addition, the goals fordesigning the note pad page constitute a vertical detour, and the goals fordesigning the top entry on the note pad page constitute a horizontal detour.Thus, combinations can include pretours and both vertical and horizontaldetours.If a combination is assumed to be a detour, and goals are addressedsomehow in the new problem, then the extra goals in the recorded experienceare never skipped. Reuse is never resumed because the goal in the recordedexperience that the system is attempting to reuse does not correspond toany goal in the new problem.If a combination is assumed to be a pretour, and goals in the recordedexperience are skipped, then the detour is never adapted to, and none ofthe goals in the detour, or the goals that might be spawned by goals inthe detour, are ever addressed. To successfully adapt to a combinationmismatch, a derivational analogy algorithm must ignore the goals makingup the pretour and somehow address the goals making up the detour.2.3 Topology mismatches { what the algorithm seesWhile mismatches are best described in terms of complete solution trees,during reuse, a derivational analogy algorithm does not have the entire so-lution tree to examine. This section brie
y describes the information thata derivational analogy algorithm has available to determine what kinds ofmismatches are encountered and how to adapt to them during the course ofreusing a recorded experience.In the case of vertical detours, pretours, and combinations, all the algo-rithm can determine initially is that no goal in the new problem appropri-ately matches the goal selected from the recorded experience. This is whatmakes these kinds of mismatches di�cult to distinguish and di�cult to adapt16
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to. As adaptation progresses, however, a su�ciently sensitive algorithm candistinguish, and appropriately adapt to, each kind of mismatch.In the case of horizontal detours, an appropriate procedure for matchinggoals from the recorded experience to goals in the new problem can detectsuch mismatches by selecting more than one goal from the new problem.However, it is up to the derivational analogy algorithm to handle such amismatch in an appropriate fashion.Most implemented derivational analogy algorithms do not distinguishvarious kinds of mismatches and, therefore, only use one approach to adap-tation regardless of the type of mismatch being faced. When one of thesealgorithms successfully adapts to mismatches, it is because the algorithm'sapproach is fortuitously appropriate for the mismatches encountered. Whenan approach is not appropriate for a given mismatch, these derivational anal-ogy algorithms may produce extremely ine�cient results or fail to solve thenew problem at all.A derivational analogy algorithm that can distinguish various kinds oftopological mismatches and apply di�erent, appropriate approaches to eachkind can produce more e�cient, successful results. One such algorithm isdescribed in section 3.5. The di�culty faced by such an algorithm is thatonly incomplete information about the type of mismatch encountered isavailable while the algorithm is solving a new problem.3 Approaches to adaptation in derivational anal-ogy algorithmsDerivational analogy algorithms use two strategies to adapt a recorded ex-perience and a new problem to eliminate mismatches between them. Localadaptation refers to the strategy that the derivational analogy algorithm useswhen there is no goal in the new problem that appropriately corresponds toone particular goal in the recorded experience. Recovery is the strategy thatthe derivational analogy algorithm uses when it cannot �nd an appropriatecorrespondence for any goal in the recorded experience.To show the range of local adaptation and recovery strategies employedby current derivational analogy algorithms, �ve programs are presented here.Each of these programs is described in turn, with an analysis of the localadaptation and recovery strategies that it employs.66Some of the programs described here assume that their local adaptation strategies aresu�cient, and therefore do not explicitly include a separate recovery strategy.18



The �rst four programs have been described in the literature and alluse the recorded experience to guide local adaptation and recovery: theBOGART/VEXED system of Mostow and Barley [MB87], the extensionsto PRODIGY done by Carbonell and Veloso [CV88, Vel90], the PRIARsystem of Kambhampati [Kam89b], and the work on internal analogy in thecontext of the RFermi system done by Hickman [HL90].The �fth one is the REMAID7 system for reusing human interface designexperience [Blu90a] and is one of the results of the research described here.REMAID embodies three novel approaches to the problem of adaptation andrecovery. First, it was designed to distinguish the various kinds of topologymismatches described in section 2 and to use di�erent adaptation strategiesfor each. Second, REMAID uses the state of the new problem, rather thanthe recorded experience, to more e�ciently and successfully guide adapta-tion. Third, REMAID makes novel use of a search-based problem solver(in addition to other strategies) both to help distinguish various kinds ofmismatches and guide adaptation. Some of the other algorithms use somesort of search-based problem solver to handle parts of the new problem thatcannot be addressed by reusing the recorded experience, thereby adapting todetours. However, only REMAID uses such a problem solver to help analyzethe di�erences between the recorded experience and the new problem.Seven derivational analogy algorithms based on the various recovery andadaptation strategies found in the literature have been implemented so thatthey can all be applied to a common domain. Together with REMAID, theseimplementations have been used in the empirical evaluations described insection 4 to determine the relative strengths and weaknesses of each ap-proach. In order to test these approaches in the same domain, namely thatof automated human interface design, a number of compromises had to bemade among the various algorithms. Thus, while the implementations in-spired by approaches in the literature are not complete reimplementations,they faithfully embody the applicable recovery and adaptation strategiesfrom the literature in a way that can be meaningfully compared.3.1 BOGARTThe BOGART derivational analogy program records the design goals andrules chosen by a human designer who is using the VEXED circuit designprogram. To solve a new problem, the designer provides BOGART with an7REMAID is an acronym for Replaying Episodes of MAID. MAID is described insection 2.1. 19



initial match between a goal in the recorded experience and a goal in thenew problem. BOGART then applies the recorded goal choices and designrules in the order in which they were recorded.BOGART has the simplest local adaptation strategy of the programspresented here. When BOGART encounters a goal in the recorded experi-ence that does not correspond appropriately to any goal in the new problem,it simply skips the goal in the recorded experience and continues with thenext goal in the recorded experience. After trying to reuse every goal in therecorded experience, BOGART returns to the top of the list of goals andretries all of the recorded goals that failed to be reused. The rationale forthis is that a goal may not have been reused because of a constraint vio-lation that was repaired by addressing a later goal. BOGART repeats thisprocess until it tries to reuse every goal remaining in the recorded experiencewithout success.BOGART's adaptation strategy is to simply skip goals in the recordedexperience that do not match a goal in the new problem. This strategy isadequate for addressing pretours, since it can e�ectively ignore any goals inthe recorded experience that do not correspond to goals in the new problem.However, BOGART depends on the user to address detours manually andto restart reuse.BOGART's recovery strategy is equally simple. When it has made apass through the recorded experience and none of the goals can be reused,BOGART simply halts and waits for the user to provide it with a newrecorded experience.HOBART8 is an implementation of the BOGART approach to adapta-tion and recovery. HOBART skips any goal in the recorded experience thatcannot be reused to address a goal in the new problem. It continues to cyclethrough the list of goals in the recorded experience until none of them canbe reused to address a goal in the new problem, and then it halts.3.2 PRODIGY extensionsPart of the PRODIGY system is a program for doing matrix manipula-tions such as Gaussian elimination. Carbonell and Veloso's extensions tothe PRODIGY system [CV88] reuse a recorded experience that includesinformation about each goal that was selected, such as8Hobart is a registered trademark of the Hobart Food Machinery Company. The namesof the implementations were chosen for purely arbitrary reasons.20



� what objects in the problem the goal operated on (e.g., what row ofthe matrix is operated on),� what step of the problem the goal addressed (e.g., scale a row),� the order in which the goals were addressed,� the rule choices that produced the solution,� the variable bindings that were used when instantiating a problemsolving rule, and� the justi�cations for each of these decisions.During reuse, the PRODIGY system selects a goal in the new problemthat matches the next goal in the recorded experience. It then checks thatthe various justi�cations in the recorded experience are still valid for thegoal in the new problem. If the justi�cations still hold, the recorded ruleis applied and reuse continues. If the justi�cations no longer hold, thenPRODIGY follows what Carbonell and Veloso call the satis�cing approach.This involves either establishing the current goal by other means, or patchingthe mismatch that caused reuse to fail by adding the creation of the patchas a new goal.One way of implementing this approach is as a local adaptation strategythat would try di�erent rules than the one recorded to see if one can befound to address the current goal in the new problem. This local adaptationstrategy can adapt to a limited class of combination mismatches (those wherethere are the same number of goals in both the recorded experience and thenew problem, and simply using di�erent rules is su�cient adaptation).A second way of implementing this approach is as a recovery strategythat would call on some other from-scratch problem solving program toaddress one goal in the new problem when the derivational analogy algorithmhas failed to reuse all of the goals remaining in the recorded experience. Thenthe algorithm could attempt to restart reuse. This would adapt to verticaldetours and any horizontal detours that are detected.To test these strategies, three algorithms were constructed by imple-menting the two methods outlined above and adding them to the basicHOBART algorithm, both separately and together (recall that HOBARTuses an adaptation strategy of skipping a goal and trying the next one).The implementation of HOBART with the PRODIGY-inspired adapta-tion strategy (alternate problem solving rules) is called \PROBART." The21



implementation that has the recovery strategy (select and address one goalwith a problem solving system) is called \POSSIBLY." The implementa-tion with both the adaptation strategy and the recovery strategy is called\PROBABLY."3.3 PRIARTechnically, Kambhampati's PRIAR system [Kam89b] is closer to an imple-mentation of Gentner's structural analogy ideas [Gen83] than to an imple-mentation of a derivational analogy algorithm. In particular, PRIAR triesto determine what part of the recorded solution, rather than the solutionprocess, is applicable and tries to modify the solution to �t the new problem.However, it exhibits a relevant recovery strategy.The from-scratch problem solver for PRIAR is a non-linear planner. Thereuse component uses a validation structure to formally determine whichsteps from the recorded plan are needed, and which goal conditions in thenew problem must be solved by new steps added by the PRIAR recoverymechanism [Kam89a]. This recovery mechanism repairs the recorded plan bytaking any goal conditions in the new problem that are left unsatis�ed by theplan in the recorded experience and posting them as new goals. These newgoals are then addressed by the same non-linear planner that produced therecorded plan. PRIAR's recovery strategy is interesting in that it addressesdetours by using the same from-scratch problem solver that generated therecorded experience. The PRIAR system does not perform local adaptationin the course of problem solving; the purpose of the validation structure is todetermine exactly which steps in the recorded experience should be reusedand which should be eliminated.PRIAR's recovery strategy inspired two implementations that use afrom-scratch problem solver to address any goals left unaddressed in the newproblem without attempting to restart reuse. The �rst, called \BRIAR,"uses the HOBART algorithm until there are no more goals in the recordedexperience that can be used on existing goals in the new problem, and thenit invokes a from-scratch problem solver to address any leftover goals. Un-like the PRODIGY-inspired systems, the PRIAR-inspired recovery strategydoes not try to restart reuse when new goals have been added to the newproblem agenda by the from-scratch problems solver. The second algorithm,called \PYRE," uses the PRODIGY-inspired adaptation strategy (using al-ternate problems solving rules) and the PRIAR-inspired recovery strategy(using the from-scratch problem solver to �nish solving the problem).22



Algorithm Adaptation Strategy Recovery StrategyHOBART Skip goal HaltPROBART Alternate problem Haltsolving rulePOSSIBLY Skip goal From-scratch problem solver for one goal;restart reusePROBABLY Alternate problem From-scratch problem solver for one goal;solving rule restart reuseBRIAR Skip goal From-scratch problem solverfor all remaining goalsPYRE Alternate problem From-scratch problem solversolving rule for all remaining goalsTable 1: Summary of algorithms tested: strategy for adapting to singlerecorded rule failures, and strategy for recovering when the recorded expe-rience can suggest no more goals.Table 1 summarizes the strategies used by the six implementations de-scribed so far. There are two local adaptation strategies: simply skip therecorded goal and try it later or use alternate problem solving rules. Thereare three recovery strategies: halt, use a from-scratch problem solver forone goal then restart reuse, or use a from-scratch problem solver for allremaining goals.3.4 Internal analogyThe work of Hickman and her colleagues uses techniques from derivationalanalogy to improve performance without having to resort to a previous prob-lem [HL90]. This approach is referred to as internal analogy and dependson regularities within the problems in a domain to allow solutions to sub-problems to be reused during the course of solving a single larger problem.Hickman's program determines if a set of problem solving steps is ap-propriate to reuse by calculating the information content of the originalsubproblem and comparing that to the information content of the new sub-problem. The information content of a subproblem is a measure of thenumber of bound variables in the left hand side of the rule addressing thesubproblem. Hickman has shown some preliminary success with a programthat simply uses the information content metric to determine which previous23



subproblem solutions can be reused.Like PRIAR, Hickman's program does recovery by simply using its from-scratch problem solver, the RFermi program. There is no explicit recoverystrategy here; in the course of doing problem solving, this program either�nds appropriate goals to be reused, or it does not. If there are no moreappropriate goals to be reused, the RFermi program simply �nishes theproblem solution.The approach taken from Hickman's internal analogy algorithm is thestrategy of using the list of addressed goals in a problem as the sourcefor reusable experience. An algorithm embodying this strategy was imple-mented (in a program called LASH) to determine the viability of internalanalogy in the domain used for the empirical evaluations. Instead of lookingat a separate recorded problem solving experience, LASH uses the list ofaddressed goals as its recorded experience. LASH uses the same adapta-tion and recovery strategies as the REMAID system (described in the nextsection).3.5 REMAIDUnlike the other algorithms described and implemented here, REMAID wasdesigned with topology mismatches in mind; where possible, its strate-gies distinguish the various mismatches and adapt to them appropriately[Blu90a]. REMAID's capability to distinguish and adjust to detours, pre-tours, and combinations allows it to e�ciently continue reuse when mis-matches between the recorded experience and the new problem are found.The REMAID adaptation strategy is based on the philosophy that thenew problem, not the recorded experience, should be used to guide adap-tation when mismatches occur. One way that this philosophy manifestsitself is that REMAID, unlike other derivational analogy algorithms, doesnot strive to conform to the ordering of goals in the recorded experience.Instead, REMAID dynamically reorders its recorded experience in responseto mismatches, in a fashion that is sensitive to the state of the new prob-lem. Whereas other algorithms try to make the new problem as similar tothe recorded experience as possible, REMAID modi�es its recorded expe-rience, not the new problem, to adapt to di�erent kinds of mismatches inappropriate ways. Put more informally, when REMAID is confronted witha mismatch, it steps back and takes a fresh look at the new problem todetermine how to proceed.By contrast, BOGART follows the ordering of goals in its recorded ex-24



perience as closely as possible. The adaptation strategies that PRODIGYpursues focus on adapting the new problem so that as much of the recordedexperience as possible can be reused, including the ordering of goals. Al-though not speci�cally concerned with goal ordering, PRIAR concentrateson reusing as many of the plan steps in its recorded experience as possible.In these other algorithms, this adherence to the recorded experience duringreuse makes it di�cult to distinguish and e�ciently adapt to various kindsof mismatches.The philosophy of attending to the new problem to guide adaptationis implemented in REMAID by calling on a from-scratch problem solver ina unique fashion. Like RFermi and PRODIGY, REMAID can use a from-scratch problem solver to handle detours by addressing goals that cannotbe addressed by reusing recorded experience. However, unlike other deriva-tional analogy systems, REMAID also uses the from-scratch problem solverto select goals from the new problem that are used as a guide to distinguishand e�ciently adapt to the various kinds of mismatches. Thus, REMAIDuses a from-scratch problem solver not only to work more autonomously(since goals that cannot be addressed via reuse can still be addressed with-out the aid of a human expert), but also to be more sensitive to the newproblem by determining what to attend to when mismatches occur.As with the sections describing the other programs, the rest of this sec-tion concentrates on the adaptation and recovery strategies implemented inthe REMAID system. REMAID follows the cycle of selecting and address-ing goals described in section 1. In particular, REMAID selects a goal tobe addressed by choosing a goal to be reused from the recorded experienceand reusing the recorded rationale to select a goal (or goals) from the newproblem. Then it analyzes its selection using both the similarity criteria(common to all of the algorithms described here) and the preconditions ofthe problem solving rules applied to the goal from the recorded experience.There are three situations that this analysis can immediately detect.In the simplest case (�gure 9, case 1), REMAID selects only one similargoal from the new problem, and the recorded problem solving informationis appropriate for addressing that goal. In this case, there is no mismatch;REMAID assumes that the new problem is similar enough to the recordedexperience that no adaptation is needed, and reuse continues.25



3.5.1 Horizontal detoursA slightly more complex case occurs when REMAID selects more than onegoal, and the similarity criteria and recorded problem solving informationare successfully applied to at least one of those goals. In this case (�gure 9,case 2), there is a horizontal detour; REMAID assumes that either newgoals or di�erent characteristics are present in the new problem that werenot in the recorded experience. The presence of a goal that actually doesmatch the goal from the recorded experience, along with some extra goals,indicates that the mismatch is a horizontal detour.In this situation, REMAID must �rst determine which of the extra goalsselected are new goals and which of the extra goals correspond to other goalsin the recorded experience that have di�erent characteristics that cause themto be chosen at di�erent times. REMAID does this by matching each of theextra goals against the unused goals left in the recorded experience.9 Anygoal that matches some other goal in the recorded experience is assumed tohave some di�erent characteristics in the new problem that cause it to beselected in the new problem even though it was not chosen in the recordedexperience. These goals are not immediately addressed on the assumptionthat they will be addressed when the matching goal in the recorded expe-rience reaches the front of the list of recorded goals. The rationale is thatthere may be some di�erence between the recorded experience and the newproblem, but that the selection of a matching goal from the new problemindicates that the di�erence is not substantial enough to warrant changingthe order in which the goals are addressed.Any extra goals that do not match a goal in the recorded experienceare assumed to be part of a horizontal detour. REMAID �rst addresses thegoal corresponding to the one that was chosen in the recorded experience,then REMAID addresses the goals in the horizontal detour by calling ona from-scratch problem solver. The recorded goal is removed from the re-corded experience, and reuse continues with the next goal in the recordedexperience.3.5.2 Vertical detours, pretours, and combinationsThe most complex case (�gure 9, case 3) occurs when the REMAID algo-rithm selects zero or more goals and the recorded problem solving informa-9This is not as expensive as it may sound. In particular, since no new goals are everadded to the recorded experience, the goals recorded there can be e�ciently indexed.26



Basic Operations:PS-SELECT: The from-scratch problem solver's goal selection procedure.PS-ADDRESS: The from-scratch problem solver's procedure foraddressing a goal.R-SELECT: Select a goal using rationale from recorded experience.R-FILTER: Check goals chosen by R-SELECT using similarity andprecondition checks (returns one or zero goals).RECOGNIZE-AS-UNUSED: Search unused goals in recorded experience anddetermine that goal selected from new problem matches one.ROTATE-UNUSED: Reorder goals in recorded experience so thatselected goal is �rst.REMAID algorithm:Case:1. R-SELECT chooses one goal andR-FILTER passes that goal: (no mismatch)Reuse goal; no adaptation needed.2. R-SELECT chooses more than one goal andR-FILTER passes one goal: (horizontal detour)Reuse goal to address goal passed by R-FILTER;For each goal, G, chosen by R-SELECTand not passed by R-FILTER:If RECOGNIZE-AS-UNUSED Gthen Ignore G (G will be addressed later).else PS-ADDRESS G.3. R-SELECT chooses zero or more goals andR-FILTER passes zero goals: (vertical detour, pretour, or combination)Goal := PS-SELECT;If RECOGNIZE-AS-UNUSED Goal (pretour)then ROTATE-UNUSED Goal and resume reuse.elseLoopPS-ADDRESS Goal;Goal := PS-SELECT;If RECOGNIZE-AS-UNUSED Goal (vertical detour or combination)then ROTATE-UNUSED Goal;break (resume reuse).else continue loop;Figure 9: The REMAID derivational analogy algorithm.27



tion is not appropriate for any of the goals selected. As noted in section 2.3,from this information alone, it is impossible to tell whether the mismatchis a vertical detour, a pretour, or a combination. At this point REMAIDhas to pursue a strategy that is 
exible enough to adapt to each kind ofmismatch in an appropriate way.As noted earlier, the philosophy behind the REMAID adaptation strat-egy is that the new problem, not the recorded history, should determine howadaptation should proceed. To realize this adaptation strategy, REMAIDcalls on the goal selection mechanism of a from-scratch problem solver tochoose a goal from the new problem to be addressed. It then attempts touse this goal as an index into the list of goals in the recorded experience todetermine which goal should be reused next. It does this by matching thegoal chosen by the from-scratch problem solver to the list of unused goalsin the recorded experience. If it �nds a match, then a pretour has beenencountered, and the list of unused goals is rotated so that the matchinggoal is at the front. The rationale for rotating the list of unused goals isto restart reuse in the context of the next appropriate goal. REMAID thenaddresses the chosen goal from the new problem, removes the matching goalfrom the list of unused goals, and restarts reuse with the next goal in therecorded experience. This strategy adapts to pretours by reordering therecorded experience to correspond to the state of the new problem.If the match algorithm does not �nd a match between the goal chosen bythe from-scratch problem solver and some goal on the recorded experience,then a vertical detour or a combination has been encountered. In this case,REMAID continues by letting the from-scratch problem solver choose a ruleto address the chosen goal. REMAID then calls the from-scratch problemsolver again to choose another goal. This process repeats until a match isfound between the goal chosen by the from-scratch problem solver and somegoal on the recorded experience. If the match eventually found involves the�rst unused goal on the recorded experience, then the mismatch is a verticaldetour.If the matching goal eventually found by the from-scratch problem solverinvolves a goal other than the one on the front of the recorded experience,then a combination of pretours and detours has been encountered. Theadaptation strategy uses the from-scratch problem solver to address thegoals in the detour component of the combination in the fashion describedabove for vertical detours. As the from-scratch problem solver chooses eachgoal, this strategy uses that goal as an index into the list of goals in therecorded experience in an attempt to adapt to the pretour component of the28



combination in the manner described above for adapting to pretours.Because REMAID was developed with an analysis of topology mis-matches in mind, it can e�ectively distinguish and adapt to di�erent kindsof mismatches between the recorded experience and the new problem. Thestrategy inspired by this analysis is to use the new problem rather thanthe recorded experience to guide adaptation when a mismatch occurs. Likeother derivational analogy algorithms, REMAID uses a from-scratch prob-lem solver to address goals that cannot be addressed by reusing goals fromthe recorded experience. However, unlike other algorithms, REMAID alsouses a from-scratch problem solver to select goals that can be used to guidethe modi�cation of the recorded experience to adapt to mismatches.The appendix presents a detailed example of REMAID's handling of amismatch that arises during replay.4 Empirical evaluationThis section presents empirical data demonstrating the performance of RE-MAID and the other implemented strategies for adaptation and recoverywhen applied to problems in the domain of automated human interfacedesign. The data collected support several hypotheses. Some are unsurpris-ing: derivational analogy is generally an e�ective technique, and increased
exibility in adapting recorded experience to new problems increases bothe�ciency and autonomy. More informatively, the data also indicate thatcalling a from-scratch problem solver to help adapt to mismatches can be asuccessful strategy, but that there may be a trade-o� between e�ciency andautonomy unless the execution of the derivational analogy program and theexecution of the from-scratch problem solver are intelligently interleaved.4.1 The experimentAll of the programs in this experiment use interface design problems solvedby the MAID program for their recorded experiences. The MAID pro-gram is currently capable of designing �ve interfaces to the data managerapplication.10 Since each design can be used as the recorded experience forany other design, there are 25 possible derivational analogy problems, in-cluding �ve trivial cases where the same interface is designed in both the10This is limited by the amount of knowledge entered about real-world entities in theknowledge base, not by any inherent limitations of the MAID program.29



recorded experience and the new problem.Of the eight implementations presented in section 3, seven reuse experi-ence recorded while solving one problem to help solve a di�erent problem. Inthis section, the implementations based on strategies in the literature (HO-BART, PROBART, POSSIBLY, PROBABLY, BRIAR, and PYRE, sum-marized in table 1) are referred to as \the basic six" derivational analogyalgorithms; the seventh program is REMAID. These seven programs wererun on all 25 derivational analogy problems. Data were collected from the20 non-trivial cases on the total amount of e�ort expended in solving eachproblem, the proportion of each problem addressed by reusing recorded expe-rience, and the proportion of e�ort that was useful in solving each problem.11The eighth program is an implementation of the strategy in Hickman's in-ternal analogy approach, which reuses goals within the new problem. Thisalgorithm was run on all �ve designs, and similar statistics were gathered.Those programs (POSSIBLY, PROBABLY, BRIAR, and PYRE) thatrely on a from-scratch problem solver used MAID.4.2 Results: autonomyTable 2 quanti�es the autonomy of the various programs, that is, the amountof the new problem that each program addresses through reuse, rather thanthrough from-scratch problem solving. For each program, the data in thistable show the average proportion of the 20 derivational analogy problemsthat was addressed through reusing recorded experience and how much wasaddressed by calling a from-scratch problem solver. The programs are sortedin increasing order of autonomy, with MAID being the least autonomousin terms of reuse (since it solves the entire problem through from-scratchproblem solving).The data presented here indicate that, in terms of autonomy, the PRODIGY-inspired recovery strategy12 as exempli�ed by POSSIBLY is about as e�ec-tive as the PRODIGY-inspired local adaptation strategy13 as exempli�edby PROBART and PYRE. Taken together, the two strategies increase au-tonomy still more. By being sensitive to the di�erent kinds of mismatches,11Because of irrelevant technical details, meaningful CPU times were unavailable. In-stead, counts of the number of goals addressed and the numbers of rules used and reusedwere collected.12Exhaust all reusable goals, address a goal with the from-scratch problem solver, thentry reuse again.13Try alternate problem solving rules each time a mismatch occurs and attempt to startreuse again immediately. 30



Program % Of Total Goals Addressed% Addressed By Reuse % Addressed By MAIDMAID 0% 100%LASH 20 80HOBART 43 0BRIAR 43 57PROBART 63 0PYRE 63 37POSSIBLY 64 36PROBABLY 75 25REMAID 76 24Table 2: Autonomy results for each of the programs when run on 20 deriva-tional analogy problems (note that HOBART and PROBART do not always�nish solving the problems).particularly horizontal detours, the REMAID algorithm is able to performas well as the best algorithms in terms of autonomy.The results for the strategy of simply skipping any goals that are notreusable, as exempli�ed by HOBART and BRIAR, indicate the number ofreusable goals between problems that are easily found in this domain. Finally,the LASH program uses the same adaptation strategies as REMAID; its poorperformance is simply due to the lack of regularity within problems in theinterface design domain.4.3 Results: e�ciencySince one goal of reusing recorded experience is to improve e�ciency, itwould be plausible to infer that the most autonomous programs are also themost e�cient. However, this is not the case. Table 3 quanti�es the averageamount of e�ort that each program spends solving the interface design prob-lems, as well as the proportion of that e�ort that is productive (as opposedto e�ort spent trying rules that are not applicable, etc.) For comparison, theprograms are again presented in order of increasing autonomy, along withtheir place in order of e�ciency.These data indicate the di�erent amounts of autonomy, that is the dif-ferent proportions of the new problem that can be addressed by reuse, af-forded by di�erent interleaving strategies. In general, more goals in the31



Total E�ort Useful E�ortProgram Expended Expended E�ciency(as a % of MAID's (as a % of Total RankE�ort) E�ort)MAID 100% 20% 5LASH 112 18 6HOBART 15 25 N/ABRIAR 58 23 3PROBART 12 46 N/APYRE 35 28 2POSSIBLY 234 9 7PROBABLY 83 11 4REMAID 35 47 1Table 3: E�ciency results for each of the programs when run on 20 deriva-tional analogy problems (note that HOBART and PROBART do not always�nish solving the problems, so their rank is omitted).new problem are addressed through reuse when the entire recorded expe-rience is re-examined every time the from-scratch problem solver is calledto address a goal (as it is in the POSSIBLY and PROBABLY algorithms).Using this approach, however, it may be very expensive to determine thatthe from-scratch problem solver must be called again, and the from-scratchproblem solver often must be called several times in a row. One way toavoid this ine�ciency is to abandon the recorded experience as soon as theeasily reusable goals are exhausted, as BRIAR and PYRE do; however, thissacri�ces autonomy.The REMAID system uses the from-scratch problem solver not only toaddress goals in the new problem, but also to provide guidance about how toadjust the recorded experience. By intelligently interleaving reuse and callsto a from-scratch problem solver, REMAID's adaptation strategy handlesmismatches both autonomously and e�ciently.REMAID's advantage over the other programs is not uniform across allof the derivational analogy problems, though. At one extreme, the basicsix programs expend far less e�ort in the degenerate case where the samedesign is used for both the recorded experience and the new problem.14 On14The reason for this is that REMAID's approach is capable of using one goal from therecorded experience to select multiple goals from the new problem. While this strategy is32



the other hand, REMAID is much more e�cient at handling vertical detours,since the other strategies either halt reuse and turn to from-scratch problemsolving or pursue a very expensive recovery strategy.Given that there are crossover points between the e�ciency of REMAIDand the e�ciency of other programs, it may sometimes make more sense touse a simpler derivational analogy strategy when the recorded experienceand the new problem are very similar in size and topology. However, de-termining these crossover points is an empirical issue for each domain, andit may be impossible to tell how similar two problems are without actuallyattempting reuse.4.4 Finding the crossover pointsTo further understand the performance of the various derivational analogyprograms, a second application was described in the MAID formalism andused to run a set of experiments similar to those described above. This appli-cation allows users to browse through records of inventory that are checkedin or checked out, specify a particular item to be checked out, check out anitem, or check in an item. In addition to an interface using no real-worldcharacteristics, three interfaces were designed using characteristics from alibrary (e.g., books and shelves), a rental car company (e.g., an expresscheck-in form and drop box), and a video rental store (e.g., a membershipcard and check-out form).Since there are four possible interface designs that MAID can producefor the reservation application, there are 16 possible derivational analogyproblems including the four trivial cases of using the same design for boththe previous experience and the new problem. Three di�erent descriptionsof this application were constructed embodying varying degrees of similarityamong the four possible interfaces. As a result, the experiments determinejust how much adaptation is required for the 
exibility of the REMAIDprogram to make up for the additional overhead of that algorithm.4.5 Experimental conclusionsThe data from the experiments using the reservation application are de-scribed in detail elsewhere [Blu90a]. This section summarizes the maincapable of detecting horizontal detours, it is also slightly more expensive than the otherapproaches. Generally, REMAID's e�ciency at adapting to mismatches outweighs thisexpense. 33



conclusions.Although there are cases where simpler derivational analogy programsperform more e�ciently than REMAID, the more important point is thatREMAID shows much less variance in e�ciency over the range of examples.While it may not perform as well as the simpler programs when there arevery few mismatches, the advantage of using the simpler programs in thesecases is not nearly as great as the advantage of using REMAID when thereare a larger number of mismatches.A rough calculation based on the empirical data indicates that if verticaldetours are the only kind of mismatch encountered, then REMAID gains theadvantage when the number of extra goals it can reuse (compared to PYREand BRIAR) is about one-�fth of the total number of goals. Furthermore,the data indicate that if pretours are the only kind of mismatch, then RE-MAID gains the advantage when there are about twice as many goals in therecorded experience as there are in the new problem. This situation may notbe terribly common, but it does occur, especially if the experience recordedwhile solving a design problem is reused while solving a subset of a similardesign problem.4.6 DiscussionThe foremost lesson of the empirical data is that in terms of e�ciency,derivational analogy is a successful technique. Although some of the im-plementations employ very simple adaptation and recovery strategies, allbut one of the programs using previous experience expend less e�ort thanthe MAID problem solver. Even the simplest of the basic six derivationalanalogy approaches, HOBART, reuses over 40% of the design goals.Most derivational analogy programs have been empirically tested againstsome from-scratch problem solver, but very little empirical data have beenpublished that compare various approaches in the same domain to deter-mine their strengths and weaknesses. The data presented here indicate thata 
exible technique for adapting to mismatches between a recorded expe-rience and a new problem increases both the e�ciency and autonomy ofderivational analogy. Further, using a from-scratch problem solver for re-covery from mismatches is a promising technique, but there is a trade-o�between e�ciency and autonomy unless a program can intelligently inter-leave reuse and calls to the from-scratch problem solver.A number of strategies embodied in the REMAID program contribute tothe e�ciency and autonomy of its design process. By using the from-scratch34



problem solver to help guide the adaptation of the recorded experience, RE-MAID can adapt to vertical detours. Because REMAID can �nd more goalsto reuse than programs that cannot adapt to vertical detours (and becauseREMAID is intelligent about interleaving from-scratch problem solving andreuse), this additional autonomy also increases REMAID's e�ciency.By using the from-scratch problem solver's goal selections as indices intothe recorded experience to determine where reuse should be restarted, RE-MAID modi�es the order of the recorded goals in response to mismatchesbetween the recorded experience and the new problem. In this way, RE-MAID adapts to pretours more e�ciently than other programs. By com-bining this technique with its strategies for handling detours, REMAID canadapt to combinations that no single strategy can cope with, thereby im-proving e�ciency and autonomy.5 A fundamental limitation and a proposalThe discussion thus far concentrates on the capabilities of the various deriva-tional analogy algorithms. This section focuses on a fundamental, inherentlimitation of the derivational analogy technique as it is currently being pur-sued in the research. Simply put, the problem is how to integrate innovationwith the reuse of experience [Blu90a].This is not an implementation problem, but rather a problem with thefundamental behavior of derivational analogy. The reason for this is that thederivational analogy technique attempts to minimize problem solving e�ortby attempting to solve a new problem in a way that is as similar to a recordedexperience as possible. The more closely a derivational analogy algorithmfollows its recorded experience, the more likely it is to overlook mismatchesbetween the recorded experience and the new problem. Conversely, the moresensitive the derivational analogy algorithm is to such mismatches, the lesse�cient it will be in reusing its experience.An example might make this problem a bit clearer. In the BOGART/VEXEDsystem for circuit design [MB87], if the previous experience includes a goalspeci�cation like (NOT (EQUAL A B)), a designer might have chosen touse the NOT-DECOMP rule to decompose this into a module implementing(EQUAL A B) and an inverter that takes the the output of that module asinput.If a subsequent circuit design problem contains (NOT (AND A B)) in thesame context, BOGART will successfully apply the same NOT-DECOMP35



rule which will decompose the goal into a module for (AND A B) and aninverter. Although this looks like a successful use of experience, a from-scratch design might have preferred to use the NOT-AND-DECOMP rule,which uses a NAND gate to implement goals of the form (NOT (AND : : : )).This illustrates how a program might produce an inferior solution byconcentrating on reusing past decisions without attending to the importantdi�erences between the recorded experience and the new problem. In sometask domains, such as matrix manipulation, all correct answers are of equalquality. However, in other task domains, such as human interface design,the path a designer takes to a solution directly a�ects the quality of thatsolution.To address this fundamental problem with derivational analogy, Car-bonell [Car86] suggests pursuing an optimizing approach (as opposed to thesatis�cing approach described in section 3.2) by having the derivational anal-ogy algorithm attend to the justi�cations for the decisions in the recordedexperience. When a decision in the recorded experience was arbitrarilymade, he suggests exploring alternatives in the new problem; when a deci-sion led to a failing path, he suggests checking the reasons for failure to seeif they exist in the current situation.The problems with pursuing the optimizing approach are twofold. First,in many domains optimality is a global characteristic of a problem solution;it cannot be preserved by simply attending to decision criteria that are localto each step [Kam90a]. Even if a derivational analogy algorithm is givenoptimal recorded experience, any changes to that experience (such as thechanges necessary for adaptation to a new problem) may violate the globaloptimality criteria, regardless of what local criteria are attended to.The second, more practical problem with pursuing the optimizing ap-proach is the cost involved. To explore the paths that failed previously, aderivational analogy algorithm must examine all of the preconditions thatcaused a path to fail previously. The algorithm must also examine all of thepreconditions that succeeded previously, to verify that none of them havebeen rendered unsatis�able by some mismatch in the new problem. Theunion of these sets of preconditions is exactly that set of preconditions thata from-scratch problem solver would check if derivational analogy were notbeing used. Thus, even ignoring the expense of retrieving and matching arecorded experience for reuse, the algorithm would not gain any e�ciencyby pursuing the optimizing approach.1515In the case where a failure detected in a subtree of a goal tree can be propagated up36



To overcome the fundamental limitation of derivational analogy, a pro-gram must detect when a new problem di�ers from a recorded experience insome signi�cant way and then adapt to these di�erences. Most current pro-grams for derivational analogy have simple approaches to these two steps.First, their criterion for deciding when a new problem di�ers from a recordedexperience is simply that reuse fails. This criterion may detect that a solu-tion path is a dead end, but it will not detect that a solution path is notoptimal. Second, programs cope with di�erences either by skipping them orcalling a from-scratch problem solver.We propose an alternative in which the derivational analogy programlearns new rules of the form: \When you notice a particular di�erence be-tween the recorded problem speci�cation and the new problem speci�cation,and you encounter a particular kind of problem solving choice, then here aresome additional rules that you want to attend to, regardless of whether theyare in the recorded experience." These rules would augment, not replace,the problem-solving knowledge recorded in the program's prior experience.Using these new kinds of rules, a derivational analogy program could bothdetect di�erences between problems that would not necessarily hinder reuseand produce better quality solutions.There are two representations that a program would need in order toaccomplish this sort of learning. The �rst would be a representation for thedi�erences between two problems. In the domain of circuit design, this wouldbe di�erences between the number and kind of logical operations called for.In the domain of interface design, this might be di�erences in the numberand type of entities in the application description and the real-world entitydescription.The second representation needed would capture the di�erences betweentwo corresponding steps in two separate problems. This could simply be thedi�erences in what rules were recorded as useful in each problem.The algorithm might learn these new kinds of rules by running a deriva-tional analogy algorithm on a new problem using a variety of recorded ex-periences, and by running a from-scratch problem solver on the same newproblem. The solution produced with derivational analogy would then becompared to the solution produced by the from-scratch problem solver. Dif-ferences in the solutions would be noted and, where possible, propagatedto a decision made at a goal higher up the tree, the optimizing approach may increasee�ciency. However, it is unclear whether the increase outweighs the extra e�ort. In anycase, this technique cannot be used when the domain includes rules with consequentsconditional on their antecedents as described elsewhere [Blu90a].37



back up to di�erence links between the problem speci�cation for the re-corded experience and the problem speci�cation for the new problem.Continuing the circuit design example, the program would compare therule used to address the (NOT (AND : : : )) problem using derivational anal-ogy and a recorded experience of (NOT (EQUAL : : :)) with the rule usedby a from-scratch problem solver (e.g., a person). The program would notethat the two rules were di�erent and would determine that the rule usedby the from-scratch problem solver (NOT-AND-DECOMP) was not usedin the recorded experience because the EQUAL failed to satisfy one of thepreconditions. This occurrence of the EQUAL could be traced up to theproblem speci�cation, and the di�erence between it and the AND couldbe used to build the new rule: \When you notice a di�erence between anEQUAL operation in the recorded problem speci�cation and an AND op-eration in the new problem speci�cation, and you encounter a use of theNOT-DECOMP rule involving that EQUAL in the recorded solution, thenyou should consider using the NOT-AND-DECOMP rule instead."Some �rst steps have been made in this direction in the work of Hick-man and Lovett [HL91] and Veloso [Vel90]. Hickman and Lovett's approachto derivational analogy relaxes the constraint for considering the recordedexperience to be appropriate to reuse. Veloso's approach learns to select themost appropriate recorded experience. However, neither of these programsfocuses on learning to improve the adaptation strategy itself.6 ConclusionsThis paper has presented both an analytic and an empirical examinationof derivational analogy. The basic derivational analogy algorithm has beenoutlined, and the kinds of mismatches between recorded experience andnew problems (detours, pretours, and combinations) have been describedin detail, along with the particular di�culties that each kind of mismatchpresents to a derivational analogy algorithm.Various strategies for dealing with these mismatches are presented inthe literature. The research presented in this paper has extracted thesestrategies and implemented them so that they can be applied to a commondomain. These implementations have been run on a number of di�erentproblems involving the reuse of experience, and several conclusions have be-come apparent from the resulting empirical data. Among these conclusionsare that derivational analogy is a generally successful technique and that us-38



ing a from-scratch problem solver to assist a derivational analogy programmay increase both e�ciency and autonomy. However, care must be takento intelligently interleave reuse with from-scratch problem solving, or theresulting program will be less e�cient than from-scratch problem solving.The REMAID algorithm for coping with mismatches has been shownto be successful because it intelligently interleaves reuse with from-scratchproblem solving. It does this by adapting the recorded experience to thenew problem rather than vice versa and by recognizing di�erent kinds ofmismatches and adapting to them appropriately. To do this, it uses a from-scratch problem solver in a novel way, to aid in recognizing di�erent kindsof mismatches as well as to help adapt to detours.The empirical data show that the REMAID system exhibits better per-formance when there are signi�cant mismatches between the recorded expe-rience and the new problem. The data further show that although it involvesmore overhead, the REMAID system shows less variance in its performancethan other derivational analogy programs.Despite this success, REMAID, like all existing derivational analogy al-gorithms, succumbs to a trade-o� between e�ciency and solution quality,although to a lesser extent than other algorithms. This trade-o� has beenshown to be not just an implementation problem, but a fundamental limi-tation of static derivational analogy adaptation strategies. The next step isto develop algorithms that can improve their adaptation strategies as theygain (meta-)experience in reusing recorded problem solutions.AcknowledgementsWe would like to thank Jack Mostow, Angela Hickman, Subbarao Kamb-hampati, and Raymond Mooney for discussions and comments on this work.We would like to thank Liane Acker and Je� Rickel for comments on earlydrafts of this paper. Finally, we would like to thank two anonymous review-ers for many helpful suggestions.
39



References[Bax90] Ira D. Baxter. Transformational maintenance by reuse of designhistories. In Proceedings of Fourth International Workshop onComputer-Aided Software Engineering. IEEE Computer Society,December 1990.[BH91] S. Bhansali and M. Harandi. Synthesizing unix shell scripts us-ing derivational analogy: An empirical assessment. In Proceed-ings of the Ninth National Conference on Arti�cial Intelligence,pages 521{526, 1991.[Blu90a] Brad Blumenthal. Applying Design Replay to the Domain ofMetaphoric Human Interface Design. PhD thesis, University ofTexas Arti�cial Intelligence Lab, Austin, TX, 1990. (Availableas Technical Report AI-90-145).[Blu90b] Brad Blumenthal. Incorporating metaphor in automated inter-face designs. In Proceedings of the Third IFIP Conference onHuman-Computer Interaction, Cambridge, England, 1990.[Blu90c] Brad Blumenthal. Strategies for automatically incorporatingmetaphoric attributes in interface designs. In Proceedings ofthe Third User Interface Software and Technology Workshop,Snowbird, Utah, 1990.[Car83] Jamie G. Carbonell. Derivational analogy and its role in problemsolving. In Proceedings of the National Conference on Arti�cialIntelligence, pages 64{69, Washington, DC, 1983.[Car86] Jamie G. Carbonell. Derivational analogy: A theory of recon-structive problem solving. In R. S. Michalski, Jamie G. Car-bonell, and T. M. Mitchell, editors, Machine Learning: An Ar-ti�cial Intelligence Approach, volume II, chapter 14. MorganKaufmann, Los Altos, CA, 1986.[CV88] Jamie G. Carbonell and Manuela Veloso. Integrating deriva-tional analogy into a general problem solving architecture. InProceedings of the First Workshop on Case-Based Reasoning,1988. 40



[DM86] Gerald DeJong and Raymond Mooney. Explanation-basedlearning: An alternative view. Machine Learning, 1(2), 1986.[Gen83] Dedre Gentner. Structure mapping: A theoretical frameworkfor analogy. Cognitive Science, 7, 1983.[HA87] Michael N. Huhns and Ramon D. Acosta. Argo: An analog-ical reasoning system for solving design problems. TechnicalReport AI/CAD-092-87, Microelectronics and Computer Tech-nology Corporation, Austin, TX, 1987.[Ham90] Kristian Hammond. Explaining and repairing plans that fail.Arti�cial Intelligence, 45(1-2), 1990.[HHN86] Edwin L. Hutchins, James D. Hollan, and Donald A. Nor-man. Direct manipulation interfaces. In Donald A. Normanand Stephen W. Draper, editors, User-Centered System Design.Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.[HL90] Angela Kennedy Hickman and Jill Larkin. Internal analogy: Amodel of transfer within problems. In Proceedings of the TwelfthAnnual Conference of the Cognitive Science Society, Cambridge,MA, 1990.[HL91] Angela Kennedy Hickman and M.C. Lovett. Partial matchand search control via internal analogy. In Proceedings of theThirteenth Annual Conference of the Cognitive Science Society,Evanston, IL, 1991.[Kam89a] Subbarao Kambhampati. Control of re�tting during plan reuse.In Proceedings of the International Joint Conference on Arti�-cial Intelligence, Detroit, MI, 1989.[Kam89b] Subbarao Kambhampati. Flexible Reuse and Modi�cation inHierarchical Planning: A Validation Structure Based Approach.PhD thesis, Computer Vision Laboratory, Center for Automa-tion Research, University of Maryland, College Park, MD, 1989.[Kam90a] Subbarao Kambhampati. Personal communication at the EighthAnnual National Conference on Arti�cial Intelligence, 1990.41



[Kam90b] Subbarao Kambhampati. Mapping and retrieval during planreuse: A validation structure based approach. In Proceedingsof the Eighth Annual National Conference on Arti�cial Intelli-gence, Boston, MA, 1990.[Kol87] Janet Kolodner. Extending problem solver capabilities throughcase-based inference. In Proceedings of the Fourth InternationalWorkshop on Machine Learning, pages 167{178, 1987.[LRN86] John Laird, Paul Rosenbloom, and Alan Newell. Chunking insoar: The anatomy of a general learning mechanism. MachineLearning, 1(1), 1986.[MB87] J. Mostow and M. Barley. Automated reuse of design plans. InProceedings of the 1987 International Conference on Engineer-ing Design, pages 632{647, 1987. (Available as Rutgers Univer-sity Technical Report ML-TR-14).[MF89] J. Mostow and G. Fisher. Replaying transformational deriva-tions of heuristic search algorithms in DIOGENES. In Proceed-ings of the Second Workshop on Case-Based Reasoning, pages94{99, Pensacola, FL, May 1989.[MKKC86] Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli. Explanation-based generalization: A unifying view.Machine Learning, 1(1), 1986.[Mos89] Jack Mostow. Design by derivational analogy: Issues in theautomated replay of design plans. Arti�cial Intelligence, 40(1-3), 1989.[PBH90] Bruce Porter, E. Ray Bareiss, and Robert Holte. Concept learn-ing and heuristic classi�cation in weak-theory domains. Arti�-cial Intelligence Journal, 45(1-2):229{263, 1990.[VC89] Manuela Veloso and Jamie G. Carbonell. Learning anologies byanology { the closed loop of memory organization and problemsolving. In Proceedings of the Second Workshop on Case-BasedReasoning, 1989.[Vel90] Manuela Veloso. Replaying past experience within a generalproblem solving and learning architecture. Technical report,Carnegie-Mellon University, Pittsburgh, PA, 1990.42


