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ABSTRACT
An important problem in artificial intelligence is cap-
turing, from natural language, formal representations
that can be used by a reasoner to compute an answer.
Many researchers have studied this problem by develop-
ing algorithms addressing specific phenomena in natural
language interpretation, but few have studied (or cat-
aloged) the types of failures associated with this prob-
lem. Knowledge of these failures can help researchers
by providing a road map of open research problems and
help practitioners by providing a checklist of issues to
address in order to build systems that can achieve good
performance on this problem. In this paper, we present
a study – conducted in the context of the Halo Project –
cataloging the types of failures that occur when captur-
ing knowledge from natural language. We identified the
categories of failures by examining a corpus of questions
posed by näıve users to a knowledge based question an-
swering system and empirically demonstrated the gen-
erality of our categorizations. We also describe avail-
able technologies that can address some of the failures
we have identified.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General; I.2.7 [Artificial
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1. INTRODUCTION
An important problem in Artificial Intelligence (AI) is
capturing, from natural language, formal representa-
tions rich enough for a knowledge based system to rea-
son over. Solving this problem will enable many tasks,
such as allowing näıve users (i.e. users unfamiliar with
the underlying knowledge base) to pose questions to a
knowledge based reasoner.

Many researchers have studied this problem by devel-
oping new algorithms [11, 13, 14, 15] or by integrating
existing natural language (NL) and knowledge represen-
tation (KR) technologies to build end-to-end systems
[1]. However, an equally important, but often over-
looked, piece of this problem is characterizing the types
of failures that occur when producing rich formal rep-
resentations from natural language.

Such a characterization is useful to both researchers and
practitioners. Researchers can use this characterization
as a road-map of open research problems, while practi-
tioners can use it as a checklist of the issues that must be
addressed in order to achieve good performance when
building systems requiring natural language interpreta-
tion. Figure 1 shows an example of a failure which can
lead to poor performance if overlooked.

To our knowledge no previous work has studied and
cataloged the types of failures that occur when pro-
ducing formal representations from natural language.
A related study on the brittleness of knowledge based
systems was conducted by Friedland et al. [10] for the
systems developed during the Project Halo [20] pilot
study. This study, however, focused only on the types
of failures that occur during reasoning as these systems
do not have a natural language interface.



Figure 1: This figure shows an English ques-
tion and two possible representations. The first
representation – although correct – omits de-
tails abstracted (e.g. the cells having same size,
parts, etc.) using the cue “identical”. Hence,
this representation may be too shallow for the
reasoning requirements of a reasoner and may
result in poor performance. The second repre-
sentation addresses this failure.

In this paper, we present a brittleness taxonomy for the
types of failures that frequently occur when capturing,
from questions posed in natural language, formal repre-
sentations that satisfy the reasoning requirements of a
reasoner. We first examined a corpus of questions posed
by näıve users to build our brittleness taxonomy. We
then evaluated the resulting taxonomy on a different
corpus to measure the frequency of each failure type.
The results showed that the failure types in our taxon-
omy occur frequently for different question types across
three science domains. We also discuss available tech-
nologies that can address some of the failures in the
taxonomy.

2. BACKGROUND
We conducted our study in the context of Project Halo [9].
The goal of the project is to build a system capable of
answering questions posed by näıve users using knowl-
edge bases built by subject matter experts (SMEs) for
different science domains. This is especially challenging
because the system has to answer questions posed by

näıve users who are unfamiliar with the contents and
organization of the underlying knowledge base.

One approach to this challenge is to use a template
based approach [3, 5, 16, 19] where näıve users pose
questions to the knowledge base using a pre-defined set
of domain specific question templates. This approach,
however, is restrictive and does not allow additional in-
formation, such as the question context, to be captured
easily. Another approach (and the one taken in Project
Halo) is to allow näıve users to pose questions using
natural language. Since producing formal representa-
tions from natural language is very difficult, controlled
languages (CLs) are used. The goal of CL is to avoid
difficult problems in natural language processing (e.g.
ambiguity or co-reference resolution) by restricting the
speaker to a subset of English. CLs have been shown
to be robust (and usable) in different research and in-
dustrial systems and a CL interpreter called Computer
Processable Language (CPL) [4] is used in a system de-
veloped for Project Halo.

Figure 2 shows an example question in physics, it’s
CPL formulation, and its interpretation. Our goal is
to catalog the types of failures preventing the underly-
ing knowledge base from answering questions posed by
näıve users.

3. TAXONOMY OF FAILURES
We present a taxonomy of failures that occur when pro-
ducing formal representations from questions posed in
natural language.

3.1 Methodology
Our brittleness taxonomy was built by examining a
sample of questions posed by näıve users for two sci-
ence domains during the Project Halo[20] evaluation
conducted in 2006. These questions were posed in CPL
by users unfamiliar with either knowledge representa-
tion or the contents of the underlying knowledge base.
The pilot dataset consists of 50 biology questions and
50 physics questions.

We chose this data set for two reasons. The fact that
questions formulated in simplified English continue to
be interpreted incorrectly, suggests that these failures
are inherent to language. Hence, these are foundational
problems that must be addressed before more sophisti-
cated natural language understanding is possible.

This data set is also realistic as it consists of differ-
ent question types posed by näıve users for two very
different science domains. Hence, the types of failures
identified in this data set should apply broadly to other
domains.

Each question and its corresponding formal representa-
tion were examined for failures preventing the knowl-



Figure 2: An example illustrating the process of posing and interpreting a question using the CPL
controlled language.

edge base from answering the question.

To guide this process, we focused on failures at the fol-
lowing levels of granularity:

• Word level. We examined the failures associated
with interpreting individual words.

• Inter-word level. In addition to individual words,
we examined how well the relations between words
are interpreted.

• Inter-utterance level. The interpretation of rela-
tions between sentences is also prone to failures.

• Overall representation. We also explored the types
of failures associated with the overall representa-
tion of the input.

These levels provide the right granularity to examine
and catalog different sources of failure. The first three
levels are well-established. They are the focus of nat-
ural language research which has developed algorithms
that address specific failures that surface at these lev-
els. We added the “overall representation” level because
representations that closely mirror the surface form of
an utterance or discourse – which is the focus of most
NL research – can still be insufficient for a knowledge
based system to reason over.

Recurring failures identified using this methodology were
generalized into a separate category in our brittleness
taxonomy.

3.2 Brittleness Taxonomy
We present the top-level categories of our brittleness
taxonomy in Table 1. Each row in this table lists a
category name, a description and an example.

4. EVALUATION
4.1 Experimental Setup and Dataset
We evaluated our brittleness taxonomy by randomly
sampling 205 additional question formulations from the
2006 Project Halo evaluation. Aside from biology and
physics questions, the evaluation data set also includes
questions from the chemistry domain – thus providing
a novel domain to evaluate the generality of our taxon-
omy.

These question formulations were posed by a group of
näıve users (four undergraduates and two graduate stu-
dents). Before the exercise, they underwent six hours
of training on how to formulate AP level examination
questions using CPL. Subsequently, the users indepen-
dently posed a set of AP-like exam questions and re-
ceived answers from the system which used KBs au-
thored by other experts. It is useful to note that AP
level questions are often “story problems” that have
a question setup (preamble) describing the scenario in
which they are to be answered. As shown in Table 2,
the percentage of questions containing preambles varies
across the domains – 35% for biology, 52% for chemistry
and 100% for physics.

Three knowledge engineers (KE) were tasked to tag
each formulation with all applicable categories from the
taxonomy. The KEs were familiar with the categories in



Category Description Example
1 Word Sense

Disambigua-
tion

Mapping the nouns, verbs, adjec-
tives, and adverbs in a sentence
to the most appropriate semantic
concepts in a knowledge base.

The noun “top” can map to the semantic con-
cepts of Spatial-Region, Toy, etc. Picking the
most appropriate concept depends on the con-
text.

2 Semantic Role
Labeling

Mapping the syntactic relations
(e.g. subject, direct object, etc)
and prepositional markers in a
sentence to the most appropriate
semantic relations in a knowledge
base.

The prepositional marker “by” can map to
the semantic relations of agent, instrument,
caused-by, etc. Picking the most appropriate
semantic relation depends on the context.

3 Representation
Gap

The knowledge base is missing
concepts, axioms, or theories (we
call gaps) which prevent infor-
mation – surfacing in language –
that fall into these gaps from be-
ing captured and represented.

A knowledge base may not have a theory of
space (i.e. spatial concepts such as Region,
Place, etc. and spatial relations such as is-
inside, encloses, etc). Hence, spatial informa-
tion that surfaces in language (e.g. “The nu-
cleus is inside the cell.”) cannot be captured
and represented.

4 Implicit
Knowledge

4.1 Noun-Noun
Compound

The semantic relationship be-
tween noun-noun compounds are
always implicit.

The semantic relationship in “stone lion” is
material – i.e. the lion is made of stone.

4.2 Co-reference Co-reference links (both direct
and indirect) between multiple
expressions within the same sen-
tence (or across different sen-
tences) are always implicit.

In “John entered the room. He sat down.”,
“John” and “He” are direct co-references. In
“The man entered the room. The window was
closed.”, “room” and “window” are indirect co-
references.

4.3 Omission of
Assumptions

Knowledge assumed to be pos-
sessed by both the speaker and
the listener (e.g. common-sense
knowledge or contextual informa-
tion) are often omitted to facili-
tate efficient communication.

The sentence “A cell has a mitochondria.”
omits knowledge of the mitochondria being
part of a nucleus and the nucleus being part
of the cell.

4.4 Abstraction Some details are abstracted into
linguistic cues which must be ex-
panded in order to recover these
details.

The sentence “There are two identical cells.”
abstracts details such as the cells having the
same parts, are of same size, etc. into the
cue “identical”. This cue must be expanded
to capture these details in the resulting repre-
sentation.

5 Contradiction Information in a sentence can
contradict existing representa-
tions in the knowledge base.

The sentence “The Kashmir region is part of
Pakistan.” might contract a knowledge base –
to reason about geo-political issues – that rep-
resents the Kashmir region as a part of India.

6 Alternative
Representa-
tions

The same information can be rep-
resented in different ways – each
of which is valid.

The sentence “The cell encloses a nucleus.”
can be represented in two ways. ”encloses”
can be represented as a semantic relation re-
lating the cell to the nucleus. “encloses” can
also be represented has a reified concept (e.g.
a Be-Contained event) where the cell and nu-
cleus are the participants.

Table 1: The top-level categories in our brittleness taxonomy. Each row corresponds to a category
in our taxonomy, and gives the name of the category, a description, and an example.



Domain Type 1 Type 2 Type 3 Type 4.1 Type 4.2 Type 4.3 Type 4.4 Type 5 Type 6 None
Biology 42% 45% 27% 38% 14% 14% 9% 1% 25% 9%

Chemistry 47% 26% 13% 42% 35% 2% 40% 0% 0% 20%
Physics 37% 49% 22% 46% 84% 46% 56% 7% 6% 2%
Overall 42% 40% 21% 44% 42% 21% 35% 3% 14% 10%

Table 3: The average frequencies of the different types of brittleness found by the annotators in the
data set as percentage of questions in each domain. Because a question may contain more than one
type of brittleness, the sum of each row is greater than 100%.

Domain Preamble No preamble Total
Biology 24 44 68

Chemistry 33 30 69
Physics 65 0 68
Total 122 84 205

Table 2: Distribution of questions based on
whether they contain a preamble or not.

the taxonomy. They also had access to the output of the
controlled language interpreter, to the answers returned
by the system, and to the underlying knowledge-bases
used in computing these answers. This information was
necessary to appropriately judge category membership.

Altogether, the two KE’s tagged 205 formulations each,
while the third tagged 100 formulations.

4.2 Results and Discussion
Table 3 shows the result of the evaluation. The Fleiss
Kappa statistic [12] for inter-annotator agreement is
0.64, which suggests substantial agreement among the
KEs. Highlights of the evaluation results are as follows:

• Brittleness is prevalent in the automatic interpre-
tation of questions. In our evaluation data set,
only 10% of the questions did not contain any of
the brittleness types described in Table 1.

• The brittleness taxonomy captures the most fre-
quently occurring types of brittleness. The nine
types of brittleness were found in as high as 84%
of the questions rated by the annotators.

• The presence of preambles in questions do not sig-
nificantly contribute to the amount of brittleness.
The biology data set has the fewest number of
questions with preambles, yet its brittleness oc-
currences are comparable to the other domains.
This suggests that brittleness is prevalent even in
interpreting short questions without a lot of con-
text.

5. PROPOSED SOLUTIONS
Many of the brittleness categories have been studied
extensively in isolation, and different approaches have

been proposed for specific categories. For example, word
sense disambiguation [13], semantic role labeling [11],
noun compound interpretation [15] and co-reference res-
olution [14] are well studied problems in the natural
language community. Besides addressing each brittle-
ness category separately, we believe there are inherent,
underlying connections among the categories, and it is
possible to develop unified solutions addressing multiple
categories. We detail some technologies that are useful
in overcoming some of the natural language brittleness
problems described earlier.

5.1 Flexible Semantic Matching
A semantic matcher takes two representations (encoded
in a form similar to conceptual graphs [17]) and uses
taxonomic knowledge to find the largest connected sub-
graph in one representation that is isomorphic to a sub-
graph in the other. This flexible semantic matcher –
as described by Yeh et al. [21] – then uses a library
of transformation rules to shift the representations to
improve the match. This improvement might enable
other subgraphs to match isomorphically, which in turn
might enable more transformation rules until the match
improves no further.

Flexible semantic matching can address several of the
brittleness categories we have identified. For example,
Yeh et al. [23] have demonstrated a unified approach
for sense disambiguation and semantic role labeling by
matching candidate interpretations of a sentence with
background knowledge to select the interpretation with
the best match. In addition, flexible semantic matching
has also been used to address problems of co-reference
resolution and omissions by matching the sentences in
a discourse with background knowledge to uncover im-
plicit assumptions and to build a coherent semantic rep-
resentation of what was said [22].

5.2 Interpreting Loose Speak
The Loose-speak interpreter allows näıve users who are
unfamiliar with the knowledge-base to effectively pose
questions [8]. An occurrence of “loose speak” is a dis-
crepancy between a literal encoding of the natural lan-
guage input and the representation required by knowl-
edge base. The näıvety of literal encodings of input
questions without regard to the idiosyncrasies of the



Figure 3: The loose-speak interpreter finds three occurrences of loose speak in the näıve encoding of
the controlled language formulation in figure 2. It reassigns the initial velocity and the final velocity

properties to Move instead of Object based on the slots’ constraints. This is an example of type
2 brittleness. It also adds an Exert-Force concept as required by the knowledge base. This is an
example of type 4.3 Brittleness.

Figure 4: The initial question interpretation (left side) does not contain enough information to solve
the problem, i.e. missing equations for calculating the net-force given mass, velocities, and distance.
To address this, the problem-solver selects relevant pieces of knowledge in the KB. The right side
presents an elaborated scenario containing the necessary equations.



knowledge base is a source of following types of brittle-
ness.

• Words maybe mapped to incorrect slots (as in type
2) because of lack of knowledge of the slot con-
straints in the knowledge base.

• Noun-noun compounds (type 4.1) may be encoded
without explicitly specifying knowledge base spe-
cific relations.

• Indirect co-reference links are not explicitly estab-
lished (type 4.2) in the literal encoding of an utter-
ance, and as a result the utterance encoding does
not align with encodings of earlier utterances.

• When assumed information is omitted from the
natural language input, the literal encoding is dif-
ferent from what is expected by the knowledge
base (type 4.3).

The loose-speak interpreter detects and rephrases dis-
crepancies between näıve and correct encodings by ex-
ploring the regularities in different occurrences of “loose
speak” to generate encodings that are compatible with
the knowledge base. Figure 3 shows the loose-speak
interpreter correcting the näıve encoding of the CPL
formulation in Figure 2.

The loose-speak interpreter has been shown to be effec-
tive in detecting and correcting the specific brittleness
types mentioned above [6, 7, 8], however, it does not
address other failures in the brittleness taxonomy.

5.3 Problem Solving
Questions posed to knowledge based systems typically
omit information that is essential for the reasoner to
generate an answer. This incompleteness is due to the
nature of question asking and the brevity of human
communication. Problem solvers, therefore, take on the
responsibility of relating facts in a question with rele-
vant pieces of knowledge in the knowledge base before
the question can be answered. Automating this pro-
cess is especially challenging when the problem solver is
meant to work with a variety of knowledge bases. Chaw
et al. [2] have studied this problem in the context of a
system used to answer questions posed by näıve users
who are unfamiliar with the content and organization
of the knowledge bases. This separation between the
builders and the users of the knowledge bases requires
the problem solving system to elaborate the inadequate
interpretations automatically with information drawn
from the knowledge base being queried. Figure 4 shows
the elaboration of the inadequate interpretation for the
question in Figure 2.

5.4 Episodic Memory
Humans make use of past experiences to improve both
performance and competence. For example, students
often prepare for tests by solving practice questions for a
given syllabus. The experience in interpreting and solv-
ing these questions provides guidance when new ques-
tions are attempted by remembering what worked in
the past and what did not. Tasks such as flexible se-
mantic matching, interpreting loose-speak, and problem
solving are computationally expensive procedures that
are aggravated by the complexity and size of the knowl-
edge base. We believe leveraging past experiences can
offer performance and usability improvements in ques-
tion answering applications. A generic episodic memory
that can be easily integrated to aid interpretation and
problem solving is described in [18].

6. CONCLUSION
In this paper, we presented a study cataloging the types
of failures – we call a brittleness taxonomy – that occur
when capturing, from natural language, formal repre-
sentations that satisfy the reasoning requirements of a
reasoner. We conducted this study in the context of
Project Halo by examining a corpus of questions posed
by näıve users. We presented the resulting taxonomy
and evaluated it on a different corpus of questions to
examine the frequency of each failure type.

We found the failure types in our taxonomy to occur
frequently in questions posed by näıve users for three
different science domains. These results are encourag-
ing as they show the generality of our brittleness tax-
onomy.

We also described technologies that can address the var-
ious types of failures in our taxonomy and provided a
description for each one.

We hope that others can benefit from and build upon
our work in the following ways. Ideally, researchers can
build upon our work by either extending and refining
the categories we have identified or using our taxon-
omy as a road-map to identify research problems. Also,
practitioners can benefit from our work by using our
taxonomy as a checklist of issues to address in order to
achieve good performance when building systems that
require natural language interpretation.
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