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1 IntroductionIn the course of their daily a�airs, scientists explain complex phenomena|both to one another andto lay people|in a manner that facilitates clear communication. Similarly, physicians, lawyers,and teachers are equally facile at generating explanations in their respective areas of expertise.In an e�ort to computationalize this critical ability, research in natural language generation hasaddressed a broad range of issues in automatically constructing text from formal representationsof domain knowledge. Research on text planning [42, 52, 39, 24, 38] has developed techniques fordetermining the content and organization of many genres, and explanation generation [44, 8, 47]in particular has been the subject of intense investigation. In addition to exploring a panorama ofapplication domains, the explanation community has begun to assemble these myriad designs intoa coherent framework. As a result, we have begun to see a crystalization of the major components,as well as detailed analyses of their roles in explanation [62, 63].Despite this success, empirical results in explanation generation are limited. Although tech-niques for developing and evaluating robust explanation generation should yield results that aremore conclusive than those produced by prototype, \proof-of-concept" systems, with only a fewnotable exceptions [27, 23, 8, 46, 54], most work has adopted a research methodology in whicha proof-of-concept system is constructed and its operation is analyzed on a few examples. Whileisolating one or a small number of problems enables researchers to consider particular issues indetail, it is di�cult to gauge the scalability and robustness of a proposed approach.A critical factor contributing to the dearth of empirical results is the absence of semanticallyrich, large-scale knowledge bases. Knowledge bases housing tens of thousands of di�erent conceptsand hundreds of di�erent relations could furnish ample raw materials for empirical study, but nowork in explanation generation has been conducted or empirically evaluated in the context of theseknowledge bases.To empirically study explanation generation from semantically rich, large-scale knowledge bases,we undertook a seven year experiment. First, our domain experts (one employed full-time) con-structed the Biology Knowledge Base [53], a very large structure representing more than 180,000facts about botanical anatomy, physiology, and development. Second, we designed, implemented,and empirically evaluated Knight [29], a robust explanation system that extracts information fromthe Biology Knowledge Base, organizes it, and realizes it in multi-sentential and multi-paragraphexpository explanations of complex biological phenomena. Third, we developed a novel evaluationmethodology for gauging the e�ectiveness of explanation systems and employed this methodologyto evaluate Knight.This paper describes the lessons learned during the course of the \Knight experiments." Inthe spirit of Edge [8] and Pauline [16], which synthesize work in interactive explanation systemsand generational pragmatics, respectively, Knight addresses a broad range of issues, all in thecontext of semantically rich, large-scale knowledge bases:� Robust Knowledge-Base Access: Knight exploits a library of robust knowledge-base access1



methods that insulate discourse planners from the idiosyncracies and errors in knowledgebases. These \view construction" methods selectively extract coherent packets of propositionsabout the structure and function of objects, the changes made to objects by processes, andthe temporal attributes and temporal decompositions of processes.� Discourse-Knowledge Engineering: Discourse-knowledge engineers, i.e., knowledge engineerswho encode discourse knowledge, should be able to inspect and easily modify discourse-planning speci�cations for rapid iterative re�nement. The Explanation Design Package (EDP)formalism is a convenient, schema-like [41, 52] programming language for text planning. Be-cause the EDP formalism is a hybrid of the declarative and procedural paradigms, discourse-knowledge engineers can easily understand EDPs, modify them, and use them to representnew discourse knowledge. EDPs have been used by Knight to generate hundreds of exposi-tory explanations of biological objects and processes.� Explanation Planning: Knight employs a robust explanation planner that selects EDPsand applies them to invoke knowledge-base accessors. The explanation planner considersthe desired length of explanations and the relative importance of sub-topics as it constructsexplanation plans encoding content and organization.� Functional Realization: Knight's functional realization system [7] is built on top of a uni�cation-based surface generator with a large systemic grammar [15, 16].To assess Knight's performance, we developed the Two-Panel Evaluation Methodology for nat-ural language generation and employed it in the most extensive and rigorous empirical evaluationever conducted on an explanation system. In this study, Knight constructed explanations on ran-domly chosen topics from the Biology Knowledge Base. A panel of domain experts was instructedto produce explanations on these same topics, and both Knight's explanations and the explana-tions produced by this panel were submitted to a second panel of domain experts. The secondpanel then graded all of the explanations on several dimensions with an A{F scale. Knight scoredwithin approximately \half a grade" of the domain experts, and its performance exceeded that ofone of the domain experts.This paper is structured as follows. The task of explanation generation is characterized andthe Biology Knowledge Base is described. A brief description of Knight's knowledge-base accessmethods is followed by (1) a description of the EDP language, (2) Knight's explanation planner,and (3) an overview of the realization techniques. The empirical evaluation is then discussed insome detail. The paper concludes with discussions of related work and future research directions.2 The Task of Explanation GenerationExplanation generation is the task of extracting information from a formal representation of knowl-edge, imposing an organization on it, and realizing the information in text. An explanation system2



must be able to map from a formal representation of domain knowledge, i.e., one which can beused for automated reasoning, such as the predicate calculus, to a textual representation of domainknowledge. Because of the signi�cant di�erences in formal and textual representational schemes,successfully bridging the gap between them is one of the major challenges faced by an explanationsystem.To communicate complex ideas, an explanation system should be able to produce extendedexplanations such as those in Figure 1, which shows several explanations from the domain ofbotanical anatomy, physiology, and development. Note that each of these is a multi-sententialexplanation; the �rst is a multi-paragraph explanation. These explanations are expository: incontrast to causal explanations produced by automated reasoning systems, they describe domainphenomena, such as anatomical structures and physiological processes.Explanation generation is typically decomposed into two subtasks, explanation planning and re-alization (Figure 2). Explanation planning itself has two subtasks: content determination, in whichknowledge structures are extracted from a knowledge base, and organization, in which the selectedknowledge structures are arranged in a manner appropriate for communication in natural language.To perform these tasks successfully, an explanation planner must have access to discourse knowl-edge, which informs its decisions about the content and organization of textual explanations. Theorganizational aspect of discourse knowledge plays a particularly important role in the constructionof extended explanations. Our work focuses on content determination and organization and deem-phasizes issues in realization. However, to more cleanly evaluate the explanation planning work,we have developed a robust realization system that is built on FUF [15, 16], a uni�cation-basedimplementation of a large systemic grammar.2.1 Evaluation Criteria and DesiderataEvaluating the performance of explanation systems is a critical and non-trivial problem. Althoughgauging the performance of explanation systems is inherently di�cult, �ve evaluation criteria shouldbe applied.� Coherence: a global assessment of the overall quality of explanations generated by a system,� Content: the extent to which the explanation's information is adequate and focused,� Organization: the extent to which the information is well organized,� Writing style: the quality of the prose, and� Correctness: for scienti�c explanations, the extent to which the explanations are in accordwith the established scienti�c record.In addition to performing well on the evaluation criteria, if explanation systems are to make thedi�cult transition from research laboratories to �elded applications, they should exhibit two impor-tant properties, both of which signi�cantly a�ect scalability. First, these systems' representation of3



Question: What happens during embryo sac formation?Response:Embryo sac formation is a kind of female gametophyte formation.During embryo sac formation, the embryo sac is formed from themegaspore mother cell. Embryo sac formation occurs in the ovule.Embryo sac formation is a step of angiosperm sexual reproduction.It consists of megasporogenesis and embryo sac generation.During megasporogenesis, the megaspore mother cell divides in thenucellus to form 4 megaspores. During embryo sac generation, theembryo sac is generated from the megaspore.Question: What happens during pollen tube growth?Response:Pollen tube growth is a step of angiosperm sexual reproduction.It consists of sperm cell generation and sperm cell transport.During sperm cell generation, the pollen generative cell dividesto form 2 angiosperm sperm cells. During sperm cell transport, 2angiosperm sperm cells are transported from the pollen tube to theembryo sac.Question: What is a spore?Response:The spore is a kind of haploid cell. 4 spores are produced from thespore mother cell during sporogenesis. The spore divides to form 2plant gametes during gametogenesis. Gametogenesis is a step ofgametophyte development.Question: What is a root system?Response:The root system is part of the plant and is connected to themainstem. It is below the hypocotyl and is surrounded by therhizosphere. The subregions of the root system include themeristem, which is where root system growth occurs.Figure 1: Explanations from the domain of biology produced by Knight from the Biology Knowl-edge Base 4



� Explanation Planning: Constructing an explanation plan{ Content Determination: Extracting structures from a representation of domainknowledge.{ Organization: Arranging the selected knowledge structures.� Realization: Translating an explanation plan to natural language.Figure 2: The Task of Explanation Generationdiscourse knowledge should be easily inspected and modi�ed. To develop explanation systems for abroad range of domains, tasks, and question types, discourse-knowledge engineers must be able tocreate and e�ciently debug the discourse knowledge that drives the systems' behavior. The secondproperty that explanation systems should exhibit is robustness. Despite the complex and possiblymal-formed representational structures that an explanation system may encounter in its knowl-edge base, it should be able to cope with these structures and construct reasonably well-formedexplanations.2.2 Semantically Rich, Large-Scale Knowledge BasesGiven the state of the art in explanation generation, the �eld is now well positioned to explore whatmay pose its greatest challenge and at the same time may result in its highest payo�: generatingexplanations from semantically rich, large-scale knowledge bases. Large-scale knowledge basesencode information about domains that cannot be reduced to a small number of principles oraxioms. For example, the �eld of human anatomy and physiology encompasses a body of knowledgeso immense that many years of study are required to assimilate only one of its sub�elds, such asimmunology. Large-scale knowledge bases are currently being constructed for many applications,and the ability to generate explanations from these knowledge bases for a broad range of tasks suchas education, design and diagnosis is critical.Large-scale knowledge bases whose representations are semantically rich are particularly in-triguing. These knowledge bases consist of highly interconnected networks of (at least) tens ofthousands of facts. Hence, they represent information not only about a large number of conceptsbut also about a large number of relationships that hold between the concepts. One such knowl-edge base is theBiology Knowledge Base [53], an immense structure encoding information aboutbotanical anatomy, physiology, and development. One of the largest knowledge bases in existence,it is encoded in the Km frame-based knowledge representation language.1 Km provides the basicfunctionalities of other frame-based representation languages and is accompanied by a graphical1A detailed description of the semantics of the representation language may be found in Ch. 2 of [1].5



user interface, KnEd, for entering, viewing, and editing frame-based structures [14].The backbone of the Biology Knowledge Base is its taxonomy, which is a large hierarchicalstructure of biological objects and biological processes. In addition to the objects and processes,the taxonomy also includes the hierarchy of relations that may appear on concepts. The relationtaxonomy provides a useful organizing structure for encoding information about \second order"relations, i.e., relations among all of the �rst order relations.Figure 3 depicts a small portion of the Biology Knowledge Base's representation of photosyn-thesis. This is a typical fragment of its semantic network. Each of the nodes in this network is aconcept, e.g. photosynthesis, which we frequently refer to as a \unit" or a \frame." Each of the arcsis a relation in the knowledge base. For example, the transducer for photosynthesis is the conceptchlorophyll. We sometimes refer to these relations as \slots" or \attributes" and to the units that�ll these slots, e.g., chlorophyll, as \values." In addition, we term a structure of the form ( UnitSlot V alue ) as a \triple." The Biology Knowledge Base currently contains more than 180,000explicitly represented triples, and its deductive closure is signi�cantly larger.We chose biology as a domain for three reasons. First, it required us to grapple with di�cultrepresentational problems. Unlike a domain such as introductory geometry, biology cannot becharacterized by a small number of axioms. Second, biology is not a \single-task" subject. Unlikethe knowledge bases of conventional expert systems, e.g., Mycin [6], the Biology Knowledge Baseis not committed to any particular task or problem-solving method. Rather, it encodes generalknowledge that can support diverse tasks and methods such as tutoring students, performing di-agnosis, and organizing reference materials. Finally, we chose biology because of the availability ofdomain experts at the University of Texas at Austin.It is important to note that the authors and the domain experts entered into a \contractualagreement" with regard to representational structures in the Biology Knowledge Base. Under nocircumstances could the designers of the explanation system request the knowledge engineers toalter the structures of the knowledge base other than for purposes of consistency or completeness.To eliminate all requests for representational modi�cations that would skew the knowledge baseto the task of explanation generation, the authors entered into this agreement: they could requestrepresentational changes only if knowledge was inconsistent or missing. This facilitated a uniqueexperiment in which the representational structures were not tailored for the task of explanationgeneration.3 Accessing Semantically Rich, Large-Scale Knowledge BasesTo perform well, an explanation system must select from a knowledge base precisely that infor-mation needed to answer users' questions with coherent and complete explanations. Given thecentrality of content determination for explanation generation, it is instructive to distinguish twotypes of content determination, both of which play key roles in an explanation system's behavior.\Local" content determination is the selection of relatively small knowledge structures, each of6
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Figure 3: A sample representational structure from the Biology Knowledge Base7



which will be used to generate one or two sentences; \global" content determination is the processof deciding which of these structures to include in an explanation.By interposing a KB accessing system between an explanation planner, which performs globalcontent determination, and a knowledge base, it is possible to keep an explanation planner at \arm'slength" from the representation of domain knowledge. In addition, it can help build explanationsthat are coherent. Studies of coherence have focused on one aspect of coherence, cohesion, which isdetermined by the overall organization and realization of the explanation [13, 18, 19, 20, 26]. How-ever, an equally important question is, \To insure coherence, how should the content of individualportions of an explanation be selected?" Halliday and Hassan [19] term this aspect of coherencesemantic unity. There are at least two approaches to achieving semantic unity: either \packets"of propositions must be directly represented in the domain knowledge, or a KB accessing systemmust be able to extract them at runtime.One kind of a semantic unit is a view. For example, the concept photosynthesis can be viewedas either a production process or an energy transduction process. Viewed as production, it wouldbe described in terms of its raw materials and products: \During photosynthesis, a chloroplast useswater and carbon dioxide to make oxygen and glucose." Viewed as energy transduction, it wouldbe described in terms of input energy forms and output energy forms: \During photosynthesis, achloroplast converts light energy to chemical bond energy." Clearly, the view that is taken of aconcept has a signi�cant e�ect on the content that is selected for its description. If an explanationsystem could (a) invoke a knowledge base accessing system to select views, and (b) translate theviews to natural language (Figure 4), it would be well on its way to producing coherent explanations.As a building block for the Knight explanation system, we designed and implemented a robustKB accessing system (Figure 5) that extracts views [5, 66, 57, 28, 50, 44, 64, 3, 1, 39, 59, 63] ofconcepts represented in a knowledge base. Each view is a coherent subgraph of the knowledge basedescribing the structure and function of objects, the change made to objects by processes, and thetemporal attributes and temporal decompositions of processes. Each of the nine accessors in ourlibrary (Table 1) can be applied to a given concept|the \concept of interest"|to retrieve a viewof that concept. There are three classes of Accessors: those that are applicable to all concepts (As-Kind-Of and Functional), those that are applicable to objects (Partonomic-Connection and Sub-Structural), and those that are applicable to processes (Auxilliary-Process|which includes Causal,Modulatory, Temporal, and Locational sub-types|Participants, Core-Connection, and Sub-event,and Temporal-Step).2To illustrate, the Participants accessor extracts information about the \actors" of the givenprocess. For example, some of the actors in the Photosynthesis process are Chloroplasts, Light,Chlorophyll, Carbon Dioxide, and Glucose (Figure 3). By specifying a reference process|the second2In addition to the \top level" accessors, the library also provides a collection of some twenty \utility" accessors.These include procedures for extracting particular aspects of views previously constructed by the system. For example,the Collect Actors Accessor extracts the objects that serve as participants in a Participants view of process. For amore comprehensive description of the accessors, see [29].8
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Figure 5: A KB accessing architecture� Term Accommodation: They tolerate specialized (and possibly unanticipated) representa-tional vocabulary by exploiting the relation taxonomy.By using these techniques in tandem, we have developed aKB accessing system that has constructedseveral thousand views without failing. Moreover, the view types on which the accessors are basedperformed well in a preliminary empirical study [2], and evaluations of the KB accessors' abilityto construct coherent views, as measured by domain experts' ratings of Knight's explanations(Section 8), are encouraging.4 A Programming Language for Discourse KnowledgeSince the time of Aristotle, a central tenet of rhetoric has been that a rich structure underlies text.This structure shapes a text's meaning and assists its readers in deciphering that meaning. Foralmost two decades, computational linguists have studied the problem of automatically inducingthis structure from a given text. Research in explanation planning addresses the inverse problem:automatically constructing this structure by selecting facts from a knowledge base and subsequentlyusing these facts to produce text. To automatically construct explanation plans (trees that encodethe hierarchical structure of texts, as well as their content), an explanation system must possessknowledge about what characterizes a clear explanation. This discourse knowledge enables it tomake decisions about what information to include in its explanations and how to organize theinformation.It is important to emphasize the following distinction between discourse knowledge and ex-10



KB Accessor Arguments Description of ViewAs-Kind-Of concept Finds view of concept as a kind ofreference reference concept.Auxiliary-Process process Finds temporal, causal, or locationalview-type information about process as speci�ed byview-type.Participants process Finds \actor-oriented" view of process asreference viewed from the perspective of referenceprocess.Core-Connection process Finds the connection between processand a \core" process.Functional object Finds functional view ofprocess object with respect to process.Partonomic- object Finds the connection from object to aConnection \superpart" of the object in the\partonomy."Subevent process Finds view of \steps" of process.Sub-Structural object Finds structural view of parts of object.Temporal-Step process Finds view of process with respect toanother process of which process is a\step."Table 1: Library of Knowledge Base Accessorsplanation plans. While discourse knowledge speci�es the content and organization for a class ofexplanations, e.g., explanations of processes, explanation plans specify the content and organizationfor a speci�c explanation, e.g., an explanation of how photosynthesis produces sugar. Discourse-Knowledge engineers build representations of discourse knowledge, and this discourse knowledgeis then used by a computational module to automatically construct explanation plans, which arethen interpreted by a realization system to produce natural language.The KB accessing system described above possesses discourse knowledge in the form of KBAccessors. Applying this discourse knowledge, the system retrieves views from the knowledge base.Although this ability to perform local content determination is essential, it is insu�cient; given aquery posed by a user, the generator must be able to choose multiple KB accessors, provide theappropriate arguments to these accessors, and organize the resulting views. Hence, in additionto discourse knowledge about local content determination, an explanation system that producesmulti-paragraph explanations must also possess knowledge about how to perform global contentdetermination and organization. This section sets forth two design requirements for a representationof discourse knowledge, describes the Explanation Design Package (EDP) formalism, which wasdesigned to satisfy these requirements, and discusses how EDPs can be used to encode discourse11



knowledge.4.1 Requirements for a Discourse Knowledge RepresentationA representation of discourse knowledge should satisfy two requirements: It should be expressive,and it should facilitate e�cient representation of discourse knowledge by discourse-knowledge engi-neers. Each of these considerations are discussed in turn, followed by a representation that satis�esthese criteria.Expressiveness. A representation of discourse knowledge must permit discourse-knowledge en-gineers to state how an explanation planner should� select propositions from a knowledge base,� control the amount of detail in an explanation, i.e., if a user requests that terse explanationsbe generated, the explanation planner should select only the most important propositions� consider contextual conditions when determining which propositions to include,� order the propositions, and� group the propositions into appropriate segments, e.g., paragraphs.The �rst three aspects of expressiveness are concerned with content determination. To e�ectivelyexpress what content should be included in explanations, a representation of discourse knowledgeshould enable discourse-knowledge engineers to encode speci�cations about how to choose propo-sitions about particular topics, the importance of those topics, and under what conditions thepropositions associated with the topics should be included. These \inclusion conditions" governthe circumstances under which the explanation planner will select particular classes of propositionsfrom the knowledge base when constructing an explanation.For example, a discourse-knowledge engineer might express the rule: \The system should com-municate the location of a process if and only if the user of the system is familiar with the objectwhere the process occurs." As the explanation planner uses this knowledge to construct a response,it can determine if the antecedent of the rule (\the user of the system is familiar with the objectwhere the process occurs") is satis�ed by the current context; if the antecedent is satis�ed, thenthe explanation planner can include in the explanation the subtopics associated with the rule'sconsequent.The �nal two aspects of expressiveness (ordering and grouping of propositions) are concernedwith organization. To encode organizational knowledge, a representation of discourse knowledgeshould permit discourse-knowledge engineers to encode topic/subtopic relationships. For example,the subtopics of a process description might include (1) a categorical description of the process(describing taxonomically what kind of process it is), (2) how the \actors" of the process interact,and (3) the location of the process. 12



A representation should be su�ciently expressive that it can be used to encode the kinds ofdiscourse knowledge discussed above, and it should be applicable to representing discourse knowl-edge for a broad range of discourse genres and domains. However, discourse knowledge does notspecify what syntactic structure to impose on a sentence; nor does it lend any assistance in makingdecisions about matters such as pronominalization, ellipsis, or lexical choice. These decisions aredelegated to the realization system.Discourse-Knowledge Engineering. For a given query type, domain, and task, a discourse-knowledge engineer must be able to represent the discourse knowledge needed by an explanationsystem for responding to questions of that type in that domain about that task. Pragmatically, torepresent discourse knowledge for a broad range of queries, domains, and tasks, a formalism mustfacilitate e�cient representation of discourse knowledge. Therefore, important goals for the designof a discourse formalism are ease of reuse and ease of modi�cation.For example, to build an explanation system for the domain of physics, a discourse-knowledgeengineer could either build an explanation system de novo or modify an existing system. On theface of it, the second alternative involves less work and is preferable, but designing explanationsystems that can be easily modi�ed is a non-trivial task. In the case of physics, a discourse-knowledge engineer may need to modify an existing explanation system so that it can produceexplanations that are appropriate for mathematical explanations. To do so, the discourse-knowledgeengineer would ideally take an o�-the-shelf explanation generator and add discourse knowledgeabout how to explain mathematical interpretations of the behavior of physical systems. Because ofthe central role played by discourse-knowledge engineers, a representation of discourse knowledgeshould be designed to minimize the e�ort required to understand, modify, and represent newdiscourse knowledge.4.2 Explanation Design PackagesExplanation Design Packages emerged from an e�ort to accelerate the representation of discourseknowledge without sacri�cing expressiveness. Our previous explanation generators employed arepresentation of discourse knowledge that consisted of collections of operators, coded directly inLisp, for determining the content and organization of explanations [30, 32, 33, 31]. Although thisapproach worked well for small prototypes, it proved unsatisfactory for building fully functioningexplanation systems. In particular, it was very di�cult to maintain and extend discourse knowledgeexpressed directly in code.EDPs language give discourse-knowledge engineers the proper abstractions for specifying thecontent and organization of explanations. They combine a frame-based representation languagewith embedded procedural constructs. To mirror the structure of expository texts, anEDP containsa hierarchy of nodes, which provides the \global organization" of explanations. EDPs are schema-like [41, 52] structures that include constructs found in traditional programming languages. Just asprototypical programming languages o�er conditionals, iterative control structures, and procedural13
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Node Type Attributes Attribute Value(s)Exposition Children hTopicsiTopic Children hContent Speci�cationsiCentrality fLow, Medium, HighgInclusion Condition hVariable Boolean ExpressioniLocal Variables (hVari , hVariable Expr.i) PairsContent Children fhContent Spec'si, hElaborationsigSpeci�cation Content Speci�cation hVariable ExpressionTemplate with KB AccessoriIteration Type fNon-Iter., Iter., Conditional-Iter.gIterate-Over hVariable ExpressioniTemplateLoop Variable hVariIteration Condition hVariable Boolean ExpressioniLocal Variables (hVari , hVariable Expr.i) PairsElaboration Children hContent Speci�cationsiCentrality fLow, Medium, HighgInclusion Condition hVariable Boolean ExpressioniLocal Variables (hVari , hVariable Expr.i) PairsTable 2: EDP Node AttributesExposition Nodes. An exposition node is the top-level unit in the hierarchical structure andconstitutes the highest-level grouping of content. For example, the exposition node of the Explain-Process EDP has four children, Process Overview, Output-Actor-Fates, Temporal Info, and ProcessDetails, each of which is a topic node. Both the order and grouping of the topic nodes named inan exposition node are signi�cant. The order speci�es the linear left-to-right organization of thetopics, and the grouping speci�es the paragraph boundaries. The content associated with topicnodes that are grouped together will appear in a single paragraph in an explanation.Topic Nodes. Topic nodes are \subtopics" of exposition nodes. Each topic node includes arepresentation of the conditions under which its content should be added to an explanation. Atopic node has the atomic inclusion property:An explanation planner can make an \atomic" decision about whether to include|orexclude|all of the content associated with a topic node, i.e., either all of the contentassociated with a topic node will be included in an explanation or none of it will.To enable the explanation planner to make �ne-grained decisions about content inclusion, discourse-knowledge engineers can group closely related content together under the same topic node. Thedegenerate case is one in which all content is placed under a single topic node; this will force the15
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Figure 7: Example content speci�cation nodesdiscourse planner to include either all of the content or none of it.An important aspect of discourse knowledge is the relative importance of subtopics with respectto one another. If an explanation's length must be limited|such as when a user has employedthe verbosity preference parameter to request terse explanations|an explanation planner shouldbe able to decide at runtime which propositions to include. EDPs permit discourse-knowledgeengineers to specify the relative importance of each topic by assigning a qualitative value (Low,Medium, or High) to its centrality attribute.Another important aspect of representing discourse knowledge is the ability to encode theconditions under which a group of propositions should be included in an explanation. Discourse-knowledge engineers can express these inclusion conditions as predicates on the knowledge baseand on a user model (if one is employed). For example, he or she should be able to express thecondition that the content associated with the Output Actor Fates Topic should be included only ifthe process being discussed is a conversion process. Inclusion conditions are expressed as booleanexpressions that may contain both built-in user modeling predicates and user-de�ned functions.Content Speci�cation Nodes. Content speci�cation nodes house the high-level speci�cationsfor extracting content from the knowledge base. To ful�ll this function, they provide constructsknown as content speci�cation expressions. These expressions are instantiated at runtime by theexplanation planner, which then dispatches the Knowledge Base Accessors named in the expressionsto extract propositions from the knowledge base. Content speci�cation expressions reside in contentspeci�cation nodes, e.g., Figure 7. When creating content speci�cation expressions, the discourse-knowledge engineer may name any Knowledge Base Accessor in the KB Accessor Library. Forexample, the Super Structural Connection content speci�cation in Figure 7 names a KB Accessorcalled Find Partonomic Connection, and the Process Participants Description content speci�cationnames the Make-Participants-View Accessor.Although the discourse-knowledge engineer may write arbitrarily complex speci�cation expres-16



sions in which function invocations are deeply nested, these expressions can become di�cult tounderstand, debug, and maintain. Just as other programming languages provide local variables,e.g., the binding list of a let statement in Lisp, so do content speci�cation nodes. Each time adiscourse-knowledge engineer creates a local variable, he or she creates an expression for comput-ing the value of the local variable at runtime. For example, the Process Participants Descriptioncontent speci�cation in Figure 7 employs a local variable ?Reference Process. The content speci�ca-tion expression associated with ?Reference Process names the KB Accessor Find Ref Conc and theglobal variable ?Primary-Concept. Local variables provide a means for decomposing more complexcontent speci�cation expressions into simpler ones.There are three types of content speci�cation nodes: Non-Iterative, Iterative, and ConditionalIterative. The discourse-knowledge engineer indicates the type of a content speci�cation nodein its iteration-type attribute. Thus far we have been discussing Non-Iterative nodes, but somediscourse knowledge is inherently iterative. For example, suppose a discourse-knowledge engineer isrepresenting discourse knowledge to be used by an explanation planner for generating explanationsabout objects. The discourse-knowledge engineer may need to represent the speci�cation that, fora given object O,for each part P of Ofor each function F of Pdescribe how F is a function of PThis speci�cation involves a doubly nested iteration: the outer statement iterates over the parts ofan object; the inner statement iterates over the functions of one of the object's parts. In general,an important aspect of representing discourse knowledge is the ability to specify that the discourseplanner should repeat an operation for each entity in a set.4 By including constructs for bothstandard and conditional iteration, EDPs provide discourse-knowledge engineers with a formalismthat enables them to represent commonly occurring iterative discourse patterns.Elaboration Nodes. Elaboration nodes specify optional content that may be included in expla-nations. They are structurally identical to topic nodes, i.e., they have exactly the same attributes,and the children of elaboration nodes are content speci�cations. Elaboration nodes and topic nodesdi�er only in function; topic nodes are used to specify the primary content of explanations, andelaboration nodes are used to specify supplementary content.4.3 Developing Task-Speci�c EDPsA discourse-knowledge engineer can use EDPs to encode discourse knowledge for his or her applica-tion. In our work, we focused on two types of texts that occur in many domains: process descriptions4Note that the set can only be speci�ed abstractly by the discourse-knowledge engineer, e.g., \the functions ofsome structure." At runtime, the explanation planner will materialize the set of entities and iterate over them.17



and object descriptions. For example, in biology, one encounters many process-oriented descrip-tions of physiological and reproductive mechanisms, as well as many object-oriented descriptionsof anatomy. In the course of our research, we studied many passages in biology textbooks. Thesepassages focused on explanations of the anatomy, physiology, and reproduction of plants. Some ex-planations were very terse, e.g., those that occurred in glossaries, whereas some were more verbose,e.g., multi-page explanations of physiological processes. Most of the texts also contained informa-tion about other aspects of botany, e.g., experimental methods and historical developments; thesewere omitted from the analysis.We manually \parsed" each passage into a discourse tree. The discourse trees were expressed inan informal language centering around viewpoints [59, 56]. The viewpoints were in turn expressed inan informal language of structure, function, and process which is commonly found in the discourseliterature, e.g., [41, 35, 52]. Our �nal step was to generalize the most commonly occurring patternsinto abstractions that covered as many aspects of the passages as possible. After generalizing thecommonly occurring patterns into abstractions, we encoded the abstractions in two ExplanationDesign Packages. These EDPs can be used by an explanation planner to generate explanationsabout the processes and objects of physical systems. Although we will not discuss the details ofthese EDPs here, it is instructive to examine their structure and function.5The Explain-Process EDP (Figure 8) can be used by the explanation planner to generateexplanations about the processes that physical objects engage in. For example, given a queryabout how a biological process such as Embryo Sac Formation is carried out, the explanationplanner can apply the Explain-Process EDP to construct an explanation plan that houses thecontent and organization of the explanation. The Explain-Process EDP has �ve primary topics� Process Signi�cance: Explains the signi�cance of a process with respect to the role it playsin a \parent" process;� Process Overview: Explains how a process �ts into a taxonomy, discusses the role played byits actors, and discusses where it occurs;� Process Details: Explains the steps of a process;� Temporal Attributes: Explains how a process is related temporally to other processes;� Output Actor Fates: Discusses how the \products" of a process are used by other processes.As computational linguists have known for many years, formally characterizing texts is a verydi�cult, time-consuming, and error-prone process. Because any initial discourse representatione�ort by necessity must be considered only a beginning, the next step was to incrementally revise theEDPs. The EDPs were used to automatically construct hundreds of explanations: the explanationplanner used the EDPs to construct explanation plans, and the realization system translated theseplans to natural language. The resulting explanations were presented to our domain expert, who5All of the example EDP nodes in this section were taken from these EDPs.18
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Figure 8: The Final Version of the Explain-Process Explanation Designcritiqued both their content and organization, and we used these critiques to incrementally revisethe EDPs. After many passes through the critiquing and revision phases, EDPs were devised thatproduced clear explanations meeting with the domain expert's approval.5 Planning ExplanationsExplanation planning is the task of determining the content and organization of explanations. Wehave designed an architecture for explanation generation and implemented a full-scale explanationgenerator, Knight,6 that is based upon this architecture.6All of the explanation planning algorithms, as well as the KB Accessors, were implemented in Lucid CommonLisp on a DEC Station 5000. 19



5.1 An Architecture for Explanation GenerationExplanation generation begins when the user poses a query, which includes a verbosity speci�cationthat comes in the form of a qualitative rating expressing the desired length of the explanation(Figure 9). The query interpreter|whose capabilities have been addressed only minimally inour work|translates the query to a canonical form, which is passed, along with the verbosityspeci�cation, to the explanation planner.The heart of an explanation generator is its explanation planner. Explanation planning is asynthetic task in which multiple resources are consulted to assemble data structures that specifythe content and organization of explanations. Knight's planner uses the following resources:� Domain knowledge representation: Biology Knowledge Base;� Discourse knowledge representation: Explanation Design Packages;� Domain knowledge access methods: KB accessing system;� Context representation: Overlay user model.7The explanation planner invokes the EDP Selector, which chooses an Explanation Design Pack-age from the EDP Library. The explanation planner then applies the EDP by conducting anin-order traversal of its hierarchical structure. For each node in the EDP, the planner determinesif it should construct a counterpart node in the explanation plan it is building. (Recall that thetopic nodes and elaboration nodes of an EDP are instantiated only when their conditions aresatis�ed.) In this manner, the planner assembles an explanation plan that is isomorphic to theEDP. As the plan is constructed, the explanation planner updates the user model to reect thecontextual changes that will result from explaining the views in the explanation plan, attends tothe verbosity speci�cation, and invokes KB Accessors to extract information from the knowledgebase. Recall that the Accessors return \views," which are subgraphs of the knowledge base. Theplanner attaches the views to the explanation plan; they become the plan's leaves. Planning iscomplete when the explanation planner has traversed the entire EDP.The planner passes the resulting explanation plan to the realization component (Section 6) fortranslation to natural language. The views in the explanation plan are grouped into paragraph clus-ters. After some \semantic polishing" to improve the content for linguistic purposes, the realizationcomponent translates the views in the explanation plan to sentences. The realization system col-lects into a paragraph all of the sentences produced by the views in a particular paragraph cluster.Explanation generation terminates when the realization component has translated all of the viewsin the explanation plan to natural language.7As the planner constructs explanation plans, it consults the user model. User-sensitive explanation generation isnot addressed in this paper. For a discussion of this work, see [33, 29].20
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Explain (Query-Type, Concept, V erbosity)if legal-query (Query-Type, Concept, V erbosity) thenEDP  select-edp (Query-Type)EDP -Exposition-Node  get-root (EDP )New-Exposition-Node  construct-node (EDP -Exposition-Node)Explanation-P lan  apply-edp (EDP -Exposition-Node,New-Exposition-Node, V erbosity, nil)Explanation-Leaves  linearize (Explanation-P lan)realize (Explanation-Leaves) Figure 10: The Explain Algorithm5.2 The Explanation Planning AlgorithmsThe Explain algorithm (Figure 10) is supplied with a query type (e.g., Describe-Process), aprimary concept (e.g., Embryo-Sac-Formation), and a verbosity speci�cation (e.g., High). Its �rststep is to select an appropriate EDP. Recall that the EDP Library has an indexing structure thatmaps a query type to the EDP that can be used to generate explanations for queries of that type.This indexing structure permits EDP selection to be reduced to a simple look-up operation. Forexample, given the query type Describe Process, the EDP Selector will return the Explain-ProcessExplanation Design Package. The planner is now in a position to apply the selected EDP to theknowledge base. TheApply EDP algorithm takes four arguments: the exposition node of the EDPthat will be applied, a newly created exposition node which will become the root of the explanationplan that will be constructed, the verbosity speci�cation, and the loop variable bindings.8The planner �rst locates the root of the selected EDP, which is an exposition node. Next,it creates the corresponding exposition node for the soon-to-be-constructed explanation plan. Itthen invokes the Apply EDP algorithm, which is given the exposition node of the EDP to beapplied, the newly created exposition node that will become the root of the explanation plan, theverbosity, and a list of the loop variable bindings.9 The Apply EDP algorithm (Figure 11) andthe algorithms it invokes conduct an in-order traversal of the hierarchical structure of the EDP tobuild an explanation plan. Its �rst action is to obtain the children of the EDP's exposition node;these are the topic nodes of the EDP. For each topic node, the EDP Applier constructs a new(corresponding) topic node for the evolving explanation plan. The Applier must then weigh severalfactors in its decision about whether to include the topic in the explanation� Inclusion: the inclusion condition associated with the topic;� Centrality: the centrality rating that the discourse-knowledge engineer has assigned to the8Apply EDP is a recursive algorithm. For top-level invocations, this latter parameter will always be nil.9The loop variable bindings are used for the EDPs' iteration construct.22



Apply-EDP (EDP -Exposit-Node, New-Exposit-Node, V erbosity,Loop-V ar-Bindings)Children-of-EDP -Exposition-Node get-children (EDP -Exposition-Node)for each EDP -Topic-Node in EDP -Exposition-Node-Children doNew-Topic-Node  construct-node (EDP -Topic-Node)Inclusion-Condition-Expression  get-condition (EDP -Topic-Node)Instantiated-Inclusion-Condition instantiate (Inclusion-Condition-Expression,EDP -Topic-Node,New-Topic-Node)Inclusion-Condition-Evaluation eval (Instantiated-Inclusion-Condition)Centrality  get-centrality (EDP -Topic-Node)Include-Topic?  compute-inclusion (Inclusion-Condition-Evaluation,Centrality,V erbosity)if Include-Topic? thenChildren-of-EDP -Topic-Node  get-children (EDP -Topic-Node)for each EDP -Content-Specification-Nodein Children-of-EDP -Topic-Node dodetermine-content (EDP -Content-Specification-Node,New-Topic-Node,V erbosity,Loop-V ar-Bindings)Figure 11: The EDP Application Algorithmtopic;� Verbosity: the verbosity speci�cation supplied by the user.If the inclusion condition evaluates to False, the topic should be excluded regardless of the othertwo factors. Otherwise, the Compute Inclusion algorithm must consider the topic's importanceand the amount of detail requested and will include the topic in the following circumstances: theverbosity is High; the verbosity is Low but the topic's centrality has been rated as High by thediscourse knowledge engineer; or the verbosity is Medium and the topic's centrality has been ratedas Medium or High.When the Compute Inclusion algorithm returns True, the Applier obtains the childrenof the EDP's topic. These are its content speci�cation nodes. For each of the topic's contentspeci�cation nodes, the Applier invokes the Determine Content algorithm, which itself invokes23



KB Accessors named in the EDP's content speci�cation nodes. This action extracts views fromthe knowledge base and attaches them to the explanation plan.Rather than merely returning a at list of views, the Explain algorithm examines the para-graph speci�cations in the nodes of the EDP it applied. The paragraph speci�cations of a givennode organize the children of that node into paragraph clusters. The order of the paragraph clus-ters controls the global structure of the �nal textual explanation; the order of the views in eachparagraph cluster determines the order of sentences in the �nal text.10 Finally, the Explain algo-rithm passes the paragraph clusters to the Realize algorithm, which translates them to naturallanguage.5.3 The Products of Explanation PlanningPlanning is complete when the Apply EDP algorithm has traversed the entire EDP and con-structed an explanation plan. To assist the discourse-knowledge engineer, explanation plan nodesare self-documenting. Each design decision is recorded directly in the attributes of the nodes them-selves. When an explanation plan node is created, the attributes of the corresponding node in theExplanation Design Package are copied over to the new node in the explanation plan. In addition,the explanation planner records in explanation plans all variable bindings, instantiated contentspeci�cation expressions, instantiated inclusion condition expressions, instantiated iteration condi-tion expressions, ags indicating that KB Accessors have detected inappropriate structures in theknowledge base, and error annotations produced by KB Accessors indicating the nature of inap-propriate knowledge-base structures. By providing this information in a structured design history,explanation plans signi�cantly assist discourse-knowledge engineers: it permits them to rapidlypinpoint problems in the EDPs which were used to automatically construct the explanation plans.The explanation plan formalism is represented in Km, the same frame-based representationlanguage that is used for the Biology Knowledge Base and forEDP nodes. Each node in explanationplan is a dynamically created frame. Because Km is accompanied by a graphical user interfacefor viewing frame-based structures, discourse-knowledge engineers can easily view and navigateexplanation plans. Hence, when discourse-knowledge engineers create new EDPs or modify existingones, they can use the graphical user interface to inspect e�ciently the results of explanationplanning. They can then quickly locate de�ciencies in explanation plans and use this informationto revise the EDPs.6 RealizationThe explanation planner should be viewed as an automatic speci�cation writer: its task is to writespeci�cations for the realization component, which interprets the speci�cations to produce naturallanguage. Although our work focuses on the design, construction, and evaluation of explanation10The realization algorithm treats these groupings as suggestions which may be overridden in extenuatingcircumstances. 24



planners, by constructing a full-scale natural language generator, it becomes possible to conduct a\pure" empirical evaluation of explanation planners. Without a realization component, the plansproduced by an explanation planner would need to be manually translated to natural language,which would raise many questions about the purity of the experiments. We therefore designed andimplemented a full-scale realization component.11Realization can be decomposed into two subtasks: functional realization, constructing functionaldescriptions from message speci�cations supplied by a planner; and surface generation, translatingfunctional descriptions to text. Functional descriptions encode both semantic information (caseassignments) and structural information (phrasal constituent embeddings). Syntactically, a func-tional description is a set of attribute and value pairs (a v) (collectively called a feature set), wherea is an attribute (a feature) and v is either an atomic value or a nested feature set.12 To illustrate,Figure 12 depicts a sample functional description. The �rst line, (cat clause), indicates thatwhat follows will be some type of verbal phrase, in this case a sentence. The second line containsthe keyword proc, which denotes that everything in its scope will describe the structure of the en-tire verbal phrase. The next structure comes under the heading partic; this is where the thematicroles of the clause are speci�ed. In this instance, one thematic role exists in the main sentence,the agent (or subject), which is further de�ned by its lexical entry and a modifying prepositionalphrase indicated by the keyword qualifier.The structure beginning with circum creates the subordinate in�nitival purpose clause. It hastwo thematic roles, subject and object. The subject has a pointer to identify itself with the subjectof the main clause while the object contains a typical noun phrase. The feature set for the circumclause indicates the wide range of possibilities for placement of the clause as well as for introducingadditional phrasal substructures into the purpose clause.Knight employs the Fuf surface realization system [15, 16] to translate functional descriptionsinto text. Developed by Elhadad and his colleagues at Columbia, Fuf is accompanied by anextensive, portable English grammar, which is \the result of �ve years of intensive experimentationin grammar writing" and is currently the largest \generation grammar" in existence.To construct functional descriptions from views extracted from a knowledge base, Knightemploys a functional realization system [7]. Given a view, the functional realizer uses its knowledgeof case mappings, syntax, and lexical information to construct a functional description, which it thenpasses to the Fuf surface generator. The functional realizer consists of �ve principal components:� Lexicon: Physically distributed throughout the knowledge base; each concept frame has accessto all of the lexical information relevant to its own realization.11During the past few years, we have developed a series of realization systems. The �rst realizer, which was designedand implemented by the �rst author, was a template-based generator. The second realizer, which was designed byKathy Mitchell and the authors, used the Penman surface generator. Her implementation of the second system isdescribed in [45]. The third realizer is described briey in this section; it was designed by the �rst author and C.Callaway.12Functional descriptions may also employ syntactic sugar for purposes of legibility.25



((cat clause)(proc ((type material) (lex ``reproduce'')))(partic ((agent ((cat common)(lex ``spore'')(qualifier ((cat pp)(prep === ``from'')(np ((cat common)(lex ``cell'')(classifier ((cat noun-compound)(classifier === ``megaspore'')(head === ``mother'')))(qualifier ((cat pp)(prep === ``in'')(np ((cat common)(lex ``sporangium'')))))))))))))(circum ((purpose ((cat clause) (position end)(keep-for no) (keep-in-order no)(proc ((type material) (lex ``form'')))(partic ((agent ((semantics {partic agent semantics})))(affected ((cat common)(lex ``gamete'') (definite no)(classifier === ``plant'')(describer === ``haploid'')(cardinal ((value 4) (digit no)))))))))(time ((time-type ``during'')(cat common)(describer === ``male'')(classifier === ``gametophyte'')(lex ``generation''))))))Figure 12: A Functional Description� Functional Description Skeleton Library: Contains a large number of FD-Skeletons, eachof which encodes the associated syntactic, semantic, and role assignments for interpreting aspeci�c type of message speci�cation.� Functional Description Skeleton Retriever: Charged with the task of selecting the correctFunctional Description Skeleton from the skeleton library.� Noun Phrase Generator: Responsible for drawing lexical information from the Lexicon tocreate a self-contained functional description representing each noun phrase required by theFD-Skeleton processor� Functional Description Skeleton Processor: Gathers all of the available information fromthe FD-Skeleton, the lexicon, and the noun phrase generator; produces the �nal functionaldescription. 26



When the functional realizer is given a view, its �rst task is to determine the appropriate FD-Skeleton to use. Once this is accomplished, the FD-Skeleton is passed along with the messagespeci�cation to the FD-Skeleton processor. The FD-Skeleton processor �rst determines if eachof the essential descriptors are present; if any of these tests fail, it will note the de�ciency andabort. If the message is well-formed, the FD-Skeleton processor passes each realizable conceptunit found on the message speci�cation to the noun phrase generator, which uses the lexicon tocreate a functional description representing each concept unit. The noun phrase generator thenreturns each functional description to the FD-Skeleton processor, which assigns case roles to the(sub)-functional descriptions. The resulting functional description, which encodes the functionalstructure for the entire content of the message speci�cation, is then passed to the surface realizer,which constructs the �nal text.137 Example BehaviorTo illustrate the behavior of the system, consider the concept of embryo sac formation. Figure 13depicts the semantic network in the Biology Knowledge Base that represents information aboutembryo sac formation. When Knight is given the task of explaining this concept,14 it applies theExplain-Process EDP (Figure 8).Knight �rst �nds the topics of the Explain Process exposition node, which are Process Overview,Output Actor Fates, Temporal Information, and Process Details. During its traversal of this tree,it begins with Process Overview, which has a High centrality rating and an inclusion condition ofTrue. Knight executes the Compute Inclusion algorithm with the given verbosity of High,which returns True, i.e., the information associated with the topic should be included.Hence, it now begins to traverse the children of this topic node, which are the As Kind OfProcess Description, Process Participants, and Location Description content speci�cation nodes.For the As Kind Of Process Description, it computes a value for the local variable ?ReferenceConcept, which returns the value female gametophyte formation. It then instantiates the contentspeci�cation template on As Kind Of Process Description, which it then evaluates. This resultsin a call to the As-Kind-Of KB Accessor, which produces a view. Similarly, Knight instantiatesthe content speci�cation expressions of Process Participants Description and Location Description,which also cause KB Accessors to be invoked; these also return views. Next Knight visits theLocation Partonomic Connection node, which is an elaboration of Location Description. However,because its inclusion condition is not satis�ed, this branch of the traversal halts.Next, Knight visits each of the other topics of the Explain Process exposition node: TemporalInformation and Process Details. Because it was given a High verbosity speci�cation, both of theseare used to determine additional content. The resulting explanation plan is shown in Figure 14.Note that the Subevent Description Iteration, together with the Subevent Participants nested con-13More comprehensive descriptions of Knight's realization component may be found in [29] and [7].14In this example, Knight is given a High verbosity speci�cation.27
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Figure 13: A representation of embryo sac formationtent speci�cations, enabled Knight to construct two Participants views in the explanation plan:one for each of the subevents in embryo sac formation (Figure 13). When the views in this ex-planation plan are translated to text by the realization system, Knight produces the followingtext: Embryo sac formation is a kind of female gametophyte formation. During embryo sacformation, the embryo sac is formed from the megaspore mother cell. Embryo sacformation occurs in the ovule.Embryo sac formation is a step of angiosperm sexual reproduction. It consists ofmegasporogenesis and embryo sac generation. During megasporogenesis, the megas-pore mother cell divides in the nucellus to form 4 megaspores. During embryo sacgeneration, the embryo sac is generated from the megaspore.These algorithms have been used to generate explanations about hundreds of di�erent conceptsin the Biology Knowledge Base. For example, Section 2 shows other explanations generated byKnight. The explanation of pollen tube growth was produced by applying the Explain-ProcessEDP, and the explanations of spore and root system were produced by applying the Explain-ObjectEDP. 28
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learning task such as rule induction from examples. Although one can easily count the number ofexamples that an induction program classi�es correctly, there is no corresponding objective metricfor an explanation generator. Ideally, we would like to \measure" the coherence of explanations.Although it is clear that coherence is of paramount importance for explanation generation, thereis no litmus test for it.Given these di�culties, how can one evaluate the architectures, algorithms, and knowledgestructures that form the basis for an explanation generator? The traditional approach has been to1. Conduct an analytical evaluation of a system's architecture and principal,2. Demonstrate that it can produce well-formed explanations on a few examples.While these evaluation techniques are important, they are not su�cient. Three steps can be takento enable better evaluation. First, we can construct large-scale knowledge bases, such as the BiologyKnowledge Base. Second, we can design and implement robust explanation systems that employ arepresentation of discourse knowledge that is easily manipulable by discourse-knowledge engineers.Third, to ensure that a knowledge base is not tailored for the purposes of explanation generation,we can enter into a \contractual agreement" with knowledge engineers; this eliminates all requestsfor representational modi�cations that would skew the representation to the task of explanationgeneration.8.1 Experimental DesignThe Two-Panel Evaluation Methodology can be used to empirically evaluate natural languagegeneration work. We developed this methodology, which involves two panels of domain experts, tocombat the inherent subjectivity of NLG: although multiple judges will rarely reach a consensus,their collective opinion provides persuasive evidence about the quality of explanations. To ensurethe integrity of the evaluation results, a central stipulation of the methodology is that the followingcondition be maintained throughout the study:Computer Blindness: None of the participants can be aware that some texts aremachine-generated or, for that matter, that a computer is in any way involved in thestudy.The methodology involves four steps:1. Generation of explanations by computer.2. Formation of two panels of domain experts.3. Generation of explanations by one panel of domain experts.4. Evaluation of all explanations by second panel of domain experts.Each of these is discussed in turn. 30



Explanation Generation: Knight. Because Knight's operation is initiated when a user posesa question, the �rst task was to select the questions it would be asked. To this end, we combedthe Biology Knowledge Base for concepts that could furnish topics for questions. Although theknowledge base focuses on botanical anatomy, physiology, and development, it also contains asubstantial amount of information about biological taxons. Because this latter area is signi�cantlyless developed, we ruled out concepts about taxons. In addition, we ruled out concepts that weretoo abstract, e.g., Object. We then requested Knight to generate explanations about the 388concepts that passed through these �lters.To thoroughly exercise Knight's organizational abilities, we were most interested in observingits performance on longer explanations. Hence, we eliminated explanations of concepts that weresparsely represented in the knowledge base. To this end, we passed the 388 explanations througha \length �lter": explanations that consisted of at least 3 sentences were retained; shorter expla-nations were disposed of. This produced 87 explanations, of which 48 described objects and 39described processes. Finally, to test an equal number of objects and processes, we randomly chose30 objects and 30 process. Sample explanations produced by Knight are shown in Appendix A.Two Panels of Domain Experts. To address the di�cult problem of subjectivity, we assembled12 domain experts, all of whom were PhD students and post-doctoral scientists in biology. Becausewe wanted to gauge Knight's performance relative to humans, we assigned each of the expertsto one of two panels: the Writing Panel and the Judging Panel. By securing the services of sucha large number of domain experts, we were able to form relatively large panels of four writersand eight judges (Figure 15). To ensure that the human-generated explanations would be of thehighest possible quality, we assigned the four most experienced experts to the Writing Panel. Theremaining eight experts were assigned to the Judging Panel to evaluate explanations.To minimize the e�ect of factors that might make it di�cult for judges to compare Knight'sexplanations with those of domain experts, we took three precautions. First, we attempted tocontrol for the length of explanations. Although we could not impose hard constraints, we madesuggestions about how long a typical explanation might be. Second, to make the \level" of theexplanations comparable, we asked writers to compose explanations for a particular audience,freshman biology students. Third, so that the general topics of discussion would be comparable,we asked writers to focus on anatomy, physiology, and development.Explanation Generation: Humans. To ensure that the di�culty of the concepts assigned tothe writers were the same as those assigned toKnight, the writers were given the task of explainingexactly the same set of concepts that Knight had explained. Because we wanted to give writers anopportunity to explain both objects and processes, each writer was given an approximately equalnumber of objects and processes. Each of the 4 writers was given 15 concepts to explain, and eachconcept was assigned to exactly one writer. We then transcribed their handwritten explanationsand put them and Knight's explanations into an identical format. Sample explanations produced31
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EvaluationsFigure 15: The Two-Panel Methodology in the Knight Experimentsby the writers are shown in Appendix B. At this point, we had a pool of 120 explanations: sixtyof these pertained to objects (30 written by biologists and 30 by Knight), and the other sixtypertained to processes (also 30 written by biologists and 30 by Knight).Explanation Evaluation. We then submitted the explanations to the panel of eight judges. Thejudges were not informed of the source of the explanations, and all of the explanations appearedin the same format. Each judge was given �fteen explanations to evaluate. Judges were asked torate the explanations on several dimensions: overall quality and coherence, content, organization,writing style, and correctness. To provide judges with a familiar rating scale, they were asked toassign letters grades (A, B, C, D, or F) to each explanation on each of the dimensions. Because care-fully evaluating multiple dimensions of explanations is a labor-intensive task, time considerationsrequired us to limit the number of explanations submitted to each judge. Hence, we assigned eachjudge 15 explanations, which on average required an hour to evaluate. We assigned explanations32



to judges using an allocation policy that obeyed the following four constraints:� System-Human Division: Each judge received explanations that were approximately evenlydivided between those that were produced by Knight and those that were produced bybiologists.� Object-Process Division: Each judge received explanations that were approximately evenlydivided between objects and processes.� Single-Explanation Restriction: No judge received two explanations of the same concept.� Multi-Judge Stipulation: The explanations written by each writer were not evaluated by onlyone judge; rather, they were distributed to at least two judges.It is important to emphasize again that the judges were not made aware of the purpose of theexperiment, nor were told that any of the explanations were computer-generated.8.2 ResultsBy the end of the study, we had amassed a large volume of data. To analyze it, we convertedeach of the \grades" to their traditional numerical counterparts, i.e., A=4, B=3, C=2, D=1,and F=0. Next, we computed means and standard errors for both Knight's and the biologists'grades. We calculated these values for the overall quality and coherence rating, as well as foreach of the dimensions of content, organization, writing style, and correctness. On the overallrating and on each of the dimensions, Knight scored within approximately \half a grade" of thebiologists (Table 3).15Given these results, we decided to investigate the di�erences between Knight's grades andthe biologists' grades. When we normalized the grades by de�ning an \A" to be the mean of thebiologists' grades, Knight earned approximately 3.5 (a B+). Comparing di�erences in dimensions,Knight performed best on correctness and content, not quite as well on writing style, and leastwell on organization.Because the di�erences between Knight and the biologists were narrow in some cases, wemeasured the statistical signi�cance of these di�erences by running standard t-tests.16 Knight'sgrades on the content, organization, and correctness dimensions did not di�er signi�cantly fromthe biologists' (Table 4). Of course, an insigni�cant di�erence does not indicate that Knight'sperformance and the biologists' performance was equivalent|an even larger sample size mighthave shown a signi�cant di�erence|however, it serves as an indicator that Knight's performanceapproaches that of the biologists on these three dimensions.To gauge how well Knight generates explanations about objects|as opposed to processes|wecomputed means and standard errors for both Knight's explanations of objects and the biologists'15In the tables, � denotes the standard error, i.e., the standard deviation of the mean.16All t-tests were unpaired, two-tailed. The results are reported for a 0.05 level of con�dence.33



explanations of objects. We did the same for the explanations of processes. For both objects andprocesses, Knight scored within \half a grade" of the biologists. Again, we measured the statisticalsigni�cance of these di�erences. Although there was a signi�cant di�erence between Knight andbiologists on explanations of processes, Knight and the biologists did not di�er signi�cantly onexplanations of objects (Tables 5 and 6).As a �nal test, we compared Knight to each of the individual writers. For a given writer,we assessed Knight's performance relative to that writer in the following way: we compared thegrades awarded to Knight and the grades awarded to the writer on explanations generated inresponse to the same set of questions. This analysis produced some surprising results. Althoughthere were substantial di�erences between Knight and \Writer 1," Knight was somewhat closerto \Writer 2," it was very close to \Writer 3," and its performance actually exceeded that of\Writer 4." Knight and Writers 2, 3, and 4 did not di�er signi�cantly (Table 7).9 Related WorkBy synthesizing a broad range of research in natural language generation, Knight provides a\start-to-�nish" solution to the problem of automatically constructing expository explanations fromsemantically rich, large-scale knowledge bases. It introduces a new evaluation methodology andbuilds on the conceptual framework that has evolved in the NLG community over the past decade,particularly in techniques for knowledge-base access and discourse knowledge representation. Wediscuss each of these in turn.Evaluation Methodologies. With regard to evaluation, Knight is perhaps most closely relatedto �ve NLG projects that have been empirically evaluated: Pauline [23], Edge [8], the ExampleGenerator17 [46],Ana [27], and Streak [54]. By varying pragmatic information such as tone, Hovyenabled Pauline to generate many di�erent paragraphs on the same topic. Pauline's texts werenot formally analyzed by a panel of judges, and it did not produce texts on a wide range of topics (itgenerated texts on only three di�erent events.) However, this project is a signi�cant achievementin terms of evaluation scale because of the sheer number of texts it produced: Pauline generatedmore than 100 di�erent paragraphs on the same subject. In a second landmark evaluation, Cawseyundertook a study in which subjects were allowed to interact with her explanation generationsystem, Edge [8]. Subjects posed questions to Edge about the operation of four circuits. Cawseyanalyzed the system's behavior as the dialogs progressed, interviewed subjects, and used the resultsto revise the system. Although Edge does not include a realization system (other than simpletemplates) and it was not subjected to a tightly controlled, formal evaluation, it was su�cientlyrobust to be used interactively by eight subjects.The Example Generator [46], Ana [27], and Streak [54] were each subjected to formal(quantitative) evaluations. Mittal and Paris developed and formally evaluated a generator that17Mittal and Paris' system has no o�cial name; we refer to it as \the Example Generator" for ease of reference.34



Generator Overall Content Organization Writing CorrectnessKnight 2.37�0:13 2.65�0:13 2.45�0:16 2.40�0:13 3.07�0:15Human 2.85�0:15 2.95�0:16 3.07�0:16 2.93�0:16 3.16�0:15Table 3: Comprehensive AnalysisOverall Content Organization Writing CorrectnessDi�erence 0.48 0.30 0.62 0.53 0.09t statistic -2.36 -1.47 -2.73 -2.54 -0.42Signi�cance 0.02 0.14 0.07 0.01 0.67Signi�cant? Yes No No Yes NoTable 4: Di�erences and Signi�canceGenerator GradeKnight 2.65�0:19Human 2.93�0:19Di�erence 0.28t statistic -1.05Signi�cance 0.30Signi�cant? NoTable 5: Explanation of Objects35



Generator GradeKnight 2.10�0:24Human 2.77�0:17Di�erence 0.67t statistic -2.23Signi�cance 0.03Signi�cant? YesTable 6: Explanation of Processesproduced descriptions integrating text and examples. Rather than evaluating the explanationsdirectly, subjects were given a quiz about the concept under consideration.18 The degree to whichthe experiments controlled for speci�c factors, e.g., the e�ect of example positioning, example types,example complexity, and example order, is remarkable. Ana and Streak were both subjected toquantitative, corpus-based evaluations. Kukich employed a corpus-based methodology to judgethe coverage of Ana's knowledge structures. Streak, which constructs summaries of basketballgames, is part of of a larger e�ort by J. Robin, K. McKeown, and their colleagues at Columbia andBellcore to develop robust document generation systems [43, 40]. It was evaluated with a corpus-based study that produced estimates of Streak's sub-language coverage, extensibility, and theoverall e�ectiveness of its revision-based generation techniques. Although neither of these studiesemployed human judges to critique text quality, the rigor with which they were conducted hassigni�cantly raised the standards for evaluating generation systems.The relationship between the Knight evaluation and those of its predecessors is summarizedin Table 8. Knight, Streak, and Ana were all evaluated formally, i.e., quantitatively, whilePauline and Edge were evaluated informally. The Knight, Edge, and Example Generatorevaluations employed humans as judges, while the Ana and Streak evaluations had \arti�cialjudges" in the form of corpora, and Pauline was evaluated without judges. Knight is the onlysystem to have been evaluated in the context of a semantically rich, large-scale knowledge base.Knight is also the only system to have been evaluated in a kind of restricted \Turing test" inwhich the quality of its text was evaluated by humans in a head-to-head comparison against thetext produced by humans (domain experts) in response to the same set of questions.Knowledge-Base Access. Knight builds on a rich body of research on knowledge base accessby view selection. Many di�erent approaches have been taken to selecting views. In the knowledgerepresentation community, views of a concept have been extracted by changing its superclass, as in18In a second analysis without human judges, the system developers compared selected features of the ExampleGenerator's output with text from textbook and obtained encouraging results.36



Knight vs. Writer 1 vs. Writer 2 vs. Writer 3 vs. Writer 4Knight 1.93�0:29 2.73�0:23 2.73�0:27 2.07�0:23Human 3.60�0:16 3.40�0:23 2.80�0:28 1.60�0:23Di�erence 1.67 0.67 0.07 0.47t statistic -5.16 -2.03 -0.17 1.42Signi�cance 0.00 0.05 0.86 0.16Signi�cant? Yes No No NoTable 7: Knight vs. Individual Writers
Pauline Edge Example Ana Streak KnightGeneratorFormality Informal Informal Formal Formal Formal Formal\Judges" None Humans Humans Corpus Corpus HumansLarge-Scale KB? No No No No No YesSystem vs. Human No No No* No No YesTable 8: Evaluation Methodologies37



the Krl [5] and Kodiak [66] systems. More recent work in this area has demonstrated how viewscan be \rei�ed," i.e., encoded as �rst-class objects in their representations [57, 11, 28]. Relatedresearch in intelligent tutoring systems explored how di�erent views could be used to model di�erentaspects of the domain and, hence, to answer di�erent kinds of questions [58]. Work in automatedknowledge acquisition systems has shown how to use views to constrain search [50].Several projects in explanation generation have exploited views to improve the quality of theexplanations they provide. The Advisor system [44] represents views with a multiple-hierarchyknowledge base. Advisor infers a user's current goal from his most recent utterances and uses thisgoal to select a hierarchy from the multiple-hierarchy knowledge base. The selected view controlsthe content of the explanation and the reasoning that produced that content. In a similar vein,viewpoints in Swartout's Xplain [64] are annotations that indicate when to include a piece ofknowledge in an explanation.It is preferable to construct (i.e., extract) views at runtime rather than encoding them ina knowledge base. If a KB accessing system could dynamically construct views, the discourse-knowledge engineer would be freed from the task of having to anticipate all queries and rhetoricalsituations and precompiling semantic units for each situation. Knight, Romper [39], and Sutherswork [59, 60, 61, 63] use these types of views to determine the content of their explanations. Oncea perspective is selected, Romper includes in its explanations only those attributes whose saliencevalues are the highest. In contrast to Romper's views which are domain-speci�c, i.e., its views arecon�ned to the domain of �nancial securities, Suthers' andKnight's views are domain independent.Suthers set forth a set of views which can be used to select coherent subsets of domain knowledge:structural, functional, causal, constraint, and process. He also developed a view retriever and ahighly re�ned theory of explanation generation in which views play a signi�cant role. Knight'sviews are very similar to McCoy's and Suthers in that they de�ne the relations and properties of aconcept that are relevant when considering a concept from a viewpoint belonging to that view type[3, 1]. They also provide four types of knowledge-base access robustness, as discussed in Section 3.Discourse Generation. Two principle mechanisms have been developed for generating dis-course: schemata and top-down planners.19 McKeown's pioneering work on schemata marks thebeginning of the \modern era" of discourse generation [41]. Schemata are ATN-like structuresthat represent naturally occurring patterns of discourse. For example, a schema for de�ning aconcept includes instructions to identify its superclass, to name its parts, and to list its attributes.To construct an explanation plan, McKeown's Text system traverses the schemata and sequen-tially instantiates rhetorical predicates with propositions from a knowledge base. Paris extendedschemata to generate descriptions of complex objects in a manner that is appropriate for the user'slevel of expertise [52], and Romper's schemata include information about the content of proposi-19A third alternative proposed by Sibun are short-range strategies that exploit relations such as spatial proximityto guide the generator through the domain knowledge [55]. These strategies are designed for exibility, but they donot account for extended explanations, which require a more global rhetorical structure.38



tions to be selected, as well as their communicative role.20 Although schemata have been criticizedbecause they lack exibility, they successfully capture many aspects of discourse structure.An alternative to schemata is the top-down planning approach [49, 62, 8, 37, 24, 48, 47].21 Theoperators of two of these planning systems are based on Rhetorical Structure Theory (RST) [35].Hovy's Structurer [22, 21, 24] is a hierarchical planner whose operators instantiate relations fromRST, and Hovy and McCoy have developed methods for increasing the organizational exibilityof the Structurer [25]. The Reactive Planner also uses RST-like operators. However, unlike all ofthe preceding research|and unlike Knight as well|it o�ers sophisticated mechanisms for gener-ating explanations in interactive contexts [49, 48, 47]. Because the operators explicitly record therhetorical e�ects achieved, and because the system records alternative operators it could have cho-sen, as well as assumptions it made about the user, the Reactive Planner can respond to follow-upquestions|even if they are ambiguous|in a principled manner. A related approach has been takenby Cawsey in the Edge system [8]. Because Edge has facilities for managing conversations, usersmay interrupt the system to ask questions, and Edge can either answer the question immediatelyor postpone its response. Suthers [62] has developed a sophisticated hybrid approach that includesplanning techniques as well as plan critics, simulation models, reorganization methods, and graphtraversal. By assembling these diverse mechanisms into a single architecture, he demonstrates howthe complexities of explanation planning can be dealt with in a coherent framework. The principaladvantage of top-down planners over schema-based generators is their ability to reason about thestructure, content, and goals of explanations|as opposed to merely instantiating pre-existing plansembodied by schemata.Knight's EDPs are much more schema-like than plan-like. Although EDPs have inclusionconditions, which are similar to the constraint attribute of RST-based operators, and they providea centrality attribute, which enables Knight to reason about the inclusion of a topic if \space" islimited, EDPs do not in general permitKnight to reason about the goals ful�lled by particular textsegments as do plan-based systems. However, EDPs have proven to be very useful as a discourse-knowledge engineering tool, a result that can be attributed in large part to their combining aframe-based representation with procedural constructs. In a sense, EDPs are schemata whoserepresentation has been �ne-tuned to maximize ease of use on a large scale.10 Future DirectionsResearch on Knight suggests several directions for future work. First, the results of the evaluationcall for further analysis and experimentation. For example, an in-depth analysis at the discourse,sentential and lexical levels of all of the texts produced by both the humans and the system may20Unlike McKeown's and Paris' schemata|as well as Knight's EDPs|Romper's schemata do not impose anorder on the propositions.21The planning approach, which has dominated the �eld for the past few years can be traced to Appelt's work onplanning referring expressions [4], which itself builds on earlier work on reasoning about speech acts in a planningparadigm [9]. 39



reveal which characteristics of the highly rated texts are desirable. These in turn can be used toimprove the EDPs. On the empirical side, a particularly intriguing kind of experiment is an ablationstudy. In an ablation study, di�erent aspects of the system are ablated (removed or degraded),and the e�ects of the ablation on the explanations are noted. By performing a series of theseexperiments, one can determine which aspects of the system and its representational structurescontribute most signi�cantly to its success.Second, although EDPs were employed successfully in the generation of hundreds of explana-tions, the fact that they have more in common with schemata than with the operators of top-downplanners is indicative of a fundamental limitation: the intentional structure of the discourse isunavailable for inference. As a result, it is considerably more di�cult for the system to respondto follow-up questions, reason about paragraph structure, perform goal-based content determina-tion, and produce discourse cues. This calls for the incorporation of an intentional structure intoEDPs, but modifying EDPs to represent intention must be accomplished in such a way that the\discourse-knowledge engineering" properties are preserved and there is no sacri�ce of text quality.Moreover, Knight currently employs very rudimentary pronominalization techniques. Includingmore sophisticated methods [12] should result in a signi�cant increase in text quality.Finally, one of the most fruitful area for future work is research on multimedia explanationgeneration [17, 36, 65, 51, 10]. A multimedia explanation generator can combine the explanatorycapabilities of Knight with the powerful display technologies of multimedia devices. By tightlycoupling multimedia object indices to a formal representation of domain knowledge, a multimediaexplanation generator should be able to dynamically generate responses involving text, graphics,animation, audio, and video. To this end, we have begun work on an architecture for multimediaexplanation generation [34]. This kind of system must be able to address issues of multimediacontent determination and organization, as well as determining at runtime which media should beused to realize the concepts to be communicated.11 ConclusionExplanation generation is an exceedingly complex task that involves a diversity of interacting com-putational mechanisms. An explanation system must be able to select from a knowledge baseprecisely those facts that enable it to construct a response to a user's question, organize this infor-mation and translate the formal representational structures found in knowledge bases to naturallanguage. While the traditional approach to work on explanation has been to develop a proof-of-concept system and to demonstrate that it can produce well-formed explanations on a few examples,developing robust explanation generation techniques and scalable discourse knowledge representa-tions facilitates more extensive, empirical studies.To investigate the issues and problems of generating natural language explanations from se-mantically rich, large-scale knowledge bases, we have designed and implemented Knight, a fullyfunctioning explanation system that automatically constructs multi-sentential and multi-paragraph40



natural language explanations. Knight has generated hundreds of explanations from the BiologyKnowledge Base. It addresses a multiplicity of issues in explanation generation, ranging fromknowledge base access and discourse planning to a new methodology for empirical evaluation. Thiswork has demonstrated that (1) separating out knowledge-base access from explanation planningcan enable the construction of a robust system that extracts coherent views from a a semanticallyrich, large-scale knowledge base; and (2) Explanation Design Packages, a hybrid representation ofdiscourse knowledge that combines a frame-based representation with procedural constructs, facili-tate the iterative re�nement of discourse knowledge. Combining hierarchically structured discourseobjects with embedded procedural constructs, EDPs have been used to represent discourse knowl-edge about explaining physical objects and processes, and they have been tested in the generationof hundreds of explanations of biological concepts.To gauge the e�ectiveness of these techniques, we developed the Two-Panel Evaluation Method-ology and employed it in the evaluation of Knight. Knight scored within \half a grade" of thebiologists. There was no signi�cant di�erence between Knight's explanations and the biologists'explanations on measures of content, organization, and correctness, nor was there a statisticallysigni�cant di�erence in overall quality between Knight's explanations those composed by three ofthe biologists. Knight's performance exceeded that of one of the biologists.In summary, it is encouraging that an explanation system could begin to approach the perfor-mance of multiple domain experts and surpass that of one expert. These �ndings demonstrate thatan explanation system that has been given a well represented knowledge base can construct natu-ral language responses whose quality approximates that of humans. More generally, they suggestthat we are beginning to witness the appearance of computational machinery that will signi�cantlybroaden the bandwidth of human-computer communication.AcknowledgementsWe would like to thank our principle domain expert, Art Souther, for leading the knowledgebase construction e�ort; Charles Callaway and the NLG students for their work on the realizationsystem; Erik Eilerts, for building the knowledge base editing tools; Michael Elhadad, for generouslyassisting us with Fuf; Peter Clark and Charles Callaway for helpful comments on previous draftsof this paper; Dan Suthers for insights on the problems of evaluating explanation systems; and themembers of the Biology Knowledge Base Project: Liane Acker, Brad Blumenthal, Rich Mallory,Ken Murray, and Je� Rickel.
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Appendix A: Explanations Generated by KnightThis appendix presents �fteen sample explanations generated by Knight from the Biology Knowl-edge Base. These explanations were among the sixty explanations generated by Knight that werejudged by domain experts in the empirical evaluation.#1 Fascicular CambiumFascicular cambium is a kind of vascular cambium. It is acomponent of the vascular bundle and is lateral to the xylem.It is medial to the phloem and is surrounded by the vascularbundle sheath.#2 Marginal MeristemMarginal meristem is a subregion of the leaf. It gives rise toplate meristem. Plate meristem generation is a step of platemeristem development. Marginal meristem gives rise to leafprotoderm. Leaf protoderm generation is a step of platemeristem generation. Marginal meristem gives rise to leafprocambium. Leaf procambium generation is a step of platemeristem generation. Marginal meristem gives rise to leafpromesophyll. Leaf promesophyll generation is a step of platemeristem generation.Marginal meristem is composed of marginal initials andsubmarginal initials.#3 Leaf PromesophyllLeaf promesophyll is a kind of immature tissue. It is asubregion of plate meristem. It is generated from marginalmeristem.#4 Endosperm Mother CellThe endosperm mother cell is a kind of female gamete of a plant.It is contained in the embryo sac. It and the egg cell areproduced from the megaspore during female gametogenesis. It isfertilized by an angiosperm sperm cell to form the primaryendosperm cell during endosperm fertilization. Endospermfertilization is a step of double fertilization.The endosperm mother cell contains 2 nuclei.46



#5 PhloemPhloem is a kind of vascular tissue. It is a component of thevascular bundle and is lateral to the fascicular cambium. It issurrounded by the vascular bundle sheath. It is composed ofparenchyma, sclerenchyma and sieve tubes.#6 Leaf PrimordiumLeaf primordium is a kind of meristem. It is a subregion of thestem meristem and is below the shoot apical meristem. It islateral to the sub-apical meristem. It is generated from shootapical meristem during leaf initiation.#7 Microspore2 microspores are produced from the microspore mother cellduring microsporogenesis. The microspore divides to form thepollen tube cell and the pollen generative cell during malegametogenesis. Male gametogenesis is a step of pollen graindevelopment.#8 Spore Mother CellThe spore mother cell is a kind of diploid cell. It is part ofthe reproductive stage of a sporophyte. It divides to form 4spores during sporogenesis. Sporogenesis is a step ofgametophyte formation.#9 ProtodermProtoderm is a kind of primary meristem. It is a subregion ofsub-apical meristem and surrounds ground meristem. It isgenerated from apical meristem.#10 Plant Female GameteThe female gamete of a plant is a kind of plant gamete. It isfertilized by the plant sperm cell to form the zygote duringplant reproductive fertilization. Plant reproductivefertilization is a step of plant sexual reproduction.47



#11 CorollaThe corolla is part of the flower and surrounds the androecium.It is surrounded by the calyx. It is made up of several petals.#12 Embryo SacThe embryo sac is a kind of female gametophyte. It is containedin the nucellus. It is generated from the megaspore. Itcontains the endosperm mother cell, 3 antipodal cells and theegg apparatus.#13 Central Mother CellsCentral mother cells are a kind of immature tissue. They are asubregion of shoot apical meristem and are medial to the tunica.They are below the tunica and the apical initials.#14 Shoot Apical MeristemShoot apical meristem is a subregion of the stem meristem and isabove the leaf primordium and the sub-apical meristem. It givesrise to the leaf buttress during leaf buttress initiation. Leafbuttress initiation is a step of leaf initiation. Leafprimordium is generated from shoot apical meristem during leafinitiation. Leaf initiation is a step of leaf formation.The subregions of the shoot apical meristem include the tunica,the central mother cells and the apical initials.#15 EndodermisThe endodermis is a kind of ground tissue. It surrounds thepericycle. It is made up of endodermal cells. The parts of theendodermis include the cell walls, whose parts include theradial walls and the lateral walls, and the plasma membrane.
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Appendix B: Explanations Generated by Domain ExpertsThis appendix presents �fteen sample explanations that were generated by domain experts. Theseexplanations were among the sixty explanations generated by domain experts that were judged bya second panel of domain experts in the empirical evaluation. They pertain to the same topics asthose in the preceding appendix.#1 Fascicular Cambiumthe meristematic layer of cells within the vascular bundles thatdivides to produce secondary xylem and phloem.#2 Marginal Meristemtissue with the capacity to divide mitotically, found in areasother than the apex of the plant, such as in the axials ofleaves. This tissue can produce new leaves, branches, orflowers depending on the hormonal signals received.#3 Leaf Promesophyllin the developing leaf, the tissue that will differentiate intothe two layers of the mesophyll, the palisade and spongymesophyll.#4 Endosperm Mother Cellthe binucellate cell of the megagametophyte (female) that willbe fertilized with the other sperm cell. This triploid cellwill then divide mitotically numerous times to produce endospermtissue, which will be used by the developing embryo as a foodsource.#5 Phloemthe tissue within the vascular system that carries food (sugars)produced in the leaves by photosynthesis to the rest of the plant.Phloem cells are living when mature and functioning.#6 Leaf Primordiumthe area of tissue within the meristem with the capacity todevelop into a leaf. 49



#7 Microsporethe immature haploid gametophyte that will produce sperm.Produced by meiosis from a microspore mother cell within theanthers of the flower, the microspore will be protected by ahard resistant wall of sporopollenin to produce a pollen grain.The pollen grain germinates on the stigma and a microgametophytedevelops.#8 Spore Mother Cellin algae, mosses, ferns, and bryophytes that produce only onetype of gametophyte, the diploid cell that divides by meiosis toproduce (usually) four haploid spores.#9 ProtodermThe innermost cell layer of the epidermis of woody vascularplants. The protoderm is a site of epidermal cell division anddifferentiation.#10 Plant Female GameteHaploid reproductive cell (often an egg) produced by the femalegametophyte by mitosis. The female gamete is most often immotileand may be surrounded by other specialized haploid cells. Thefemale gamete will fuse with the sperm (male gamete) to producea diploid embryo.#11 CorollaThe second outermost structure found in flowers. The corolla issurrounded to the outside by the calyx and to the inside by theandroecium. The corolla may be brightly colored and showy or itmay be extremely reduced or it may be missing entirely.#12 Embryo SacThe seven celled (eight nuclei) female gametophyte ofangiosperms (flowering plants). The embryo sac consists of 1 eggcell surrounded by two companion cells, 3 antipodal cells, and alarge central cell which contains 2 polar nuclei. The embryo sacis found inside the ovule of the sporophyte (diploid plant).50



#13 Central Mother CellsDiploid cells found within reproductive structures of plantsthat will undergo meiosis to produce four haploid cells known asspores. The spores may develop into a haploid plant known as thegametophyte.#14 Shoot Apical MeristemThe growing tip of a stem or shoot. The apical meristem is thesite of rapid cell division. Cell elongation and differentiationoccur directly below the apical meristem.#15 EndodermisA cell layer within the root of vascular plants. The functions ofthe endodermis are to give rise to lateral roots and to assist inwater movement within the root.
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