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Abstract

Derivational analogy is a technique for reusing problem solving ex-
perience to improve problem solving performance. This research ad-
dresses an issue common to all problem solvers that use derivational
analogy: overcoming the mismatches between past experiences and
new problems that impede reuse. First, this research describes the
variety of mismatches that can arise and proposes a new approach to
derivational analogy that uses appropriate adaptation strategies for
each. Second, it compares this approach with seven others in a com-
mon domain. This empirical study shows that derivational analogy is
almost always more efficient than problem solving from scratch, but the
amount it contributes depends on its ability to overcome mismatches
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and to usefully interleave reuse with from-scratch problem solving. Fi-
nally, this research describes a fundamental tradeoff between efficiency
and solution quality, and proposes a derivational analogy algorithm
that can improve its adaptation strategy with experience.

1 The derivational analogy technique

Derivational analogy is a technique for reusing problem solving experience
to improve problem solving performance. Since its proposal [Car83, Car86],
it has been applied to a number of domains, including circuit design, matrix
manipulation, non-linear planning, and more recently, computer program
transformations, DC circuit problem solving, and the design of human-
computer interfaces [Mos89, MBR7, MF89, HAR7, Kam®&9a, CV88, Bax90,
HL90, Blu90a]. While this diversity shows that derivational analogy is
widely applicable, it makes it difficult to determine how and why deriva-
tional analogy works.

The goal of the research described here is to examine derivational analogy
in two ways. First, the research analyzes the fundamental structure of the
problem addressed by derivational analogy and the inherent limitations in
the technique. Second, the research empirically evaluates the relative success
of various approaches to the derivational analogy technique by implementing
existing and original derivational analogy techniques and testing them on
a number of problems in the same domain. Although there are a number
of difficult issues that a derivational analogy algorithm must address, this
paper concentrates on the problem of reducing the differences between prior
problem solving experiences and new problems to facilitate reuse.

In principle, the derivational analogy technique of recording and reusing
experience can be applied to any kind of problem. However, in practice
derivational analogy has been applied to problems in design, search-based
heuristic problem solving, and hierarchical non-linear planning. Problem
solving in these three areas typically proceeds by top-down decomposition
of the problem combined with instantiation of atomic solution steps. Design
reuse is representative of the domain areas that derivational analogy has
been applied to, and following Mostow [Mos89], the two terms are used
interchangeably.

A derivational analogy algorithm proceeds through four phases: record-
ing an experience, retrieving a recorded experience’ when faced with a new

!Terms commonly used in this paper appear in italics when they are first introduced.



Derivational Analogy:
Record one or more experiences;
Retrieve a recorded experience;
Reuse the retrieved experience on a new problem;
Improve Reuse;

Retrieve Experience:
Select recorded experience from memory;
Establish correspondences between recorded experience and new problem;
Evaluate correspondences;
If necessary, select a different recorded experience
or establish new correspondences;
Return recorded experience and correspondences;

Reuse Experience:
While there are unaddressed goals left in the new problem
and unused goals left in the recorded experience
begin
1. Select goal(s)
Choose next goal to be reused from the ordered list
of goals in the recorded experience;
Use the recorded goal ordering information to attempt to select
a corresponding goal (or goals) from the new problem;
2. Address goal(s)
Determine which of the goal (or goals) selected from
the new problem can be addressed with the
recorded problem solving information;
If an appropriate goal (or goals) is (are) selected and
the recorded problem solving information can be applied then
The problem solving information is applied and reuse succeeds; else
Adapt the recorded experience and/or the new problem
so that reuse can continue; If adaptation fails,
fall back on a from-scratch problem solver.
fi

end while

Improve Reuse:
Evaluate solution quality and efficiéncy:
Record evaluation on both the recorded experience and the new problem;
Alter retrieval and/or reuse strategies based on evaluation;

Figure 1: The skeletal derivational analogy algorithm.



problem, reusing the recorded experience to solve the new problem, and eval-
uating and improving the performance of the retrieval and reuse phases (see
figure 1).

First, a derivational analogy algorithm must have a record of some prob-
lem solving experience. The simplest way to produce such a record is to have
a knowledge engineer construct it. A more automatic way is to have the
algorithm record the actions of a person solving solving a problem. Alter-
natively, instead of working with a person, a derivational analogy algorithm
might record the actions taken by a from-scratch problem solver (e.g., a
non-linear planner [Kam89b, Vel90], a system for solving circuit analysis
problems [HL90], or an automatic human-interface design system [Blu90a]).

Second, a derivational analogy algorithm must select one of its recorded
experiences based on features of the new problem. The recording, index-
ing, and retrieval of experience is a difficult problem, and some prelim-
inary solutions have been suggested in the derivational analogy research
[BH91, Kam90b, Vel90] and in the knowledge acquisition and case-based
reasoning literature [PBH90, Ham90, Kol87].

Third, the derivational analogy algorithm must adapt the selected re-
corded experience for reuse on a new problem that is similar, but not
identical, to the original problem. This ability to adapt to differences be-
tween a recorded experience and a new problem during the course of prob-
lem solving is what distinguishes derivational analogy from other methods
for reusing recorded experience. Compared to derivational analogy, most
other methods concentrate on reusing groups of steps without adaptation
[LRN86, MKKC86, DM86] or on doing adaptation after all of the recorded
experience has been applied [Ham90]. This is not to say that the other parts
of the derivational analogy algorithm do not present formidable problems.
However, the better a derivational analogy algorithm is at adaptation, the
less important it is to select just the right recorded experience.

In attempting to solve a new problem by reusing a recorded experience,
derivational analogy iteratively performs two steps: selecting goals and ad-
dressing goals (see figure 1). During each iteration of derivational analogy,
one or more goals are selected from the new problem that are considered
similar to a goal in the recorded experience.? Some algorithms select goals
by simply reusing the order in which goals were selected in the recorded

2Different algorithms for derivational analogy use different criteria for similarity. How-
ever, this paper is more concerned with adaptation than goal selection. Therefore, the algo-
rithms tested in the experiments described in section 4 use a common similarity criterion.



experience. Others select goals by reusing the rationale behind the order in
which the goals were selected.

Once goals in the new problem are selected, they are addressed by reusing
the problem-solving information (i.e., rules, variable bindings, and con-
straints) that were applied in the recorded experience. However, because
the recorded experience and the new problem are not identical, this infor-
mation might be inapplicable to the selected goals. Such a failure surfaces
as an unsatisfied precondition for a rule, an illegal variable binding, or a
constraint violation. If the steps of selecting and addressing goals are un-
successful, either because the recorded goal ordering information does not
select any goals from the new problem, or the recorded problem solving in-
formation cannot be applied to the goals that are selected, then derivational
analogy attempts to adapt either the new problem or the recorded expe-
rience so that reuse can continue. When differences between the recorded
experience and the new problem cause reuse to fail, a derivational analogy
algorithm must fall back on from-scratch problem solving, either a human
expert or a search-based, heuristic problem solver.

The last step in the basic derivational analogy algorithm is to analyze
the results of reusing the experience and to use that analysis to change the
performance of the derivational analogy algorithm in subsequent problems.
Such modifications may involve changes to the features used for indexing
the recorded experience [VC89] or improvements to the adaptation process
[HLI1].

Because of its crucial role in derivational analogy, the ability of a deriva-
tional analogy algorithm to adapt a recorded experience or a new problem
to enable reuse is the focus of this research. We will measure this ability
in two ways. First, the total amount of effort expended by a derivational
analogy system to solve a problem (including the effort expended during any
from-scratch problem solving) is a measure of that system’s efficiency. Sec-
ond, the proportion of the new problem that is solved by reuse, rather than
by from-scratch problem solving, is a measure of that system’s autonomy.

2 Obstacles to reuse — The need for adaptation

A derivational analogy algorithm attempts to adapt a recorded experience
and a new problem when it encounters an obstacle to reuse. An obstacle is
a mismatch between the structure of the solution stored in the recorded ex-
perience and the structure of the desired (but unknown) solution to a new



problem. As noted above, derivational analogy algorithms have typically
been applied to domains where problem solving proceeds by problem de-
composition. In such domains, the goals addressed in the process of solving
a problem form an and-tree structure, with subgoals represented as children
nodes of their supergoal. The topology of such a goal tree is the structure
of the tree as determined by its overall depth, its breadth at each level, and
the relationships between the parent and children nodes. When the desired
solution to the new problem matches the solution in the recorded experi-
ence, the two goal trees have the same topology, and corresponding nodes
represent corresponding goals. When the topologies are not the same, a
mismatch occurs and adaptation is required.

2.1 A testbed for studying adaptation

In order to present concrete examples of the kinds of obstacles that a deriva-
tional analogy algorithm encounters, this section introduces the domain of
automated metaphoric human interface design, which is used as the testbed
domain for comparing derivational analogy systems.

Briefly, a metaphoric interface is one that uses features from the real
world to present the appearance and behavior of the objects and operations
that a computer application makes available to the user. Perhaps the most
familiar metaphoric interface is the desktop metaphor for operating systems.
This interface uses pictures of pieces of paper to represent files, pictures of file
folders to represent directories, and animations of putting pictures of pieces
of paper into pictures of folders to represent putting files into directories.

The domain of human interface design has a number of advantages as a
testbed for comparing the various derviational analogy algorithms. Most im-
portant for the purposes of the empirical evaluations, this domain exhibits a
large number of mismatches among different interface design problems, while
still retaining enough similarity among problems that reuse is beneficial.

A second advantage of the interface design domain is that the quality
of the solutions produced in this domain is sensitive to the order in which
goals are addressed. The reasons for this sensitivity are discussed more fully
elsewhere [Blu90a]; however, one example involves the design of direct ma-
nipulation interfaces [HHN86]. If an operation in an interface acts on an
entity that is displayed on the screen, it is often desirable to implement the
gesture for that operation as a direct manipulation action on that entity. In
terms of automated interface design, this requires that the screen area for
that entity be allocated before the interface to the operation is designed.



Otherwise, a non-direct manipulation operation will be designed instead.
The implication of this sensitivity for our empirical study of derivational
analogy algorithms is that the performance of the algorithms can be mea-
sured not only in terms of autonomy and efficiency, but also in terms of
solution quality (as discussed in section 5).

Even in domains that have some formal criteria for correctness, solution
quality may be an issue. While a circuit design can be formally shown
to implement the logic given in a specification, it cannot necessarily be
formally shown to be the best circuit in terms of size, power consumption,
heat dissipation, ease of manufacturing, and so on.

To illustrate the variety of mismatches that arise among different in-
terface design problems, we present two interfaces generated by MAID, a
from-scratch problem solver. > The interfaces are for a simple data manager
application, which maintains a list of records, each of which has a name field,
an address field, and a phone number field. In addition, the application al-
lows the user to add and delete records and browse through the records one
at a time, either forwards or backwards.

One metaphoric interface that MAID designs for the data manager ap-
plication has some of the appearances and behaviors of a note pad (figure 2
shows the appearance of part of this interface). This particular interface
design presents the information in a data manager record in the way that
a name, address, and phone number would canonically be written at the
bottom of a notepad page. To create this design, MAID adds entities to
the interface corresponding to notepad pages, the spine holding the pages
together, extra entries for names, addresses, and phone numbers on the
notepad page, etc.

A second metaphoric interface that MAID designs for the data manager
application uses the characteristics of a Rolodex® to determine the appear-
ance and behavior of the interface. The design of this interface uses the
appearance of the top Rolodex card on a Rolodex to present a data man-
ager record and introduces a number of new entities to the application,
including a spindle, a frame, and a face-down bottom card (see figure 3).

As may be clear from a cursory glance at the note pad and Rolodex
examples, there are a number of differences between the two interface de-
signs. For example, the spindle in the Rolodex corresponds to the spine

SMAID is an acronym for Metaphoric Application Interface Designer. It is described
more fully elsewhere [Blu90b, Blu90a, Blu90c].
‘Rolodex is a trademark of the Rolodex Company.
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Figure 2: A MAID metaphoric interface design for the data manager ap-
plication using characteristics from the note pad. Hashed lines indicate
mouse-sensitive regions.
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Figure 3: Part of the design of the interface to the data manager application
using the Rolodex metaphor.



on the notepad, but the Rolodex frame does not correspond to anything
in the notepad. If the Rolodex design is used as the recorded experience
when designing the notepad interface, then a derivational analogy algorithm
must adapt to this difference. Another example is the notepad page, which
does not correspond to anything in the Rolodex-inspired interface. Besides
adding an extra entity that must be adapted to, the notepad page introduces
a different organization of the problem that must be adapted to. The next
section enumerates the kinds of differences that a derivational analogy must
adapt to and gives examples from the human interface design domain.

2.2 Topology mismatches — a bird’s eye view

Upon examining the topologies of various solution trees, it becomes clear
that there are several distinct kinds of mismatches occurring during the
reuse of recorded experience. Furthermore, the empirical evidence gathered
in the course of this research (reported in section 4) convincingly argues that
a derivational analogy algorithm must be sensitive to these differences if it
is to give the best performance on any but the most trivial applications of
derivational analogy. In particular, different strategies are necessary to cope
with the various kinds of mismatches, and a strategy that is appropriate
for one kind of mismatch may be disastrously expensive when applied to a
different kind of mismatch.

Looking at the complete solution trees for the recorded experience and
the new problem solution, there are essentially three ways the two topologies
can fail to match. There can be goals in the new problem that fail to match
goals in the recorded experience, goals in the recorded experience that fail to
match goals in the new problem, and goals in both the recorded experience
and the new problem that fail to match goals in the other. These mismatches
are called detours, pretours, and combinations respectively.

There are a number of ways these mismatches can manifest themselves
between different solution trees, some of which may not be as straightforward
as the descriptions and diagrams presented here. However, the linear order
imposed on the goals by a sequential problem solver makes detours, pretours,
and combinations adequate for describing the mismatches encountered by
a derivational analogy algorithm. Describing mismatches in terms of the
solution trees gives a better picture of the difficulties involved in overcoming
these obstacles, and the linear order imposed during sequential problem
solving collapses a number of different solution tree mismatches into the
categories described in the next sections.



In the discussion of mismatches, and in the implementations of replay
algorithms described in section 4, the match criteria is loosely based on
BOGART’s [MB87]. Two goals match if: 1) the goals are of the same
type, 2) the goals address the same or similar entities, and 3) the super-
goals of the two goals satisfy conditions 1) and 2). Determining whether
the two entities being addressed are similar is a domain-specific problem.
In the MAID domain of metaphoric human-computer interface design, two
entities are similar if they are instances of the same class of entity or if there
is a metaphoric mapping between the two entities. Metaphoric mappings
are either given by the designer as part of the initial problem statement, or
established by the MAID design rules (for a detailed discussion of how MAID
automatically establishes new mappings see [Blu90c, Blu90b, Blu90a].

2.2.1 Detours

When a new problem contains goals that do not correspond to anything in
the recorded experience, these goals are referred to as detours. Since nothing
in the experience indicates when or how these goals should be addressed,
the derivational analogy program must notice these new goals and address
them appropriately.

In practice, there are two kinds of detours that may be encountered.
The less troublesome of the two is a horizontal detour which occurs when
the extra goal in the new problem is a sibling of a goal that matches some
goal in the recorded experience (see figure 4).

As an example, in the note pad design, MAID addresses the goal of
designing the note pad spine before it addresses the goals for the various
operations (goals of addressing objects are usually chosen before goals of
addressing operations so that direct manipulation operations can be imple-
mented). When this design is used as the recorded experience to solve the
Rolodex design problem, a horizontal detour is encountered. The goal of
designing the Rolodex spindle matches the goal of designing the note pad
spine, but the goal of designing the Rolodex frame does not match any goal
on the retrieved experience.

If a derivational analogy algorithm fails to recognize this sort of detour,
then the extra goal and all of its descendants may not be addressed at all.
If they are eventually noticed (e.g., as goals left unaddressed after reuse has
finished), they will have to be addressed in some other way (e.g., by calling
on a person or calling on a from-scratch problem solver). It can be argued
that leaving such goals unaddressed is a reasonable course of action for
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Figure 4: A schematic description of a horizontal detour. The goal (or set
of goals) marked X in the new problem does not correspond to anything in
the recorded experience.

a derivational analogy algorithm since nothing in the experience indicates
how such goals should be handled. However, depending on the nature of
the domain, this strategy of ignoring horizontal detours may have adverse
effects on the quality of the resulting problem solution (as described briefly
in section 5 and in detail elsewhere [Blu90a]).

A more troublesome kind of detour is the wvertical detour. Like a hor-
izontal detour, this sort of detour occurs when there are some extra goals
in the new problem that do not correspond to anything in the recorded
experience. The difference is that in a vertical detour these new goals are
spliced between a parent goal and its subgoals in the recorded experience
(see figure 5).

An example of a vertical detour is encountered when the Rolodex design
is used as the recorded experience for the note pad design. The goal of
designing an entry on the notepad corresponds to the goal of designing a
Rolodex card (since a notepad entry and Rolodex card both record one
name, address, and phone number). However, these goals are not aligned in
the solution trees, as shown in figure 6.

The reason that vertical detours are more difficult to handle is that
the intervening, unmatched goals in the new problem must be addressed

11
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Figure 5: A schematic description of a vertical detour. The goal (or set of
goals) marked X in the new problem does not correspond to anything in the

recorded experience.
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Recorded Experience New Problem

Figure 6: An example of a mismatch between the solution trees for designing
records with a Rolodex interface versus a notepad interface. The goal of
designing a note pad page does not correspond to anything in the Rolodex
design.

13



(somehow) in order to spawn the goals below the detour that do correspond
to goals in the recorded experience. In the example above, the goal of
designing the note pad entry is not added to the list of pending goals until
the goal of designing the note pad page is addressed. If a vertical detour is
not addressed, it may block the appearance of a large number of goals in the
new problem that could be addressed by derivational analogy. In addition,
it should be emphasized that the number of goals in a detour, as well as
any other mismatch, is arbitrary. There can be a large number of goals that
must be addressed by the adaptation mechanism before derivational analogy
can resume.

2.2.2 Pretours

If the recorded experience contains goals that do not match any goals that
occur in the new problem, such goals are referred to as pretours® (see fig-
ure 7). Since these goals cannot be reused to address goals in the new
problem, it is up to the derivational analogy algorithm to skip these goals
and continue reuse at some appropriate later point.

An example of a pretour occurs when the note pad design is used as
the recorded experience for the Rolodex design, that is, when the roles are
reversed from the previous example of a vertical detour. In this case, the
goal of designing a note pad page (from the recorded experience) must be
ignored. If there were always just one intervening goal, then simply skipping
a goal might be an effective adaptation method. However, as there may be
many intervening goals, a derivational analogy algorithm needs an efficient
way of determining how many goals to skip.

Although, technically, there are horizontal and vertical pretours in the
same sense that there are horizontal and vertical detours, in practice there is
essentially no difference between the two. In both cases, goals in the recorded
experience must be ignored, and since goals in the recorded experience are
considered in a linear order, they can be ignored in the same way. This is
an example of how the linear order imposed by a sequential problem solver
can conflate apparently different kinds of topology mismatches into a single
class for the purposes of a derivational analogy adaptation algorithm.

5This is a contraction of “previous detour,” indicating that such goals are similar to
detours, but in the previously recorded experience.
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Figure 7: A schematic description of a pretour. The goal (or set of goals)
marked X in the recorded experience does not correspond to anything in the
new problem.
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2.2.3 Combinations

When both a pretour in the recorded experience and a detour in the new
problem exist at the same time, the situation is referred to as a combina-
tion (see figure 8). Combinations are especially difficult to adapt to because
they are difficult to distinguish from pretours and detours, and many of the
strategies that work for pretours and detours are not effective for combina-
tions (see section 2.3).

One example of a combination occurs when the Rolodex interface design
is used as the recorded experience for the note pad interface. The goals for
designing the Rolodex frame constitute a pretour. In addition, the goals for
designing the note pad page constitute a vertical detour, and the goals for
designing the top entry on the note pad page constitute a horizontal detour.
Thus, combinations can include pretours and both vertical and horizontal
detours.

If a combination is assumed to be a detour, and goals are addressed
somehow in the new problem, then the extra goals in the recorded experience
are never skipped. Reuse is never resumed because the goal in the recorded
experience that the system is attempting to reuse does not correspond to
any goal in the new problem.

If a combination is assumed to be a pretour, and goals in the recorded
experience are skipped, then the detour is never adapted to, and none of
the goals in the detour, or the goals that might be spawned by goals in
the detour, are ever addressed. To successfully adapt to a combination
mismatch, a derivational analogy algorithm must ignore the goals making
up the pretour and somehow address the goals making up the detour.

2.3 Topology mismatches — what the algorithm sees

While mismatches are best described in terms of complete solution trees,
during reuse, a derivational analogy algorithm does not have the entire so-
lution tree to examine. This section briefly describes the information that
a derivational analogy algorithm has available to determine what kinds of
mismatches are encountered and how to adapt to them during the course of
reusing a recorded experience.

In the case of vertical detours, pretours, and combinations, all the algo-
rithm can determine initially is that no goal in the new problem appropri-
ately matches the goal selected from the recorded experience. This is what
makes these kinds of mismatches difficult to distinguish and difficult to adapt

16
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Figure 8: A schematic description of a combination mismatch. The goal (or
set of goals) marked X in the recorded experience does not correspond to
anything in the new problem, and the goal (or set of goals) marked Y in the
new problem does not correspond to anything in the recorded experience.
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to. As adaptation progresses, however, a sufliciently sensitive algorithm can
distinguish, and appropriately adapt to, each kind of mismatch.

In the case of horizontal detours, an appropriate procedure for matching
goals from the recorded experience to goals in the new problem can detect
such mismatches by selecting more than one goal from the new problem.
However, it is up to the derivational analogy algorithm to handle such a
mismatch in an appropriate fashion.

Most implemented derivational analogy algorithms do not distinguish
various kinds of mismatches and, therefore, only use one approach to adap-
tation regardless of the type of mismatch being faced. When one of these
algorithms successfully adapts to mismatches, it is because the algorithm’s
approach is fortuitously appropriate for the mismatches encountered. When
an approach is not appropriate for a given mismatch, these derivational anal-
ogy algorithms may produce extremely inefficient results or fail to solve the
new problem at all.

A derivational analogy algorithm that can distinguish various kinds of
topological mismatches and apply different, appropriate approaches to each
kind can produce more efficient, successful results. One such algorithm is
described in section 3.5. The difficulty faced by such an algorithm is that
only incomplete information about the type of mismatch encountered is
available while the algorithm is solving a new problem.

3 Approaches to adaptation in derivational anal-
ogy algorithms

Derivational analogy algorithms use two strategies to adapt a recorded ex-
perience and a new problem to eliminate mismatches between them. Local
adaptation refers to the strategy that the derivational analogy algorithm uses
when there is no goal in the new problem that appropriately corresponds to
one particular goal in the recorded experience. Recoveryis the strategy that
the derivational analogy algorithm uses when it cannot find an appropriate
correspondence for any goal in the recorded experience.

To show the range of local adaptation and recovery strategies employed
by current derivational analogy algorithms, five programs are presented here.
Each of these programs is described in turn, with an analysis of the local
adaptation and recovery strategies that it employs.°

5Some of the programs described here assume that their local adaptation strategies are
sufficient, and therefore do not explicitly include a separate recovery strategy.
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The first four programs have been described in the literature and all
use the recorded experience to guide local adaptation and recovery: the
BOGART/VEXED system of Mostow and Barley [MB87], the extensions
to PRODIGY done by Carbonell and Veloso [CV88, Vel90], the PRIAR
system of Kambhampati [Kam89b], and the work on internal analogy in the
context of the RFermi system done by Hickman [HL90].

The fifth one is the REMAID? system for reusing human interface design
experience [Blu90a] and is one of the results of the research described here.
REMAID embodies three novel approaches to the problem of adaptation and
recovery. First, it was designed to distinguish the various kinds of topology
mismatches described in section 2 and to use different adaptation strategies
for each. Second, REMAID uses the state of the new problem, rather than
the recorded experience, to more efficiently and successfully guide adapta-
tion. Third, REMAID makes novel use of a search-based problem solver
(in addition to other strategies) both to help distinguish various kinds of
mismatches and guide adaptation. Some of the other algorithms use some
sort of search-based problem solver to handle parts of the new problem that
cannot be addressed by reusing the recorded experience, thereby adapting to
detours. However, only REMAID uses such a problem solver to help analyze
the differences between the recorded experience and the new problem.

Seven derivational analogy algorithms based on the various recovery and
adaptation strategies found in the literature have been implemented so that
they can all be applied to a common domain. Together with REMAID, these
implementations have been used in the empirical evaluations described in
section 4 to determine the relative strengths and weaknesses of each ap-
proach. In order to test these approaches in the same domain, namely that
of automated human interface design, a number of compromises had to be
made among the various algorithms. Thus, while the implementations in-
spired by approaches in the literature are not complete reimplementations,
they faithfully embody the applicable recovery and adaptation strategies
from the literature in a way that can be meaningfully compared.

3.1 BOGART

The BOGART derivational analogy program records the design goals and
rules chosen by a human designer who is using the VEXED circuit design
program. To solve a new problem, the designer provides BOGART with an

TREMAID is an acronym for Replaying Episodes of MAID. MAID is described in

section 2.1.
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initial match between a goal in the recorded experience and a goal in the
new problem. BOGART then applies the recorded goal choices and design
rules in the order in which they were recorded.

BOGART has the simplest local adaptation strategy of the programs
presented here. When BOGART encounters a goal in the recorded experi-
ence that does not correspond appropriately to any goal in the new problem,
it simply skips the goal in the recorded experience and continues with the
next goal in the recorded experience. After trying to reuse every goal in the
recorded experience, BOGART returns to the top of the list of goals and
retries all of the recorded goals that failed to be reused. The rationale for
this is that a goal may not have been reused because of a constraint vio-
lation that was repaired by addressing a later goal. BOGART repeats this
process until it tries to reuse every goal remaining in the recorded experience
without success.

BOGART’s adaptation strategy is to simply skip goals in the recorded
experience that do not match a goal in the new problem. This strategy is
adequate for addressing pretours, since it can effectively ignore any goals in
the recorded experience that do not correspond to goals in the new problem.
However, BOGART depends on the user to address detours manually and
to restart reuse.

BOGART’s recovery strategy is equally simple. When it has made a
pass through the recorded experience and none of the goals can be reused,
BOGART simply halts and waits for the user to provide it with a new
recorded experience.

HOBART?® is an implementation of the BOGART approach to adapta-
tion and recovery. HOBART skips any goal in the recorded experience that
cannot be reused to address a goal in the new problem. It continues to cycle
through the list of goals in the recorded experience until none of them can
be reused to address a goal in the new problem, and then it halts.

3.2 PRODIGY extensions

Part of the PRODIGY system is a program for doing matrix manipula-
tions such as Gaussian elimination. Carbonell and Veloso’s extensions to
the PRODIGY system [CV88] reuse a recorded experience that includes
information about each goal that was selected, such as

8Hobart is a registered trademark of the Hobart Food Machinery Company. The names
of the implementations were chosen for purely arbitrary reasons.
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e what objects in the problem the goal operated on (e.g., what row of
the matrix is operated on),

e what step of the problem the goal addressed (e.g., scale a row),
e the order in which the goals were addressed,
e the rule choices that produced the solution,

e the variable bindings that were used when instantiating a problem
solving rule, and

e the justifications for each of these decisions.

During reuse, the PRODIGY system selects a goal in the new problem
that matches the next goal in the recorded experience. It then checks that
the various justifications in the recorded experience are still valid for the
goal in the new problem. If the justifications still hold, the recorded rule
is applied and reuse continues. If the justifications no longer hold, then
PRODIGY follows what Carbonell and Veloso call the satisficing approach.
This involves either establishing the current goal by other means, or patching
the mismatch that caused reuse to fail by adding the creation of the patch
as a new goal.

One way of implementing this approach is as a local adaptation strategy
that would try different rules than the one recorded to see if one can be
found to address the current goal in the new problem. This local adaptation
strategy can adapt to a limited class of combination mismatches (those where
there are the same number of goals in both the recorded experience and the
new problem, and simply using different rules is sufficient adaptation).

A second way of implementing this approach is as a recovery strategy
that would call on some other from-scratch problem solving program to
address one goal in the new problem when the derivational analogy algorithm
has failed to reuse all of the goals remaining in the recorded experience. Then
the algorithm could attempt to restart reuse. This would adapt to vertical
detours and any horizontal detours that are detected.

To test these strategies, three algorithms were constructed by imple-
menting the two methods outlined above and adding them to the basic
HOBART algorithm, both separately and together (recall that HOBART
uses an adaptation strategy of skipping a goal and trying the next one).

The implementation of HOBART with the PRODIGY-inspired adapta-
tion strategy (alternate problem solving rules) is called “PROBART.” The
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implementation that has the recovery strategy (select and address one goal
with a problem solving system) is called “POSSIBLY.” The implementa-
tion with both the adaptation strategy and the recovery strategy is called
“PROBABLY.”

3.3 PRIAR

Technically, Kambhampati’s PRIAR system [Kam89b] is closer to an imple-
mentation of Gentner’s structural analogy ideas [Gen83] than to an imple-
mentation of a derivational analogy algorithm. In particular, PRIAR tries
to determine what part of the recorded solution, rather than the solution
process, is applicable and tries to modify the solution to fit the new problem.
However, it exhibits a relevant recovery strategy.

The from-scratch problem solver for PRIAR is a non-linear planner. The
reuse component uses a validation structure to formally determine which
steps from the recorded plan are needed, and which goal conditions in the
new problem must be solved by new steps added by the PRIAR recovery
mechanism [Kam89a]. This recovery mechanism repairs the recorded plan by
taking any goal conditions in the new problem that are left unsatisfied by the
plan in the recorded experience and posting them as new goals. These new
goals are then addressed by the same non-linear planner that produced the
recorded plan. PRIAR’s recovery strategy is interesting in that it addresses
detours by using the same from-scratch problem solver that generated the
recorded experience. The PRIAR system does not perform local adaptation
in the course of problem solving; the purpose of the validation structure is to
determine exactly which steps in the recorded experience should be reused
and which should be eliminated.

PRIAR’s recovery strategy inspired two implementations that use a
from-scratch problem solver to address any goals left unaddressed in the new
problem without attempting to restart reuse. The first, called “BRIAR,”
uses the HOBART algorithm until there are no more goals in the recorded
experience that can be used on existing goals in the new problem, and then
it invokes a from-scratch problem solver to address any leftover goals. Un-
like the PRODIGY-inspired systems, the PRIAR-inspired recovery strategy
does not try to restart reuse when new goals have been added to the new
problem agenda by the from-scratch problems solver. The second algorithm,
called “PYRE,” uses the PRODIGY-inspired adaptation strategy (using al-
ternate problems solving rules) and the PRIAR-inspired recovery strategy
(using the from-scratch problem solver to finish solving the problem).
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‘ Algorithm ‘ Adaptation Strategy ‘ Recovery Strategy

HOBART Skip goal Halt

PROBART Alternate problem | Halt

solving rule

restart reuse

POSSIBLY Skip goal From-scratch problem solver for one goal;

PROBABLY | Alternate problem | From-scratch problem solver for one goal;

solving rule restart reuse
BRIAR Skip goal From-scratch problem solver
for all remaining goals
PYRE Alternate problem | From-scratch problem solver
solving rule for all remaining goals

Table 1: Summary of algorithms tested: strategy for adapting to single
recorded rule failures, and strategy for recovering when the recorded expe-
rience can suggest no more goals.

Table 1 summarizes the strategies used by the six implementations de-
scribed so far. There are two local adaptation strategies: simply skip the
recorded goal and try it later or use alternate problem solving rules. There
are three recovery strategies: halt, use a from-scratch problem solver for
one goal then restart reuse, or use a from-scratch problem solver for all
remaining goals.

3.4 Internal analogy

The work of Hickman and her colleagues uses techniques from derivational
analogy to improve performance without having to resort to a previous prob-
lem [HL90]. This approach is referred to as internal analogy and depends
on regularities within the problems in a domain to allow solutions to sub-
problems to be reused during the course of solving a single larger problem.

Hickman’s program determines if a set of problem solving steps is ap-
propriate to reuse by calculating the information content of the original
subproblem and comparing that to the information content of the new sub-
problem. The information content of a subproblem is a measure of the
number of bound variables in the left hand side of the rule addressing the
subproblem. Hickman has shown some preliminary success with a program
that simply uses the information content metric to determine which previous
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subproblem solutions can be reused.

Like PRIAR, Hickman’s program does recovery by simply using its from-
scratch problem solver, the RFermi program. There is no explicit recovery
strategy here; in the course of doing problem solving, this program either
finds appropriate goals to be reused, or it does not. If there are no more
appropriate goals to be reused, the RFermi program simply finishes the
problem solution.

The approach taken from Hickman’s internal analogy algorithm is the
strategy of using the list of addressed goals in a problem as the source
for reusable experience. An algorithm embodying this strategy was imple-
mented (in a program called LASH) to determine the viability of internal
analogy in the domain used for the empirical evaluations. Instead of looking
at a separate recorded problem solving experience, LASH uses the list of
addressed goals as its recorded experience. LASH uses the same adapta-
tion and recovery strategies as the REMAID system (described in the next
section).

3.5 REMAID

Unlike the other algorithms described and implemented here, REMAID was
designed with topology mismatches in mind; where possible, its strate-
gies distinguish the various mismatches and adapt to them appropriately
[Blu90a]. REMAID’s capability to distinguish and adjust to detours, pre-
tours, and combinations allows it to efficiently continue reuse when mis-
matches between the recorded experience and the new problem are found.

The REMAID adaptation strategy is based on the philosophy that the
new problem, not the recorded experience, should be used to guide adap-
tation when mismatches occur. One way that this philosophy manifests
itself is that REMAID, unlike other derivational analogy algorithms, does
not strive to conform to the ordering of goals in the recorded experience.
Instead, REMAID dynamically reorders its recorded experience in response
to mismatches, in a fashion that is sensitive to the state of the new prob-
lem. Whereas other algorithms try to make the new problem as similar to
the recorded experience as possible, REMAID modifies its recorded expe-
rience, not the new problem, to adapt to different kinds of mismatches in
appropriate ways. Put more informally, when REMAID is confronted with
a mismatch, it steps back and takes a fresh look at the new problem to
determine how to proceed.

By contrast, BOGART follows the ordering of goals in its recorded ex-
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perience as closely as possible. The adaptation strategies that PRODIGY
pursues focus on adapting the new problem so that as much of the recorded
experience as possible can be reused, including the ordering of goals. Al-
though not specifically concerned with goal ordering, PRIAR concentrates
on reusing as many of the plan steps in its recorded experience as possible.
In these other algorithms, this adherence to the recorded experience during
reuse makes it difficult to distinguish and efficiently adapt to various kinds
of mismatches.

The philosophy of attending to the new problem to guide adaptation
is implemented in REMAID by calling on a from-scratch problem solver in
a unique fashion. Like RFermi and PRODIGY, REMAID can use a from-
scratch problem solver to handle detours by addressing goals that cannot
be addressed by reusing recorded experience. However, unlike other deriva-
tional analogy systems, REMAID also uses the from-scratch problem solver
to select goals from the new problem that are used as a guide to distinguish
and efficiently adapt to the various kinds of mismatches. Thus, REMAID
uses a from-scratch problem solver not only to work more autonomously
(since goals that cannot be addressed via reuse can still be addressed with-
out the aid of a human expert), but also to be more sensitive to the new
problem by determining what to attend to when mismatches occur.

As with the sections describing the other programs, the rest of this sec-
tion concentrates on the adaptation and recovery strategies implemented in
the REMAID system. REMAID follows the cycle of selecting and address-
ing goals described in section 1. In particular, REMAID selects a goal to
be addressed by choosing a goal to be reused from the recorded experience
and reusing the recorded rationale to select a goal (or goals) from the new
problem. Then it analyzes its selection using both the similarity criteria
(common to all of the algorithms described here) and the preconditions of
the problem solving rules applied to the goal from the recorded experience.

There are three situations that this analysis can immediately detect.
In the simplest case (figure 9, case 1), REMAID selects only one similar
goal from the new problem, and the recorded problem solving information
is appropriate for addressing that goal. In this case, there is no mismatch;
REMAID assumes that the new problem is similar enough to the recorded
experience that no adaptation is needed, and reuse continues.
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3.5.1 Horizontal detours

A slightly more complex case occurs when REMAID selects more than one
goal, and the similarity criteria and recorded problem solving information
are successfully applied to at least one of those goals. In this case (figure 9,
case 2), there is a horizontal detour; REMAID assumes that either new
goals or different characteristics are present in the new problem that were
not in the recorded experience. The presence of a goal that actually does
match the goal from the recorded experience, along with some extra goals,
indicates that the mismatch is a horizontal detour.

In this situation, REMAID must first determine which of the extra goals
selected are new goals and which of the extra goals correspond to other goals
in the recorded experience that have different characteristics that cause them
to be chosen at different times. REMAID does this by matching each of the
extra goals against the unused goals left in the recorded experience.” Any
goal that matches some other goal in the recorded experience is assumed to
have some different characteristics in the new problem that cause it to be
selected in the new problem even though it was not chosen in the recorded
experience. These goals are not immediately addressed on the assumption
that they will be addressed when the matching goal in the recorded expe-
rience reaches the front of the list of recorded goals. The rationale is that
there may be some difference between the recorded experience and the new
problem, but that the selection of a matching goal from the new problem
indicates that the difference is not substantial enough to warrant changing
the order in which the goals are addressed.

Any extra goals that do not match a goal in the recorded experience
are assumed to be part of a horizontal detour. REMAID first addresses the
goal corresponding to the one that was chosen in the recorded experience,
then REMAID addresses the goals in the horizontal detour by calling on
a from-scratch problem solver. The recorded goal is removed from the re-
corded experience, and reuse continues with the next goal in the recorded
experience.

3.5.2 Vertical detours, pretours, and combinations

The most complex case (figure 9, case 3) occurs when the REMAID algo-
rithm selects zero or more goals and the recorded problem solving informa-

°This is not as expensive as it may sound. In particular, since no new goals are ever
added to the recorded experience, the goals recorded there can be efficiently indexed.

26



Basic Operations:
PS-SELECT: The from-scratch problem solver’s goal selection procedure.
PS-ADDRESS: The from-scratch problem solver’s procedure for
addressing a goal.

R-SELECT: Select a goal using rationale from recorded experience.
R-FILTER: Check goals chosen by R-SELECT using similarity and
precondition checks (returns one or zero goals).

RECOGNIZE-AS-UNUSED: Search unused goals in recorded experience and
determine that goal selected from new problem matches one.
ROTATE-UNUSED: Reorder goals in recorded experience so that
selected goal is first.

REMAID algorithm:
Case:
1. R-SELECT chooses one goal and
R-FILTER passes that goal: (no mismatch)
Reuse goal; no adaptation needed.

2. R-SELECT chooses more than one goal and
R-FILTER passes one goal: (horizontal detour)
Reuse goal to address goal passed by R-FILTER;
For each goal, G, chosen by R-SELECT
and not passed by R-FILTER:
If RECOGNIZE-AS-UNUSED G
then Ignore G (G will be addressed later).
else PS-ADDRESS G.

3. R-SELECT chooses zero or more goals and
R-FILTER passes zero goals: (vertical detour, pretour, or combination)
Goal := PS-SELECT;
If RECOGNIZE-AS-UNUSED Goal (pretour)
then ROTATE-UNUSED Goal and resume reuse.
else
Loop
PS-ADDRESS Goal;
Goal := PS-SELECT;
If RECOGNIZE-AS-UNUSED Goal (vertical detour or combination)
then ROTATE—UN[?%ED Goal;
break (resume reuse).
else continue loop;

Figure 9: The REMAID derivational analogy algorithm.



tion is not appropriate for any of the goals selected. As noted in section 2.3,
from this information alone, it is impossible to tell whether the mismatch
is a vertical detour, a pretour, or a combination. At this point REMAID
has to pursue a strategy that is flexible enough to adapt to each kind of
mismatch in an appropriate way.

As noted earlier, the philosophy behind the REMAID adaptation strat-
egy is that the new problem, not the recorded history, should determine how
adaptation should proceed. To realize this adaptation strategy, REMAID
calls on the goal selection mechanism of a from-scratch problem solver to
choose a goal from the new problem to be addressed. It then attempts to
use this goal as an index into the list of goals in the recorded experience to
determine which goal should be reused next. It does this by matching the
goal chosen by the from-scratch problem solver to the list of unused goals
in the recorded experience. If it finds a match, then a pretour has been
encountered, and the list of unused goals is rotated so that the matching
goal is at the front. The rationale for rotating the list of unused goals is
to restart reuse in the context of the next appropriate goal. REMAID then
addresses the chosen goal from the new problem, removes the matching goal
from the list of unused goals, and restarts reuse with the next goal in the
recorded experience. This strategy adapts to pretours by reordering the
recorded experience to correspond to the state of the new problem.

If the match algorithm does not find a match between the goal chosen by
the from-scratch problem solver and some goal on the recorded experience,
then a vertical detour or a combination has been encountered. In this case,
REMAID continues by letting the from-scratch problem solver choose a rule
to address the chosen goal. REMAID then calls the from-scratch problem
solver again to choose another goal. This process repeats until a match is
found between the goal chosen by the from-scratch problem solver and some
goal on the recorded experience. If the match eventually found involves the
first unused goal on the recorded experience, then the mismatch is a vertical
detour.

If the matching goal eventually found by the from-scratch problem solver
involves a goal other than the one on the front of the recorded experience,
then a combination of pretours and detours has been encountered. The
adaptation strategy uses the from-scratch problem solver to address the
goals in the detour component of the combination in the fashion described
above for vertical detours. As the from-scratch problem solver chooses each
goal, this strategy uses that goal as an index into the list of goals in the
recorded experience in an attempt to adapt to the pretour component of the
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combination in the manner described above for adapting to pretours.

Because REMAID was developed with an analysis of topology mis-
matches in mind, it can effectively distinguish and adapt to different kinds
of mismatches between the recorded experience and the new problem. The
strategy inspired by this analysis is to use the new problem rather than
the recorded experience to guide adaptation when a mismatch occurs. Like
other derivational analogy algorithms, REMAID uses a from-scratch prob-
lem solver to address goals that cannot be addressed by reusing goals from
the recorded experience. However, unlike other algorithms, REMAID also
uses a from-scratch problem solver to select goals that can be used to guide
the modification of the recorded experience to adapt to mismatches.

The appendix presents a detailed example of REMAID’s handling of a
mismatch that arises during replay.

4 Empirical evaluation

This section presents empirical data demonstrating the performance of RE-
MAID and the other implemented strategies for adaptation and recovery
when applied to problems in the domain of automated human interface
design. The data collected support several hypotheses. Some are unsurpris-
ing: derivational analogy is generally an effective technique, and increased
flexibility in adapting recorded experience to new problems increases both
efficiency and autonomy. More informatively, the data also indicate that
calling a from-scratch problem solver to help adapt to mismatches can be a
successful strategy, but that there may be a trade-off between efficiency and
autonomy unless the execution of the derivational analogy program and the
execution of the from-scratch problem solver are intelligently interleaved.

4.1 The experiment

All of the programs in this experiment use interface design problems solved
by the MAID program for their recorded experiences. The MAID pro-
gram is currently capable of designing five interfaces to the data manager
application.'® Since each design can be used as the recorded experience for
any other design, there are 25 possible derivational analogy problems, in-
cluding five trivial cases where the same interface is designed in both the

%This is limited by the amount of knowledge entered about real-world entities in the
knowledge base, not by any inherent limitations of the MAID program.
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recorded experience and the new problem.

Of the eight implementations presented in section 3, seven reuse experi-
ence recorded while solving one problem to help solve a different problem. In
this section, the implementations based on strategies in the literature (HO-
BART, PROBART, POSSIBLY, PROBABLY, BRIAR, and PYRE, sum-
marized in table 1) are referred to as “the basic six” derivational analogy
algorithms; the seventh program is REMAID. These seven programs were
run on all 25 derivational analogy problems. Data were collected from the
20 non-trivial cases on the total amount of effort expended in solving each
problem, the proportion of each problem addressed by reusing recorded expe-
rience, and the proportion of effort that was useful in solving each problem.!!
The eighth program is an implementation of the strategy in Hickman’s in-
ternal analogy approach, which reuses goals within the new problem. This
algorithm was run on all five designs, and similar statistics were gathered.

Those programs (POSSIBLY, PROBABLY, BRIAR, and PYRE) that

rely on a from-scratch problem solver used MAID.

4.2 Results: autonomy

Table 2 quantifies the autonomy of the various programs, that is, the amount
of the new problem that each program addresses through reuse, rather than
through from-scratch problem solving. For each program, the data in this
table show the average proportion of the 20 derivational analogy problems
that was addressed through reusing recorded experience and how much was
addressed by calling a from-scratch problem solver. The programs are sorted
in increasing order of autonomy, with MAID being the least autonomous
in terms of reuse (since it solves the entire problem through from-scratch
problem solving).

The data presented here indicate that, in terms of autonomy, the PRODIGY-
inspired recovery strategy!'? as exemplified by POSSIBLY is about as effec-
tive as the PRODIGY-inspired local adaptation strategy'® as exemplified
by PROBART and PYRE. Taken together, the two strategies increase au-
tonomy still more. By being sensitive to the different kinds of mismatches,

"Because of irrelevant technical details, meaningful CPU times were unavailable. In-
stead, counts of the number of goals addressed and the numbers of rules used and reused
were collected.

2Exhaust all reusable goals, address a goal with the from-scratch problem solver, then
try reuse again.

13Ty alternate problem solving rules each time a mismatch occurs and attempt to start
reuse again immediately.
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Program % Of Total Goals Addressed
% Addressed By Reuse ‘ % Addressed By MAID
MAID 0% 100%
LASH 20 80
HOBART 43 0
BRIAR 43 57
PROBART 63 0
PYRE 63 37
POSSIBLY 64 36
PROBABLY 75 25
REMAID 76 24

Table 2: Autonomy results for each of the programs when run on 20 deriva-
tional analogy problems (note that HOBART and PROBART do not always
finish solving the problems).

particularly horizontal detours, the REMAID algorithm is able to perform
as well as the best algorithms in terms of autonomy.

The results for the strategy of simply skipping any goals that are not
reusable, as exemplified by HOBART and BRIAR, indicate the number of
reusable goals between problems that are easily found in this domain. Finally,
the LASH program uses the same adaptation strategies as REMAID; its poor
performance is simply due to the lack of regularity within problems in the
interface design domain.

4.3 Results: efficiency

Since one goal of reusing recorded experience is to improve efliciency, it
would be plausible to infer that the most autonomous programs are also the
most efficient. However, this is not the case. Table 3 quantifies the average
amount of effort that each program spends solving the interface design prob-
lems, as well as the proportion of that effort that is productive (as opposed
to effort spent trying rules that are not applicable, etc.) For comparison, the
programs are again presented in order of increasing autonomy, along with
their place in order of efficiency.

These data indicate the different amounts of autonomy, that is the dif-
ferent proportions of the new problem that can be addressed by reuse, af-
forded by different interleaving strategies. In general, more goals in the
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Total Effort Useful Effort

Program Expended Expended Efficiency

(as a % of MAID’s | (as a % of Total Rank

Fffort) Fffort)

MAID 100% 20% 5
LASH 112 18 6
HOBART 15 25 N/A
BRIAR 58 23 3
PROBART 12 46 N/A
PYRE 35 28 2
POSSIBLY 234 9 7
PROBABLY 83 11 4
REMAID 35 47 1

Table 3: Efficiency results for each of the programs when run on 20 deriva-
tional analogy problems (note that HOBART and PROBART do not always
finish solving the problems, so their rank is omitted).

new problem are addressed through reuse when the entire recorded expe-
rience is re-examined every time the from-scratch problem solver is called
to address a goal (as it is in the POSSIBLY and PROBABLY algorithms).
Using this approach, however, it may be very expensive to determine that
the from-scratch problem solver must be called again, and the from-scratch
problem solver often must be called several times in a row. One way to
avoid this inefficiency is to abandon the recorded experience as soon as the
easily reusable goals are exhausted, as BRIAR and PYRE do; however, this
sacrifices autonomy.

The REMAID system uses the from-scratch problem solver not only to
address goals in the new problem, but also to provide guidance about how to
adjust the recorded experience. By intelligently interleaving reuse and calls
to a from-scratch problem solver, REMAID’s adaptation strategy handles
mismatches both autonomously and efficiently.

REMAID’s advantage over the other programs is not uniform across all
of the derivational analogy problems, though. At one extreme, the basic
six programs expend far less effort in the degenerate case where the same
design is used for both the recorded experience and the new problem.'* On

Y The reason for this is that REMAID’s approach is capable of using one goal from the
recorded experience to select multiple goals from the new problem. While this strategy is
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the other hand, REMAID is much more efficient at handling vertical detours,
since the other strategies either halt reuse and turn to from-scratch problem
solving or pursue a very expensive recovery strategy.

Given that there are crossover points between the efficiency of REMAID
and the efficiency of other programs, it may sometimes make more sense to
use a simpler derivational analogy strategy when the recorded experience
and the new problem are very similar in size and topology. However, de-
termining these crossover points is an empirical issue for each domain, and
it may be impossible to tell how similar two problems are without actually
attempting reuse.

4.4 Finding the crossover points

To further understand the performance of the various derivational analogy
programs, a second application was described in the MAID formalism and
used to run a set of experiments similar to those described above. This appli-
cation allows users to browse through records of inventory that are checked
in or checked out, specify a particular item to be checked out, check out an
item, or check in an item. In addition to an interface using no real-world
characteristics, three interfaces were designed using characteristics from a
library (e.g., books and shelves), a rental car company (e.g., an express
check-in form and drop box), and a video rental store (e.g., a membership
card and check-out form).

Since there are four possible interface designs that MAID can produce
for the reservation application, there are 16 possible derivational analogy
problems including the four trivial cases of using the same design for both
the previous experience and the new problem. Three different descriptions
of this application were constructed embodying varying degrees of similarity
among the four possible interfaces. As a result, the experiments determine
just how much adaptation is required for the flexibility of the REMAID
program to make up for the additional overhead of that algorithm.

4.5 Experimental conclusions

The data from the experiments using the reservation application are de-
scribed in detail elsewhere [Blu90a]. This section summarizes the main

capable of detecting horizontal detours, it is also slightly more expensive than the other
approaches. Generally, REMAID’s efficiency at adapting to mismatches outweighs this
expense.
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conclusions.

Although there are cases where simpler derivational analogy programs
perform more efficiently than REMAID, the more important point is that
REMAID shows much less variance in efficiency over the range of examples.
While it may not perform as well as the simpler programs when there are
very few mismatches, the advantage of using the simpler programs in these
cases is not nearly as great as the advantage of using REMAID when there
are a larger number of mismatches.

A rough calculation based on the empirical data indicates that if vertical
detours are the only kind of mismatch encountered, then REMAID gains the
advantage when the number of extra goals it can reuse (compared to PYRE
and BRIAR) is about one-fifth of the total number of goals. Furthermore,
the data indicate that if pretours are the only kind of mismatch, then RE-
MAID gains the advantage when there are about twice as many goals in the
recorded experience as there are in the new problem. This situation may not
be terribly common, but it does occur, especially if the experience recorded
while solving a design problem is reused while solving a subset of a similar
design problem.

4.6 Discussion

The foremost lesson of the empirical data is that in terms of efficiency,
derivational analogy is a successful technique. Although some of the im-
plementations employ very simple adaptation and recovery strategies, all
but one of the programs using previous experience expend less effort than
the MAID problem solver. Even the simplest of the basic six derivational
analogy approaches, HOBART, reuses over 40% of the design goals.

Most derivational analogy programs have been empirically tested against
some from-scratch problem solver, but very little empirical data have been
published that compare various approaches in the same domain to deter-
mine their strengths and weaknesses. The data presented here indicate that
a flexible technique for adapting to mismatches between a recorded expe-
rience and a new problem increases both the efficiency and autonomy of
derivational analogy. Further, using a from-scratch problem solver for re-
covery from mismatches is a promising technique, but there is a trade-off
between efficiency and autonomy unless a program can intelligently inter-
leave reuse and calls to the from-scratch problem solver.

A number of strategies embodied in the REMAID program contribute to
the efliciency and autonomy of its design process. By using the from-scratch
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problem solver to help guide the adaptation of the recorded experience, RE-
MAID can adapt to vertical detours. Because REMAID can find more goals
to reuse than programs that cannot adapt to vertical detours (and because
REMALID is intelligent about interleaving from-scratch problem solving and
reuse), this additional autonomy also increases REMAID’s efficiency.

By using the from-scratch problem solver’s goal selections as indices into
the recorded experience to determine where reuse should be restarted, RE-
MAID modifies the order of the recorded goals in response to mismatches
between the recorded experience and the new problem. In this way, RE-
MAID adapts to pretours more efficiently than other programs. By com-
bining this technique with its strategies for handling detours, REMAID can
adapt to combinations that no single strategy can cope with, thereby im-
proving efficiency and autonomy.

5 A fundamental limitation and a proposal

The discussion thus far concentrates on the capabilities of the various deriva-
tional analogy algorithms. This section focuses on a fundamental, inherent
limitation of the derivational analogy technique as it is currently being pur-
sued in the research. Simply put, the problem is how to integrate innovation
with the reuse of experience [Blu90a).

This is not an implementation problem, but rather a problem with the
fundamental behavior of derivational analogy. The reason for this is that the
derivational analogy technique attempts to minimize problem solving effort
by attempting to solve a new problem in a way that is as similar to a recorded
experience as possible. The more closely a derivational analogy algorithm
follows its recorded experience, the more likely it is to overlook mismatches
between the recorded experience and the new problem. Conversely, the more
sensitive the derivational analogy algorithm is to such mismatches, the less
efficient it will be in reusing its experience.

An example might make this problem a bit clearer. In the BOGART /VEXED
system for circuit design [MB87], if the previous experience includes a goal
specification like (NOT (EQUAL A B)), a designer might have chosen to
use the NOT-DECOMP rule to decompose this into a module implementing
(EQUAL A B) and an inverter that takes the the output of that module as
input.

If a subsequent circuit design problem contains (NOT (AND A B)) in the
same context, BOGART will successfully apply the same NOT-DECOMP
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rule which will decompose the goal into a module for (AND A B) and an
inverter. Although this looks like a successful use of experience, a from-
scratch design might have preferred to use the NOT-AND-DECOMP rule,
which uses a NAND gate to implement goals of the form (NOT (AND ...)).

This illustrates how a program might produce an inferior solution by
concentrating on reusing past decisions without attending to the important
differences between the recorded experience and the new problem. In some
task domains, such as matrix manipulation, all correct answers are of equal
quality. However, in other task domains, such as human interface design,
the path a designer takes to a solution directly affects the quality of that
solution.

To address this fundamental problem with derivational analogy, Car-
bonell [Car86] suggests pursuing an optimizing approach (as opposed to the
satisficing approach described in section 3.2) by having the derivational anal-
ogy algorithm attend to the justifications for the decisions in the recorded
experience. When a decision in the recorded experience was arbitrarily
made, he suggests exploring alternatives in the new problem; when a deci-
sion led to a failing path, he suggests checking the reasons for failure to see
if they exist in the current situation.

The problems with pursuing the optimizing approach are twofold. First,
in many domains optimality is a global characteristic of a problem solution;
it cannot be preserved by simply attending to decision criteria that are local
to each step [Kam90a]. Even if a derivational analogy algorithm is given
optimal recorded experience, any changes to that experience (such as the
changes necessary for adaptation to a new problem) may violate the global
optimality criteria, regardless of what local criteria are attended to.

The second, more practical problem with pursuing the optimizing ap-
proach is the cost involved. To explore the paths that failed previously, a
derivational analogy algorithm must examine all of the preconditions that
caused a path to fail previously. The algorithm must also examine all of the
preconditions that succeeded previously, to verify that none of them have
been rendered unsatisfiable by some mismatch in the new problem. The
union of these sets of preconditions is exactly that set of preconditions that
a from-scratch problem solver would check if derivational analogy were not
being used. Thus, even ignoring the expense of retrieving and matching a
recorded experience for reuse, the algorithm would not gain any efficiency
by pursuing the optimizing approach.'®

%In the case where a failure detected in a subtree of a goal tree can be propagated up
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To overcome the fundamental limitation of derivational analogy, a pro-
gram must detect when a new problem differs from a recorded experience in
some significant way and then adapt to these differences. Most current pro-
grams for derivational analogy have simple approaches to these two steps.
First, their criterion for deciding when a new problem differs from a recorded
experience is simply that reuse fails. This criterion may detect that a solu-
tion path is a dead end, but it will not detect that a solution path is not
optimal. Second, programs cope with differences either by skipping them or
calling a from-scratch problem solver.

We propose an alternative in which the derivational analogy program
learns new rules of the form: “When you notice a particular difference be-
tween the recorded problem specification and the new problem specification,
and you encounter a particular kind of problem solving choice, then here are
some additional rules that you want to attend to, regardless of whether they
are in the recorded experience.” These rules would augment, not replace,
the problem-solving knowledge recorded in the program’s prior experience.
Using these new kinds of rules, a derivational analogy program could both
detect differences between problems that would not necessarily hinder reuse
and produce better quality solutions.

There are two representations that a program would need in order to
accomplish this sort of learning. The first would be a representation for the
differences between two problems. In the domain of circuit design, this would
be differences between the number and kind of logical operations called for.
In the domain of interface design, this might be differences in the number
and type of entities in the application description and the real-world entity
description.

The second representation needed would capture the differences between
two corresponding steps in two separate problems. This could simply be the
differences in what rules were recorded as useful in each problem.

The algorithm might learn these new kinds of rules by running a deriva-
tional analogy algorithm on a new problem using a variety of recorded ex-
periences, and by running a from-scratch problem solver on the same new
problem. The solution produced with derivational analogy would then be
compared to the solution produced by the from-scratch problem solver. Dif-
ferences in the solutions would be noted and, where possible, propagated

to a decision made at a goal higher up the tree, the optimizing approach may increase
efficiency. However, it is unclear whether the increase outweighs the extra effort. In any
case, this technique cannot be used when the domain includes rules with consequents
conditional on their antecedents as described elsewhere [Blu90a].
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back up to difference links between the problem specification for the re-
corded experience and the problem specification for the new problem.

Continuing the circuit design example, the program would compare the
rule used to address the (NOT (AND ...)) problem using derivational anal-
ogy and a recorded experience of (NOT (EQUAL ...)) with the rule used
by a from-scratch problem solver (e.g., a person). The program would note
that the two rules were different and would determine that the rule used
by the from-scratch problem solver (NOT-AND-DECOMP) was not used
in the recorded experience because the EQUAL failed to satisfy one of the
preconditions. This occurrence of the EQUAL could be traced up to the
problem specification, and the difference between it and the AND could
be used to build the new rule: “When you notice a difference between an
EQUAL operation in the recorded problem specification and an AND op-
eration in the new problem specification, and you encounter a use of the
NOT-DECOMP rule involving that EQUAL in the recorded solution, then
you should consider using the NOT-AND-DECOMP rule instead.”

Some first steps have been made in this direction in the work of Hick-
man and Lovett [HLI1] and Veloso [Vel90]. Hickman and Lovett’s approach
to derivational analogy relaxes the constraint for considering the recorded
experience to be appropriate to reuse. Veloso’s approach learns to select the
most appropriate recorded experience. However, neither of these programs
focuses on learning to improve the adaptation strategy itself.

6 Conclusions

This paper has presented both an analytic and an empirical examination
of derivational analogy. The basic derivational analogy algorithm has been
outlined, and the kinds of mismatches between recorded experience and
new problems (detours, pretours, and combinations) have been described
in detail, along with the particular difficulties that each kind of mismatch
presents to a derivational analogy algorithm.

Various strategies for dealing with these mismatches are presented in
the literature. The research presented in this paper has extracted these
strategies and implemented them so that they can be applied to a common
domain. These implementations have been run on a number of different
problems involving the reuse of experience, and several conclusions have be-
come apparent from the resulting empirical data. Among these conclusions
are that derivational analogy is a generally successful technique and that us-
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ing a from-scratch problem solver to assist a derivational analogy program
may increase both efficiency and autonomy. However, care must be taken
to intelligently interleave reuse with from-scratch problem solving, or the
resulting program will be less efficient than from-scratch problem solving.

The REMAID algorithm for coping with mismatches has been shown
to be successful because it intelligently interleaves reuse with from-scratch
problem solving. It does this by adapting the recorded experience to the
new problem rather than wvice versa and by recognizing different kinds of
mismatches and adapting to them appropriately. To do this, it uses a from-
scratch problem solver in a novel way, to aid in recognizing different kinds
of mismatches as well as to help adapt to detours.

The empirical data show that the REMAID system exhibits better per-
formance when there are significant mismatches between the recorded expe-
rience and the new problem. The data further show that although it involves
more overhead, the REMAID system shows less variance in its performance
than other derivational analogy programs.

Despite this success, REMAID, like all existing derivational analogy al-
gorithms, succumbs to a trade-off between efficiency and solution quality,
although to a lesser extent than other algorithms. This trade-off has been
shown to be not just an implementation problem, but a fundamental limi-
tation of static derivational analogy adaptation strategies. The next step is
to develop algorithms that can improve their adaptation strategies as they
gain (meta-)experience in reusing recorded problem solutions.
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