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Chapter 1

Introduction

1.1 Introduction

“The time has come,” the Walrus said, “To talk of many things”
Lewis Carroll in Through the Looking Glass

The goal of this research is to develop methods for representing and accessing knowledge
to support multiple tasks. The knowledge representation research attacks three problems
of frame-based representation languages: representing quantified assertions, representing
both definitional and nondefinitional assertions, and representing information contextually.
The knowledge access research addresses three problems as well: how to provide a content
addressable knowledge base, how to provide a virtual knowledge base, and how to access
viewpoints of concepts.

1.2 Motivation

Consider the following activities that a human expert, such as a professor of botany, might
perform on a routine day:

e answering students’ questions in class,

e writing an explanation of photosynthesis for a textbook,

e diagnosing and treating a wilting plant in the greenhouse, and
e learning about new discoveries from a journal article.

Human beings have great flexibility in applying their knowledge of a domain to a variety
of tasks. For each task they perform, only a small portion of their knowledge is relevant,
yet they are able to identify that portion and distinguish it from the irrelevant knowledge.
This activity is referred to here as knowledge access. Designing computational methods for



knowledge access is crucial to developing an artificially intelligent agent that uses a corpus
of domain knowledge to perform multiple tasks.

Knowledge access is rich with interesting problems. For example, consider the problems
a botanist faces when writing the following description of cell nuclei:

The nucleus is typically the largest structure in the cytoplasm of a eukaryotic
cell. The nucleus performs two essential functions. First, it controls the ongoing
activities of the cell. It does this by determining which protein molecules are
produced by the cell and when. Second, it stores the cell’s genetic information,
passing it on to the daughter cells in the course of cell division.!

This passage illustrates several problems of knowledge access. First, the passage contains
only a small fraction of everything the author knows about cell nuclei. Otherwise, the text
would overwhelm the reader. Yet the author was able to determine which facts to include
and which to exclude so that the material would be coherent, rather than a random sampling
of information.

Second, the passage contains knowledge that is content addressable. For example, the
concept “the cytoplasm of a eukaryotic cell,” like many concepts in botany (or any other
domain), has no “official” technical name. The author was able to access the concept purely
via its contents; partial knowledge of the concept (e.g., that it is a kind of cytoplasm and
that it is part of a eukaryotic cell) is activated, resulting in the rest of the knowledge about
it becoming accessible.

Third, the passage contains knowledge of potentially ad hoc concepts, such as “the cy-
toplasm of a eukaryotic cell.” Even if that concept were not stable in the author’s mind,
the author still accessed the concept by creating it ad hoc using implicit knowledge of the
concept distributed among other stable concepts, such as “cytoplasm” and “eukaryotic cell.”

Finally, there arises the question of how the author’s knowledge is encoded so as to
support solutions to the above problems.

This research addresses the above problems of knowledge access in the context of com-
puter systems performing knowledge-based tasks. The specific goals are threefold. The first
goal is to make it possible to represent in a formal language the kind of domain knowl-
edge that supports a variety of tasks (called multifunctional knowledge) in such a way that
general (task independent) methods can access it. The second goal of the research is to de-
velop methods to enable computer systems to access concepts by their contents, regardless
of whether the concepts exist explicitly or implicitly in the knowledge base. The third goal
of the research is to develop methods for accessing coherent portions of knowledge about a
given concept from a large knowledge base. The next three sections discuss these goals and
the approach taken to each.

! Adapted from Biology of Plants [68], page 36.



1.3 Multifunctional Knowledge Representation

Most present-day knowledge-based systems rely on representations of domain knowledge that
were designed to support the single task the system performs. Such task specific knowledge
bases suffer from two limitations. First, they include only the knowledge needed to perform
the task for which they were engineered. For example, the IF-THEN production rule bases
that expert systems use typically lack the support knowledge that underlies the rules. As
a result, expert systems that rely on them cannot adapt to unanticipated circumstances
because they lack knowledge of “first principles” from which to reason. In addition, the rules
are usually unsuitable for explanation and teaching, as the Guidon project demonstrated [18].

The second limitation of task specific knowledge bases is that the form of their knowledge
is tailored for a particular application. For example, many advisory and tutoring systems
rely on knowledge in the form of “canned text,” multisentence text passages hand-crafted
for specific contexts. Although a special-purpose form enables more efficient performance of
one task, it usually precludes the knowledge from being applied to other tasks within the
same domain. For example, while knowledge of plant diseases in the form of canned text
can be used to provide instruction, it cannot be used for automated diagnosis.

More flexibility is achieved by building a comprehensive, fine grained representation of
domain knowledge, i.e., one that provides broad coverage of the domain, represented as
atomic facts that can be combined and used in multiple ways. For example, consider a
knowledge base containing the following facts, represented so that an application program
can examine and manipulate them.

1. Photosynthesis requires light, carbon dioxide, and water.
2. Photosynthesis produces glucose and oxygen.

3. Respiration requires glucose and oxygen.

4. Respiration produces carbon dioxide and water.

A system could use facts (1) and (4) to reason about how carbon dioxide is involved in
plant physiological processes. Similarly, reasoning about the role of oxygen would involve
facts (2) and (3). The first three facts would be relevant to reasoning about how light
deprivation affects respiration. Finally, a system would need all four facts to reason about
how photosynthesis and respiration are complementary processes.

Such comprehensive, fine grained representations of knowledge are called multifunctional
knowledge bases. Because multifunctional knowledge bases contain knowledge to support a
variety of tasks, they are large and costly to build. A hypothesis underlying this work is
that it is more cost-efficient in the long run to construct a single multifunctional knowledge
base for a domain than to construct a separate knowledge base dedicated to each task to be
performed in that domain.



In the last few years, interest in multifunctional knowledge bases has grown rapidly within
the artificial intelligence community. In 1988, the American Association for Artificial Intelli-
gence sponsored a workshop on the topic. The CYC project [40] has dedicated the last seven
years to developing the largest multifunctional knowledge base in existence. Brachman lists
large knowledge bases as one of the most important areas of future knowledge representation
research [10].

Multifunctional knowledge bases can be constructed using a variety of representational
languages, including predicate logic, Prolog, and frame-based languages. This work assumes
a frame-based language, although many of the ideas presented here apply to other represen-
tational paradigms as well. There are four reasons that a frame-based language was chosen
over other representational paradigms. First, several common types of inference are very
efficient in frame-based languages. These include inheritance of features from one class to
another, retrieving the value of an attribute for an entity, and retrieving all known facts
about an entity. Second, using a frame-based language yields a modular knowledge base,
one that is convenient for browsing and editing. Modularity is especially important for a
large, multifunctional knowledge base. Third, it is easy to describe the properties of rela-
tions in a frame-based language. Fourth, it is possible to describe intensions of concepts in
a frame-based language (discussed in Chapter 2).

An important aspect of this work is its broad applicability. Any application program
using a frame-based knowledge base can use the knowledge access methods presented here,
regardless of the task being performed or the domain.

Although domain independent, this work is undertaken in the context of the Botany
Knowledge Base project [67]. The Botany Knowledge Base is a multifunctional representa-
tion of botany, with emphasis on plant anatomy and physiology. It currently contains over
2,600 concepts and over 28,000 facts. The domain of botany was chosen because it is a non-
formal domain, yet it is relatively self-contained. Like many domains, botany is concerned
primarily with physical objects (anatomy) and physical processes (physiology).

While developing access methods for large multifunctional knowledge bases such as the
Botany Knowledge Base, several representational problems were encountered. The rest of
this section discusses these problems.



1.3.1 Representing Necessity, Sufficiency, and Likelihood

In most frame-based languages, frames represent categories, and slots and their values rep-
resent features of members of those categories. In some languages, such as KL-ONE and
other terminological languages, features represent necessary and sufficient criteria for cate-
gory membership, as with the features color = Black and isa = T'elephone for the category
Black-Telephone [86]. In other languages, features represent not defining properties, but
defaults, as with the feature color = Gray for Elephant [9]. Nonetheless, these languages
make no provision for representing the likelihood of the default (e.g., how likely it is that a
particular elephant is gray). Still other languages seem to allow users to impose their own
semantics for features [50].

The problem with these approaches is not the particular interpretation they assume,
but that they all assume a single interpretation for every (frame slot value) triple in the
knowledge base. A comprehensive corpus of domain knowledge consists of features of all
kinds. A more flexible representation language is needed that allows the knowledge engineer
to

distinguish features that are definitional
from those that merely happen to occur,

distinguish between necessity and sufficiency,

distinguish between defeasible and absolute features, and

specify different degrees of defeasibility (e.g., likelihood).

A goal of this research is to develop constructs for representing this kind of information
about features. These constructs must allow information about a feature (its necessity,
sufficiency, likelihood, etc.) to be represented in the same context as that feature, as opposed
to requiring the reification of features as frames. In addition, these constructs must be
convenient and efficient to use.



1.3.2 Representing Quantified Assertions

Just as domain knowledge includes features with different necessity, sufficiency, and likeli-
hood, domain knowledge also includes assertions with different quantificational patterns:

e Fvery plant has as a part some stem.
e Plant01 has as a part some stem.

e Fvery plant has color green.

e Plant01 has color green.

Most existing frame-based representation languages do not allow quantified assertions to
be conveniently represented (i.e., represented with a single (frame slot value) triple). Ground
propositions are represented with a single triple, but quantified assertions require either
additional representational constructs (such as a rule or constraint language) or multiple
triples. This requirement makes knowledge representation much more tedious.

A goal of this work is to allow assertions having commonly occurring patterns of quan-
tification to be represented with a minimum of notation, while maintaining rigorous and
explicit semantics. In other words, the goal is to represent quantified assertions in the same
way as unquantified assertions, as single (frame slot value) triples. For example, the above
four assertions would all be represented in the same syntactic form, even though each has a
different quantificational pattern:

Plant has-part Stem)

Plant01 has-part Stem)

Plant color Green)

(
(
(
(

Plant01 color Green)

The correct interpretation could be determined automatically as needed.



1.3.3 Representing Contextual Information

Consider representing the statement “The cells of the root system contain no chlorophyll.”
Traditional frame-based representation languages provide two unsatisfactory alternatives.
The first technique is to associate an “if-needed” rule with the amount-chlorophyll slot on
the Cell frame that states, in effect, “If a cell is part of a root system, then it has no
chlorophyll.” This approach requires that the representation language include a formalism
for representing and reasoning about such rules. It also has the disadvantage that it provides
no direct access path from the frame Root-System to the knowledge about cells that are part
of root systems unless a special mechanism installs pointers from frames to the rules in whose
antecedents they appear.

The second technique is to create a frame for the concept “Cell of a root system,” then
fill in the appropriate slot values on that frame, as in

Cell-of-A-Root-System

generalizations: Cell
part-of: Root-System
amount-chlorophyll: Zero

If little or no additional knowledge differentiates the concept Cell-of-A-Root-System from
the concept Cell, then this approach requires an inordinate amount of effort.

Another disadvantage of this approach is that it results in a proliferation of frames cor-
responding to concepts that are important only in very limited contexts (such as “water
contained in a guard-cell that is collapsing” and “water pore in the membrane of the epi-
dermis of a root”). Ideally, every frame in the knowledge base would correspond to a stable
concept in the mind of the domain expert, that is, a concept one would expect to find in the
index of a comprehensive text on the domain. Such a knowledge base is easier to navigate,
for both knowledge engineers and application programs.

An alternative technique for representing “The cells of the root system contain no chloro-
phyll” that does not necessitate creating a frame for “Cell of a root system” is to represent
the information contextually. That is, the triple (Cell amount-chlorophyll Zero) is repre-
sented in the context of the triple (Root-System has-part Cell), signifying that cells that are
part of a root system have no chlorophyll. One goal of this work is to allow convenient rep-
resentation of contextual information within the (frame slot value) paradigm (i.e., without
resorting to a rule or constraint language).



1.3.4 The Approach

The development of the knowledge representation language used in this research (called KM),
took advantage of existing technology as much as possible. The starting point for KM was
the Theo system developed by Tom Mitchell at Carnegie-Mellon University [50]. To allow
the representation of both contextual information and necessity, sufficiency, and likelihood
information, KM was extended to include annotations: each value of a frame-slot can be
annotated with additional filled slots that either

e are relevant to the value being annotated only within the current context, as in
Root-System

has-part: Cell
amount-chlorophyll: Zero

e or provide information about the entire (frame slot value) triple, as in

Plant

color: Green
likelihood: High

A second feature that distinguishes KM from Theo is a precise semantics. The semantics
is expressed by a semantic mapping from (frame slot value) triples in the knowledge base to
formulae in probabilistic logic. This mapping covers annotations as well. To allow relations
carrying different quantificational patterns to be represented by simple (frame slot value)
triples, the semantic mapping is not uniform for every triple in the knowledge base, but varies
according to the slot appearing in the triple. Furthermore, slots are overloaded in the sense
that the quantificational pattern a slot implies varies with the frame on which it appears and
the value(s) it has. The knowledge enterer need not explicitly indicate the quantificational
pattern of every triple in the knowledge base because this can be determined automatically.

The design of KM involved, to some degree, all members of the Botany Knowledge Base
project [67]. Erik Eilerts was largely responsible for the implementation of KM. The contri-
bution of this research is, first, providing a theoretical grounding for our design decisions,
and second, specifying the semantics of KM’s representational constructs. Chapter 2 gives
the specifics of the KM representation language and its semantics.

10



1.4 Knowledge-Base Access

The term knowledge-base access is used here to mean identifying a portion of a knowledge
base that is relevant to a particular task. For a frame-based knowledge base, a “portion” is
a group of one or more (frame slot value) triples. Typical examples of access methods for
frame-based representations include

e single frame-slot access, in which the user, either a human or an application program,
specifies a frame and a slot occurring on that frame, and the access method returns
the value(s) of the slot,

e entire frame access, in which the user specifies a frame, and the access method returns
the values of all the slots occurring on that frame, and

e task specific access methods, such as the content-determination operators of an
explanation-generation or question-answering system.

This research addresses two issues regarding knowledge-base access: (1) allowing users to
access frames by their contents (as well as by name), regardless of whether they exist explic-
itly or implicitly in the knowledge base, and (2) accessing coherent portions of knowledge
about a particular concept from a knowledge base.

1.4.1 Providing a Content Addressable, Virtual Knowledge Base

Building a knowledge base involves making numerous decisions, including

e what name to give to each knowledge-base frame
(e.g., “Plant-Stem” vs. “Stem-of-Plant”), and

e what concepts and relations will be represented explicitly in the knowledge base
(i.e., will have an associated frame).

Domain theory and principles of knowledge representation guide some of these decisions.
Many of these decisions, however, are arbitrary. This is especially true for multifunctional
knowledge because there is not a specific task determining what the knowledge base should
contain or how it should be represented. Furthermore, the knowledge engineer is often
unaware of these arbitrary decisions.

Although many of the decisions involved in knowledge engineering are arbitrary, they
nonetheless impact users of the knowledge base. For example, if a user’s only access to
frames in the knowledge base is through the frames’ names, then the user’s ability to find a
frame depends on whether he knows (or can guess) what the knowledge engineer named it. If
a user only has access to concepts that are explicitly represented in the knowledge base (i.e.,
concepts that have a corresponding knowledge-base frame), then the knowledge engineer’s
decision not to reify a concept that happens to be important for a particular task severely

11



limits the user’s ability to perform that task. One goal of this research is to insulate users
from the effects of the (sometimes arbitrary) choices made during knowledge representation.

An access method can insulate knowledge-base users from the effects of arbitrary choices
of frame names by providing content addressability. A content addressable knowledge base
allows users to access frames not only by specifying the frame name, but also by specifying a
partial description of the frame’s contents. For example, to access the frame for the concept
“eukaryotic cell cytoplasm,” the user could describe the concept (in a formal language) as “a
kind of cytoplasm that is part of a eukaryotic cell.” (More complex types of descriptions are
also possible, such as those involving multiple features and nested descriptions.) When given
this description in place of a frame name, the access method searches the knowledge base for
the frame matching the description and uses the name of that frame in servicing the access
request. The advantage of content addressability is that users can access the knowledge base
without extensive a priori knowledge of its contents.

An access method can insulate knowledge-base users from the effects of arbitrary choices
about what is made explicit in the knowledge base by providing a wvirtual knowledge base.
In the actual knowledge base, the only concepts and relations that are accessible are those
that have been explicitly represented in the knowledge base. In a virtual knowledge base, by
contrast, concepts and relations that are implicit in the knowledge base are also accessible.
Much research in artificial intelligence has been devoted to developing access methods for
relations in the virtual knowledge base (e.g., inheritance and rule chaining). The work
described here focuses on methods for accessing concepts in the virtual knowledge base.

A concept is implicit in the knowledge base (i.e., it is in the virtual knowledge base)
if it can be completely defined in terms of other concepts and relations in the knowledge
base. For example, if the concepts Eukaryotic-Cell and Cytoplasm and the relation part-of
are each represented by a frame in the knowledge base, then the concept “cytoplasm of a
eukaryotic cell” is in the virtual knowledge base.

To access a concept in the virtual knowledge base, the user supplies (in a formal language)
a definition of the concept in terms of other knowledge-base concepts, such as “the cytoplasm
that is part of a eukaryotic cell.” The access method creates a new frame for the concept
and reorganizes the knowledge base to accommodate it. This reorganization involves finding

e the maximally specific set of concepts in the knowledge base that are more general
than the new concept, and

e the maximally general set of concepts that are more specific than the new concept,

and installing the appropriate generalization and specialization links between these frames
and the new frame. It also involves recording on the new frame all the information given
in the user’s specification of the concept (in this example, part-of = Eukaryotic-Cell). The
access method then uses the name of the new frame to service the access request.

When an access method provides both content addressability and access to the virtual
knowledge base, users do not need to know whether concepts are explicit in the knowledge
base or implicit. Users simply supply a description of the concept to be accessed, embedded

12



in the access request. If the concept already has a frame associated with it, then that frame
is found and used; otherwise, a new frame is created and used.

The dynamic creation of new concepts is not a new idea. A major contribution of the
KL-ONE knowledge representation system [12] was the introduction of a mechanism for
automatically assimilating new concepts into an existing taxonomy based on their descrip-
tions. Most of the terminological languages that descended from KL-ONE also have this
facility, called automatic classification. Automatic classification as done in KL-ONE and its
descendants has several limitations, which this research addresses. Chapter 3 discusses these
limitations in more detail.

Providing a content addressable, virtual knowledge base is essentially a problem of au-
tomatically extending an index (the taxonomy of frames) and circumventing that index
when it is insufficient. Hence, this task does not arise for representation languages that
do not provide an index, such as predicate logic. This work is an effort to combine the
access flexibility of nonindexed languages with the advantages of an indexed, frame-based
language (efficiency of inference, modularity, the ability to describe relations, and the ability
to represent intensions).

Chapter 3 details methods for providing a content addressable, virtual knowledge base.
Chapter 3 also presents a three-part evaluation of these methods:

e An empirical evaluation of the hypothesis “concepts that are candidates for content
addressability and concepts that might exist in the virtual knowledge base but not in
the actual knowledge base are prevalent in human-generated text,”

e An analytic evaluation of the strengths and limitations of the approach, and

e An empirical evaluation of the expected cost of accessing concepts in the virtual knowl-
edge base. The results of this study are compared with the theoretical analysis given
by Woods [85].

1.4.2 Accessing Coherent Portions of Knowledge

Traditional access methods for frame-based knowledge bases retrieve either the value(s) of a
single frame-slot or the values of all slots of a given frame. These methods are often ill-suited
to the needs of application programs. For example, consider an advisory or tutoring system
that generates explanations of domain knowledge from a knowledge base, such as [43]. With
conventional access methods, the system has two unsatisfactory options for selecting the
relevant (frame slot value) triples from the knowledge base. One, the system can request
the value(s) of individual frame-slots one at a time using the “single frame-slot” access
method. This requires that the system know in advance which frame-slots are relevant to
the explanation it is constructing. Two, the system can request the values of all slots of
a frame, then examine each slot value to determine its relevance. This approach is very
inefficient, because an explanation of some concept usually requires only a small fraction of
all the information found on the frame for that concept. Furthermore, information that is
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not stored directly on that frame (i.e., information stored on neighboring frames) may be
relevant to the explanation of that concept. With this method, the system will miss that
information unless it also examines all the slot values on all the neighboring frames.

Methods are needed for accessing, from all the information available on some concept, a
coherent subset that is appropriate for a particular task. As a solution, this work includes
methods for accessing viewpoints of concepts. A viewpoint is a coherent collection of facts
that describes a concept from a particular perspective. For example, a structural viewpoint of
the concept Seed-Coat describes the substances and parts that make up a seed coat and how
they are connected. The viewpoint of Seed-Coat as a kind of Container includes information
about what parts of the seed are contained by the seed coat, whether the seed coat has
openings, etc. The viewpoint of Seed-Coat as having no chlorophyll includes the fact that
seed coats are not photosynthetic.

Viewpoints are essential for a variety of tasks. Explanation-generation, advisory, and
tutoring systems depend on viewpoints to ensure the coherence of the explanations they
generate [43, 46, 47, 49, 78, 64, 65, 79, 51, 52|. Learning systems also use viewpoints. For
example, KI uses views to constrain the search for consequences of adding new information
to a knowledge base [54, 57], and Shrager uses views to guide incremental changes to a
learner’s theory of how a device works so that only coherent theories are learned [72]. Other
systems use viewpoints to constrain automated reasoning. For example, Falkenhainer and
Forbus use perspectives in compositional modeling to ensure consistent modeling assumptions
and to increase efficiency [23]. ISAAC [62] and APEX [38] use viewpoints in solving physics
problems. BLAH [82] and Algernon [19] use partitions and views to constrain problem solving
and default reasoning. Finally, systems use viewpoints for natural language processing.
For example, Grosz uses focus spaces to guide disambiguation in discourse understanding
[28], and KING uses views to guide linguistic and conceptual choices in natural language
generation [37]. Although viewpoints are crucial for a variety of tasks, existing methods
for dynamically generating viewpoints from a knowledge base are limited. This research
provides general (domain and task independent) methods for generating viewpoints.

The approach taken here to the problem of generating viewpoints from knowledge bases
is to identify viewpoint types by analyzing human-generated texts, then to develop methods
for constructing each type of viewpoint from the knowledge base. To access a viewpoint,
the user specifies the type of viewpoint wanted and the concept of which the viewpoint will
be taken (the concept of interest). The access mechanism then determines which relations
in the knowledge base are relevant to the requested viewpoint and accesses those relations
using frame-slot access methods.

14



The types of viewpoints identified here are

e as-kind-of viewpoints, which describe the concept of interest by relating it to a more
general concept. For example, the viewpoint of Seed-Coat as a kind of Container is an
as-kind-of viewpoint.

e viewpoints constructed along basic dimensions, which describe particular kinds of fea-
tures of the concept of interest (structural features, functional features, etc.). An
example is a structural viewpoint of Seed-Coat.

e as-having viewpoints, which include features about the concept of interest that are
relevant to a user-specified feature of the concept. For example, the viewpoint of
Seed-Coat as having no chlorophyll is an as-having viewpoint.

Chapter 4 describes these viewpoint types in more detail along with methods for gen-
erating viewpoints from knowledge bases, either singly or in combinations. Chapter 4 also
presents two evaluations of the methods developed for generating viewpoints. The first is an
analysis to assess the completeness of the current set of viewpoint types and to guide fur-
ther refinements and extensions. The second is an objective evaluation to assess the quality
of automatically generated viewpoints, as compared to the quality of viewpoints found in
human-generated text.

15



1.4.3 System Architecture

The previous sections have introduced the notions of multifunctional knowledge, content
addressability, virtual knowledge, and viewpoints. This section describes how these ideas
are integrated into a computer system. Figure 1.1 shows the architecture for a knowledge-
base access tool that accesses viewpoints from a content addressable, virtual knowledge base
of multifunctional knowledge. In the absence of such a tool, users access the knowledge
base solely through modules for frame-slot access or frame access. Using the tool, users can
additionally access viewpoints from the knowledge base through a module called the View
Retriever (a term proposed by Suthers [75]). As they perform knowledge-base access, the
View Retriever and the modules for frame-slot access and frame access locate frames in the
knowledge base using the Finder, a module that provides content addressability. The Finder
is given either a frame name or a concept description. When given a concept description,
the Finder determines the name of the frame matching that description. If the Finder fails
to find a frame in the actual knowledge base matching the given description, it passes the
description to the Creator, a module that creates new frames for concepts in the virtual
knowledge base.

The architecture shown in Figure 1.1 has been implemented in a system called KASTL,
for Knowledge Access Tool.
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1.5 Summary

Human beings have great flexibility in applying their knowledge of a domain to a variety of
tasks. An important component of this ability is knowledge access, identifying the portion
of their knowledge that is relevant to a particular task. Designing computational methods
for knowledge access is crucial to developing an artificially intelligent agent that performs
multiple knowledge-based tasks.

This research addresses three problems of knowledge access. The first is representing
domain knowledge in a formal language in such a way that it can be accessed in support of a
variety of tasks. A frame-based language has been developed for constructing comprehensive,
fine grained representations of knowledge. This language, KM, allows

e convenient representation of quantified assertions,
e representation of several kinds of statements, both definitional and assertional, and
e convenient representation of contextual information.

A contribution of this research is a specification of the semantics of KM.

The second problem of knowledge access this research addresses is providing users with
a content addressable, virtual knowledge base. This allows users to access concepts by their
contents, regardless of whether the concepts exist explicitly or implicitly in the knowledge
base. The advantages of a content addressable, virtual knowledge base are

e knowledge-base users are insulated from the effects of representational choices made
by the knowledge engineer, and

e users can access the knowledge base without extensive a priori knowledge of its contents
(what frames exist in the knowledge base and what their names are).

The third problem of knowledge access this research addresses is accessing coherent por-
tions of knowledge about a given concept from a large knowledge base. Traditional access
methods for frame-based knowledge bases allow users to retrieve either the values of a single
frame-slot or the values of all slots on a particular frame. KASTL presents methods for
accessing wviewpoints, coherent collections of facts that describe a concept from a particular
perspective. This work identifies several viewpoint types and presents general methods for
accessing viewpoints of each type, either singly or in combinations.

The next three chapters discuss this research on each of these three problems of knowledge
access.
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Chapter 2

Multifunctional Knowledge
Representation

These are the kinds of questions that philosophers have been asking ever since
they realized that being a philosopher did not involve any heavy lifting.
Dave Barry

This chapter describes KM, a frame-based language for representing multifunctional
knowledge. The first section discusses the motivation for developing a new representation
language, and the following sections describe the representational constructs that distinguish
KM from traditional frame-based languages.

2.1 Introduction

The motivation for developing a new representation language was the need for more expres-
sive power than existing frame-based languages provide. Although predicate logic provides
a great deal of expressive power, a logical representation lacks the advantages of a struc-
tured (i.e., frame-based) representation: modularity, the ability to describe relations, the
ability to represent concept intensions, and efficiency of inference. Although increasing the
expressiveness of a frame-based language reduces the efficiency of inference in general, cer-
tain common types of inference (e.g., inheritance, retrieving the value an entity has for a
particular attribute, and retrieving all the attributes of entity) remain much more efficient
than with predicate logic.

Designing a language for increased expressiveness, even at the cost of intractable or
undecidable inference, runs counter to much of the work in knowledge representation. For
example, KRYPTON and many of its successors limit expressiveness in an effort to achieve
tractability of certain inference algorithms [11]. Experience has shown, however, that this
approach results in representation languages so severely limited that they are no longer
generally useful, because complete and tractable inference algorithms are impossible for all
but the least expressive languages [86, 22]. The tradeoff between expressiveness and efficiency
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of inference is not an equitable exchange because, although increased expressiveness can
substitute for limited inference, inferential power cannot substitute for limited expressiveness;
knowledge can only be inferred if it can be represented.

A second motivation for developing a new representation language was the need for
constructs that enable convenient representation of common kinds of assertions. This goal
reflects the point of view that it is preferable for a representation language to be more
convenient for people to use, even if it means that it is less convenient for computer systems
to use.

As with other frame-based languages, the basic representational units of KM are frames
(also called concepts or units), which are collections of slots (relations, roles) and their values
(fillers). The value of a slot on a frame is either a frame name or a constant, such as a string
or number. When a frame is intended to describe a set of entities, the frame is said to
represent a category. Frames that are intended to describe a single individual are said to
represent instances (of some category). Often a frame represents both a category and an
instance. For example, the category Elephant is an instance of the category Animal-Species.
The term noncategory instance refers here to an instance that does not itself have instances,
such as Clyde-the-Elephant.

Frames in KM also represent slots. For example, the frame representing the slot part-of
includes information about the slot’s inverse (has-part), its domain (the frames on which the
slot may appear ), its range (what kinds of values the slot takes), how many values the slot
allows, what slots are more general or more specific, etc. Frames also represent properties
(such as oblong or patchy). This chapter concentrates on the representation and semantics
of frames that represent categories and instances rather than slots or properties.

The next three subsections discuss the representational constructs of KM that collectively
distinguish it from traditional frame-based representation languages. These are constructs
for

e representing quantified assertions,
e representing both definitional and assertional statements, and

e representing information contextually.

2.2 Representing Quantified Assertions

Frame-based languages provide a straightforward representation for ground propositions. For
example, the triple (Clyde color Gray) represents the logical proposition color(Clyde, Gray).
However, many (even most) of the relationships constituting fundamental, general domain
knowledge are not between individuals (such as Clyde and Gray). Rather, they relate cate-
gories (such as Elephant and Trunk). These relationships usually involve universal or exis-
tential quantifiers, as in
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1. Every person has some parent that is a person.
2. Joe has some parent that is a person.
3. Every elephant has color gray.

Although quantified assertions constitute a large portion of fundamental, general domain
knowledge, most existing languages, unlike KM, do not allow quantified assertions to be
conveniently represented (i.e., represented with simple (frame slot value) notation). Ground
propositions are represented with a single (frame slot value) triple, but quantified assertions
are more cumbersome to represent, requiring additional representational constructs (such as
a rule or constraint language) or multiple triples. For example, in KL-ONE, representing
embedded existential quantifiers [as in (1) and (2) above] requires attaching a value restriction
to a slot (role) of a frame [12]. For example, the fact that Joe has a parent would be
represented by a value restriction of Person attached to the parent slot on the Joe frame,
rather than by the triple (Joe parent Person). Similarly, the CycL language uses entrylsA
constraints to encode embedded existential quantifiers: the knowledge enterer must create
a new frame, called a constraint unit, for the (Joe parent) pair and store Person on the
entrylsA slot on that frame [40]. Representing the same statement in Theo requires a range
facet associated with the (Joe parent) pair [50]. To represent embedded existential quantifiers
in Algernon, the knowledge enterer must resort to a rule language [19].

Universal quantification [as in (1) and (3) above] is also cumbersome to represent in
many languages. To represent the assertion “All elephants are gray” in CycL, the knowledge
enterer states that the value Gray for the slot color is to be inherited to all frames filling
the alllnstances slot of the Elephants frame. To represent the same assertion in Algernon,
the knowledge enterer must create a representative frame to be associated with the Elephant
frame and store Gray on the color slot of the representative frame.

The claim underlying this work is that it is possible to represent quantified assertions in
the same way as ground assertions, as single (frame slot value) triples, while maintaining a
rigorous and explicit notational semantics. Such a representation is made possible by over-
loading the semantics of slots, in the same sense that operators of a programming language
are sometimes overloaded. For example, KM allows “Every person has some parent” to be
represented simply as (Person parent Person), “Joe has a parent” as (Joe parent Person),
and “Elephants are gray” as (Elephant color Gray), yet it is still possible to determine (from
the context) the appropriate quantifiers when reasoning with the information.

Woods outlines the different quantificational patterns that may be implicit in a
(frame slot value) triple [85]. The quantificational pattern implicit in a triple describes the
quantifiers that appear in the logical assertion(s) represented by that triple. The basic nine
varieties are based on whether the frame and the value are to be interpreted as the scope of
a universal quantifier, an existential quantifier, or no quantifier. For example, the triple
(Person live-in Place) may represent “every person lives in some place,” called the AE
pattern (using A for All and E for Exists). It may alternatively represent “Some person
lives in every place,” the EA pattern, as “Some person lives in some place,” the EE pattern,
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or “Every person lives in every place,” the AA pattern. Similarly, (Person likes John)
suggests the AI and EI patterns (using I for Instance, meaning “unquantified”), which are
“Everyone likes John” and “Someone likes John.” For (John likes Person) the IA and IE
patterns are “John likes everyone” and “John likes someone.” Finally, the II pattern involves
no quantifiers, as with (John likes Mary).

Woods suggests a technique for allowing single (frame slot value) triples to represent
assertions having different quantificational patterns. He introduces a set of relation-forming
operators that construct relations whose semantics entail quantification. For example, the
AE operator applies to a relation r to produce a new relation, AE[r|, that relates two
categories. The new relation asserts that for each instance x of the first, there exists some
instance y of the second such that r(x,y). Thus, the relation (Person AE[parent]/ Person)
asserts that every person has as a parent some person. (This is one of several possible
interpretations. The next section discusses other kinds of assertions that a particular triple
can represent, each sensitive to the intended quantificational pattern.) Woods defines similar
relation-forming operators for the other quantificational patterns.

Woods states that the quantificational pattern of the relation of a triple (the operator
used to construct it) should be explicitly distinguishable from the underlying relation so that
inference methods can reason with it. He proposes representing the operator as an explicit
quantificational tag associated with the triple. The disadvantage of this approach is that the
knowledge enterer must tag every triple in the knowledge base to indicate its quantificational
pattern. This dramatically increases the cost of building and storing the knowledge base.

The KM approach recognizes that quantificational tags are generally unnecessary be-
cause the intended quantificational pattern usually can be determined automatically. This
disambiguation is possible because most slots are only sensibly combined with a small subset
of all the quantificational patterns, and this subset is such that, for a particular occurrence
of the slot in a (frame slot value) triple, the characteristics of the frame and value involved
determine which quantificational pattern is appropriate.

Experience with the Botany Knowledge Base points to four semantic types of slots. A
semantic type is an equivalence class of slots based on the quantificational patterns that
are implicit in triples involving those slots. In other words, slots of the same semantic type
are overloaded in the same way. By attending to the semantic type of slots, a system can
automatically determine the quantificational pattern implicit in a particular triple. Type 1
slots are those that typically relate a universally quantified category with an existentially
quantified category. An example of a Type 1 slot is has-part. When a Type 1 slot relates
two categories, as in (Plant has-part Root), the implied quantificational pattern is AE, as in
“Every plant has some root.” In addition to AE, Type 1 slots also allow the Al IE, and II
quantificational patterns. When a Type 1 slot relates a noncategory instance to a category,
as in (Plant-01 has-part Root), the implied quantificational pattern is IE, as in “Plant-01
has some root.” When the slot relates a category to a noncategory instance, the pattern is
Al and when the slot relates two noncategory instances, the pattern is II.
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Semantic Example Quantificational Ezample
Type Slot Patterns Allowed Occurrences
(1) has-part AE (Plant has-part Root)
IE (Plant-01 has-part Root)
Al (Plant has-part Root-01)
II (Plant-01 has-part Root-01)
(2) color Al (Plant color Green)
II (Plant-01 color Green)
(8) leaf-shape-of IA (Needle-like leaf-shape-of Pine-Leaf)
II (Needle-like leaf-shape-of Pine-Leaf-01)
(4) specializations II (Plant specializations Tree)

Table 2.1: Slots are grouped into four semantic types based on the quantificational patterns
they allow.

Type 2 slots typically relate a universally quantified category to an instance. An example
of this type of slot is leaf-shape. When a Type 2 slot occurs on a category frame, as in
(Pine-Leaf leaf-shape Needle-Like), the implied quantificational pattern is Al as in “Every
pine tree leaf has shape needle-like.” Type 2 slots also allow the II quantificational pattern,
as in (Pine-Leaf-01 leaf-shape Needle-Like).

Type 3 slots typically relate an instance to a universally quantified category. For these
slots, the possible interpretations are IA or II. An example of a Type 3 slot is leaf-shape-of,
as in (Needle-Like leaf-shape-of Pine-Leaf) or (Needle-Like leaf-shape-of Pine-Leaf-01).

Type 4 slots relate two instances. For these slots, the only interpretation is II. For
example, specializations is a Type 4 slot. Although this slot relates a category to a more
specialized category, as in (Plant specializations Tree), the categories are treated as instances
in this context (i.e., they are not given a quantifier) because Type 4 slots allow only the
IT (unquantified) pattern. Table 2.1 summarizes the four semantic types of slots and the
quantificational patterns each allows.

Table 2.2 illustrates how different combinations of frame, slot, and value yield the different
quantificational patterns AE, Al IE, TA  and II. The Botany Knowledge Base does not use
the AA pattern because one rarely encounters knowledge of the form “Every X is related
to every Y,” such as “Every person requires every type of vitamin.” The EA, EE, and EI
patterns (those that involve an initial existential quantifier) are not used because fundamental
domain knowledge deals in generalities (features true of most or all members of a category).
When an unusual feature occurs in some subset of a category, that subset usually has other
distinguishing characteristics, which leads to its reification as a separate category. The next
section discusses another technique for representing assertions such as “Some seeds have
an aril” without using an implicit existential quantifier: attaching a likelihood measure L
to the assertion “All seeds have an aril,” yielding the assertion “All seeds have likelihood
(probability) L of having an aril.”
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Semantic Type | Status of Status of | Quantificational
of Slot Frame Value Pattern
(1) category category AE

(1) category | noncategory

(2) category either Al
(1) noncategory | category IE
(1) noncategory | noncategory

(2) noncategory either

(3) either noncategory

(4) either either I
(3) either category IA

Table 2.2: The quantificational pattern implicit in triple (Frame Slot Value) is determined
by the semantic type of Slot and the category status of Frame and Value.

Although slots of the four semantic types described above are overloaded, triples involving
them are unambiguous. This is because the choice of interpretation is never between a
universal quantifier and an existential quantifier. The choice is always between a universal
quantifier and no quantifier at all, or between an existential quantifier and no quantifier at
all. Therefore, the decision of which quantificational pattern is appropriate for a particular
(frame slot value) triple is made by determining whether the frame and value involved are
categories: a category takes a quantifier, while a noncategory instance does not.

To summarize, KM represents both quantified and unquantified assertions in the same
manner, as simple (frame slot value) triples, with no explicit tags, annotations, or constraints
needed on triples to signify their quantificational pattern. This is accomplished by overload-
ing the semantics of each slot and assigning each slot to a semantic type according to the kind
of overloading. The system can determine automatically the semantics of a particular triple
by attending to the semantic type of the slot involved and the category status of the frame
and value involved. The knowledge enterer specifies the semantic type of each slot as the
slot is created. The type can be recorded on the slot’s frame so that it can be referred to by
inference methods that must be sensitive to the quantificational pattern of knowledge-base
triples.

One important inference method that must be sensitive to the semantic type of slots is
inheritance. Inheritance is the propagation of slot values from one frame to another, typically
to the specializations or instances of a category. The idea behind inheritance is that features
common to all members of a set will also occur for any particular member of that set and
for any member of any subset of that set. Hence, if a frame represents a category, and
a slot value on that frame represents a feature common to all instances of that category,
then automatic inheritance can soundly propagate the slot value to any frame representing
a specialization of the category, and the slot will have the same quantificational pattern on
the second frame as on the original frame. Inheritance can also soundly propagate the slot
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value to a frame representing an instance of the category. In this case, however, the slot has
a different quantificational pattern on the second frame: the universal quantifier is dropped.

Inheritance is sound only for certain semantic types of slots. Type 1 and Type 2 slots allow
an AE or Al interpretation when they appear on frames representing categories (that is, they
allow an implicit universal quantifier). Thus, inheritance is sound for triples involving slots
of Type 1 or 2, depending on the kind of assertion represented by that triple (as discussed
in the next section). Inheritance is not sound for assertions involving slots of type 3 or 4,
however, because these slots do not allow the AE or Al interpretations. For example, it would
be incorrect to propagate basic-unit-of 1 = Plant from Botanical-Cell to Root-Xylem-Cell.

A second important inference method that must be sensitive to the semantic type of slots
is inverse maintenance. Inverse maintenance is the automatic installation of back pointers
in the knowledge base. For example, if the inverse of slot s is defined to be slot s’, then
given triple (X s Y'), automatic inverse maintenance asserts (Y s’ X). Automatic inverse
maintenance is sound only when the two triples involved have exactly the same semantics
(i.e., they represent equivalent logical formulae). That is, representing (X s Y') should trigger
the automatic installation of (Y s’ X') only when (X s Y) and (Y s’ X) mean exactly the
same thing. This requirement implies that the inverse of a triple with an Al quantificational
pattern is a triple with an IA pattern, and vice versa. It also implies that the inverse of a
triple with an II pattern also has an II pattern. Triples with AE or IE patterns, however,
do not have inverses that correspond to any of the nine basic quantification patterns. For
example, (Elephant has-part Trunk) with the AE pattern means “Every elephant has some
trunk,” but ( Trunk part-of Elephant) with the EA pattern means something different, that
“Some (single) trunk is part of every elephant.” Thus triples having AE patterns do not have
representable inverses. Similarly, neither do triples having IE patterns.

Because slots of semantic type 2, 3, or 4 do not allow the AE or IE patterns, inverse
maintenance for these slots is sound assuming that

e the inverse slot of a Type 4 slot (which admits only the II pattern) is also of Type 4,
and

e the inverse slot of a Type 2 slot (which admits only the AI and II patterns) is a slot
of Type 3 (which admits only the IA and II patterns), and vice versa.

Because Type 1 slots allow AE and IE quantificational patterns, automatic inverse main-
tenance for triples involving these slots is not sound. For these triples, the system cannot
determine autonomously whether the inverse holds. In this situation the system consults the
knowledge enterer to approve or reject the proposed inverse. For example, after encoding the
triple (Photosynthesis raw-materials Water) to represent the assertion “All photosynthesis
events consume some portion of water,”? the knowledge engineer would reject the installa-
tion of ( Water raw-material-for Photosynthesis) because it is incorrect that all portions of

la Type 3 slot
2The next section discusses how the “all” can be weakened to “most” using likelihood annotations.
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water are consumed by some photosynthesis event. (This would be the implied quantifica-
tional pattern because raw-materials is a Type 1 slot, which assumes the AE pattern when
it relates two categories.) On the other hand, after encoding (Plant has-part Root) to repre-
sent “All plants have (some) root,” the knowledge engineer would accept the installation of
(Root part-of Plant) to represent “All roots are part of some plant.” These decisions require
domain knowledge and cannot be automated.

This section has presented a technique whereby assertions having common patterns of
quantification are conveniently represented with single (frame slot value) triples while main-
taining a rigorous and explicit semantics. The next section discusses the different kinds of
statements to which these quantificational patterns are applied and also gives the semantic
mappings that translate (frame slot value) triples represented in KM into logical formulae.

2.3 Representing Definitions and Assertions

A frame in KM represents a description that includes both definitional and assertional
components. The definitional component of a description is its essence or meaning, what the
description is intended to describe. Definition, as the term is used here, corresponds to the
term intension Woods uses [85, 84]. A definitional feature is more than just a feature that
is universal for the category or instance being described. For example, although all calico
cats are female, that feature is not part of the definition (intension, meaning, essence) of the
category “calico cat.” Only the species and color pattern appear in the definition.

The assertional component of a description is a set of statements describing the properties
of its extension, the things in the world that are characterized by the description. The real
world entities that are characterized by a description (i.e., the entities in its extension) are
those that people judge to have a sufficient degree of match with the definitional component
of the description or those that the description was formed to characterize.

The definitional and assertional components of a description may be partial or empty.
Many categories (especially “natural kinds”) cannot be completely defined. Thus some de-
scriptions have an empty or partial definitional component. Similarly, some descriptions
have no extension and thus no assertional component (e.g., “colorless green ideas” or “uni-
corns”). This allows the representation of concepts that have various kinds of existence (or
nonexistence) [34].

A description, as the term is used here, differs from a mathematical set or a logical
predicate. First, two sets (or two predicates) are equivalent if they are coextensional. By
contrast, two descriptions that have different definitional components are distinguishable,
even if they are coextensional (e.g., the Morning Star and the Evening Star). Second, while
the definition of a set in set theory (or a predicate in logic) fully describes what the set’s
extension is, the definitional component of a description only describes what the extension
is intended to be. There may be a discrepancy between the definitional component of a
description and the description’s extension. For example, part of the definition of “mammal”
is “gives birth to live young,” yet its extension includes the egg-laying echidna and platypus.
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Because there may be a discrepancy between the definitional component of a description
and its extension, definitions cannot be interpreted as making assertions about the exten-
sion. Such assertions constitute the assertional component of a description. The degree of
match between statements in the definitional component and statements in the assertional
component reflects the degree to which a description’s definition matches its extension.

Because of the differences between descriptions and mathematical sets, and because first-
order logic is based on set theory, first-order logic cannot completely capture the semantics of
KM’s frames. The definitional component of a description D is characterized with statements
of the form

D is intended to characterize the entity/entities z for which
{logical formula involving x} holds.

The assertional component of a description, however, is expressed by logical formulae.

Unlike KM, most frame-based languages do not allow both definitions and assertions
to be represented within the (frame slot value) framework. KL-ONE, NIKL, and other
terminological languages deal almost exclusively with definitions rather than assertions [86].
KRYPTON and other hybrid languages represent assertions as well as definitions, but most
represent them in the “ABox” using a logic-like language or rules rather than the frame
language of the “TBox” [11]. (One exception is CLASSIC, which uses the same language for
both [86].) CycL and Algernon represent assertions, but not definitions (as the term is used
here) [40, 19]. KM provides an expressive language for representing both the definitional
and assertional components of a description within the (frame slot value) framework.

2.3.1 Representing Definitions

Although definitions cannot be represented in or manipulated by first-order logic, they are
nonetheless useful for explanation and as metaknowledge for reasoning. For example, features
that are part of the definition of a concept should be the last features to be relaxed in the
face of a counterexample [85].

To represent the definitional component of a description on the same frame with the asser-
tional component, KM must include representational constructs that distinguish definitional
features from nondefinitional assertions. In addition, KM must distinguish between necessity
and sufficiency. Most terminological languages (e.g., KL-ONE) represent definitions in terms
of features that are both necessary and sufficient [86]. Many natural concepts, however, have
only partial definitions. That is, they have features that are necessary but not sufficient, or
vice versa. To represent the definitions of such concepts, KM must include representational
constructs that allow separate statements of necessary features versus sufficient features.

As a solution, KM allows annotations on triples in the knowledge base: each triple can
be modified with any number of filled slots. Some of these annotations represent domain
knowledge. For example, annotations may describe the conditions under which a relationship
holds or give an explanation of a relationship. Other annotations signify the semantics of
the triple they modify. I call the latter semantic annotations. The semantic annotations of
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a triple, together with its implicit quantificational pattern, determine its semantics. Two of
the semantic annotations distinguish definitional features. They are

o definitionally-necessary? = T, and
e definitionally-sufficient? = T

These annotations can occur either singly or together. (The next section discusses the
semantic annotations that express nondefinitional assertions.)

The intuitive semantics of definitional necessity and sufficiency is as follows. A feature
(i.e., slot value) marked as definitionally necessary for membership in a category indicates
that the category is intended to include only (but not necessarily all) things having that
feature. A set of features marked as definitionally sufficient for membership in a category
indicates that the category is intended to include all (but not necessarily only) things that
have all® those features.

Features can be annotated as definitionally necessary and definitionally sufficient for in-
dividuals as well as categories. A definitionally necessary feature on a description of an
individual indicates that the description is intended to describe some entity having that fea-
ture. A definitionally sufficient feature indicates that the description is intended to describe
the entity having that feature and any other features marked as definitionally sufficient.
Thus, for individuals, sufficiency implies necessity.

The default value for definitionally-necessary? and definitionally-sufficient? is nil, so
that only triples representing definitional features require these annotations. Experience
with the Botany Knowledge Base suggests that most features are purely assertional rather
than definitional.

Table 2.3 characterizes the meaning of features that are annotated as definitionally nec-
essary or definitionally sufficient. This characterization is given by a semantic mapping from
triples to definitions. This mapping is sensitive to both the semantic annotations that occur
(i.e., definitionally-necessary? and definitionally-sufficient?) and the quantificational pat-
tern (as determined by the semantic type of the slot and the category status of the frame
and value).

2.3.2 Representing Assertions

The assertional component of a description is a set of assertions describing the properties of
the things in the world that are characterized by the description. KM accommodates a variety
of assertions types, including defeasible assertions (with varying degrees of defeasibility) and
nondefeasible assertions.

Most representation languages describe extensions solely with sets of defeasible assertions
(usually default features with no degree of defeasibility) [9] or solely with sets of universal
(nondefeasible) features, as in the variations of predicate logic or the Prolog-like rules used

3Definitionally sufficient features are jointly sufficient for category membership.
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Semantic Status of Status of Semantics when Semantics when
Type of Frame F Value V definitionally-necessary? = T | definitionally-sufficient? = T
Slot S
(1) category category F is intended to F is intended to include
include only all entities z for which
entities x for which dy € V.S(z,y)
Jy € V.S(z,y). and z is otherwise sufficient.
(1) category noncategory F is intended to F' is intended to include
include only all entities = for which
(2) category either entities « for which S(z,V)
S(z,V). and z is otherwise sufficient.
(1) noncategory | category F is intended to F is intended to be the
be some entity « for which
entity = for which dy € V.S(z,y)
dy € V.S(z,y) and z is otherwise sufficient.
(1) noncategory | noncategory F is intended to F is intended to be the
(2) noncategory either be some entity « for which
(3) either noncategory entity « for which S(z,V)
(4) either either S(z, V). and z is otherwise sufficient.
(3) either category F is intended to F is intended to be the
be some entity « such that
entity x such that Yy € V.S(z,y)
Yy € V.S(z,y) and z is otherwise sufficient.

Table 2.3: The semantic mapping of triple (F' S V) into a definition, as determined by the
triple’s semantic annotations, the semantic type of S, and the category status of F' and V.
(In the table, “otherwise sufficient” means “satisfies other criteria marked as definitionally

sufficient.” )
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by hybrid languages (e.g., KRYPTON [11]). The advantage of the first approach is that it
allows us to represent the great proportion of knowledge that is defeasible. The advantage of
the second approach is that nondefeasible assertions allow sound and more efficient inference
methods. Both advantages are important enough to warrant a knowledge representation
language that allows both kinds of assertions to be represented.

KM accommodates both defeasible and absolute assertions, as well as different degrees
of defeasibility. To represent both kinds of knowledge using the same (frame slot value)
format, KM (again) uses semantic annotations. The knowledge enterer attaches semantic
annotations to triples to indicate:

e the degree of belief, as a qualitative or quantitative probability, and

e the assertion that is modified by the degree of belief,
out of the potentially several assertions that the same triple can represent.

First, semantic annotations convey the knowledge enterer’s degree of belief in some asser-
tion. Degrees of belief are expressed as probabilities. Although probabilities are commonly
thought to correspond to frequency ratios, Cheeseman argues that, to the contrary, proba-
bilities always correspond to a measure of belief [16]. (He notes, however, that for large sets,
measure of belief approximates frequency.) Probability theory is emerging as a powerful
paradigm for representing and reasoning about uncertainty. Neufeld posits that probability
theory underlies every current AI formalism for reasoning about uncertainty [59]. Cheese-
man argues that, under the measure of belief interpretation, probability theory also subsumes
fuzzy logic [17]. Furthermore, Rich shows that when default reasoning is treated as likelihood
reasoning, natural solutions emerge for several problems encountered by traditional methods
[69].

Probabilities are specified in KM either as qualitative ranges or as specific numbers.
Although numeric probabilities facilitate reasoning, they are difficult to acquire. Domain
experts find it difficult to assign a precise number to their degree of belief in an assertion.
Furthermore, the precision that numeric probabilities provide is often unnecessary. A study
of the certainty factors used in MYCIN demonstrated that, although the system allows 1000
distinct numeric values, reducing the set to five qualitative ranges provided comparable sys-
tem performance [13]. To simplify the representation of probabilities, the Botany Knowledge
Base uses a set of eight qualitative values, each of which represents a range of probabilities.
This chapter uses a simplified set consisting of Low, Medium, and High (in addition to the
endpoints zero and one). Although KM does not currently include methods for reason-
ing with qualitative probabilities, Grosof’s methods for reasoning with bounded conditional
probabilities apply [27].

We turn now to a discussion of the second kind of information that semantic annotations
modifying assertions convey. Each triple in the knowledge base can simultaneously represent
several assertions about the extension of a description. (These multiple interpretations are
orthogonal to the choice of quantificational pattern, discussed in the previous section. These
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two issues will be integrated shortly.) A semantic annotation on a triple indicates which of
the assertions the triple represents has the specified degree of belief.

Consider the different assertions that a triple in the knowledge base can represent about
the extension of a description (in addition to any definitional statements that the triple
represents). Just as definitions comprise two different kinds of statements (statements of
definitional necessity and definitional sufficiency), assertions come in two analogous varieties.
For example, assume that for triple (frame slot val), frame represents category C' and
slot = wval represents feature F'. The strongest assertions regarding how satisfaction of F'
relates to membership in C are

1. all instances of C have feature F: Vz.[v € C = slot(z, val)]
2. all entities having feature F are instances of C: Vz.[slot(z,val) = z € C]|

Although this is the same distinction made in the previous section between statements of
definitional necessity and definitional sufficiency, and although logicians often refer to these
as assertions of necessity and sufficiency, this differs from definitional necessity /sufficiency.
Definitional necessity is part of the meaning or essence of a concept, but assertion (1) above
expresses necessity in the sense of “happens to be true in all cases.” Hence, I call the latter
extensional necessity to distinguish it from definitional necessity. Similarly, I call the variety
of sufficiency expressed by assertion (2) extensional sufficiency. The degree of match be-
tween the extensional necessity/sufficiency of features in a description and the definitional
necessity /sufficiency of those same features reflects the degree to which the description’s
extension matches its definitional component.

We see then that assertions (1) and (2) above are the two kinds of nondefinitional as-
sertions that a particular triple can represent. Consider how KM might associate degrees
of belief with each of these assertions. One approach is to attach a probability to the en-
tire assertion. Nilsson’s probabilistic logic allows probabilities to be associated with logical
sentences [61]. In probabilistic logic, the interpretation of a logical sentence is a probability
distribution rather than a truth value. Thus, probabilities become generalized truth values.
The probability of a sentence S being true is the probability (degree of belief) that the actual
world corresponds to some possible world in which S is true.

The problem with attaching probabilities directly to assertions (1) and (2) is that what
one usually wants to express is not, for example, the degree of belief in the assertion “all
birds fly,” but rather the degree of belief in the assertion that a randomly selected bird B flies
(possibly based on an estimate of the percentage of birds that fly). Rather than associate a
probability with assertion (1) or (2) as a whole, one usually wants to express the probability
of the consequent of the implication given that the antecedent is satisfied for some entity
within the scope of quantification. (Grosof extends Nilsson’s probabilistic logic to allow such
conditional probabilities to be attached to assertions [27].)

Before attaching probabilities to the consequents of the implications in assertions (1) and
(2), we must recognize that each assertion has two possible forms: the forms shown above,
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and their contrapositives. That is, the set of assertions above is equivalent to the following
set:

(1A) Va.[z € C = slot(z,val)]
(1B) Va.[-slot(z,val) = x & C] (the contrapositive of (1A))
(2A) Va.[slot(z,val) = z € C]|
(2B) Ve [z & C = —slot(x, val)] (the contrapositive of (2A))

Although (1A) and (1B) are logically equivalent (as are (2A) and (2B)), they differ in their
consequents. Hence, for the purpose of associating probabilities, they are distinct assertions.
A particular (frame slot value) triple in the knowledge base can simultaneously represent all
four of these assertions, each with a different probability (degree of belief) associated with
its consequent.

When we associate a probability with the consequent of (1A), we express the likelihood
that a particular instance of C' has feature F' (an estimate of the frequency with which F
occurs among instances of C'). When we associate a probability with the consequent of (1B),
we express the degree of extensional necessity of feature F' for category C, the probability
with which an entity is not an instance of C' based on the absence of F'. When we associate
a probability with the consequent of (2A), we express the degree of extensional sufficiency
of feature F' for category C, the probability with which an entity is an instance of C' based
on the presence of F'. This corresponds to the term cue validity used in the psychological
literature. When we associate a probability with the consequent of (2B), we express the
rarity of feature F' outside category C. I call this the uniqueness of F' for C. Likelihood and
uniqueness information is useful for prediction, while necessity and sufficiency information
is useful for classification.

To provide concise and convenient representations, KM allows assertions of the likelihood,
extensional necessity, extensional sufficiency, and uniqueness of a feature for a category all to
be represented with the same (frame slot value) triple. (The same triple can also represent
definitional statements, as described in the previous subsection.) This is accomplished by
using semantic annotations called likelithood, necessity, cue-validity, and uniqueness, each
taking a qualitative or quantitative probability value. For example, the following represen-
tation

Human-Male

has-disease: Hemophilia
likelihood: Low
necessity: Low
cue-validity: High
uniqueness: High
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makes the following assertions:
1. Hemophilia is rare among men.
2. Absence of hemophilia is very weak evidence that an entity is not a man.
3. Having hemophilia is very good evidence that an entity is a man.
4. Hemophilia is rare for things that aren’t men.

Although the value of cue-validity (extensionally sufficiency) is High (and even if the value
were 1), the absence of semantic annotation definitionally-sufficient? = T signifies that
the concept Human-Male is not intended to include all hemophiliacs, even though most
hemophiliacs are men.

KM combines the technique of representing a variety of assertions by the same knowledge-
base triple with the technique introduced in the previous section for representing different
quantificational patterns. This allows the representation of assertions about the extensions
of categories and individuals, and the representation of assertions involving either quantifier-
free features or features having existential quantifiers. For a particular (frame slot value)
triple, the semantic type of slot and the category status of frame and wvalue determine
the quantificational pattern of all the assertions that triple represents, and the semantic
annotations of the triple determine the degree of belief assigned to each assertion. Table 2.4
gives the semantic mapping from triples to logical formulae.

As these mappings illustrate, values given for likelihood and uniqueness specify the abso-
lute probability that some entity has a feature, given that it does or does not belong to some
category (or, for an instance, given that it is or is not some individual). For example, an
annotation of ltkelthood = 0 on a feature of a category indicates the belief that no instances
of the category have that feature. An annotation of likelihood = 1 indicates the belief that
all instances of the category have that feature.

Values given for necessity and cue-validity specify a change in belief (rather than an ab-
solute degree of belief) that an entity is an instance of some category (or is some individual),
given the absence or presence of some feature. For example, an annotation of
cue-validity = 0 on feature F' of category C' indicates that the presence of F' does not change
the strength of a prior:i belief that an entity is an instance of C'. An annotation of
cue-validity = 1 indicates the belief that the presence of F' guarantees that an entity is an
instance of C.

Necessity and cue-validity are defined in the same way as the measures of belief/disbelief
that make up MYCIN’s certainty factors [13]. Experience with MYCIN indicates that, for
classification tasks (one purpose of necessity and cue-validity information), experts are more
willing to give changes in belief than absolute probabilities. On the other hand, likelihood
and uniqueness seem to be more naturally expressed as absolute probabilities.
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Semantic

Type of
Slot S

Status of
Frame F

Status of
Value V

Semantics of (F S V) assuming
likelthood = L, cue-validity = CV,
necessity = N, and uniqueness = U

(1)

category

category

Ve.[P(Jv € V.S(z,v)/z € F) = L]
P(zcF/3veV.S(z,w))—P(z€F)
vx[P(:cEF)7113(7:6136(;/6(1;',2216VS(:c v)))_ CV]
Va.| P(zcF) — = N]

Va.[P(Av € V.S(z,v)/xz ¢ F) = U]

category

category

noncategory

either

Vo [P(S(z,V)/x € F) = L]
Vo [FESEEREATHECE) = OV ]
= N]

g [EeEF)_PlacF/ 5(.V)
Vo [P(=S(z,V)/x ¢ F) = U]

noncategory

category

P(z€F)
P(Fv € V.S(F,v)) =L
vx'[P(x:F/Hvli‘;.S('iingp(ﬁzF) _ CV]
= N|

vx'[P(a::F)—P(a::F/(ZvEV.S(a:,v)))
Vo [P(Av e V.S(z,v)/z # F) =U|

N

noncategory

noncategory
either
either

noncategory
either

noncategory
either

P(z=F)
P(S(F,V)) =L
vw‘[P(au:F/S(:c,V))fP(:c:F) _ CV]

1—P£a::F _ N]

vx'[P(w:F)—P z=F/-5(z,V))
V. [P(—=S(z,V)/x # F) = U]

|~~~
w w
~—— ~— ~— ~—

either

category

P(z=F)
Vu.P(S(F,v)/veV)=1L
vw‘[P(w:F/Vvli‘;féi?)—P(z:F) _ CV]
vx'[P(:c:F)fP(:c:F/(HUEV.ﬁS(:c,v))) _ N]
V. [P(Jv € V.=S(z,v)/x # F) = U]

P(z=F)

Table 2.4: Semantic mapping of a triple (F S V) to formulae in probabilistic logic, as
determined by the semantic type of slot S, the category status of frame F' and value V, and
the semantic annotations of the triple. P(A) indicates the probability of logical sentence A,
and P(A1/A2) indicates the conditional probability of A1l given that P(A2) = 1.
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A possible explanation for this difference is that classification tasks typically involve
e combining multiple pieces of evidence, and
e ranking multiple competing hypotheses, possibly from an unspecified set.

For example, a disease diagnosis problem usually has the form “Given symptoms s;,s2,. . .Sy,
which of diseases dj, ds,...,d,, (or even “which of the diseases I know of”) is most likely?”
It is more important to determine which diagnosis (classification) is most likely than to
determine the exact likelihood of any particular diagnosis. Necessity and cue validity, defined
as measures of increases/decreases in belief, are more convenient for computations of this
sort than are absolute probabilities.

Prediction tasks, by contrast, typically involve

e determining a feature based on membership in a single category, and
e determining the likelihood of a single, prespecified feature,

as in “I believe/know that this thing is a C; how likely is it that it has feature F'?” An example
is “That animal appears to be a dog. How likely is it that it will bite me?” For this kind
of task, absolute probabilities are more appropriate than measures of increased/decreased
belief.

Likelihood, necessity, cue-validity, and uniqueness annotations can be given qualitative
ranges, such as Low, Medium, and High, in addition to numeric values. For likelihood and
uniqueness, which give a conditional probability that an entity will have some feature, it is
convenient to use a range of qualitative values centered on the a prior: probability of that
feature. For example, Low could be defined to include most numbers less than the a prior:
probability, Medium the numbers close to it on either side, and High most numbers greater
than it. Necessity and cue-validity, by contrast, represent a change in belief rather than an
absolute belief (and thus are relative to the a priori probability by construction). Hence, it
is more convenient for these annotations to use qualitative values that constitute a uniform
partitioning of the range [0..1].

Inheritance of features and automatic inverse maintenance must be sensitive to likelihood,
necessity, cue-validity, and uniqueness annotations. The only assertions for which inheritance
is sound are those for which likelthood = 0, those for which likelthood = 1, those for which
necessity = 1, and those for which cue-validity = 0. The only semantic annotation for which
automatic inverse maintenance is sound is the likelihood annotation, but this is limited to
triples involving slots of semantic type 2, 3, or 4, or slots of semantic type 1 under the II
quantificational pattern.

To summarize, the semantic annotations likelihood, necessity, cue-validity, and unique-
ness allow each triple in the knowledge base to simultaneously represent a variety of asser-
tions about the extension of a description. By assigning probabilities representing degrees
of belief (or changes in belief) to the semantic annotations, KM accommodates both defea-
sible and nondefeasible assertions. Attaching semantic annotations directly to triples makes
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knowledge representation more convenient than the approach CycL uses, in which necessity,
cue validity, etc., must be stored on constraint units, separate frames associated with the
triples being described [40].

The Botany Knowledge Base uses the semantic annotations described here with the ex-
ception of uniqueness. Uniqueness seems to have limited utility for two reasons. First,
uniqueness represents assertions about nonmembers of a category C on the frame represent-
ing C (e.g., “Things that aren’t cats usually don’t have tails” stored on the Cat frame). It
seems unlikely that a reasoning system would access the frame for C' to predict features of
individuals that are not instances of C. Second, uniqueness is rarely informative, because
almost all features in a nontrivial domain have high uniqueness. That is, in a domain for
which most categories constitute a small portion of the universe and for which most features
occur in a small percentage of entities, most features will likewise occur in a small percentage
of entities not in any given category, meaning they have high uniqueness for that category.
For exceptional situations where uniqueness is low (or zero) for some feature on some cate-
gory, it seems more natural to create a complement category and annotate the feature with
likelihood = High (or likelihood = 1) on the complement category. When uniqueness =1,
that information need not be represented at all, because it turns out that uniqueness =1
if and only if cue-validity = 1. Because uniqueness annotations appear to be neither useful
nor informative, the Botany Knowledge Base does not include them.

2.4 Representing Information Contextually

This section describes the third major extension of KM, value annotations for representing
information contextually.

Consider representing the assertion “Cells of plants have cell walls.” Traditional represen-
tation languages provide two unsatisfactory alternatives. The first technique is to associate
an “if-needed” rule with the has-part slot on the Cell frame that states, in effect, “If the
cell is part of a plant, then one of its parts is a cell wall.” This approach requires that the
representation language include a formalism for representing and reasoning about such rules.
It also has the disadvantage that it provides no direct access path from the frame Plant to
the knowledge about cells that are part of plants unless a special mechanism installs pointers
from frames to the rules in whose antecedents they appear.

The second technique is to create a frame for the concept “Cell that is part of some
plant,” then fill in the appropriate slot values on that frame, as in

Cell-of-A-Plant

generalizations: Cell
part-of: Plant
has-part: Cell-Wall
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(Semantic annotations would also be installed if they differ from the defaults.)

If little or no additional knowledge differentiates the concept Cell-of-A-Plant from the
concept Cell, then this approach requires an inordinate amount of effort. With this approach,
representing a single assertion involves

e creating and naming a new frame,
e reorganizing the taxonomy to accommodate the new frame,

e installing the defining properties of the new concept
(e.g., part-of = Plant), and

e representing the original assertion (e.g., has-part = Cell-Wall).

Thus the overhead for representing a single assertion of this kind is increased threefold or
more above that required for other assertions.

Another disadvantage of this approach is that it results in a proliferation of frames cor-
responding to concepts that are important only in very limited contexts (such as “water
contained in a guard-cell that is collapsing” and “water pore in the membrane of the epi-
dermis of a root”). Ideally, each frame in the knowledge base would correspond to a stable
concept in the mind of the domain expert, that is, a concept one would expect to find in the
index of a comprehensive text on the domain. Such a knowledge base is easier to navigate,
for both knowledge engineers and application programs (such as a program that performs
spreading activation searches). Lenat and Guha give a similar argument for limiting frame
proliferation [40].

An alternative technique for representing the statement “Cells of plants contain cell
walls,” one that necessitates neither a special rule language nor the creation of a frame for
“cell that is part of some plant,” is to represent the information contextually. That is, the
triple (Cell has-part Cell-Wall) occurs in the context of the triple (Plant has-part Cell),
signifying that cells that are part of some plant have a cell wall. The advantages of this
approach over the two previous techniques are

e assertions like the one above are more convenient to represent, and

e the resulting knowledge base is easier to inspect, edit, and reason with, because related
information is kept together and because only the major concepts of the domain are
reified as frames.

To allow contextual representations, KM allows value annotations, whereby values of slots
can be further described by any number of filled slots. Hence, KM has a recursive notation:
frames have slots with values, which themselves have slots with values, which have slots
with values, etc. Value annotations differ from the semantic annotations described in the
previous section (and from the slot entry details of the CycL language [40]) in that semantic
annotations describe entire triples and the assertions they represent, while value annotations
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describe categories, just as filled slots on frames describe categories. For example, a semantic
annotation, such as likelihood = 1, on triple (Plant has-part Cell) gives information about
the relationship between Plants and Cells, while a value annotation on (Plant has-part Cell)
gives information about cells (in particular, about cells that are part of some plant).

The CycL language provides a construct similar to value annotations [40]. In CycL,
associated with each frame-slot is a set of features (filled slots) to be inherited to all values
filling that frame-slot. For example, the statement “Regions with hilly topography tend to
have rocky soil” can be represented by associating the feature soil-rockiness = High with
the frame-slot (Hilly topography-of) as a feature to be inherited to all frames acting as
values of that frame-slot (i.e., all frames that have the slot topography filled with value
Hilly). This construct differs from KM’s value annotations in that, in CycL, the set of to-
be-inherited features must apply to every value filling the frame-slot, while KM allows the
knowledge enterer to describe each value of the frame-slot independently of other values. For
example, with value annotations one could represent “Regions with hilly topography that
are temperate regions have rocky soil” and “Regions with hilly topography that are desert
regions tend to have sandy soil.”

Value annotations do not extend the expressive power of KM. Hence, the semantics of
value annotations can be specified by describing a procedure for transforming a knowledge
base containing value annotations into a knowledge base containing only (frame slot value)
triples and then relying on the semantic mappings for triples given previously. Below is a
description of the semantics of the general form of a value annotation, illustrated with an
example:*

Framel

slotl: Frame2
slot2: Frame3

Plant
has-part: Cell
(likelihood: 1)
has-part: Cell-Wall
(likelihood: High)

Intuitively, the meaning of the example is as follows:

All plants have as a part one or more cells, and most of those cells have as a part
one or more cell walls. In other words, most cells that are part of some plant
have as a part one or more cell walls.

“For clarity, semantic annotations are shown in parentheses to distinguish them from value annotations.
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KM requires that the triple (Framel slot! FrameZ2) represents assertions in which Frame2
is an existentially quantified category. That is, F'rame2 represents a category and slotl is
of semantic type 1 taking quantificational pattern AE or IE in this context. The intuitive
meaning is that the category Frame2 is being further constrained (specialized) by this
context (the relationship to Framel), and the value annotation slot2 = Frame3 provides
additional information about this specialization of Frame2. For example, Cell is being
(implicitly) specialized in the context of (Plant has-part Cell), and the value annotation
has-part = Cell-Wall describes this new kind of cell (i.e., a plant cell).

The reason KM requires that F'rame2 represent a category is that if F'rame2 represents
an individual in this context, then value annotations are unnecessary. If Frame2 repre-
sents an individual then Frame2 is not being constrained (specialized) by this context, and
information about F'rame2 as an individual can be represented on the frame called F'rame2.

The semantics of the above constructs are obtained by conjoining

e the formulae represented by the triple (Framel slotl Frame2), as determined by the
semantic mappings given in the previous section (for example, (Plant has-part Cell)
above represents “All plants have as a part some cells.”), and

e the formulae represented by the triples introduced by the following procedure, which
translates the value annotations into standard (frame slot value) triples. (KM does
not actually perform this procedure; it is given here solely to explain the semantics of
value annotations.)

1. Create an explicit specialization of Frame2, Frame2'. For example, create a
specialization of Cell, Cell' (which corresponds to the category “Cell of a plant”).

2. Represent the definition of the new category by installing (Frame2' slotl’ Framel)
(where slotl’ is defined as the inverse of slot), with the following semantic anno-
tations:

— definitionally-necessary? =T,
— definitionally-sufficient? =T,
— necessity =1,
— likelthood = 1, and
— cue-validity = 1.
(The last three annotations assert that, because this new category is not a “natural

kind,” the category’s extension matches its definition perfectly.) For example,
assert as the defining criterion of category Cell’ the feature part-of = Plant.

3. Assert (Frame2' slot2 Frame3) with the same semantic annotations as given for
the value annotation slot2 = F'rame3. For example, assert
(Cell’ has-part Cell-Wall) with semantic annotation likelihood = High.
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The result of steps (1) through (3) for the value annotation on (Plant has-part Cell) is
shown below.

Cell’

generalizations: Cell

part-of: Plant
(definitionally-necessary?: T)
(definitionally-sufficient?: T)
(necessity: 1)
(likelihood: 1)
(cue-validity: 1)

has-part: Cell-Wall

(likelihood: High)

In this example, the triple whose value was annotated ((Plant has-part Cell)) had se-
mantic annotation [tkelihood = 1, and the triple serving as the value annotation
((Cell has-part Cell-Wall)) had semantic annotation likelihood = High. Thus the resulting
interpretation was

All plants have as a part one or more cells, and most of those cells have as a part
one or more cell walls. In other words, most cells that are part of some plant
have as a part one or more cell walls.

Below are three different interpretations that are achieved by using different combinations of
likelihood values High and 1 (the most common values). Although in these examples both
triples use the AE quantificational pattern, other patterns are possible, depending on the
semantic type of the slots involved and the category status of the frames involved.

Plant

has-part: Cell
(likelihood: High)
has-part: Cell-Wall
(likelihood: High)

Most plants have cells, and most of those cells have cell walls.
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Plant
has-part: Cell
(likelihood: High)
has-part: Cell-Wall
(likelihood: 1)

Most plants have cells, and all those cells have cells walls. In other words, most
plants have cells with cell walls, and all cells of plants have cell walls.

Plant
has-part: Cell
(likelihood: 1)
has-part: Cell-Wall
(likelihood: 1)

All plants have cells, and all those cells have cell walls. In other words, all plants
have cells with walls, and all cells of plants have cell walls.

Adding value annotations to KM necessitated modifying KM’s frame-slot access method.
In frame-based languages, slot values are accessed by specifying the address of the required
value. For conventional languages, an address is simply a (frame-name slot-name) pair. To
provide access to value annotations nested to any depth, KM accepts addresses of the form

(frame-name slot-name {frame-name slot-name }x)

where * indicates zero or more repetitions (Kleene star). For instance, to access the value
annotation in the previous examples, the address required is (Plant has-part Cell has-part),
which retrieves the part(s) of plant cells. Given this address, the access function returns
the value Cell-Wall (along with any other valid values). Incidentally, values for semantic
annotations (likelihood, necessity, etc.) have addresses of the same form. For example, the
address (Plant has-part Cell likelihood) refers to the probability that a particular plant has
a cell part.

As suggested above, a value annotation can be thought of as information about an implicit
specialization of a category. For instance, the value annotation on (Plant has-part Cell) in
the above example can be thought of as describing the implicit specialization of Cell, “Cell
that is part of some plant.” In KM this notion has been incorporated into the representation
language. The set of value annotations associated with a particular slot value V' is said
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to constitute an embedded wunit representing an implicit specialization of V. KM treats
embedded units as equals with explicit frames: they are automatically linked into the concept
taxonomy, they participate in inverse maintenance and inheritance, and slot values are stored
on and retrieved from embedded units just as they are for explicit frames. Thus, information
stored on value annotations is just as accessible as information stored on explicit frame slots,
yet the disadvantages of creating frames to house them are avoided.

Although KM treats embedded units equivalently with explicit frames, embedded units
are still distinguishable from explicit frames. Thus, users of the knowledge base can ignore
embedded units when it is convenient to do so. In this way KM retains the advantages of
having frames represent only the most important concepts in the domain.

The previous example serves to illustrate KM’s treatment of embedded units:

Plant
has-part: Cell
has-part: Cell-Wall

When the knowledge enterer installs the value annotation has-part = Cell-Wall, KM
performs the following activities automatically:

1. Represent the definition of the embedded unit: add part-of = Plant as a definitionally
necessary and sufficient feature of the new concept by installing it as a (second) value
annotation of (Plant has-part Cell). This annotation also serves as an inverse for
(Plant has-part Cell). It is safe to assume that the alternative inverse
(Cell part-of Plant) was rejected by the knowledge engineer (that it isn’t true that most
cells are part of some plant), because otherwise the knowledge engineer would have no
reason to annotate (Plant has-part Cell): he could represent information about cells
that are part of some plant directly on the Cell frame instead.

2. Connect the embedded unit into the knowledge-base taxonomy: install an implicit-
specialization link from the Cell frame to the embedded unit representing “Cell that
is part of some plant”; also install the inverse generalization link. Embedded units are
referenced (named, pointed to) in KM by specifying the address of the value whose
annotations constitute the embedded unit. For example, the embedded unit shown
above (consisting of the single value annotation has-part = Cell-Wall) is referenced
by (Plant has-part Cell). To connect this embedded unit into the knowledge-base
taxonomy, KM asserts (Cell implicit-specializations (Plant has-part Cell)) and
((Plant has-part Cell) generalizations Cell).
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The result of these two activities, performed automatically by KM, is shown below:

Plant
has-part: Cell
has-part: Cell-Wall
generalizations: Cell
part-of: Plant
(definitionally-necessary?: T')
(definitionally-sufficient?: T)

As stated above, embedded units are referenced in KM by giving the address of the value
whose annotations constitute the embedded unit. This implementation has the advantage
that the defining feature of an embedded unit is implicit in its “name.” For example, the
name of the embedded unit in the above example, (Plant has-part Cell), can be parsed to
yield the definition of the concept it represents, “cell that is part of some plant.”

To summarize, KM provides value annotations for representing information contextu-
ally. Although value annotations do not extend the expressiveness of KM, they have several
advantages over conventional frame-based languages. First, they allow information to be rep-
resented contextually within the (frame slot value) format, as opposed to a rule or constraint
language. Second, they provide a more convenient way to represent knowledge in many situa-
tions. Rather than creating explicit frames to hold each assertion, some assertions are stored
on embedded units as value annotations. In addition, taxonomic and defining information
about embedded units is installed automatically by KM rather than by the knowledge en-
terer. Third, representing knowledge contextually results in a knowledge base that is easier
to use, for both people and machines, because related information is bundled together and
because important domain concepts are automatically distinguished from those important
only in very limited contexts.

2.5 Summary and Limitations

This chapter presents KM, a frame-based knowledge representation language designed to
provide increased expressiveness and a more convenient representation of knowledge than
existing frame-based languages provide. KM includes three major extensions that collectively
distinguish it from traditional languages. The first extension (the use of different semantic
types of slots to represent quantified assertions) is purely semantic (a change in the way that
triples represented in the language are interpreted). The other two extensions (semantic
annotations and value annotations) are changes in both the form and the semantics of the
language.

The first extension to KM allows quantified assertions to be represented with the same
ease as ground assertions, as simple (frame slot value) triples. This is accomplished by
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overloading slots (in the same sense that operators of a programming language are some-
times overloaded) with different semantics, depending on the frames and values that the slot
relates. Different combinations of categories and noncategory instances give rise to different
quantificational patterns. Slots that are overloaded in the same way (and that share the
same semantic mapping) are grouped into equivalence classes called semantic types. When
the semantic type of each slot is explicitly represented, a system can automatically determine
the semantics of a particular triple. Slot overloading makes knowledge representation more
convenient than with conventional frame-based languages, and it allows the representation
of several different forms of quantified assertions.

For some situations this technique is not suitable. These are situations in which KM
cannot determine automatically the correct semantics of a triple. For example, consider as-
sertions involving the relation cardinality between a category and the number of its instances,
as in

1. cardinality(Kitchen-chair-at-my-house,4)
(“There are four kitchen chairs at my house..”)

2. cardinality(Kitchen-chair-set-at-Al’s-furniture-warehouse,1000)
(“There are 1,000 sets of kitchen chairs at Al’s furniture warehouse.”)

3. Vz € Kitchen-chair-set-at-Al’s-furniture-warehouse, cardinality(x,4)
(“There are four chairs in each kitchen chair set at Al’s.”)

Assume the knowledge engineer creates slot card to represent the cardinality relation and
assigns it semantic type 2 so that it can represent assertions having the II quantificational
pattern [e.g., (1) and (2)] as well as the Al pattern [e.g., (3)]. Under the approach described
here, the above three assertions would be represented as

1. (Kitchen-chair-at-my-house card 4)
2. (Kitchen-chair-set-at-Al’s card 1000)
3. (Kitchen-chair-set-at-Al’s card 4)

This presents two problems. First, triple (1) would be interpreted not as “There are four
kitchen chairs at my house,” but as “Each kitchen chair at my house has four instances.”
This interpretation is incorrect because a particular chair is not a category and thus cannot
have instances. KM makes the incorrect interpretation because Kitchen-chair-at-my-house
is a category and slot card is of semantic type 2, meaning that when card appears on a
category, the category is interpreted as the scope of a universal quantifier. To avoid the
error, card must be declared semantic type 4, which admits only the II (quantifier-free)
interpretation. Declaring card to be of semantic type 4, however, makes it unsuitable for
representing assertion (3) above.
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The second problem is that triples (2) and (3) are contradictory. This occurs because
one of the triples is interpreted incorrectly. Declaring card to be of semantic type 2 leads
to an incorrect interpretation of triple (2), while declaring it as semantic type 4 leads to an
incorrect interpretation of triple (3).

This problem occurs whenever the knowledge enterer wants to represent categories whose
instances are themselves categories (e.g., Kitchen-chair-set-at-Al’s) and he wants to represent
the same kind of information about both the encompassing categories and their instances
(e.g., cardinality). For these situations the knowledge enterer must create separate slots for
each of the possible interpretations, such as one slot, cardi, of semantic type 2 and another
slot, card2, of semantic type 4. Fortunately, such problematic situations are rare.

A second disadvantage of overloading the semantics of slots is that any inference method
that reasons with triples in the knowledge base must be sensitive to the semantic type of
slots and the context in which they appear. The reasoner cannot assume that every triple
is mapped to logical formulae in the same way. This chapter discusses the modifications
required for inheritance and inverse maintenance; other inference methods require similar
modifications. Although this requirement makes reasoning more complex, it is more im-
portant for a representation language to be easy for people to use, even if this means it is
harder for machines to use. The requirement also makes designing inference methods more
difficult, but designing a particular method is a one-time cost, while the costs of knowledge
representation are incurred every time the language is used. To minimize representation
costs, KM allows semantic overloading.

The second extension of KM, semantic annotations, provides greater expressiveness by
providing constructs for representing both the definitional and assertional components of a
description. Definitions are represented using semantic annotations that distinguish between
definitionally necessary features and definitionally sufficient features. This distinction allows
concepts having partial definitions to be represented. Nondefinitional assertions are also
represented using semantic annotations (likelihood, necessity, cue-validity, and uniqueness).
By attaching probabilities to these semantic annotations to represent degrees of belief, KM
accommodates both defeasible and nondefeasible assertions as well as assertions of graded
defeasibility.

This chapter provides a semantics for nondefinitional assertions by specifying a semantic
mapping from knowledge-base triples to formulae in probabilistic logic. This approach has
two disadvantages. First, mapping each triple to logic independently and conjoining the
resulting formulae is not suitable for

e slots for which one wants the order of values to be important, and

e slots for which one wants values to be considered collectively. For example, one might
want the values of a slot to be interpreted disjunctively rather than conjunctively.

Second, assertions in probabilistic logic are more difficult to reason with than assertions
in traditional predicate logic. Abadi and Halpern show that probabilistic logics that in-
clude binary predicates are undecidable [1]. As stated before, however, KM was designed
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for greater expressive power, even at the expense of intractable or undecidable inference
methods, because inferential power cannot make up for limited expressiveness.

The third extension of KM is value annotations for representing information contextually.
Although value annotations do not add expressive power to the language, they have several
advantages:

e they make knowledge representation much more convenient,
e they do not require the use of a rule or constraint language,

e information represented with value annotations is just as accessible
as the rest of the information in the knowledge base, and

e the resulting knowledge base is easier to inspect and use, because
only the most important domain concepts are reified as frames.

The major limitation of value annotations and the implicit specializations they define is
that value annotations as described here are useful primarily for defining implicit special-
izations having a single necessary and sufficient feature. (In the example of the previous
section, the single defining feature of the implicit specialization of Cell corresponding to
“cell of some plant” was “is a part of some plant.”)

Additional necessary and sufficient features could be specified within an embedded unit,
as in the following embedded unit representing the concept “substance that is transported
by mineral transport and that contains minerals”:

Mineral-Transport

transportee: Substance
contains: Mineral
(definitionally-necessary? T)
(definitionally-sufficient? T')

However, this has two disadvantages. First, the semantic mapping becomes more com-
plex because determining the semantics of a triple requires examining all the value annota-
tions modifying it. For example, consider an extended version of the above example that
captures the additional information that the definition of Mineral-Transport includes the
feature “transports a substance that contains minerals”:
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Mineral-Transport

transportee: Substance
(definitionally-necessary? T)
(definitionally-sufficient? T')
contains: Mineral
(definitionally-sufficient? T
(definitionally-necessary? T)

Because the implicit specialization of Substance has a defining feature (contains = Mineral)
within the embedded unit, it is no longer possible to determine the semantics of the triple
(Mineral-Transport transportee Substance) by attending only to that triple and its semantic
annotations (definitionally-necessary? and definitionally-sufficient?). All of its value anno-
tations must be examined also. If the contains = Mineral value annotation is ignored, an
incorrect definition of Mineral-Transport results: “a process that transports some substance
(of any kind).” This disadvantage is even more severe considering that value annotations can
be nested to any depth.

The second disadvantage of allowing implicit specializations to have more than one defin-
ing feature is that such implicit specializations can be represented in multiple ways (as em-
bedded units on different frames). For example, the concept “substance containing minerals
that is transported by mineral transport” could be represented as shown above or as an
embedded unit on the Mineral frame. As a result, implicit specializations could become
distributed (multiply defined) in the knowledge base, with partial knowledge of the con-
cept in one embedded unit and partial knowledge in others. In the worst case, an implicit
specialization with n defining features could have n different locations. This would lead to
inconsistencies in the knowledge base, access problems, and redundant representations.

Turner proposes a more expressive kind of value annotation than those KM uses [81].
Although Turner’s approach does not suffer from the first disadvantage above, the problem
of distributed representations is much worse. With Turner’s value annotations, the repre-
sentation of an implicit specialization imposes an ordering on the features composing its
definition, thus in the worst case an implicit specialization with n defining features could
have n! different locations, one for each different ordering of the features.

Despite its limitations, KM has proven very useful for representing fundamental domain
knowledge. The Botany Knowledge Base, represented in KM, currently contains over 28,000
facts from college-level botany. The rest of this dissertation describes methods for accessing
knowledge represented in a frame-based language such as KM.
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Chapter 3

A Content Addressable, Virtual
Knowledge Base

To destroy is always the first step in any creation.
€ e cummings

This chapter describes methods for making users of a knowledge base less dependent
on the particulars of how knowledge is represented. This is done by providing a content
addressable knowledge base and by providing access to concepts in the wvirtual knowledge
base.

3.1 Introduction

While representing knowledge, a knowledge engineer makes numerous decisions, many of
them arbitrarily. For example, the choice of what name to give each frame is often arbitrary
(e.g., “Plant-Stem” vs. “Stem-of-Plant”). Similarly, the choice of which domain concepts
to reify (create a frame for) in the knowledge base depends on the knowledge engineer’s
subjective judgment of the relative importance of concepts. For instance, the knowledge
engineer might create a frame for Condensation and a frame for Water, but not a frame for
Water-Condensation. Because relative importance varies from one task to another, decisions
the knowledge engineer makes regarding which concepts to reify in a multifunctional knowl-
edge base will not be appropriate for all tasks in all situations. A goal of this research is
to insulate users of the knowledge base from the effects of the (sometimes arbitrary) choices
made during knowledge representation.

A knowledge-base access method can insulate knowledge-base users from the effects of
arbitrary frame-name choices by providing content addressability. A content addressable
knowledge base allows users to access frames using a partial description of the frame’s con-
tents. For example, to access the frame for “plant cell,” the user could describe the concept
as “cell that is part of a plant.” This description could be given in a formal language as
(Cell (part-of Plant)). When given this description in place of a frame name, the access
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method searches the knowledge base for the frame that matches the description. It then
uses the name of that frame in servicing the access request. For example, consider a frame-
slot access method that provides content addressability. Given the knowledge-base fragment
shown in Figure 3.1 and the following frame-slot query (which requests the parts of a cell
that is part of a plant):

((Cell (part-of Plant)) has-parts)
the system would

1. Recognize the first item of the address, (Cell (part-of Plant)), as a frame description
rather than a frame name.

2. Find the name of the frame matching that description, Botanical-Cell.

3. Substitute the frame name for the description to yield the modified frame-slot address,
(Botanical-Cell has-parts).

4. Locate (or compute) and return the values of slot has-parts on frame Botanical-Cell:
Cell-Wall, Protoplast, etc.

Content addressability can also be used when storing slot values. For example, the
knowledge engineer can use the address ((Cell (part-of Plant)) has-parts) when asserting
what the parts of a plant cell are. Although content addressability supports both querying
and updating the knowledge base, all the examples in this chapter are query accesses.

The advantage of content addressability is that users (either people or application pro-
grams) can access the knowledge base without extensive prior knowledge of how it has been
represented. In particular, users can access concepts without knowing the names of all the
frames in the knowledge base. They need only to know the names of the most general frames
and slots (the top level of the taxonomy), and they can access other concepts by describing
them in terms of more general frames and slots. Thus, users have more flexibility in how they
request information from the knowledge base. Application programs that use the knowledge
base can pass this flexibility on to their users. For example, a question-answering system
that accesses a content addressable knowledge base can accept questions whose topics are de-
scriptions of concepts, rather than frame names. This flexibility is crucial for systems whose
users are unfamiliar with the knowledge base, such as students using a tutoring system.

The first way, then, that an access method can insulate users from the effects of knowledge
representation decisions is to provide content addressability. The second way is to provide
a virtual knowledge base. In the actual knowledge base, only concepts and facts that are
explicitly represented are accessible. In other words, the only concepts that are accessible are
those that are reified as frames, and the only facts that are accessible are those represented
by an explicit (frame slot value) triple. In a virtual knowledge base, by contrast, concepts
and facts that are implicit in the knowledge base are also accessible. That is, the virtual
knowledge base consists of all concepts that can be defined in terms of other concepts and
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Figure 3.1: Knowledge-base fragment used to illustrate content addressability, shown as a
graph. Nodes represent frames, and arcs represent specialization relations. Only the relevant
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slots in the knowledge base, and all facts implied by other facts in the knowledge base. Several
methods exist for accessing facts in the virtual knowledge base (inheritance, rule chaining,
etc.). This chapter describes methods for accessing concepts in the virtual knowledge base.

A general description of the method for providing access to concepts in the virtual knowl-
edge base is as follows. First, the user supplies a description of the concept, in the same way
that content addressable concepts are described. The access method creates a new frame
matching the given description and reorganizes the knowledge base to accommodate it. This
task involves finding, in the taxonomy, the immediate generalizations and specializations of
the new concept and installing links between these frames and the new frame. (These links
allow the new frame to participate in inheritance.) It also involves recording on the new
frame any known information about the new concept, including the information given in the
input description. Finally, the access method uses the name of the new frame in servicing
the access request.

As an example, consider a frame-slot access method that provides access to concepts in
the virtual knowledge base. Given the hypothetical knowledge-base fragment shown in the
top portion of Figure 3.2 and the following frame-slot query (which requests the site of origin
of oxygen that is the end-product of photosynthesis):

((Oxygen (end-product-of Photosynthesis)) site-of-origin)
the system would

1. Recognize the first item, (Oxygen (end-product-of Photosynthesis)), as a frame de-
scription rather than a frame name.

2. Create a new frame to represent the specified concept. Unless a frame name is specified
by the user, the system gives the frame a machine-generated name (e.g., Ozygen').

3. Find the most specific concepts that are more general than the user-defined concept:
Product-of-Photosynthesis and Biologically- Produced-Oxygen. These can occur in the
knowledge base either as frames or as embedded units.

4. Find the most general concepts that are more specific than the user-defined concept:
Oxygen-of-Leaf- Photosynthesis. Again, these can occur in the knowledge base either
as frames or as embedded units.

5. Install generalization links from Ozygen' to Product-of-Photosynthesis and
Biologically-Produced-Oxygen, and install specialization links from Ozygen’ to
Ozxygen-of-Leaf-Photosynthesis. Remove redundant links. The result of this knowledge
base reorganization is shown at the bottom of Figure 3.2.

6. Record on Ozxygen' information about the new concept given by the input specification.
Install end-product-of = Photosynthesis with semantic annotations
definitionally-necessary? = T and definitionally-sufficient? = T.
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7. Locate (or compute) and return the value(s) of slot site-of-origin on the new frame
Ozxygen': Photosynthetic-Cell, inherited from Product-of-Photosynthesis.

In this way, the access method would return Photosynthetic-Cell as the response to the above
query.

If users have access only to concepts that are explicitly represented in the knowledge base,
then the knowledge engineer’s decision not to reify a concept that is important for a particular
task limits the user’s ability to perform that task. For example, if a question-answering
system has access only to the actual knowledge base, then that system can generate answers
only to questions about concepts that have been explicitly represented. By providing access
to concepts in the virtual knowledge base, an access method makes users less vulnerable to
the particulars of how knowledge is represented. For example, a question-answering system
could describe how a decrease in the amount of water in the soil surrounding a plant affects
plant growth, even if the knowledge base contains no frame corresponding to “water in
the soil surrounding a plant.” In addition to the practical advantages, providing a virtual
knowledge base also has psychological validity. Barsalou’s experiments indicate that people
readily construct ad hoc categories (categories not well established in memory) for use in
specialized contexts [5].

The crucial step of providing content addressability and of providing access to concepts in
the virtual knowledge base is determining, for each concept in the knowledge base, whether
the input description matches it exactly, is more general than it, is more specific than it, or is
neither more general nor more specific. This step is called subsumption (86, 85|. Performing
subsumption requires that the input description provide a complete definition of the concept
to be accessed, one containing definitionally necessary and definitionally sufficient criteria
that completely delineate the concept’s intension. (It is not possible to determine whether
two partial definitions describe exactly the same concept.) This implies that, although any
concept in the knowledge base can be identified as a potential match for a given description,
only completely defined concepts can be uniquely identified by description (i.e., identified as
the only possible match for the description). Fortunately, concepts that can be only partially
defined usually have standard names, such as “water” or “photosynthesis.” Section 3.3.3
describes how KASTL allows users to access partially defined concepts by description by
identifying potential matches for a given description.

The fact that it is not possible, in general, to determine the subsumption relationship
between two partial definitions also implies that a concept is in the virtual knowledge base
only if it can be completely defined in terms of other concepts and relations in the knowledge
base (either the actual knowledge base or the virtual knowledge base). For example, if the
concepts Eukaryotic-Cell and Cytoplasm and the relation part-of are reified in the knowledge
base, then the concept “Cytoplasm of a Eukaryotic Cell” is in the virtual knowledge base.
Although only concepts that can be completely defined in terms of other concepts are in the
virtual knowledge base, such concepts appear to occur frequently enough to make developing
methods for accessing them worthwhile. In an analysis of a chapter from a biology textbook,
of the 899 concepts referenced in 55 paragraphs, approximately 29% of them referred to
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concepts that could be completely defined.

When an access method provides both content addressability and access to concepts in the
virtual knowledge base, users need not know whether concepts are explicit in the knowledge
base. Users simply supply a description of the concept, embedded in an access request. If
the concept has a frame associated with it, then the system will find and use that frame.
Otherwise, the system will create and use a new frame. From the user’s point of view, there
is no distinction between accessing concepts by description and accessing concepts in the
virtual knowledge base. In terms of the system architecture given in Chapter 1, the Finder
and the Creator share a single user interface. For this reason, and because the computations
of the Finder and the Creator overlap significantly, this chapter combines the discussions of
content addressability and providing a virtual knowledge base. The next section discusses
the related work on these topics, and the following section describes the approach taken
here. The chapter concludes with some examples taken from the Botany Knowledge Base
and with an empirical cost analysis.

3.2 Related Work

Providing access to concepts in the virtual knowledge base is essentially an automatic clas-
sification task. Automatic classification involves inserting a new concept into a taxonomy
so that it is directly linked to the most specific concepts that subsume it and to the most
general concepts that it subsumes [86]. Automatic classification originated with KL-ONE
[12], and most of KL-ONE’s successors, including KRYPTON [11], include classifiers.

As implemented in KL-ONE, KRYPTON, and their descendants, automatic classification
has several limitations. First, many of these languages, including KRYPTON, KANDOR,
and CLASSIC, limit expressive power in an effort to achieve tractable subsumption algo-
rithms [86]. (Recall that subsumption is the step of classification that compares two concept
descriptions to determine their relationship. There is a tradeoff between the expressiveness
of a representation language and the complexity of computing subsumption for descriptions
represented in that language [44, 86, 71, 15, 66, 58].) The philosophy of sacrificing expres-
siveness for tractable subsumption is still widely embraced, as evidenced by the statement in
[71]: “a (representation) formalism with an undecidable subsumption is unsatisfactory.” As
noted in Chapter 2, however, this approach results in languages so limited that they are no
longer generally useful. KRYPTON, one of the few languages (if not the only language) to
achieve a tractable subsumption algorithm, never found its way into applications, partially
because of its limited expressiveness [86].

A second limitation of traditional classifiers is that they use ill-characterized subsumption
algorithms. These systems use the following criterion for subsumption [12]:

A concept X subsumes a concept Y if and only if, in all possible interpretations,
the extension of X is a superset of the extension of Y.

Woods calls this definition of subsumption eztensional subsumption [85]. This criterion for
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subsumption has been found to lead to intractability for most representation languages, even
for most of the languages that limit expressiveness [86, 58]. As a result, most classifiers have
retreated to tractable but incomplete subsumption algorithms [66]. These algorithms are
sound with respect to the above subsumption criterion, but they lack a precise specifica-
tion of what subsumption relationships they detect (their degree of completeness). This
is surprising given the strong KL-ONE tradition of grounding the representational system
in formal semantics. (A notable exception is Patel-Schneider’s approximate account of the
subsumptions that the NIKL classifier detects [66].) An alternative approach is to define a
new criterion for subsumption, one that has a more tractable computation. A classification
algorithm based on such a criterion would have a precise account of what the algorithm
computes, without sacrificing expressiveness of the language.

The third limitation of traditional classifiers is that they are based on the extensional
subsumption criterion, but they are restricted to using only terminological (i.e., definitional)
knowledge, knowledge that carries no assertional import [12, 11]. Extensional subsumption
cannot always be computed solely from terminological or definitional knowledge (such as the
information in KRYPTON’s TBox [11]). For example, if “Triangle” is defined as “Polygon
with three angles,” determining that “Polygon with three or more sides” subsumes “Iriangle”
requires the fact that “every angle of a polygon has a corresponding side,” knowledge that is
strictly assertional rather than definitional (and hence would appear in KRYPTON’s ABox
rather than its TBox).

If subsumption is to be computed using only definitional knowledge, a new criterion for
subsumption must be used, one that is based on concept intensions rather than extensions.
Woods introduces such a criterion, called intensional subsumption [85]. Intensional sub-
sumption means that the definition (intension) of the subsuming concept is more general
than the definition of the subsumed concept. (Definition D1 is more general than definition
D2 when every definitionally sufficient feature of D1 is definitionally necessary for D2 or
generalizes some feature that is definitionally necessary for D2.) For example, under in-
tensional subsumption, “Person whose children are professionals” subsumes “Woman whose
children are doctors” (assuming that “Woman” is defined as a kind of “Person” and “Doc-
tor” is defined as a kind of “Professional”), but “Polygon with three or more sides” does not
subsume “Polygon with three angles.”

To overcome the limitations of traditional classifiers, KASTL’s classification algorithm
is based on the criterion of intensional subsumption rather than extensional subsumption.
Although Woods proposes intensional subsumption as an alternative to extensional sub-
sumption, he retains extensional subsumption as the criterion of completeness. That is,
Woods says that intensional subsumption should entail extensional subsumption, and that,
all else being equal, it is desirable to be as complete as possible with respect to exten-
sional subsumption. This work, by contrast, rejects extensional subsumption in favor of
intensional subsumption because extensional subsumption has the undesirable property that
two concepts that have empty extensions in all possible worlds, such as “Round square” and
“Colorless green idea,” are considered to subsume one another (i.e., to be equivalent). Under
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intensional subsumption, concepts are equivalent only when they have identical intensions.

The final limitation of traditional classifiers that this work addresses is that most clas-
sifiers were designed to accompany representation languages less expressive than KM. In
particular, KM allows the knowledge enterer to represent necessary features separately from
sufficient features. It also allows definitional and nondefinitional assertions to be represented
with the same constructs. In the KL-ONE family of languages, by contrast, definitional
features are usually interpreted as both necessary and sufficient [85], and in most of these
languages nondefinitional assertions are either not representable or are represented separately
from definitions, as in KRYPTON’s ABox [11]. KASTL’s classification and subsumption al-
gorithms were designed to accommodate the increased expressiveness KM offers.

3.3 The Approach

This section describes the methods KASTL uses to provide a content addressable, virtual
knowledge base. The first two subsections describe separately the tasks of accessing concepts
by description and accessing concepts in the virtual knowledge base. The third subsection
describes how these tasks are integrated in a single module of KASTL. The section concludes
with examples of system performance from the Botany Knowledge Base.

3.3.1 Accessing Concepts by Description
(Content Addressability)

The task of accessing concepts by description can be described informally as “given a de-
scription of a concept, find the knowledge-base frame that describes the concept.” A more
precise formulation of the task as performed by KASTL is given below:

Given: A concept description, in a formal language, consisting of
e a base concept B (more precisely, the name of the frame representing B), and
e a set F' of features (i.e., slot-value pairs),

Return: The name of the frame representing the concept C that matches the description. C'
matches the description if and only if

e (' is a specialization of B (although not necessarily an immediate specialization),
e All features in F' are definitionally necessary for membership in C', and

e The features in F' are (jointly) definitionally sufficient for membership in C for all
members of B.
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For example, in the concept description (Cell (part-of Plant)), the base concept B is Cell
and the only feature in F' is part-of = Plant. The task to be performed is to find a frame
representing a specialization of Cell for which the feature part-of = Plant is definitionally
necessary and sufficient. In other words, the task is to find the frame representing the concept
whose definition is “cell that is part of a plant.”

Although this example consists of a simple concept description, KASTL also accommo-
dates more complex descriptions. Figure 3.3 shows the grammar for concept descriptions.
This concept specification language has the same syntax as frames in KM so that concepts
can be described in the same way that they are represented.

Concept descriptions may have multiple features, as in

(Cell (part-of Plant) (producer-in Photosynthesis)).

Multiple features are interpreted conjunctively; all of the specified features must be anno-
tated as definitionally necessary and sufficient on the matching concept. Thus, the above
example describes “photosynthetic plant cell.”

The concept specification language is recursive. In other words, the language allows
nested concept descriptions. For example, the description

(Water (transportee-in (Diffusion (source Soil-Region) (destination Plant))

describes “water transported by diffusion from the soil into a plant.” KASTL matches nested
descriptions from the inside out. For example, KASTL first searches for a frame matching
(Diffusion (source Soil-Region) (destination Plant)), such as Plant- Water-Uptake. It then
substitutes that frame name for the nested description to yield

(Water (transportee-in Plant-Water-Uptake)).

Finally, KASTL searches for a frame matching the modified description.

In addition to concepts, the concept specification language in Figure 3.3 also allows users
to access slots by description. A list of slots in place of a slot name refers to the disjunction
of those slots. For example, (husband wife) would refer to the slot spouse. Users can also
refer to the transitive closure (Kleene star) of a slot. For example,

(transitive-closure-of parent) would refer to the slot ancestor.

Figure 3.4 gives the procedure KASTL uses to provide content addressability. The first
step is to ensure that the given concept description is meaningful. This involves checking
that each frame name and slot name in the description exists and that each feature is valid.
A feature slot = value is valid when value is in the range of slot. For example, the description
(Glucose (product-of Photosynthetic-Cell)) is not valid if slot product-of has range Process,
because Photosynthetic-Cell is not a Process.

The next step is an efficiency measure. To reduce the amount of search, KASTL con-
verts the base concept within the given concept description to a more specific concept if the
conversion does not change the meaning of the description. For example, given the concept
description (Object (parent-in Sexual-Reproduction), “an object that reproduces sexually,”
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<Concept-description> ::= ( <Concept> <Features> ) | ( <Concepts> )

<Concept> = <Frame-name> | <Concept-description>
<Concepts> ::= <Concept> | <Concept> <Concepts>
<Features> = <Feature> | <Feature> <Features>
<Feature> = ( <Slot> <Facet-list> <Value> )
<Slot> ::= <Slot-name> |
( <Slot-list> ) | ; disjunction of slots
( transitive-closure-of <Slot> ) ; Kleene star
<Slot-list> ::= <Slot-name> | <Slot-name> <Slot-1list>
<Facet> = <Facet-name> | ( <Facet-list> )
<Facet-list> ::= <Facet> <Facet-list> | epsilon
<Value> = <Concept> | <kb-constant>

Figure 3.3: The concept specification language for describing concepts to KASTL. The same
language is used both to access concepts by description and to access concepts in the virtual
knowledge base. (The facets shown above are a representational construct of KM used to
annotate frame-slots independently of their values. Although KASTL supports facets, they
are rarely used in the Botany Knowledge Base and are not discussed here.)
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1. Insure that the given concept description is meaningful. Each frame name and slot
name must exist, and each feature must be valid for the specified base concept.

2. Convert the base concept B to a more specific concept, if possible, by examining the
features given in the description and the constraints the knowledge base contains.

3. If the base concept B matches the input description, return B.
4. Otherwise, examine each immediate specialization S of B.

e If S matches the input description, return S.
e If S is more general than the input description, then repeat step 4 for all special-
izations of §.

5. If no match is found for the given concept description, then reify the concept from the
virtual knowledge base and reorganize the taxonomy to include it.

Figure 3.4: Procedure KASTL uses to provide content addressability.

KASTL modifies the description to (Living-Thing (parent-in Sexual-Reproduction)). Chang-
ing the base concept from Object to Living-Thing does not change the meaning of the de-
scription because KASTL determines from examining the knowledge base that only a living
thing can reproduce (i.e., the domain of slot parent-in is Living- Thing). This modification
greatly simplifies the search for a match; specializations of Object that are not specializations
of Living-Thing need not be examined.

The third step of the procedure is to determine whether the (possibly modified) base con-
cept matches the given description. For example, KASTL determines whether the Living-
Thing frame matches the description (Living-Thing (parent-in Sexual-Reproduction)). A
frame matches a description if every feature annotated as definitionally necessary or def-
initionally sufficient on that frame is present in the description and every feature in the
description is present on the frame and is annotated as both definitionally necessary and
sufficient. For example, for the Living-Thing frame to match the above description
parent-in =Sexual- Reproduction must be represented as definitionally necessary and suffi-
cient for Living-Thing and Living-Thing must have no other definitional features. In this
example, the match fails, so KASTL proceeds to the next step.

Step 4 of the procedure is to examine each immediate specialization of the base concept
for a match. (KASTL examines both explicit specializations and implicit specializations
represented by embedded units.) If a match is found, it is returned. Otherwise, KASTL
repeats step 4 for each specialization whose definition is more general than the given concept
description. A specialization S is more general than the concept description if S has at
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least one definitionally sufficient feature (i.e., it has a definition), and each such feature
appears in the concept description or generalizes some feature in the concept description.
If no specialization of the base concept is more general than the given description, KASTL
fails to find an exact match.

The knowledge-base fragment shown in Figure 3.5 can be used to illustrate step 4 for
the concept description (Living-Thing (parent-in Sexual-Reproduction)). The search for a
match is restricted to the portion of the taxonomy rooted at Living-Thing. KASTL first
attempts to match each specialization of Living-Thing with the given description. Neither
Reproducing-Structure nor Nonreproducing-Structure is an exact match, but
Reproducing-Structure is more general than the concept description because the feature
parent-in = Reproduction on Reproducing-Structure subsumes the feature
parent-in = Sexual-Reproduction in the input description. Therefore KASTL repeats the
matching process for the specializations of Reproducing-Structure. On this iteration a match
is found, Sezually-Reproducing-Organism.

If KASTL fails to find an exact match for a given concept description, the described
concept is not explicitly represented in the knowledge base, either as a frame or as an
embedded unit. Although the concept does not exist explicitly in the knowledge base, it
does exist in the virtual knowledge base, because it can be completely defined in terms of
other concepts and relations (as evidenced by the given description). Thus, KASTL can still
access the concept by reifying it using the method described in the next subsection.

3.3.2 Accessing Concepts in the Virtual Knowledge Base

The task of accessing concepts in the virtual knowledge base can be described informally as
“given a description of a concept, modify the knowledge base to include that concept.” A
more precise formulation of the task as performed by KASTL is shown below:

Given: A concept description consisting of
e A base concept, and
e A set of features (i.e., slot-value pairs),
Return:
e The name of the frame created to represent the described concept, and
e A new knowledge base reorganized to accommodate the new frame.

For example, given the concept description (Oxygen (end-product-of Photosynthesis)), the
task is to create a frame whose definition is “Portion of oxygen produced by photosynthesis”
and to modify the taxonomy to include that frame.

The same concept specification language used to provide content addressability, shown
in Figure 3.3, is also used to provide access to concepts in the virtual knowledge base. The
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Thing

/

Object Process
v
Living-Thing Reproduction
Sexual-Reproduction
Reproducing-Structure Nonreproducing-Structure

parent-in: Reproduction
definitionally-necessary? T
definitionally-sufficient? T

Sexually-Reproducing-Organism

parent-in: Sexual-Reproduction
definitionally-necessary? T
definitionally-sufficient? T

Figure 3.5: Knowledge base fragment used to illustrate content addressability for Sezually-
Reproducing-Organism, described by (Living-Thing (parent-in Sexual-Reproduction)). Only
the relevant features of each concept are shown.
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1. Find immediate generalizations of the new concept. Recall the failure points of the
search for a match. (Figure 3.4 gives the algorithm for this search.) These failure
points are the most specific concepts that are more specific than the base concept but
more general than the new concept.

2. Find additional immediate generalizations of the new concept. Find the most specific
concepts that are both

e neither more general nor more specific than the base concept, and

e more general than the given description.

3. Find the immediate specializations of the new concept. Choose one of the generaliza-
tions G found in step 1 or 2, and find the most general concepts that are specializations
of G and that are more specific than the given description.

4. Create a new frame.
(a)
(b)
(c)

)

(d) Remove redundant taxonomic relations.

Install generalization relations to concepts found in steps 1 and 2.
Install specialization relations to concepts found in step 3.

Assert on the new frame each feature given in the input description.

5. Infer new features for the new concept (optional).

Figure 3.6: Procedure KASTL uses to access concepts in the virtual knowledge base.

semantics of the language is the same for both uses; the base concept is a generalization of the
described concept, features modifying the base concept are jointly necessary and sufficient,
and nested descriptions are matched or created from the inside out. Using the same concept
specification language for both content addressability and accessing concepts in the virtual
knowledge base allows a single user interface. In this way, users do not need to know whether
they are accessing existing concepts or virtual concepts. (The next subsection discusses this
in more detail.)

Figure 3.6 gives the procedure KASTL uses to access concepts in the virtual knowledge
base. The first two steps of the procedure find the immediate generalizations of the con-
cept to be created. This involves finding the most specific concepts in the knowledge base
that subsume the given concept description. (Recall that a concept in the knowledge base
subsumes the given description if it has at least one definitionally sufficient feature, and
each such feature appears in the description or generalizes some feature in the description.)
Step 1 takes advantage of the fact that KASTL creates a new concept only after having

62



failed to find the concept in the knowledge base. If KASTL fails to find an exact match for
the given concept description, it terminates its search after encountering the most specific
specializations of the base concept that are more general than the given concept descrip-
tion. These concepts will be immediate generalizations of the concept to be created. Thus,
KASTL avoids repeating the search for these generalizations by recording the failure points
of the search for a match.

For example, consider the concept description (Oxygen (end-product-of Photosynthesis))
and the knowledge-base fragment shown in the top portion of Figure 3.2. When KASTL
searches the knowledge base for a concept matching the description, it begins at the base
concept, Ozygen. One specialization of Oxzygen, Liquid-Ozygen, neither matches nor is more
general than the given description, so it is not pursued. The other specialization, Biologically-
Produced-Ozygen, is more general than the given description (because product-of is more
general than end-product-of and Biological-Process is more general than Photosynthesis),
so KASTL repeats the search from that concept. At this point, none of the specializations
of Biologically-Produced-Ozygen can be pursued. (None of them matches or subsumes the
given concept description.) Thus, the only failure point is Biologically-Produced-Ozygen.
After failing to find a match for the specified concept, KASTL proceeds to create it. KASTL
recalls the single failure point, Biologically- Produced-Oxygen, to be installed as an immediate
generalization of the new concept. Biologically-Produced-Ozxygen is guaranteed to be the only
immediate generalization in the portion of the taxonomy rooted at the base concept, Oxygen.

Step 2 of the procedure finds the generalizations of the new concept that are outside
the portion of the taxonomy rooted at the base concept. Although the search for an exact
match for a concept description can be limited to the portion of the taxonomy rooted at the
base concept, the search for generalizations of the described concept must originate at the
root of the taxonomy. Because KASTL is searching for maximally specific generalizations
only, it need not examine ancestors of the base concept. (The base concept subsumes the
described concept by construction, and it is more specific than any of its generalizations.)
Specializations of ancestors of the base concept, however, must be examined. For exam-
ple, although the ancestors of Ozygen (Substance and Thing) will not be maximally specific
generalizations of the concept described by (Oxygen (end-product-of Photosynthesis)), the
immediate specializations of Substance and Thing (Soil, Product-of-Photosynthesis, Object,
Process, and Slot) must be examined. If any of these concepts subsumes the given descrip-
tion, then KASTL must also examine its specializations. (KASTL examines both explicit
specializations and implicit specializations represented by embedded units.)

KASTL continues searching the taxonomy in this way until it finds no more concepts
that subsume the input description. The most specific concepts found will be immediate
generalizations of the newly created concept. For example, although none of Soil, Object,
Process, or Slot subsumes the concept described by (Oxygen (end-product-of Photosynthe-
sis)), Product-of-Photosynthesis does subsume it. Because Product-of-Photosynthesis has no
specializations, it is a maximally specific generalization of the given description, and KASTL
will install it as an immediate generalization of the new concept.
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Step 3 of the procedure is to find the immediate specializations of the concept to be
created. This involves finding the most general concepts in the knowledge base that the
given concept description subsumes. (The given description subsumes a concept in the
knowledge base if every feature in the description is definitionally necessary for the concept
or generalizes some feature that is definitionally necessary.) The search for specializations
can originate with any of the generalizations found in steps 1 and 2, preferably the one with
the fewest specializations. KASTL chooses a starting concept and examines its immediate
specializations. If a concept is subsumed by the given concept description, then KASTL
retains it as a maximally general specialization. (Its specializations need not be examined
because KASTL is searching for the maximally general specializations.) If a concept is not
subsumed by the given description, then KASTL must also examine all of its specializations.
In the worst case, the search continues to the most specific concepts in that portion of the
taxonomy. The most general specializations found will be immediate specializations of the
new concept.

Recall that for the hypothetical knowledge-base fragment shown in the bottom portion
of Figure 3.2, the most specific generalizations of the concept description
(Oxygen (end-product-of Photosynthesis)) are Product-of-Photosynthesis and Biologically-
Produced-Oxzygen. Assume that KASTL chooses Biologically- Produced-Oxygen as the start-
ing point of the search for specializations. The first specialization of Biologically-Produced-
Ozxygen, Oxygen-of-Leaf-Photosynthesis, is subsumed by the given description because Leaf-
Photosynthesis is a specialization of Photosynthesis. Thus, Ozygen-of-Leaf-Photosynthesis
is a maximally general specialization and its specializations (if it had any) would not be
examined. The second specialization of Biologically- Produced-Ozxygen, Respired-Ozygen, is
not subsumed by the given description, thus KASTL must also examine its specializations.
In this example, Respired-Oxzygen has no specializations, so the search terminates. The only
specialization found is Ozygen-of-Leaf- Photosynthesis, which will be installed as an immedi-
ate specialization of the new concept.

Step 4 of the procedure is to create a frame to represent the new concept (e.g., Ozygen’)
and reorganize the knowledge base to accommodate it. Reorganization involves installing
generalization relations from the new frame to the frames found in steps 1 and 2, installing
specialization relations from the new frame to the frames found in step 3, and installing
each feature given in the concept description on the new frame as a definitionally nec-
essary and sufficient feature. It also involves removing taxonomic relations that become
redundant after installing the new taxonomic relations. The bottom portion of Figure 3.2
shows the result of this reorganization for the knowledge-base fragment shown in the top
portion of Figure 3.2, following the creation of a new frame for the concept described by
(Oxygen (end-product-of Photosynthesis)). The specialization relation from Biologically-
Produced-Oxygen to Oxygen-of-Leaf-Photosynthesis is removed because it is redundant given
the new specialization relations from Biologically- Produced-Ozygen to Ozygen' and from
Oxygen' to Oxygen-of-Leaf-Photosynthesis. Similarly, the redundant specialization relation
from Product-of-Photosynthesis to Oxygen-of-Leaf-Photosynthesis is removed.
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The final step in reifying concepts in the virtual knowledge base is to infer new informa-
tion about the concept and install it on the new frame. This can be done using standard
inference methods such as induction from specializations or instances, deduction from rules,
or inheritance. This step can be done as the system installs the new frame in the knowledge
base, or it can be done on demand as users request slot values. KASTL takes the latter
approach. With KASTL, users can request slot values directly, or they can request them
through requests for viewpoints of the new concept. The next chapter describes the methods
KASTL uses for accessing viewpoints of concepts.

3.3.3 Combining Content Addressability with a Virtual Knowl-
edge Base

This section has described two tasks, accessing concepts by description and accessing con-
cepts in the virtual knowledge base. These tasks are performed by a single module of KASTL
with a single user interface. Combining the tasks has two advantages. First, the procedure
that reifies concepts in the virtual knowledge base can use information gathered while at-
tempting to find a concept in the actual knowledge base (step 1 of Figure 3.6). When both
procedures are executed, combining them makes the system more efficient. The second ad-
vantage is that users of KASTL do not need to know whether the concept they want to access
exists in the actual knowledge base. They simply provide a description of the concept. If
KASTL fails to find a frame representing that concept, it automatically creates one. Users
do not need to know or specify whether they are accessing existing concepts by description
or accessing concepts in the virtual knowledge base.

If users want to access concepts by description without accessing concepts in the virtual
knowledge base, they can operate KASTL in the recognition-only mode. In the recognition-
only mode, KASTL attempts only to find the described concept in the actual knowledge
base and does not create a new frame. If KASTL finds no match, then rather than create a
new frame, KASTL returns the list of concepts in the knowledge base that are more specific
than the described concept. The user can then select from this list of partial matches the
concept that is most appropriate for the task at hand. For example, for the knowledge-base
fragment shown in the top portion of Figure 3.2 and the concept description

(Oxygen (end-product-of Photosynthesis)),

KASTL (operating in recognition-only mode), upon failing to find an exact match, would
return the list (Ozygen-of-Leaf-Photosynthesis). This facility allows users to locate a concept
through a description more general than the one that matches the concept exactly. More
general descriptions are more convenient for users to provide because they require less prior
knowledge of the frames and slots in the knowledge base. This facility also allows users
to access by description concepts that cannot be completely described (because they lack
complete definitions).
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Nucleic-Acid Macromol ecule-Synthesis

products: Macromolecule
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definitionally-sufficient? T

y
Nucleic-Acid-Synthesis

products. Nucleic-Acid
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definitionally-sufficient? T

Figure 3.7: Knowledge-base fragment used to illustrate content addressability for the concept
description (Biosynthesis (products Nucleic-Acid)). KASTL returns Nucleic-Acid-Synthesis
as a match.

3.3.4 Further Examples

The example used to illustrate accessing concepts in the virtual knowledge base was hypo-
thetical, specially constructed to illustrate all aspects of the algorithm. Following is a sample
of actual results KASTL produced from the Botany Knowledge Base.

Content Addressability Examples

e Given (Biosynthesis (products Nucleic-Acid)), which describes “Biosynthesis process
that produces a nucleic acid,” and the knowledge-base fragment shown in Figure 3.7,
KASTL returns Nucleic-Acid-Synthesis.

e Given (Process (raw-materials Water)), which describes “Process that consumes wa-
ter,” and the knowledge-base fragment shown in Figure 3.8, KASTL, in recognition-only
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Process

Transportation
Chemical-Reaction

~— M etabolic-Reaction
Reproduction

| Energy-Transducti n |

Biosynthesis
|PhotownthetiC—Dark-Reactions | [ cavin-cycleCarboxylaion | [ calvin-CycleRegeneration

raw-materials: water raw materials: \Vater H+
Car bon- Di oxi de Car bon- Di oxi de

ATP  Nadph

raw-materials: Water raw-materials: \Water ATP
Car bon- Di oxi de 3- Phosphogl ycer al dehyde
Ri bul ose- Di phosphat e

Figure 3.8: Knowledge-base fragment used to illustrate content addressability for the descrip-
tion (Process (raw-materials Water)). KASTL, in recognition-only mode, returns the list
(Photosynthesis Photosynthetic-Dark-Reactions Calvin-Cycle-Carboxylation Calvin-Cycle-Regeneration).

mode, returns the list

(Photosynthesis Photosynthetic-Dark-Reactions Calvin-Cycle-Carboxylation Calvin-Cycle-Regeneration).

e Given (Energy-Transduction (input-energy-form (Energy (energy-holder ATP)))), which
describes “Energy transduction process whose input energy is held by ATP,” and the
knowledge-base fragment shown in Figure 3.9, KASTL, in recognition-only mode, re-
turns the list (Photosynthetic-Dark-Reactions). This example illustrates an embedded
concept description.

Virtual Knowledge Base Access Examples

e Given (Plant (producer-in Plant-Photosynthesis)), which describes “Plant that is pho-
tosynthetic,” and the knowledge-base fragment shown in the top portion of Figure 3.10,
KASTL modifies the knowledge base as shown in the bottom portion of Figure 3.10.
(In this example, the user has specified the name to be given to the new frame,
Photosynthetic-Plant.) This example illustrates KASTL’s treatment of embedded units
[e.g., the embedded unit referred to by the address

(Seedling-Emergence developee Seedling after-state Seedling)].
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Energy

=

|EIectron-Excitation-Energy ||Chemica|—Bond—Energy | |Heat—Energy | |Energy—Trmsduction

| Carbon-Bond-Energy | | Phosphate-Bond-Energy | Photophosphorylation
holder: Organic-Molecule holder: ATP
Light-Absorption
Photosynthesis | Photosynthetic-Dar k-Reactions
input-energy-form:  Phosphate-Bond-Energy

|Photosynthetic—Light-Reactions |

Figure 3.9: Knowledge-base fragment used to illustrate content addressability for the
description (Energy-Transduction (input-energy-form (Energy (energy-holder ATP)))).
KASTL, in recognition-only mode, returns the list (Photosynthetic-Dark-Reactions).
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definitionally-sufficient? T

Juvenile | Mature-Angiosperm |

Figure 3.10: Snapshots of the knowledge base before and after reification of
Photosynthetic-Plant, described by (Plant (producer-in Plant-Photosynthesis)).
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e Given (Water (transportee-in (Diffusion (source Soil-Region) (destination Plant)))),
which describes “Water moved by diffusion from a soil region to a plant,” and the
knowledge-base fragment shown in the top portion of Figure 3.11, KASTL modifies
the knowledge base as shown in the bottom portion of Figure 3.11. In addition to
creating a frame to represent the new specialization of Water, KASTL also creates a
frame to represent the new specialization of Diffusion, “diffusion of water from a soil
region to a plant,” referenced by the nested description.

e Given (Evaporation (transportee Water) (source Soil-Region)), which describes “Evap-
oration of water from the soil,” and the knowledge-base fragment shown in the top
portion of Figure 3.12, KASTL modifies the knowledge base as shown in the bottom
portion of Figure 3.12.

e Given (Substance (raw-material-for Photosynthesis)), which describes “Substance that
is consumed by some photosynthesis event,” and the knowledge-base fragment shown
in the top portion of Figure 3.13, KASTL modifies the knowledge base as shown in the
bottom portion of Figure 3.13. In this example, the user has specified the name to be
given to the new frame, Raw-Materials-for-Photosynthesis.

3.4 Dynamic Partitioning

The previous section discussed the task of reifying single concepts that are in the virtual
knowledge base. This section discusses a related task, one that involves reifying several
concepts st once. This is the task of dynamically creating new partitionings in the knowledge
base.

A partitioning is a portion of a knowledge base in which a concept is partitioned (broken
down) in some way. There are at least four types of partitionings. First, a concept can be
partitioned into specializations. For example, Cell can be partitioned into specializations
Animal-Cell and Botanical-Cell. Second, objects can be partitioned into their physical parts
or composing substances. For example, a seed can be partitioned into the seed coat, the
embryo, and the endosperm. Third, objects can be partitioned into temporal parts (called
states or stages). For example, a plant can be partitioned into five stages: zygote, embryo,
seedling, juvenile, and mature plant. Fourth, events can be partitioned into steps (called
subevents). For example, photosynthesis can be partitioned into the light reactions and
the dark reactions. A slot that represents a partitioning (e.g., specializations, has-parts,
composed-of, stages, subevents) is called a partitioning slot.

A concept can be partitioned in multiple ways on any partitioning slot, depending on the
partitioning criterion. For example, the partitioning of Human into specializations Male and
Female is based on a gender criterion. Other criteria yield other partitionings. For example,
a hair color criterion gives rise to specializations Blonde, Brunette, etc. Each element of
the partitioning (e.g., each specialization of Human) has a more specialized value for the
partitioning criterion than the partitioned concept has [e.g., a more specialized value for
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Figure 3.11: Snapshots of the knowledge base before and after reification of Water195,
described by (Water (transportee-in (Diffusion (source Soil-Region) (destination Plant)))).
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definitionally-necessary?: T
definitional ly-sufficient?: T

Evaporation

Water-Evaporation

transportee; Water

definitionally-necessary?: T
definitionally-sufficient?: T

Evaporation196

transportee: Water
definitionally-necessary?: T
definitionally-sufficient?: T
source: Soil-Region
definitionally-necessary?: T
definitional ly-sufficient?: T

Figure 3.12: Snapshots of the knowledge base before and after reification of Evaporation196,
described by (Evaporation (transportee Water) (source Soil-Region)).

72



/\

Substance

Process

Inorganic-Substance

Photosynthesis

T

Water

:

Water-of-Photosynthesis
raw-material-for: Photosynthesis

Carbon-Dioxide

\l

CO2-of-Photosynthesis

raw-materials: Water, Carbon-Dioxide

raw-material-for: Photosynthesis

Substance

— N\

Raw-M aterials-for
Photosynthesis
raw-rhaterial-for: Photosynthesis

Inorganic-Substance

definitionally-necessary?: T
definitionally-sufficient?: T

Water

:

Water-of -Photosynthesis

AN

Process

;

Photosynthesis

raw-materials: Water, Carbon-Dioxide

Carbon-Dioxide

Jz

CO2-of-Photosynthesis

Figure 3.13: Snapshots of the knowledge base before and after reification of Raw-Materials-
for-Photosynthesis, described by (Substance (raw-material-for Photosynthesis)).
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hair-color than the value of (Human hair-color)]. KM allows any partitioning slot to have
multiple, orthogonal partitionings and provides a mechanism for representing the criterion
for each.

Although multiple partitionings are representable for each partitioning slot, the knowl-
edge engineer typically represents only a few of the possible partitionings. Application pro-
grams may need some of the unrepresented partitionings to support some task. For example,
a tutoring system generating a description of the different ways that a leaf acquires glucose
throughout its lifetime would need a partitioning of Leaf into stages according to glucose
acquisition method. To service this need, KASTL provides dynamic creation of new parti-
tionings. In other words, KASTL reifies partitionings that are in the virtual knowledge base
but not in the actual knowledge base. For example, given the concept Energy- Transduction,
partitioning slot specializations, and criterion slot input-energy-form, KASTL automatically
creates a new partitioning of Energy-Transduction into specializations E7T'1 (which has
input-energy-form =Light-Energy) and ET2 (which has
input-energy-form = FElectron-Excitation-Energy), as shown in Figure 3.14.

The task of dynamically creating partitionings can be described as follows:

Given:
e A concept C to partition (e.g., Energy-Transduction),
e A partitioning slot, S (e.g., specializations), and
e A partitioning criterion (e.g., input-energy-form),
Return:

e A set of newly created concepts that are related to C' by slot S and that have more
specific values for the partitioning criterion than C' has (e.g., specializations of
Energy-Transduction that have different specific forms of input energy), and

e A knowledge base reorganized to accommodate the newly created concepts.

The partitioning criterion may be a simple slot name or a slot path. For example,
given the concept Angiosperm (flowering plant), partitioning slot specializations, and (as
the partitioning criterion) the slot path (has-part Flower color), KASTL would partition
Angiosperm into specializations according to the different colored flowers they have. The
criterion may also include a value filter, which signifies that when creating the partitioning,
KASTL should ignore values of the partitioning criterion that are not specializations of the
concept given as the filter. For example, given the concept Tree to partition, partitioning
slot spectalizations, and partitioning criterion has-parts with value filter Leaf, KASTL would
partition T'ree into specializations according to the different types of leaves they have.

To dynamically create a new partitioning of concept C' along partitioning slot S ac-
cording to a given partitioning criterion, KASTL first explores an existing partitioning of
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Figure 3.14: Knowledge-base fragment used to illustrate dynamic partitioning of Energy-
Transduction along partitioning slot spectalizations according to criterion input-energy-form.
Although not shown, the existing partitioning remains intact.



C' along partitioning slot S to find the top-most concepts that are different from (or more
specialized than) C' with respect to the partitioning criterion. For example, to create a parti-
tioning of Energy-Transduction into specializations according to nput-energy-form, KASTL
first finds the most general specializations of Energy-Transduction that have a different (or
more specific) value for input-energy-form than Energy-Transduction does. Assuming the
knowledge-base fragment shown in the top portion of Figure 3.14, this set is Photosynthe-
sis, Photosynthetic-Light-Reactions, Photophosphorylation, Oxidative-Phosphorylation, and
Light-Absorption.

The next step is to collect the values that these concepts have for the partitioning cri-
terion (the criterial values). For example, the criterial values of the concepts Photosynthe-
sis, Photosynthetic-Light-Reactions, Photophosphorylation, Oxidative-Phosphorylation, and
Light-Absorption on slot input-energy-form are Light-Energy and Electron-Ezcitation-Energy.
The new partitioning will have one “branch” for each distinct criterial value. For each
criterial value, KASTL creates a new concept (using the procedure given in Figure 3.6)
to represent the category of entities having that criterial value. The new concept will
encompass all the concepts encountered in the previous search that have that criterial
value. For example, the new partitioning of Energy-Transduction will include the newly
created specialization of Energy-Transduction ET'1, for which input-energy-form = Light-
Energy. This specialization will have specializations Photosynthesis, Photosynthetic-Light-
Reactions, and Light-Absorption. Similarly, the new specialization ET2 for which input-
energy-form = Electron-FExcitation-Energy will have specializations Photophosphorylation
and Ozidative-Phosphorylation. The bottom portion of Figure 3.14 shows the knowledge
base of the top portion of Figure 3.14 modified to accommodate the new partitioning of
Energy-Transduction. (Existing partitionings are left intact; Figure 3.14 shows only the new
partitioning.)

KASTL creates dynamic partitionings to one level only. If users require additional levels
of partitioning, they can create them easily through recursive calls to the procedure described
above.

Although KASTL can automatically create a new partitioning for any partitioning slot
and any partitioning criterion, not all combinations of partitioning slots and partitioning
criteria make sense. For example, consider automatically partitioning Flower into parts
according to weight, using the algorithm described above. The standard partitioning of
Flower into parts is Calyz, Corolla, Androecium, and Gynoecium. Suppose these parts
have weight values of six grams, nine grams, one gram, and one gram. To create a new
partitioning based on weight, KASTL would create a “six gram part” (the calyx), a “nine
gram part” (the corolla), and a “one gram part,” which has as parts both the androecium
and the gynoecium. KASTL would assert that the “one gram part” weighs one gram and
that it has two parts, each of which also weighs one gram. This inconsistency arises because
it does not make sense to speak of “the part of the flower that weighs one gram.” It does
make sense, however, to speak of “the category of flower parts that weigh one gram.” Thus,
a more meaningful request is for a partitioning of Flower-Part into specializations according
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to weight, rather than partitioning the typical Flower into parts according to weight.

The class of partitionings that will not raise this problem (i.e., those that are guaranteed
not to introduce inconsistencies) can be circumscribed as follows. A partitioning along
partitioning slot S according to partitioning criterion slot P is meaningful if the following
implication holds:

VC, X.[VV, X"inKB(C,S,V) = inKB(V,P,X') A X' C X)] = inKB(C, P, X)

where inK B(frame, slot,value) is true when triple (frame slot value) is in (or implied by)
the knowledge base. That is, if all values for slot S on the frame for concept C have
values for slot P that are X (or a specialization of X), then C also has value X for slot
P. The consequent of the above implication characterizes the triples that KASTL adds to
the knowledge base as it creates a partitioning based on P and S. Thus, if this implication
holds, then the partitioning will not introduce inconsistencies. For example, consider the
combination of partitioning slot has-part and partitioning criterion color. If all of the parts
of an object C are the same color X (or are some shade (specialization) of X), then the
color of C' is also X. Thus the above implication holds, so a partitioning of an object into
parts based on color will not introduce inconsistencies. Reconsider the earlier example that
combined partitioning slot has-part with partitioning criterion weight. If all of the parts of
some object C have the same weight X, it is not true that C' also has that weight. Thus, the
above implication does not hold, so this combination of partitioning slot and partitioning
criterion is not meaningful (i.e., it may introduce inconsistencies).

The broadest class of partitionings that satisfy the constraint given above is the set of
partitionings that combine specializations as the partitioning slot and a partitioning criterion
slot that is of semantic type 1 or 2 (such as has-part, color, weight, or actor-in).

3.5 Cost Analysis

This section presents a cost analysis of automatic classification, adding new concepts to
an existing taxonomy. Automatic classification is the primary and most costly activity in
accessing concepts in the virtual knowledge base.

Previous complexity analyses have four limitations [85]. First, most past research has
focused on the cost of subsumption rather than the cost of classification. Recall that sub-
sumption, determining whether one concept is more general than another, is but one step
in classification; more important is the complexity of the overall classification task. Second,
past research has analyzed the cost of determining extensional subsumption. As described in
Section 3.2, KASTL uses a classification algorithm based on intensional subsumption rather
than extensional subsumption. Intensional subsumption allows the definition of a precisely
characterized classification algorithm without restricting expressive power. The third limi-
tation of past results is that most of them give worst-case complexity analyses. Users of the
knowledge base are often more interested in average-case predictions. The fourth limitation
is that most complexity analyses are given in terms of the size of the concept description
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being classified. The size of the taxonomy has a much greater impact on the overall cost
of classification, because description size is typically small, but taxonomy size may be quite
large, especially for a multifunctional knowledge base.

To address the limitations of past research, Woods has analyzed the complexity of clas-
sification based on intensional subsumption [85]. Woods shows that the complexity of clas-
sification, as a function of how many of the /V frames in the taxonomy are compared to the
input concept description, is logarithmic or better for typical inputs and linear in the worst
case.

Woods uses three parameters to capture how the characteristics of the knowledge base
affect the cost of classification. The first is the downward branching ratio, r, the average
number of immediate specializations for concepts that are not leaves of the taxonomy. The
second is a parameter B, which reflects how “out of balance” the taxonomy is. The third is
a parameter W, which gives the width of the ancestor chain above a typical concept due to
multiple generalizations. Woods estimates that B and W are in the range of one to three
for most knowledge bases.

The cost-dominant steps of KASTL’s classification algorithm (shown in Figure 3.6) are
steps 1, 2, and 3. For steps 1 and 2, which find the most specific generalizations of the new
concept, Woods estimates a typical cost of rBWlogN frames examined. For step 3, which
finds the most general specializations of the new concept, Woods estimates that, for typical
inputs, 7(r + 1) frames must be compared to the input description. Thus the total number
of comparisons is rBWlogN + r(r + 1) frames. The value of r (the downward branching
ratio) for the Botany Knowledge Base is 4. Using this value of r and an estimate of 2
for parameters B and W, as suggested by Woods, yields an estimated typical-case cost of
16logN + 20 comparisons. For the Botany Knowledge Base, this would mean comparing
a typical input description with up to 5.6% of the 2665 frames currently in the knowledge
base.

To empirically evaluate the above cost estimate based on Woods’s analysis, 53 botanical
concepts that are not explicitly represented in the Botany Knowledge Base, such as “nucleus
of an epidermal cell” and “tree that grows in a swamp,” were selected. These concepts were
chosen at random from a biology textbook, so presumably the sample is representative of the
domain. The evaluation consisted of measuring, for each concept, the maximum number of
frames that KASTL would examine to classify it in the Botany Knowledge Base taxonomy.
The average cost was 117 of the 2665 total frames, about 4.3%, not significantly different
from Woods’s estimate. The minimum was 32 frames (1%), and the maximum was 804
frames (30%). (Recall that in the worst case, KASTL would have to examine 100% of the
frames in the taxonomy.) The cost of classifying a particular concept depends largely on the
position of the concept in the taxonomy. The more general the concept, (i.e., the closer the
concept is to the root of the taxonomy), the more costly it is to classify.

The above analysis determined the number of frames to be examined when classifying
a new concept. For each frame examined, KASTL must determine the subsumption rela-
tionship of the concept that frame represents and the given concept description. Woods
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estimates the typical-case cost of determining intensional subsumption as (2m? + p?) frame-
slot access operations, where m is the number of features in the input concept description
and p is the number of base concepts in the input description. (The concept specification
language allows multiple base concepts, interpreted conjunctively.) This estimate assumes
that concept descriptions do not contain binding constraints among slot values.

To empirically evaluate Woods’s estimate of the cost of computing intensional subsump-
tion, actual values for m and p were derived from concept descriptions found in a biology
textbook. Of 155 concept descriptions, all but four had a single base concept (i.e., p ~ 1 on
average), and the average number of features modifying the base concept (m) was 1.3. Thus,
the average cost of computing intensional subsumption for these concepts is 4.4 frame-slot
access operations, assuming the descriptions do not include binding constraints. If binding
constraints do appear, then the cost of computing intensional subsumption is probably ex-
ponential in m. Nevertheless, it seems that the cost will not be prohibitive given that most
concept descriptions include very few features.

The cost of classifying a new concept, then, is the product of

e the number of frames to be compared with the input description, and

e the number of frame-slot accesses required to compare a particular frame with the
input description (and compute the subsumption relationship between them).

The empirical evidence indicates that, in terms of the actual coefficients, the dominant factor
by far is usually the number of frames to be examined, rather than the number of frame-
slot accesses required to compute subsumption. The complexity KASTL’s classification
algorithm, as a function of the number of frames to be examined, is tractable: logarithmic
for typical inputs, and linear in the worst case.

3.6 Summary and Limitations

This chapter presents techniques for insulating users of the knowledge base from the partic-
ulars of how knowledge is represented. To insulate users from the effects of choices regarding
the names of frames, KASTL provides content addressability. The advantage of content
addressability is that users can access the knowledge base without extensive prior knowledge
of how it has been represented. In particular, users can access concepts without knowing
the names of all the frames in the knowledge base. They need only to know the names of
the most general frames and slots (the top level of the taxonomy). They can access other
concepts by describing them in terms of more general frames and slots. Although partially
defined concepts, such as “natural kinds,” cannot always be uniquely identified by descrip-
tion alone, these concepts usually have standard names (e.g., Photosynthesis, Flower, and
Soil).

To insulate users from the effects of representational choices regarding which concepts
are reified in the knowledge base, KASTL provides access to concepts in the virtual knowl-
edge base. Accessing concepts in the virtual knowledge base requires performing automatic
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classification of the given concept within the knowledge-base taxonomy. Many existing sys-
tems perform automatic classification, including most languages in the KL-ONE family [86].
These systems, however, have several limitations. First, many of them limit expressiveness
in an effort to achieve tractable algorithms for the subsumption step of classification. This
results in languages so limited that they are no longer generally useful.

The second limitation of traditional classifiers is that they use ill-characterized subsump-
tion algorithms. Past systems have used the extensional definition of subsumption, which
has been found to be intractable for most languages. As a result, systems that are based
on extensional subsumption have retreated to tractable but incomplete algorithms. These
algorithms lack a precise specification of what subsumption relationships they detect.

The third limitation of traditional classifiers is that they are based on extensional sub-
sumption, but they are restricted to using only definitional (terminological) knowledge,
knowledge that has no assertional import. Extensional subsumption cannot always be com-
puted solely from definitional knowledge.

To address the limitations of existing classifiers, KASTL is based on the intensional
subsumption criterion Woods gives [85]. Intensional subsumption means that X subsumes
Y when the definition (intension) of X is more general than the definition of Y. Intensional
subsumption makes possible a well-characterized classification algorithm without limiting
the expressiveness of the representation language.

The disadvantage of using intensional subsumption rather than extensional subsumption
is that some relationships of extensional subsumption that would be useful to a reasoning
system will not be discovered. For example, KASTL might not discover that “Cell with a
chloroplast” subsumes (extensionally) “Cell that is photosynthetic,” even if the knowledge
base contains the information that all photosynthetic cells have chloroplasts, because the
subsumption cannot be determined solely by examining the two concept definitions.

KASTL performs both the tasks of accessing concepts by description and accessing con-
cepts in the virtual knowledge base within a single module with a single user interface. This
has two advantages. First, the procedure that reifies a concept in the virtual knowledge base
can use information gathered while attempting to find that concept in the actual knowl-
edge base, making the system more efficient. Second, users of KASTL do not need to know
whether concepts exist in the actual knowledge base; they simply provide a description of
the concept needed. If KASTL fails to find a frame representing that concept, it automati-
cally creates one. Users do not need to know or specify whether they are accessing existing
concepts by description or accessing concepts in the virtual knowledge base.

Users of KASTL describe concepts using the concept specification language, a formal
language that has the same syntax as KM, the representation language. The advantage of
using the same syntax is that users can describe concepts in the same way they represent
them. A limitation of KASTL’s concept specification language is that there are constructs
available in KM that are not included in the specification language. Thus, there are concepts
representable in KM that cannot be described in the specification language, and hence cannot
be accessed by description or automatically reified from the virtual knowledge base.
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One such construct is role value maps, which express binding constraints. With role
value maps, one can say that two frame-slots are filled by the same value. For example,
with role value maps one could describe the concept “Person whose spouse is his/her best
friend.” Without role value maps, one can only describe “Person whose spouse is a person and
whose best friend is a person.” As discussed in the previous section, extending the concept
specification language to include role value maps will probably result in a subsumption
algorithm whose cost is exponential in the length of the input description, but description
length is typically so small that the cost will nevertheless be reasonable.

A second limitation of KASTL’s concept specification language is that, unlike KM, each
feature is interpreted as both necessary and sufficient. Separate statements of necessary fea-
tures and sufficient features are not allowed. One area for future work is to extend KASTL’s
concept specification language to include role value maps and to distinguish necessary fea-
tures from sufficient features.

In addition to dynamically reifying concepts that are in the virtual knowledge base,
KASTL also performs dynamic partitioning. For a particular partitioning slot (specializa-
tions, has-part, etc.), the knowledge engineer typically represents only a few of the possible
partitionings. KASTL allows users to access partitionings that are not explicit in the knowl-
edge base by dynamically creating new partitionings. Although KASTL can automatically
create a new partitioning for any combination of partitioning slot and partitioning criterion,
not all possible partitionings are meaningful. Section 3.4 gives a formal characterization of
the class of partitionings guaranteed not to introduce inconsistencies in the knowledge base.

To summarize, KASTL makes users of a knowledge base less vulnerable to the particulars
of how knowledge is represented by

e providing content addressability,
e providing access to concepts in the virtual knowledge base, and
e providing dynamic partitioning.

These facilities make it easier for users to locate the frames that are relevant to a particular
task. Once the relevant frames have been isolated, users must then determine which slot
values of those frames are relevant. The next chapter discusses KASTL’s techniques for
assisting users in selecting slot values. These are techniques for accessing viewpoints of
concepts.
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Chapter 4

Accessing Viewpoints of Concepts

To be truly absurd, you need a coherent point of view!!
Zippy the Pinhead by Bill Griffith

4.1 Introduction

This chapter presents general methods for accessing viewpoints of concepts, coherent collec-
tions of facts that describe a concept from a particular perspective. Viewpoints are essential
for a variety of tasks, including explanation generation, compositional modeling, problem
solving, and learning. This research identifies several types of viewpoints and develops com-
putational methods for dynamically generating viewpoints of each type.

4.1.1 Motivation

Consider a question-answering system generating a description of photosynthesis using the
knowledge-base fragment shown in Figure 4.1. In most contexts, a coherent description
requires only a small fraction of all of the available information, because a description con-
taining all the information would overwhelm the user. The system cannot, however, select
an arbitrary subset of the information and still produce a coherent description. Even select-
ing relations that are closest to (or directly on) the Photosynthesis frame does not ensure
coherence, as evidenced by the following description:

Photosynthesis is a kind of production and also a kind of energy transduction. It
occurs in a chloroplast. In photosynthesis, a photosynthetic cell produces carbon
bond energy. The input energy form is light energy, provided by a photon.
The raw materials of photosynthesis are carbon dioxide and water. The energy
source for photosynthesis is ATP. The products of photosynthesis are glucose and
oxygen. Photosynthesis has some temporal duration. One step of photosynthesis
is the light reactions, and another step is the dark reactions.
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A shorter response is not necessarily more coherent. Omitting information in an unprin-
cipled way introduces incoherence because of incompleteness:

Photosynthesis is a kind of production that occurs in a chloroplast. The en-
ergy source for photosynthesis is ATP. Photosynthesis uses carbon dioxide and
produces oxygen. One step of photosynthesis is the dark reactions.

Selecting relations based on an a priori importance ranking is also not sufficient to ensure a
coherent response, as the SCHOLAR project demonstrated [14].

To generate a coherent description, the system needs to select from all the available
information a subset that can be understood as a whole, a collection of facts that are relevant
to one another, as in the following description:

Photosynthesis is a kind of production in which a photosynthetic cell uses water
and carbon dioxide to produce glucose and oxygen.

One way to select coherent portions of knowledge is to access viewpoints of concepts.

4.1.2 Viewpoints

A viewpoint is a coherent collection of facts (i.e., (frame slot value) triples) that describes
a concept from a particular perspective. For example, a structural viewpoint of the concept
Seed-Coat describes the substances and parts that make up a seed coat and how they are
connected. The viewpoint of Seed-Coat as a kind of Container includes information about
what parts of the seed the seed coat contains, whether the seed coat has openings, etc.
The viewpoint of Seed-Coat as having no chlorophyll includes the fact that seed coats are
not photosynthetic. Each concept has multiple viewpoints, which give different aspects or
perspectives of the concept. The union of all the viewpoints provides complete knowledge of
the concept.

Barsalou gives evidence of the psychological validity of viewpoints [6]. Although he
uses the term concept rather than viewpoint, he describes viewpoints in this way (with
terminology substitution added):

...the knowledge for a particular category contains many, many [viewpoints].
On a given occasion, the [viewpoint] that is constructed to represent a category
only traces out a small subset of all the knowledge available in long-term memory
for representing the category. ...the [viewpoint| used to represent a category on
a particular occasion contains information that provides relevant expectations
about the category in that context.

Although viewpoints constitute a subset of the total knowledge of a concept, viewpoints
are not limited to the information found on the frame representing that concept. The terms
frame and concept are often used interchangeably, but a single frame does not provide com-
plete knowledge of a concept. The total meaning of a concept is given by a network of rela-
tions centered on the frame representing that concept. The frame includes only the relations
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Figure 4.1: The portion of the Botany Knowledge Base in the region of Photosynthesis.
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that explicitly reference the concept. (For example, the total knowledge of photosynthesis
includes the information that it produces the glucose required for respiration, represented by
the triples (Photosynthesis product Glucose) and ( Glucose required-for Respiration), but only
the first of these triples appears on the Photosynthesis frame. The second appears on the
Glucose frame.) A viewpoint of a concept includes any relation that is relevant, regardless
of whether it appears on the frame representing the concept.

4.1.3 Viewpoint Coherence and Other Sources of Coherence

Viewpoints were described above as coherent collections of facts. A viewpoint is coherent
to the extent that all the facts it comprises are relevant to one another. For example, all
the facts in a coherent viewpoint of “photosynthesis as a carbon dioxide utilization process”
must be relevant to the fact that photosynthesis utilizes carbon dioxide. Because relevance
is both subjective and graded, viewpoint coherence cannot be precisely defined. One can
better understand what viewpoint coherence is, however, by understanding what it is not.

Hobbs points out that coherence is not simply sharing a common referent [35]. That
is, a set of facts that describe the same concept is not necessarily coherent. Consider the
following example from [35]:

Ronald Reagan used to act in cowboy movies. He appointed Caspar Weinberger
as Secretary of Defense.

Although the statements are cohesive, because they both refer to Ronald Reagan [32, 26, 21],
they are not coherent. Coherence requires a stronger relationship between facts.

Viewpoint coherence should also be distinguished from other sources of coherence, such
as discourse coherence. Discourse coherence reflects the degree to which a discourse accom-
plishes general communication goals, such as motivating or persuading the reader, explicitly
linking new information to what the reader already knows, and guiding the reader’s infer-
ences about what is said. Hobbs [35, 36] and Rhetorical Structure Theory [45] characterize
discourse coherence with sets of coherence relations and rhetorical relations that hold be-
tween two segments of a discourse. These relations describe valid conversational “moves”
[35].

In general, coherence relations and rhetorical relations characterize discourse coherence
rather than viewpoint coherence. They reflect the rhetorical intentions of the speaker rather
than the semantic or conceptual connectivity of information. Two of Hobbs’s coherence
relations, however, are the kind of relation that holds between facts in a coherent view-
point. These are cause and enablement, generalized by occasion. According to Hobbs, these
relations reflect coherence in the world or the structure of memory and the ways we are con-
ventionally reminded of things, rather than discourse goals. This is the kind of relationship
that holds among facts in a coherent viewpoint. Alterman gives a larger set of coherence re-
lations of this kind that characterize taxonomic, partonomic, and temporal relations between
events or states [2, 3].
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Another source of coherence is global coherence [35]. The global coherence of a discourse is
the degree to which each of its utterances is relevant to the speaker’s specific communication
plan [29]. (This is the criteria that Moore’s explanation generator uses when constructing
its perspectives [51, 52].) Viewpoint coherence, by contrast, is a more general notion that
applies even in the absence of any problem-solving goal or discourse context. Although some
viewpoints are coherent because their facts share a common relevance to some problem-
solving goal, this research focuses on task independent viewpoints.

A source of coherence that is very similar to viewpoint coherence is explanatory coherence
[80, 60]. Explanatory coherence is a specialized form of viewpoint coherence that measures
how well a hypothesis explains a set of observations. Explanatory coherence is a property
of a logical proof, but viewpoint coherence applies to more general sets of assertions. The
underlying notion, however, is the same. The greater the “connectedness” within a set of
assertions (or within a proof), the greater its coherence.

Another source of coherence is textual coherence, the way that a collection of facts making
up a text is organized and presented. Viewpoint coherence, unlike textual coherence, is
influenced solely by content (the facts the viewpoint comprises).

Finally, viewpoint coherence is not the same as conceptual coherence. Conceptual coher-
ence is a term used in the psychology literature to describe the degree to which the members
of a category form a comprehensible, informative, or useful class [53]. Conceptual coher-
ence describes groupings of entities into categories; viewpoint coherence describes groupings
of assertions about categories (or instances) into descriptions. Although conceptual coher-
ence and viewpoint coherence differ, they are related. Murphy and Medin propose that one
component of conceptual coherence is the degree to which a category’s description includes
features that are connected via some relationship [53]. Thus, only coherent concepts can be
described by coherent viewpoints.

To summarize, viewpoint coherence is a property of a set of facts that reflects the degree
to which the facts are interrelated. The coherence of a viewpoint is determined entirely by
its contents, and not by the way it is organized or presented. Furthermore, the coherence of
many viewpoints is apparent in the absence of any problem-solving task or dialogue context.
These are the viewpoints of interest in this work. After much analysis by researchers in
several disciplines, coherence remains an ill-defined notion. The goal of this work, however,
is not to provide a precise definition of coherence, but to understand how an access method
can generate viewpoints that will be judged coherent by human subjects.

4.1.4 Applications of Viewpoints

As Section 4.1.1 suggested, an important application of viewpoints is to ensure the coherence
of the explanations that a question-answering or explanation-generation system produces.
(Other sources of coherence, such as discourse coherence and textual coherence, also con-
tribute to the overall coherence of an explanation.) Viewpoints lend coherence to both the
content and the organization of an explanation. In selecting the content of an explanation,
it is important for a system to be sensitive to the current context, because the coherence
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of the explanation will be judged relative to that context. Different viewpoints provide dif-
ferent explanations of domain knowledge, each appropriate for different levels of expertise
[76, 64, 65, 79], different user needs [49], different system goals [51, 52|, and different dialogue
contexts [46, 47, 51|. In organizing an explanation, it is important for a system to group
together facts that are related to one another [48]. One way to accomplish this is to group
together facts that belong to the same viewpoint [42]. Suthers points out an additional
benefit of constructing explanations from viewpoints: accessing the knowledge base at the
right level of abstraction (i.e., at the viewpoint level) allows an explanation generator to
concentrate on issues of discourse management, and it facilitates portability across domains
and representational formalisms [75].

In addition to their utility for explanation generation, viewpoints are also important for a
variety of other applications, such as natural language processing. In discourse understand-
ing, Grosz uses viewpoint-like knowledge structures called focus spaces to focus the system’s
attention on the knowledge that is most salient at a given point in the dialogue [28]. For
example, even if “the mayor of San Diego” and “my neighbor” refer to the same person, the
information in focus differs depending on whether the system views the person as a mayor
or as a neighbor, which in turn depends on which reference the system encounters. This
focusing enables the system to access more important information first as it disambiguates
a sentence. For example, focus spaces constrain the search for possible referents of pronouns
and definite noun phrases.

The KING system uses wiews to guide linguistic and conceptual choices that arise in
natural language generation [37]. For example, whether the system generates the sentence
“Mary was sold the book by John” or the sentence “Mary bought the book from John”
depends in part on whether the actor of the event is Mary or John, which in turn depends
on whether the system views the event as a buying event or a selling event.

Other systems use knowledge similar to viewpoints to constrain automated reasoning. For
example, Falkenhainer and Forbus use perspectives to construct models of physical devices
[23]. Their system has a knowledge base of model fragments, each pertinent to a particular
perspective. The system constructs a model by composing model fragments that are relevant
to the chosen perspective. Perspectives ensure that the model makes consistent simplifying
assumptions. For example, a model should not view a feed tank simultaneously as an infinite
capacity liquid source and as a container that may be emptied. Although incompatible, each
of these different views is appropriate for different reasoning tasks. Perspectives also ensure
the relevance of the model to the reasoning task for which it is constructed. For example,
the system should not model a steam plant as an abstract heat engine if the user asks about
the mass flows that occur in it. Finally, perspectives yield simplified models. Simplified
models are crucial because reasoning about every aspect of a mechanism is computation-
ally prohibitive, even for simple objects. In addition, simplified models are more generally
applicable (because they require less data), and they yield more coherent explanations of
problem-solving behavior.

The ability to take multiple viewpoints of an object is also important for solving physics
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problems. For example, the ISAAC and APEX problem solvers construct a formal represen-
tation of the given problem by viewing each object in the problem as a canonical object, an
idealized or abstract object such as a point mass or a lever [62, 38]. Viewing actual objects
as canonical objects is important because, while problems are stated in terms of complex,
real-world objects, the principles and laws of physics are stated in terms of canonical ob-
jects. Competence in solving physics problems derives mainly from the ability to formulate
the problem in terms of canonical objects so that domain principles and laws can be applied
[38]. In addition, viewing a real-world object as a canonical object restricts the information
about the actual object that may be used to solve the problem, which greatly reduces the
size of the problem space [62, 63].

Algernon uses wviews for default reasoning [19]. Many default reasoning schemes are
intractable, because they require the system to ensure that a default assumption is consistent
with everything that is known before making that assumption. Restricting inference to the
information found within a chosen view makes default reasoning more efficient. BLAH uses
partitions in a similar way to constrain its search for rules relevant to a given problem-solving
task [82].

Finally, learning systems use viewpoints. Murray’s KI system uses views for knowledge
integration, the task of incorporating new information into an existing knowledge base [54,
57]. Knowledge integration involves identifying conflicts between the new information and
existing knowledge and identifying how new information can explain existing beliefs. This
is difficult because finding all of the subtle interactions between new and existing knowledge
requires computing the deductive closure of the knowledge base, an intractable operation. KI
uses views to limit its search for the consequences of new information. Views determine which
concepts and propositions in the knowledge base are most relevant to the new information,
then KI applies inference methods only to the knowledge within the selected view(s).

The principal component of Shrager’s model of learning by experimentation is view ap-
plication [72]. In the model, views guide incremental changes to the learner’s theory of how
a complex device works. Using views ensures that the space of theories is searched rapidly
and that only coherent theories are explored.

Although viewpoints are important for a variety of applications, existing methods for
dynamically generating viewpoints from a knowledge base are limited. The goal of this
research is to provide general methods for generating viewpoints (i.e., methods that are
applicable to a variety of tasks and domains).
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4.1.5 Generating Viewpoints

The task of generating viewpoints can be described as follows:

Given:
e a knowledge base containing declarative knowledge of domain concepts, and

e a viewpoint specification, which indicates the type of viewpoint required and
the concept of which the viewpoint will be taken (the concept of interest),

Return: A collection of facts (i.e., (frame slot value) triples) from the knowledge base that
constitutes the specified viewpoint. This collection includes both facts that are explicit in
the knowledge base as well as facts that must be computed (i.e., facts that are in the virtual
knowledge base).

The methodology used in this research on generating viewpoints is as follows. First,
identify recurrent viewpoint types by analyzing human-generated texts. Second, develop
methods for generating viewpoints of each type from a knowledge base. Third, implement
these methods in a system, called the View Retriever. Fourth, evaluate the quality of the
viewpoints the View Retriever generates. Fifth, identify weaknesses of the current set of
viewpoint types through further text analysis, and use these weaknesses to guide future
research.

A major contribution of this work is a framework of viewpoint types that are independent
of any particular domain and task. The current framework of viewpoint types consists of

e as-kind-of viewpoints, which describe the concept of interest by relating it to a more
general concept. For example, the viewpoint of Seed-Coat as a kind of Container is an
as-kind-of viewpoint.

e viewpoints constructed along basic dimensions, which describe particular kinds of fea-
tures of the concept of interest (structural features, functional features, etc.). An
example is a structural viewpoint of Seed-Coat.

e as-having viewpoints, which include features about the concept of interest that are
relevant to a user-specified feature of the concept. For example, the viewpoint of
Seed-Coat as having no chlorophyll is an as-having viewpoint.

The next three sections discuss these types of viewpoints in more detail.

A user or application program specifies a viewpoint by indicating the type of viewpoint
required and the concept of interest. The concept of interest can be a concept represented
either by a frame or by an embedded unit. Furthermore, the concept of interest can be
specified by description or by name, and it can be a concept in the actual or virtual knowledge
base. The Finder and Creator modules of KASTL replace concept descriptions in viewpoint
specifications with frame names as a preprocessing step, using the methods described in
Chapter 3.
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A second major contribution of this work is a collection of methods for dynamically
generating viewpoints. The next three sections describe the methods the View Retriever
uses to generate viewpoints of the three types given above. Section 4.2 discusses as-kind-
of viewpoints, Section 4.3 discusses viewpoints constructed along basic dimensions, and
Section 4.4 discusses as-having viewpoints. In addition to generating viewpoints of a single
type, the View Retriever also constructs composite viewpoints, as Section 4.5 describes.
Section 4.6 discusses related work on dynamically generating multiple types of viewpoints
and representing viewpoints in a knowledge base.

Section 4.7 presents two evaluations of this work. The first is a subjective analysis of the
coverage of the current set of viewpoint types. The second is an objective evaluation that
compares the coherence of automatically generated viewpoints to the coherence of human-
generated viewpoints. The chapter concludes with a discussion of the limitations of the View
Retriever.

4.2 As-kind-of Viewpoints

An as-kind-of viewpoint describes a concept in terms of a more general concept. For example,
the viewpoint “photosynthesis as-kind-of production” consists of those facts that explain how
photosynthesis is a special kind of production, such as what its raw materials and products
are. Figure 4.2 shows a portion of this viewpoint as produced by the View Retriever.

As-kind-of viewpoints correspond to what Lakoff and Johnson call categorization [39].
In Metaphors We Live By, the authors show that an important way that people structure
concepts is by relating them to other concepts. For example, one can think of a conversation
as a journey. Categorization is a special case of this in which one relates a concept to a more
general concept, a concept of which it is a kind.

The specification of an as-kind-of viewpoint requires two parameters:

e the concept of interest, the concept that is the focus of the viewpoint, and

e the reference concept, a generalization of the concept of interest
(although not necessarily an immediate generalization).

For example, the viewpoint shown in Figure 4.2 has the following specification:

(Photosynthesis as-kind-of Production).
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Figure 4.2: The viewpoint of “photosynthesis as-kind-of production,” as generated from the

Botany Knowledge Base by the View Retriever.
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The View Retriever constructs as-kind-of viewpoints by first selecting relevant facts
about the concept of interest (i.e., triples of the form (concept-of-interest slot' value)). A
triple is considered relevant if some more general triple appears on the frame for the reference
concept. The triple (reference-concept slot’ value') is more general than
(concept-of-interest slot value) if any of the following conditions holds:

1. slot = slot' and value is a specialization of value'.

2. value = value', slot is a specialization of slot’, and slot emerges either at the concept
of interest or on the path between the reference concept and the concept of interest
(i.e., the domain of slot is some concept that is a specialization of the reference concept
and a generalization of the concept of interest).

3. walue is a specialization of value', slot is a specialization of slot’, and slot emerges on
the path between the reference concept and the concept of interest.

For example, the viewpoint shown in Figure 4.2 contains the fact that photosynthesis pro-
duces glucose, because it is known that production processes typically produce some sub-
stance and glucose is a special kind of substance. More specifically, the View Retriever
includes (Photosynthesis product Glucose) in the viewpoint “photosynthesis as-kind-of pro-
duction” because the knowledge base contains (Production product Substance), which is
more general than (Photosynthesis product Glucose) because Substance is a generalization
of Glucose [condition (1) above]. The View Retriever also includes in the viewpoint any
annotations found on selected triples.

After the View Retriever selects relevant facts involving the concept of interest, it adds
to the viewpoint the connections between these facts and the more general facts involving
the reference concept. For example, the viewpoint in Figure 4.2 includes not only the fact
that photosynthesis produces glucose, but also the facts that photosynthesis is a kind of
production, that production processes produce some substance(s), and that glucose is a kind
of substance. These connections provide the justification for the viewpoint’s contents and are
sometimes useful for application programs. For example, a tutoring system can use them to
relate new information in an explanation to the student’s background knowledge. Figure 4.3
gives the procedure the View Retriever uses to construct as-kind-of viewpoints.

By comparing the knowledge-base fragment shown in Figure 4.1 with the viewpoint
shown in Figure 4.2, one sees that constructing a viewpoint involves “filtering out” many
irrelevant facts. As-kind-of viewpoints provide two kinds of filtering. The first filter removes
redundant features, those that the concept of interest and the reference concept have in
common. For example, the View Retriever excludes from the viewpoint “photosynthesis
as-kind-of production” the fact that photosynthesis has a temporal duration because this
is true of any production event, and the viewpoint contains the fact that photosynthesis
is a kind of production. (If, on the other hand, Photosynthesis had a more specific value

!Only slots of semantic types 1 and 2 are appropriate for as-kind-of viewpoints, because these are the
slots that represent inheritable features.
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Given reference concept R and concept of interest C:

Ensure that R is a generalization of C.
For each slot S in (get-slots C R),
For each value V of (C 9),
For each slot-value pair (RS RV) on R that subsumes (S V),
Unless RS=S and RV=V and the annotations on (R RS RV)
do not differ from the annotations on (C S V),
include in the viewpoint:

(cs W

(R RS RV)

(V generalizations RV)

all annotations stored on (C S V)
annotations inferred for (C S V) that are
subsumed by some annotation on (R RS RV)

a P WN -

(get-slots C R) returns all slots that have stored values on R
and all slots that are specializations of such slots and that
originate on the path linking R and C. (A slot S
originates on a frame F iff the domain of S is F.)

A slot S is omitted from the result if S is single-entry
(it takes at most one value) and S has a specialization S’
such that the value of (C S) subsumes the value of (C S’).

Figure 4.3: Procedure the View Retriever uses to construct as-kind-of viewpoints.
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for duration than Production has, then the View Retriever would include duration in the
viewpoint.) The second filter removes irrelevant features, features of the concept of interest
that do not fit within the conceptual structure of the reference concept. For example,
although the knowledge base contains the information that photosynthesis converts light
energy into carbon bond energy, the View Retriever excludes this information because it
does not fit within the conceptual structure of production, as represented in the Botany
Knowledge Base. (That is, Production is not within the domain of slots input-energy-form
and output-energy-form.) The View Retriever does, however, include such information in
the viewpoint “photosynthesis as-kind-of energy transduction,” shown in Figure 4.4.

The central notion behind as-kind-of viewpoints is that one can emphasize different
aspects of a concept by differentiating it with respect to different generalizations. This,
of course, is not a novel idea; it has appeared in a variety of disciplines since the time of
Aristotle [4]. In the field of artificial intelligence, it appeared as early as 1977 as the basis
of KRL, one of the first frame-based representation languages [8]. More recently, McKeown
and Suthers have designed systems that automatically generate concept descriptions of this
sort [48, 49, 78].

The problem with as-kind-of viewpoints that the View Retriever generates (and with the
descriptions McKeown’s and Suthers’s systems generate, when applied to a large, multifunc-
tional knowledge base) is that, even though they focus on a single aspect of a concept, they
are nonetheless too unconstrained. They often mix several different kinds of information.
For example, the complete viewpoint “pine tree as-kind-of tree” includes facts about how a
pine tree looks different from a prototypical tree, how its internal structure is different, how
its development differs, how its physiology differs, etc.

As a solution, this research includes an additional, orthogonal method of structuring
concepts, one that the View Retriever can combine with the method for generating as-kind-
of viewpoints to further constrain their contents. The next section discusses this method
of generating viewpoints and how the View Retriever uses it to enhance the coherence of
as-kind-of viewpoints.

4.3 Viewpoints Constructed Along Basic Dimensions

Lakoff and Johnson say that people structure their concepts in two ways, by relating them

to other concepts (as with as-kind-of viewpoints) and according to basic dimensions of

experience [39]. Basic dimensions are general types of facts, such as facts about the structure,

function, or appearance of an object, or facts about the actors or steps of a process. Facts

within the same basic dimension convey similar kinds of information. The View Retriever

constructs viewpoints along the following basic dimensions for objects and processes:
Basic dimensions for objects:

e Structural, which includes the parts or substances that make up the object and
their relative sizes and numbers. It also includes the connections and spatial relations
among them, as interconnection relations. The structural dimension also includes
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properties of the object that suggest an unspecified part, such as moisture-content,
total-chromosome-number, and ovary-position.

Spatial-Superstructural, which includes the object(s) of which the object is a part,
the other sibling parts, and the connections and spatial relations among them.

Perceptual, which includes information regarding how people perceive (see, hear, etc.)
the object. This dimension includes the shape, symmetry, size, color, and temperature
of the object.

Functional, which includes what the object “does” (the processes in which it is an
actor). The functional dimension also includes properties of an object that are sug-
gestive of some unspecified process in which the object is involved, such as life-span
and metabolic-rate. The Active-Functional dimension is a subtype of the functional
dimension that includes only information about processes in which the object is an ac-
tive, rather than a passive, actor. (For example, the producer in a production process
is an active actor, but the location of the process is a passive actor.)

Temporal, which includes the temporal parts of an object (its stages or states). It
also includes, as interconnection relations, the temporal ordering constraints among
the stages or states.

Temporal-Superstructural, which includes the objects of which this object is a
stage or state, the other sibling stages/states, and their temporal ordering constraints.

Basic dimensions for processes:

Behavioral, which includes the types and roles of the actors in the process and the
changes that the process effects upon them. The behavioral dimension also includes
initial and final conditions of the process, the relative amounts/sizes of the actors, and
the forms of the actors.

Procedural, which includes the steps (subevents) of the process and (as interconnec-
tion relations) the temporal ordering constraints among the steps.

Event-Superstructural, which includes the process(es) of which the process is a step,
the other sibling steps, and the temporal ordering constraints among them.

Basic dimensions for both objects and processes:

Taxonomic, which includes the subcategories (specializations) of a category, the rela-
tive sizes of the subcategories, the criteria for the breakdown, and, as interconnection
relations, information about which subcategories are disjoint.

Taxonomic-Superstructural, which includes the generalization(s) of the given cat-
egory, other categories that share the same generalization(s), their relative sizes, and
disjointness relations among them.
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e Modulatory, which includes information about how one object or process affects
other objects or processes. This dimension includes causal relationships (e.g. causes,
enables, prevents, facilitates), which constitute the subtypes Causal-Agent and
Causal-Recipient, and influences between quantities [24] which constitute the sub-
types Influence-Agent and Influence-Recipient. The latter subtypes include in-
formation about the relative strengths of influences, the conditions under which they
hold, and their saturation points.

This set of basic dimensions is designed for domains concerned with physical objects
and processes. It is a compilation of knowledge types drawn from several sources, including
Lakoff and Johnson [39], instructional text analyses [74], coherence relations [2, 35] and
major knowledge-engineering efforts [40, 67]. The list must be extended to reflect the types
of knowledge found in other kinds of domains and to reflect types of knowledge specific to a
particular domain. For example, Lakoff and Johnson suggest two basic dimensions for human
artifacts in addition to those given above for objects: purposive, which includes information
about the human goals that the object was designed to satisfy, and motor-activity, which
includes information about how people use or interact with the object. For human activities,
they suggest the purpose dimension in addition to those given above for processes.

To construct viewpoints along basic dimensions, the View Retriever requires knowledge
of which slots in the knowledge base are within each dimension. Experience with the Botany
Knowledge Base indicates that this knowledge is easily represented directly in the knowledge
base, first because the distinctions the basic dimensions make also occur in the slot hierarchy,
and second, because it is usually appropriate for a slot to inherit the basic dimension of its
generalizations. In the Botany Knowledge Base, each frame that represents a slot has a
slot-dimension slot to indicate which basic dimension(s) the slot belongs to. If no value is
specified for slot-dimension, then the slot inherits the slot-dimension of more general slots.
Most slots belong to exactly one basic dimension, but this is not required by the View
Retriever.

Representing knowledge of basic dimensions directly in the knowledge base has two ad-
vantages. First, the set of basic dimensions is easily refined and extended. Second, the View
Retriever’s algorithm for constructing viewpoints is independent of the particular set of basic
dimensions used.

4.3.1 Requesting Viewpoints Along Basic Dimensions

The specification for a viewpoint constructed along a basic dimension has two required
parameters, the concept of interest and the name of one or more basic dimensions. For
example, a structural viewpoint of Seed has the following specification:

(Seed dimension structural)

As with as-kind-of viewpoints, the concept of interest can be given by name or by description,
and it can be a reified frame, an embedded unit, or a concept reified from the virtual
knowledge base by the Creator module of KASTL.
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Some basic dimensions have as optional parameters relation restrictions and value restric-
tions. When the specification includes a relation restriction, the View Retriever constructs
a viewpoint that includes only triples involving slots that are specializations of (or equal to)
the given relation. For example,

(Chloroplast dimension functional (relation-restriction producer))

specifies a viewpoint that includes only information about processes in which a chloroplast
is the producer. When the specification includes a value restriction, the View Retriever
constructs a viewpoint that includes only triples whose values are specializations of (or
equal to) the given concept. For example,

(Xylem dimension functional (value-restriction Transportation))

specifies a viewpoint that includes only information about transportation processes involving
the xylem (the conduit for water flow in a plant).

Another optional parameter is the partition-by criterion. Some concepts have multiple
viewpoints under a particular basic dimension. This occurs with basic dimensions that
include partitionings (i.e., the structural, temporal, procedural, and tazonomic dimensions).
For example, Plant has two predominant structural viewpoints: one divides plants into roots,
stems, leaves, etc., and the other divides plants into the symplast (the living tissues) and the
apoplast (the nonliving tissues). To indicate which viewpoint is needed, the user specifies the
criterion of the partitioning, in the same way that a user specifies the criterion of a dynamic
partitioning (see Chapter 3). For example, the following specification describes the latter
viewpoint:

(Plant dimension structural (partition-by health-state))

If a partitioning having that criterion is not explicitly represented in the knowledge base, then
the View Retriever calls on the Creator module of KASTL to create a new partitioning. The
View Retriever then returns a viewpoint consisting of the new partitioning. If a concept has
multiple partitionings under a requested dimension and the specification does not include
a partition-by criterion, then the View Retriever returns a viewpoint containing all the
partitionings.

4.3.2 Generating Viewpoints Along Basic Dimensions

The View Retriever constructs a viewpoint along a basic dimension first by retrieving facts
about the concept of interest that belong to the basic dimension. For example, to construct
a structural viewpoint of a plant seed, specified by (Seed dimension Structural), the View
Retriever first retrieves from the Seed frame the values of all slots that belong to the structural
dimension. A structural slot that appears on the Seed frame is has-parts, so the View
Retriever retrieves the following triples, using traditional frame-slot access methods:
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Figure 4.5: A structural viewpoint of Seed as generated from the Botany Knowledge Base
by the View Retriever.

e (Seed has-parts Seed-Coat),

e (Seed has-parts Embryo), and

o (Seed has-parts Endosperm).

The View Retriever also includes in the viewpoint the annotations that appear on selected
triples.

Next, the View Retriever selects interconnection relations for the specified basic dimen-
sion. For the structural dimension, interconnection relations are connected-to, contains,
surrounds, etc. The View Retriever looks for these sorts of relationships between the se-
lected parts of the seed: the seed coat, embryo, and endosperm. (The View Retriever finds
these relationships even if they are not represented directly on the Seed frame.) The View
Retriever finds the following triples:

e (Seed-Coat contains Embryo), and
e (Seed-Coat contains Endosperm).

The resulting viewpoint, shown in Figure 4.5, contains the information that the seed is made
up of a seed coat containing an embryo and an endosperm.
As another example, consider the viewpoint specified by the following:

((Water (composes Plant)) dimension Influence-Recipient)

This specification requests information regarding influences on the water that composes a
plant (a modulatory viewpoint). The concept of interest, “water that composes a plant,”
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Figure 4.6: A modulatory viewpoint of (Water (composes Plant)), as generated from the
Botany Knowledge Base by the View Retriever.

is given by description rather than by frame name, so the View Retriever first calls on the
Finder/Creator module to locate or reify the concept. In this example the concept happens
to be represented in the Botany Knowledge Base as an embedded unit located at the address
(Plant composed-of Water). (That is, information about “water that composes a plant” is
represented by value annotations on the value Water of slot composed-of on the Plant frame.)
The Finder returns the address of the embedded unit to the View Retriever and the View
Retriever proceeds to construct the viewpoint.

To construct the viewpoint, the View Retriever selects the features of “water that com-
poses a plant” that are within the influence-recipient basic dimension. The only slots within
the influence-recipient dimension that appear on the embedded unit for “water that com-
poses a plant” are positively-influenced-by and negatively-influenced-by. These slots do not
appear directly on the embedded unit itself. Rather, they appear as annotations on the
amount slot (see Figure 4.6). Although amount is not intrinsically a modulatory slot, the
View Retriever includes the triple ((Plant composed-of Water) amount Quantity) in the
viewpoint so that it can also include its annotations that carry modulatory information.
(This search for annotations within the specified basic dimension is restricted to the first
layer of annotations.) The resulting viewpoint, shown in Figure 4.6, contains the facts that
(roughly speaking) the amount of water in a plant is directly proportional to the plant’s
rate of water uptake and inversely proportional to the plant’s rate of transpiration. (This
example has no interconnection relations.)
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Figure 4.7 gives the procedure the View Retriever uses to construct viewpoints along
basic dimensions.

Combining Basic Dimensions with As-kind-of Viewpoints

As the previous section mentioned, basic dimensions can be combined with as-kind-of view-
points to enhance their coherence. To do so, the user requests an as-kind-of viewpoint as
before, except that instead of specifying a reference concept, he specifies a viewpoint of the
reference concept along some basic dimension(s). For example, to request a viewpoint of
photosynthesis as a kind of production, but one that includes only information about the
actors in photosynthesis (i.e., information within the behavioral basic dimension), the user
gives the following viewpoint specification:

(Photosynthesis as-kind-of (Production dimension Behavioral)

This is the viewpoint actually shown in Figure 4.2. The complete viewpoint of “photo-
synthesis as-kind-of production” additionally includes information from the procedural and
modulatory dimensions, such as the subevents of photosynthesis and what other processes it
affects. The viewpoint (Photosynthesis as-kind-of Energy-Transduction) shown in Figure 4.4
is likewise restricted to the behavioral dimension.

Related Work

Viewpoints created by the View Retriever along basic dimensions are similar to the perspec-
tives Suthers suggests for explanation generation [77, 78]. Suthers describes a perspective
as “an abstract characterization of the kind of knowledge provided by a class of models.”
Suthers’s set of perspectives appears to be a subset of the basic dimensions given here, al-
though he gives only their names: structural, functional, causal, constraint, and process.
Suthers uses perspectives to restrict the information selected for an explanation so as to
minimize the number of unfamiliar concepts. A concept is considered familiar if its relation
to a known concept lies within a chosen perspective.

Viewpoints constructed along basic dimensions are also similar to the domain perspectives
McCoy’s ROMPER uses to generate corrective responses to users’ misconceptions about
domain concepts [46, 47]. A domain perspective is a list of slots and their associated salience
values. A perspective acts as a filter on the attributes of a domain concept; only the values
of slots having the highest salience values, as prescribed by that perspective, are included in
the response.

ROMPER’s perspectives are unlike the basic dimensions given here in that perspectives
are specific to the domain of financial securities, but the basic dimensions are generally
applicable. The advantage of McCoy’s approach is that the slots within a perspective have
different degrees of relevance, rather than being simply relevant or irrelevant.

ROMPER does not include a type of perspective analogous to as-kind-of viewpoints. Be-
cause viewpoints that are tied to the generalization hierarchy (e.g., as-kind-of viewpoints) are
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Given concept of interest C and basic dimension D:
Initialize the list of values encountered, E, to nil.

For each slot S legal for C and in dimension D and not having
an overriding specialization:
For each value V of (C S):
Include (C S V) in the viewpoint.
Include in the viewpoint all annotations stored on (C S V).
Add V to E (the list of values encountered).

For each slot S legal for C and not in dimension D:
For each value V of (C S):
For each tuple annotation slot T legal for (C S V) and
within dimension D:
For each value AV of (C S V T), include in the viewpoint:

1. (Cs V)
2. (CSVTAV)
3. all annotations stored on (C S V T AV)

Include interconnections between encountered values:

If D is a superstructural dimension
(spatial-superstructural, temporal-superstructural,
event-superstructural, or taxonomic-superstructural),
For each value V encountered (for each value V in E):
For each slot S on which V was encountered,
For each value V2 of (V S-inverse), include in the viewpoint:
1. (V S-inverse V2)
2. all annotations stored on (V S-inverse V2)

If D is a substructural dimension
(spatial, temporal, procedural, or taxonomic),
For each value V encountered (for each value V in E):
For each slot S that is legal for V and that is defined
to be an interconnection slot for dimension D,
For each value V2 of (V S) that is in E (the list of
values encountered), include in the viewpoint
1. (Vs v2)
2. all annotations stored on (V S V2)

Figure 4.7: Procedure the View Retriever uses to construct viewpoints along basic dimen-
sions. Although this description assumes a single basic dimension in the viewpoint specifica-
tion, multiple dimensions can be specified. Optional relation restrictions, value restrictions,
and partition-by restrictions are omitted here.
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insufficient to characterize the breadth of viewpoints that people use, and because McCoy’s
method for generating domain perspectives (and the method given here for basic dimensions)
is at least as powerful as a method for generating as-kind-of viewpoints, McCoy rejects the
latter in favor of the former. The advantage of including a mechanism for generating as-kind-
of viewpoints is that they impose fewer demands on the knowledge engineer. The knowledge
engineer must explicitly represent the group of slots making up each perspective (and each
basic dimension), but the system generates as-kind-of viewpoints using only pre-existing
domain knowledge. For this reason, the View Retriever includes methods for generating
as-kind-of viewpoints. It also includes methods for generating as-having viewpoints, as the
next section describes.

4.4 As-having Viewpoints

An as-having viewpoint contains information about a concept that is relevant to some speci-

fied feature of the concept. For example, the viewpoint “seed coat as having no chlorophyll”

contains facts like “a seed coat is usually not green” and “a seed coat is not photosynthetic.”
The specification of an as-having viewpoint has the following form:

((concept of interest) as-having (slot) (value))

As with other types of viewpoints, the concept of interest can be given by name or by
description, and it can be a reified frame, an embedded unit, or a concept reified from
the virtual knowledge base by the Creator module of KASTL. The slot and walue in the
specification indicate the feature of interest, the feature to which facts in the viewpoint must
be relevant. For example, the viewpoint “seed coat as having no chlorophyll” is specified by

(Seed-Coat as-having percent-chlorophyll Zero)

If the feature of interest is not a typical characteristic of the concept of interest, then the
View Retriever calls on the Finder/Creator module to locate or reify a new specialization
of the concept of interest for which the feature is typical. For example, assume that a user
submits the following viewpoint specification:

(Botanical-Cell as-having producer-in Photosynthesis)

This specification requests information about botanical cells relevant to the fact that they
(sometimes) undergo photosynthesis. Because the feature of interest,
producer-in = Photosynthesis, is not true of most botanical cells, the View Retriever modifies
the concept of interest to be Photosynthetic-Cell, a specialization of Botanical-Cell for which
the feature is typical. This modification facility provides users more flexibility in requesting
as-having viewpoints. That is, users can specify the concept of interest abstractly if it is
clear from the rest of the viewpoint specification what concept is intended.

The ideal method for constructing as-having viewpoints is to use a theory of relevance
to determine what facts about the concept of interest are most relevant to the feature of
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interest. The View Retriever would compare each fact known about the concept of interest
to the feature of interest using a relevance measure, and it would include in the as-having
viewpoint only the facts judged most relevant. Unfortunately, a general, prescriptive mea-
sure of relevance is not yet available. (Hobbs’s coherence relations [35, 36] and Mann and
Thompson’s rhetorical predicates [45] characterize some of the ways in which one fact is rel-
evant to another, but most of these characterize discourse coherence rather than viewpoint
coherence. In addition, they are too ill-defined to be directly applied by the View Retriever.
Alterman’s coherence relations are restricted to relations between events or states [2, 3].)
Therefore, to select the facts that constitute an as-having viewpoint, the View Retriever de-
pends on stored knowledge of relevance. This knowledge takes the form of viewpoints stored
in the knowledge base. These viewpoints are either handcoded by the knowledge engineer
or computed and cached by the View Retriever.

To construct an as-having viewpoint, the View Retriever first looks for a stored as-having
viewpoint whose feature of interest is the same as (or more general than) the specified feature
of interest, but with a different concept of interest. For example, to construct the following
viewpoint:

(Squirrel as-having agent-in Seed-Dispersal)

the View Retriever first searches the knowledge base for a similar stored viewpoint, such as
one of the following:

e (Mammal as-having agent-in Seed-Dispersal),
e (Bird as-having agent-in Seed-Dispersal), or
e (Animal as-having agent-in Transportation).

Note that although the stored viewpoint’s feature of interest must be either the same as or
more general than the specified feature of interest, the stored viewpoint’s concept of interest
need not be related to the specified concept of interest (as with Squirrel and Bird).

If a similar viewpoint is found in the knowledge base, the View Retriever uses it to
determine which facts to include in the new viewpoint. For each feature in the stored
viewpoint, the View Retriever looks for a corresponding feature of the specified concept of
interest. The way this is done depends on the taxonomic relationship between the concepts
of interest of the two viewpoints.

If the stored viewpoint’s concept of interest is a generalization of the specified concept
of interest, then finding corresponding features involves finding features of the specified
concept of interest that specialize features in the stored viewpoint. For example, consider
constructing the viewpoint

(Squirrel as-having agent-in Seed-Dispersal)

using the stored viewpoint
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(Animal as-having agent-in Transportation).

If the stored viewpoint contains the fact that animals are usually larger than the things they
transport, then the View Retriever would include in the new viewpoint the fact that squirrels
are usually larger than the seeds they disperse.

If the concepts of interest of the two viewpoints are siblings, as with Squirrel and Bird,
then finding corresponding features is more difficult. It involves finding pairs of features that
share a common abstraction, such as (Bird mode-of-travel Flight) and
(Squirrel mode-of-travel Walking). This matching task is similar to the task of constructing
an analogy, given the target and base concepts and the relevant features of the base concept
[25].

If the View Retriever does not find a similar viewpoint in the knowledge base from which
to construct the requested viewpoint, then the View Retriever determines what other type
of viewpoint includes the feature of interest and returns that viewpoint. This involves deter-
mining which basic dimension includes the feature of interest and constructing a viewpoint
of the concept of interest along that basic dimension. For example, to construct

(Squirrel as-having agent-in Seed-Dispersal)

the View Retriever recognizes that the slot agent-in belongs to the functional basic dimension
(by retrieving the value of (agent-in slot-dimension), so it constructs instead the viewpoint

(Squirrel dimension Functional),

which includes information about other activities in which squirrels engage. This method of
constructing as-having viewpoints takes advantage of the inter-relevance of features within
the same basic dimension.

Figure 4.8 gives the procedure the View Retriever uses to construct as-having viewpoints.

4.5 Composite Viewpoints

In addition to constructing individual viewpoints as described above, the View Retriever
also constructs composite viewpoints. This involves more than simply concatenating the
contents of two individual viewpoints. Rather, it involves putting them into correspondence
and removing the portions that do not correspond.

The View Retriever constructs three types of composite viewpoints. The first two are
compare and contrast, wherein the View Retriever highlights the similarities or differences
between two concepts under a particular viewpoint. For example, the View Retriever can
compare a structural viewpoint of a root to a structural viewpoint of a stem, as shown in
Figure 4.9. To compare two viewpoints, the View Retriever retains only those features that
are common to both viewpoints or that share a common abstraction. For example, one
part of Root is Root-Intercellular-Space, and one part of Stem is Stem-Intercellular-Space, so
the View Retriever includes in the comparison the feature has-parts = Intercellular-Space.
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Given a concept of interest C and feature of interest Slot=Val:

If (C Slot Val) is not in the knowledge base,
find/create a specialization C’ of C for which Slot=Val and
use C’ as the concept of interest instead of C.

Look for a similar as-having viewpoint in the knowledge base.

If found, construct a new as-having viewpoint based on the
existing viewpoint.

Otherwise, construct an as-kind-of viewpoint (using C as the
concept of interest and the domain of Slot as the reference
concept) restricted to the basic dimensions under which Slot
is classified.

To find a similar as-having viewpoint in the knowledge base:
Find one having any concept of interest and having feature
of interest Slot’=Val’, where either

Slot’ = Slot and Val’ = Val,

Slot’ = Slot and Val’ subsumes Val,

Val’ = Val and Slot’ subsumes Slot, or
Slot’ subsumes Slot and Val’ subsumes Val.

B W NN =

To construct a new as-having viewpoint based on an existing viewpoint:

For each slot-value pair (S V) in the existing viewpoint,
For each common generalization G of the concepts of interest of
the new and existing viewpoints, if S is legal for G or
if S originates on some specialization of G,
For each maximally specific generalization S’ of S that is legal for G,
For each maximally specific value V’ of (G S’) that subsumes V,
For each specialization S’’ of slot S’ that is legal for G
(or that originates on the path linking G and C)
and that does not have an overriding specialization,
For each value V’’ of (C S’’) that V’ subsumes,
Include in the new viewpoint (C S’’ V’?).

Figure 4.8: Procedure the View Retriever uses to construct as-having viewpoints.
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Figure 4.9: Composite viewpoint that compares the structure of a root to the structure of a
stem, as generated from the Botany Knowledge Base by the View Retriever.

One part of Root that does not occur in Stem is Root-Hair, so the View Retriever excludes
that part from the comparison. Figure 4.10 gives the procedure the View Retriever uses to
construct comparison viewpoints. To contrast two viewpoints, the View Retriever retains
only the facts that appear in one viewpoint but not the other. Figure 4.11 gives the procedure
the View Retriever uses to construct contrast viewpoints. McCoy stresses the importance of
adhering to a single type of viewpoint when comparing or contrasting two concepts [47].
Constructing composite viewpoints involves finding the elements of two primitive view-
points that correspond. For comparisons, equality or similarity determines the correspon-
dence. For contrasts, inequality determines the correspondence. For the third type of com-
posite viewpoint, a relation (part-of, actor-in, etc.) determines the correspondence. In this
type of composite viewpoint, a group of entities from the first viewpoint all have the same
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Given two viewpoints, VP1 and VP2,
where VP1 has concept of interest Cl:

For each slot-value pair (S V) on viewpoint VP1,

;33 Look for identical matches between the viewpoints:
If V is a value of (VP2 S),
Then include in the viewpoint:
1. (C1 5 V)

2. a comparison of the annotations on (VP1 S V) and (VP2 S V)

Else ;; look for a different value on the same slot and generalize:
For each value V2 of (VP2 S) not on (VP1 S),

For each common generalization G of V and V2,

If G is a valid entry for S, include in the viewpoint:
1. (C1 s @)

2. a comparison of the annotations on (VP1 S V) and (VP2 S V2)

;33 look for the same (or a similar) value on a different slot:
For each slot S2 on VP2,

For each common generalization slot SG of S and S2,
If SG is a true slot, rather than a slot class,

If V is a value of (VP2 S2), include in the viewpoint:
1. (C1 sG V)
2.

a comparison of the annotations on (VP1 S V) and (VP2 S2 V)
Else for each value V2 of (VP2 S2),
For each common generalization G of V and V2,

If G is a valid entry for SG, include in the viewpoint:
1. (C1 sG G)

2. a comparison of the annotations on

(VP1 S V) and (VP2 S2 V2).

Figure 4.10: Procedure the View Retriever uses to construct comparison viewpoints.
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Given two viewpoints, VP1 and VP2:

For each slot S occurring on VP1,
For all values V of (VP1 §),
If V is a value of (VP2 S)

Then include in the viewpoint any annotations
on (VP1 S V) and (VP2 S V) that differ.

Else include in the viewpoint:
1. (C1 S V), where Cl is the concept of interest of VP1
2. any annotations stored on (VP1 S V)

Figure 4.11: Procedure the View Retriever uses to construct contrast viewpoints.

kind of relationship to entities from the second viewpoint. For example, the View Retriever
can put a structural viewpoint of an object (which describes the object’s parts) into cor-
respondence with a procedural viewpoint of an event (which describes the event’s steps or
subevents) along actor-in relations. This correspondence links each of the object’s parts to
the subevent(s) in which it is an actor of some kind. The resulting viewpoint describes the
roles that the object’s parts play in the subevents of the event. (Paris’s “process strategy”
generates similar descriptions of how the components of a device enable it to perform some
function [64, 65]. The View Retriever generates this and other kinds of composite viewpoints,
as described shortly.)
The specification for a composite viewpoint has one of the following forms:

e (composite (viewpointl) (viewpoint2) compare),
e (composite (viewpointl) (viewpoint2) contrast), or
e (composite (viewpointl) (viewpoint2) (slot-name)).

where viewpoint! and viewpoint2 are individual viewpoints (or specifications for them). For
the third type of composite viewpoint, slot-name is a relation that holds between the concepts
of interest of wiewpointl and viewpoint2. It specifies the correspondence to be established
between the viewpoints. The remainder of this section focuses on the third type of composite
viewpoint.

Consider again the composite viewpoint that puts a structural viewpoint of an object
into correspondence with a procedural viewpoint of an event along actor-in relations. This
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Figure 4.12: The composite viewpoint that describes the roles of the flower’s parts in the
subevents of angiosperm sexual reproduction. The View Retriever constructed this viewpoint
from the Botany Knowledge Base.

composite viewpoint, which describes the function of an object (and its parts) in an event
(and its subevents), is requested by the following specification:

(composite ({object) dimension structural) ({event) dimension procedural) actor-in)

For example, the viewpoint that describes the roles of a flower’s parts in the steps of an-
giosperm (flowering plant) sexual reproduction is specified as follows:

(composite (Flower dimension structural)
(Angiosperm-Sexual-Reproduction dimension procedural)
actor-in)

Figure 4.12 shows the contents of this viewpoint, as generated from the Botany Knowledge
Base by the View Retriever.

The View Retriever constructs this composite viewpoint by the following procedure.
First, it constructs the two individual viewpoints (the structural viewpoint of Flower and
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the procedural viewpoint of Angiosperm-Sezual-Reproduction). Then, it determines which of
the Flower parts in the structural viewpoint are related to Angiosperm-Sexual-Reproduction
or one of its subevents (as given in the procedural viewpoint) by an actor-in relation (or
some more specific relation, such as location-of ). The View Retriever omits from the com-
posite viewpoint those parts that are not actors in any subevent of Angiosperm-Sezual-
Reproduction. For example, Corolla (the flower’s petals) appears in the structural viewpoint
of Flower, but the View Retriever excludes it from the composite viewpoint because the
corolla does not participate in reproduction. Similarly, the View Retriever omits those
subevents of Angiosperm-Sexual-Reproduction that do not involve any of the parts in the
structural viewpoint of Flower, such as Fruit-Ripening.

Another example of the third type of composite viewpoint is one that describes the parts
of a plant ovary as related to the parts of the fruit of which the ovary is a developmental
stage. This viewpoint has the following specification:

(composite (Fruit dimension structural) (Ovary dimension structural) stages)

The composite viewpoint, shown in Figure 4.13 includes the parts of the fruit (the pericarp
and the seed), the parts of the ovary (the ovule and the ovarian wall), and the stage relations
between them, such as the facts that the ovule is a developmental stage of the seed and the
ovarian wall is a developmental stage of the pericarp.

Other examples involve two tazonomic viewpoints put into correspondence. For example,
living things participate in reproduction, so the View Retriever can put different special-
izations of Reproducing-Structure into correspondence with the different specializations of
Reproduction they engage in. Similarly, angiosperms have flowers, so the View Retriever can
put different specializations of Angiosperm into correspondence with different specializations
of Flower. Figure 4.14 gives the procedure the View Retriever uses to construct composite
viewpoints.

When constructing two individual viewpoints to be combined into a composite viewpoint,
the View Retriever can construct them so as to maximize the correspondence between them.
For example, to create the composite viewpoint shown in Figure 4.12 so as to maximize the
correspondence between the flower’s parts and the subevents of angiosperm sexual repro-
duction, the View Retriever can, upon request, create a structural viewpoint of Flower that
includes parts that are not explicitly represented in the knowledge base. Unlike the usual
viewpoint, the new structural viewpoint divides Flower into parts based on the criterion of
reproductive function, as in “all the parts of the flower involved in pollen grain development”
or “all the parts of the flower involved in double fertilization.” The View Retriever constructs
this new structural viewpoint by calling on the dynamic partitioning facility of the Creator
module of KASTL, described in Chapter 3.
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Figure 4.13: The composite viewpoint that describes the stage relations between the parts
of the fruit and the parts of the ovary. The View Retriever constructed this viewpoint from
the Botany Knowledge Base.
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Given
1. viewpoints VP1 and VP2, which have concepts of interest
Cl and C2, respectively, and which constitute partitionings
along slots S1 and S2, respectively, and
2. correspondence relation R:

Check that C1 is related to C2 by R (or some specialization of R, R’).
Include in the viewpoint (C1 R C2) [or (C1 R’ C2)].

For each value V of (VP1 S1),
If V is related to some value V2 of (VP2 S2) by R or
some specialization of R,
Include in the viewpoint (C1 S1 V)
For each V2 in (VP2 S2) such that (V R’ V2),
where R’ is a specialization of R (or is equal to R),
include in the viewpoint:
1. (Vv R’ V2)
2. (C2 52 V2)

Record interconnection relations among retained values:

For each value V of (VP1 S1),
If (C1 S1 V) has been included in the composite viewpoint,
For each annotation (AS AV) stored on (VP1 S1 V),
If (C2 S2 AV) has been included in the viewpoint,
Then include in the viewpoint (V AS AV).

Figure 4.14: Procedure the View Retriever uses to construct composite viewpoints.
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4.6 Related Work

This section discusses related work in two areas: dynamically generating multiple types of
viewpoints, and representing viewpoints in a knowledge base.

4.6.1 Generating Viewpoints

This chapter’s introduction mentioned several systems that use viewpoints to support a par-
ticular application. Previous sections have already discussed those that generate viewpoints
of one of the three major types. This section discusses two systems, TEXT and KI, that are
not limited to viewpoints of a single type.

The TEXT System

McKeown’s TEXT is a system that answers questions about the structure of a database [48].
TEXT treats the database schema as a source of domain knowledge and uses it to generate
definitions, descriptions, and comparisons of domain concepts.

To determine the content of a response to a question, TEXT first constructs a relevant
knowledge pool, all the information that is potentially relevant. TEXT then selects proposi-
tions from the relevant knowledge pool one at a time by following a schema of common text
patterns.

McKeown recognizes that to convey information about several properties of an entity, the
system should not generate an arbitrary list of properties. To ensure coherence, the system
should group together “properties that are in some way related to each other.” Stated in the
terminology used here, coherence requires organizing information according to viewpoints.

In an effort to structure knowledge according to viewpoints, TEXT uses the following
heuristic (called a focus constraint) for selecting the next proposition from the relevant
knowledge pool: to decide what to say next about some entity, choose the proposition with
the greatest number of links to previously selected propositions. Links between propositions
can be explicit (as when two propositions mention the same entity) or implicit (as when an
entity mentioned by one proposition is a specialization or part of an entity mentioned by
another proposition). The result is a sequence of propositions in which each proposition is
related to some preceding proposition.

Although the above heuristic increases the coherence of the responses TEXT generates,
selecting propositions one at a time is not an optimal strategy for achieving viewpoint co-
herence. Because viewpoints often overlap, TEXT may unknowingly progress from one
viewpoint to another related viewpoint without completing the first viewpoint. This results
in fragmented or incomplete viewpoints, which degrade the coherence of the response. Using
complete viewpoints, rather than atomic propositions, as the building blocks of a response
yields greater coherence.
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The KI System

Murray’s Kl is a tool for assisting knowledge enterers in making extensions to a large knowl-
edge base [54, 57]. Given a proposed knowledge-base extension, KI identifies how the new
information violates or conforms to expectations arising from the existing knowledge.

KI uses wiews to constrain the search for consequences of new information by applying
inference methods to only the knowledge within the selected view(s). Murray characterizes
views as sets of propositions that interact in some significant way and should therefore be
considered together. Some of KI's views are analogous to as-kind-of viewpoints (e.g., Qua
Container and Qua Tangible Object). Other are analogous to as-having viewpoints (e.g., Qua
Food Source, Qua Product of Reproduction, Qua Component, and Qua Developing Object).

Abstract views (view types) are defined by semantic network templates, each represented
as a set of paths emanating from a root node. For example, Figure 4.15A shows the view type
Qua Container. This view type identifies the portion of the knowledge base surrounding a
concept that is relevant to its function as a container [56]. KI generates an instantiated view
by applying a view type to a domain concept. This involves binding the domain concept to
the root node of the view type and instantiating each path of the view type with a portion
of the knowledge base surrounding the domain concept. For example, Figure 4.15B shows
the result of applying the Qua Container view type to the concept Leaf-Epidermis. This
view identifies the portion of the knowledge base that represents the leaf epidermis in its role
as a container (of leaf mesophyll). For example, it includes the fact that leaf transpiration
transports water vapor from the leaf mesophyll, contained in the leaf epidermis, to the
atmosphere outside the leaf.

This research extends KI's ability to dynamically generate viewpoints. Although KI's
mechanism for generating views is general-purpose, the set of view types Murray provides
is quite limited. They are not intended to provide broad coverage, and many of them are
specific to the domain of botany. An emphasis of this work has been to provide a fairly
complete set of viewpoint types useful in all physical domains.

4.6.2 Representing Viewpoints

Although the knowledge base from which a viewpoint is generated contains all of the facts
the viewpoint comprises, representing the boundaries of the viewpoint itself in the knowl-
edge base is also useful. This allows caching of commonly used viewpoints, and it provides
a means for hand-coding viewpoints that are specific to a particular task or domain. Fur-
thermore, storing a viewpoint in the knowledge base allows assertions about the viewpoint
to be represented, such as the tasks for which it is likely to be useful or whether a user is
expected to be familiar with its contents.

Several researchers have proposed suitable approaches for representing viewpoints within
a knowledge base. One of the earliest formalisms for representing viewpoints appeared in
the KRL representation language [8]. In KRL, the knowledge engineer describes concepts
by comparing them to other, more general concepts. Thus, the KRL formalism is limited to
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Figure 4.15: (A) View type Qua Container identifies the portion of the knowledge base
relevant when considering a concept as a container. The shaded node designates the root
node. (B) The view Leaf-Epidermis Qua Container is the result of applying Qua Container
to Leaf-Epidermais. It consists of the portion of the knowledge base that represents the leaf

epidermis in its role as a container of leaf mesophyll.
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representing as-kind-of viewpoints. KODIAK provides a similar construct [83].

Hendrix later proposed a formalism for partitioning semantic networks into net spaces
[33]. Hendrix used net spaces to delimit the scope of quantification, to encode alternate
worlds and hypothetical situations, and to delimit levels of detail. Grosz extended Hendrix’s
technique to allow a semantic network to be partitioned in more than one way and to allow
net spaces to overlap. This extension makes net spaces suitable for representing “alternate
views” of concepts [28], although it is not clear whether the representation allows assertions
to be made about each alternate view.

The CycL representation language allows different frames to represent the multiple models
of a concept, where each model represents a different aspect (viewpoint) of a single object [40].
The CycL approach of reifying viewpoints as first-class objects allows the knowledge engineer
to represent multiple models and to represent assertions about them. Sowa [73] and Crawford
[19] provide similar facilities for representing viewpoints (which they call perspectives and
views).

Guha presents the most general approach [30, 7, 31]. In his formalism, any group of
related assertions can be represented explicitly as a unit, called a context (or microtheory).
Each context has an associated frame that contains the list of assertions within that con-
text as well as assertions about the context (e.g., what assumptions the knowledge engineer
made when creating it). Guha presents several uses for contexts, including representing hy-
pothetical situations, representing the same phenomenon using different primitives, different
simplifying assumptions, or different levels of detail, and representing the focus of a natural
language utterance or problem-solving task. He also suggests using contexts to represent
different perspectives. Although Guha’s notion of a perspective (a description of an event
slanted toward one of its actors) is more restrictive than our notion of a viewpoint, his for-
malism is nonetheless suitable for representing viewpoints. An important contribution of
Guha’s work is his lifting azioms for pulling together information from contexts that use
different primitives or different simplifying assumptions.

The representation of viewpoints used in this project is similar to CycL’s treatment of
multiple models. In addition to frames that represent concepts and slots, the knowledge
base also contains viewpoint frames. Assertions that constitute a viewpoint are stored on
a viewpoint frame in the same notation used to represent assertions on concept frames.
Concept frames are linked to viewpoint frames via the slot has-viewpoints and its inverse
viewpoint-of . The type of viewpoint that a viewpoint frame represents is indicated by
slots as-kind-of, as-having, basic-dimensions, and (for composite viewpoints) correspondence-
type and correspondence-with. Figure 4.16 shows the frame that represents the structural
viewpoint of a seed. (The same viewpoint is shown graphically in Figure 4.5.)

The main difference between the representation of viewpoints used in this project and
CycL’s representation of multiple models is the use of value annotations. In the represen-
tation used here, triples in a viewpoint that do not directly involve the concept of interest
of the viewpoint are stored as value annotations on triples that do involve the concept of
interest. For example, in Figure 4.16, the contains relationships between the parts of the
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Viewpoint4l

instance-of: Viewpoint
viewpoint-of: Seed
basic-dimensions: Structural

has- parts: Seed-Coat Embryo Endosperm

Seed-Coat
contains: Embryo Endosperm

Endosperm

contained-in :  Seed-Coat
Embryo

contained-in :  Seed-Coat
dot-dimension: Structural

Figure 4.16: The frame that represents the structural viewpoint of a seed. The same view-
point is shown graphically in Figure 4.5.
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seed are represented by value annotations on the triples ( Viewpoint41 has-parts Seed-Coat),
(Viewpoint41 has-parts Embryo), and (Viewpointf1 has-parts Endosperm). Using value an-
notations allows all the assertions that constitute the viewpoint to be localized on a single
frame.

A disadvantage of this method of representing viewpoints is that it introduces redundancy
into the knowledge base. In addition to appearing on concept frames, assertions also appear
on (potentially several) viewpoint frames. Redundancy is problematic because it wastes space
and because it may lead to inconsistencies in the knowledge base. To avoid inconsistencies,
cached viewpoints must be discarded or recomputed following any modification of the concept
frames from which those viewpoints were constructed.

Another disadvantage of this method is that, although determining which assertions are in
a given viewpoint is straightforward, determining which viewpoints contain a given assertion
requires examining every viewpoint frame that might contain it. One solution to this problem
is to annotate each assertion in the knowledge base to indicate the viewpoints containing it,
if any. Such annotations would also make avoiding inconsistencies more efficient. When an
assertion is modified, only the viewpoints containing it must be discarded or recomputed.

4.7 Evaluation

This section presents two evaluations of the work on generating viewpoints. The first is
a subjective analysis of the completeness of the set of viewpoint types. The second is an
experiment to assess the quality of the viewpoints the View Retriever generates.

4.7.1 Coverage of Viewpoint Types

The purpose of the first evaluation was to assess the degree to which the viewpoint types
developed in this research cover the space of viewpoints that people use and to guide fur-
ther refinements and extensions of the framework of viewpoint types. Recall that the current
framework consists of three basic types of viewpoints (as-kind-of, as-having, and basic dimen-
stons) and three composite types (compare, contrast, and correspondence along a relation).
The basic dimensions comprise several subtypes, given in Section 4.3. Figure 4.17 summa-
rizes the current framework with the grammar of the viewpoint specification language.

The first evaluation consists of a subjective analysis of an entire chapter on plant physi-
ology from a college-level biology textbook [20]. The content of each paragraph was charac-
terized, as much as possible, according to the types of viewpoints it contained. The analysis
considered only portions of the text containing fundamental domain knowledge. In par-
ticular, purely rhetorical text (figure references, reminders, organizational aids, etc.) was
omitted, as were illustrative examples.

Of the text that was considered, roughly 85% was characterized as composing a type
of viewpoint that the current framework includes. The remaining 15% of the text was not
characterized for a variety of reasons. Some of the uncharacterized text includes
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vi ewspeci fication ::=  viewpoint-name |
(concept DI MENSI ON di nensi ons ) |
( concept AS-KIND OF viewspecification ) |

( concept AS-HAVI NG sl ot-name val ue ) |

( COwPCsI TE vi ew speci fication view specification
correspondence-type )

di mensi ons = vi ew di mensi on |
vi ewdi mensi on di nensi ons

viewdinmension ::= PERCEPTUAL |

FUNCTI ONAL  {( VALUE- RESTRI CTI ON process )}
{( RELATI ON- RESTRI CTI ON sl ot -nane )} |

ACTI VE- FUNCTI ONAL {( VALUE- RESTRI CTI ON process )}
{( RELATI ON- RESTRI CTI ON sl ot-nane )} |

TAXONOM C ¢ ( PARTI TION-BY criterion )} |
STRUCTURAL  {( PARTITION-BY criterion )} |
TEMPORAL {( PARTITION-BY criterion )} |
PROCEDURAL  {( PARTITION-BY criterion )}
TAXONOM G- SUPERSTRUCTURAL
SPATI AL- SUPERSTRUCTURAL
TEMPORAL - SUPERSTRUCTURAL
EVENT- SUPERSTRUCTURAL
BEHAVI ORAL  {( VALUE- RESTRI CTI ON obj ect )}

{( RELATI ON- RESTRI CTI ON sl ot - nane )}

nodul at ory

nodul at ory e CAUSAL - AGENT |
| NFLUENCE- AGENT |
CAUSAL- RECI PI ENT |
| NFLUENCE- RECI PI ENT

criterion 1= slot-nane | sl ot-path
sl ot-path c:=  ( slots value)
slots ::=  slot-name slots |
sl ot - nane
correspondence-type ::= COMPARE |  CONTRAST | sl ot - nanme
val ue **=  concept | const ant
obj ect 1:=  concept
process 1= concept
concept 2= frame-name |  enbedded- unit-address

Figure 4.17: The grammar for the viewpoint specification language, the input language for
the View Retriever. The grammar shown here assumes that the Finder and Creator modules
of KASTL have already replaced concept descriptions with frame names.
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information about scientific method (experiments, hypotheses, theories, etc.) rather than
botanical objects and processes. The basic dimensions do not currently characterize this
kind of information, but they can be extended to do so. Other passages seem to be included
as rhetorical devices (e.g., as evidence of a preceding statement, to relate the discussion to
upcoming material, or to correct misconceptions the reader might have). Other passages
discuss how a property of some object prevents or enables some process, as in “Because
the diameter of the vessels is very small, gas bubbles do not form.” The modulatory basic
dimension can be easily extended to include this kind of information. One of the uncharac-
terized passages defines a property (“adventitious”) rather than an object or a process. Two
passages reflect a more sophisticated contrast technique than the View Retriever possesses:
one assesses the degree of difference between two objects, rather than simply listing the
differences, and the other gives an explanation of the differences [“An animal requires less
water (than a plant does) because ...”]. Other passages were not characterized for reasons
that are still not fully understood.

The analysis suggests that most explanations consist of several viewpoints used in concert.
(The average was 5.4 viewpoints per paragraph.) For example, the following paragraph

Stems hold the photosynthetic structures — the leaves — up to the light, conduct
water to the photosynthetic cells, and transport sugars from them. The outer
surface of a green stem is made up of epidermal cells. The bulk of the stem is
ground tissue, which may be divided into an outer cylinder (the cortex) and an
inner core (the pith). The ground tissue is largely composed of parenchyma cells
but also may contain fibers and sclereids.?

consists of a functional viewpoint of Stem, followed by a structural viewpoint of Stem and
a structural viewpoint of Ground-Tissue. An important area for future work is identifying
prevalent combinations of viewpoints.

Although the results of this analysis are encouraging, they cannot be taken as conclusive
evidence of the coverage of the current set of viewpoint types. One reason for this is that
the analysis is subjective. A more objective analysis requires an external judge not famil-
iar with the characterization of viewpoints used here. Another reason is that the analysis
is necessarily speculative. Identifying viewpoints in the text requires speculating as to the
form of the author’s knowledge and the plan used to generate the text. This is a difficult
task given only the end product and no knowledge of what the author had in mind. Fur-
thermore, authors often omit information or convey it implicitly, so the viewpoints that a
text comprises are often incomplete. Partial viewpoints are more difficult to recognize than
complete viewpoints.

Despite its limitations, however, the analysis indicates that the framework of viewpoint
types developed here makes appropriate distinctions, and the uncharacterized passages sug-
gest important areas for extension and refinement of the current set of viewpoint types.

2 Invitation to Biology, H. Curtis and N. Barnes, Worth Publishers, NY, 1981, p. 309.
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4.7.2 Coherence of Viewpoints

The purpose of the second evaluation of this work was to measure the quality of viewpoints
the View Retriever generates, as compared to the quality of viewpoints found in human-
generated text.

For each of 12 preselected concepts in botany (selected because they are well represented
in the Botany Knowledge Base), sets of facts were drawn from 3 sources:

e the View Retriever applied to the Botany Knowledge Base, as provided by the domain
expert, and

e a college-level botany textbook [68],

o facts selected randomly from a particular frame in the Botany Knowledge Base, using
a random number generator.

The viewpoints ranged in size from 3 to 11 facts. For each concept, textbook passages
and random sets of facts were chosen to be roughly the same size as the View Retriever’s
viewpoint of that concept. The number of viewpoints constructed was 13, the number of
textbook passages was 17, and the number of random collections of facts was 23.

Each group of facts (including the textbook passages) was translated manually into “sim-
ple English” to normalize presentation style. For example, one of the viewpoints selected
was the viewpoint shown in Figure 4.12. This viewpoint was rendered in English as follows:

The flower is the location of angiosperm sexual reproduction. The two main
parts of the flower that are involved in reproduction are the androecium and the
gynoecium. (The androecium surrounds the gynoecium.) The gynoecium is the
location of embryo sac formation, and the androecium is the location of pollen
grain formation. The androecium is the source of the pollen grain transfer, and
the gynoecium is the destination. At the gynoecium, pollen grain germination
and double fertilization occur.

The textbook passage selected for the same concept was the following:

Most flowers contain two sets of sterile appendages, the sepals and petals, which
are attached to the receptacle below the fertile parts of the flower, the stamens
and carpels. The sepals occur below the petals, and the stamens below the
carpels. Collectively, the sepals form the calyx and the petals the corolla. To-
gether, the calyx and corolla constitute the perianth (”around the flower”).

This passage was simplified as follows:

Most flowers contain two sets of sterile appendages, the sepals and petals. The
sepals and petals are attached to the receptacle below the stamens and carpels.
The stamens and carpels are the fertile parts of the flower. The sepals are below
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the petals, and the stamens below the carpels. Collectively, the sepals form the
calyx and the petals the corolla. Together, the calyx and corolla constitute the
perianth.

The random collection of facts selected from the Flower frame in the Botany Knowledge
Base consisted of the following triples:

((FLOWER
(FLOWER
(FLOWER
(FLOWER
(FLOWER
(FLOWER
(FLOWER
(FLOWER
(FLOWER
(FLOWER

FLORAL-SYMMETRY SYMMETRY-VALUE)

ACQUIRER-IN ACQUISITION)

PARTS PLANT-GROUND)

LOCATION-OF METABOLIC-REACTION)

PARTS PERIANTH)

DEGENERATED-BY DEGENERATION)

DEVELOPEE-IN FLOWER-DEVELOPMENT)
METABOLIC-RATE QUANTITY)

LOCATION-OF ANGIOSPERM-SEXUAL-REPRODUCTION)
METABOLIZER-IN METABOLIC-REACTION))

This collection of facts was rendered in English as follows:

Flowers are the site of angiosperm sexual reproduction and metabolic reactions.
They acquire materials, develop, metabolize, and degenerate. Flowers require
nutrients. Two parts of the flower are the ground tissue and the perianth. Flowers
tend to have symmetry.

Ten subjects (senior undergraduates and graduate students from the Botany and Biology
Departments of the University of Texas at Austin) judged the coherence of passages from

each source.

(Each subject received 6 textbook passages, 6 random collections of facts,

and 12 viewpoints generated by the View Retriever.) Subjects were given the following

instructions:

Each of the following pages contains a brief passage of text along with its subject.
Please judge the coherence of the passage on a scale of 1 to 5. A passage should
be scored “1” if it seems no more coherent than a randomly selected group of
facts on the subject. A passage should be scored “5” if it is as coherent as a
passage of comparable length on the subject from a good textbook.

Limit your consideration to the contents of each passage, and ignore issues of
organization and rhetoric (such as writing style, wording, and diction). If you
feel that the presentation of the material is poor, give the passage the same score
that you would give a passage containing the same information but organized
and presented in a better fashion.

Table 4.1 summarizes the subjects’ responses. Statistical analysis (using a T-test with
0.95 level of confidence) yields the following results:
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Coherence

Source Mean ‘ Standard Deviation
(1) Textbook Viewpoints 4.23 0.56
(2) View Retriever’s Viewpoints | 3.76 0.74
(3) Degraded Viewpoints 2.86 0.94
(4) Random Collections of Facts | 2.62 0.86

Table 4.1: Ten judges rated the coherence of sets of facts from four sources (1=incoherent;
b=coherent). A statistical analysis using the T-test with 0.95 level of confidence shows no
significant difference in coherence between sources (1) and (2) or between sources (3) and
(4). There is a significant difference between all other pairs.

e The mean coherence of viewpoints from textbooks, averaged across subjects, did not
differ significantly from the mean coherence of viewpoints the View Retriever generated.

e The mean coherence of generated viewpoints did differ significantly from the mean
coherence of random collections of facts drawn from the same frame.

A further study gives additional evidence that the View Retriever generates coherent
viewpoints. Along with passages from the three sources described above, the subjects were
given passages from a fourth source: viewpoints constructed by the View Retriever and then
degraded by replacing some of their facts with randomly selected facts on the same topic.
Twenty-eight such degraded viewpoints were constructed, each with between one and seven
facts replaced. Of the twenty-eight, each subject received six. Table 4.1 shows the mean
coherence score of the degraded viewpoints. Statistical analysis shows a significant difference
in the mean coherence of pure viewpoints and degraded viewpoints.

4.8 Summary and Limitations

To generate coherent explanations of domain knowledge, question-answering and advisory
systems must select, from all of the available knowledge, collections of facts that are relevant
to one another. One way to select coherent portions of knowledge is to access viewpoints of
concepts, collections of facts that describe a concept from a particular perspective. Different
viewpoints provide different presentations of domain knowledge, each appropriate for differ-
ent users, different system goals, and different dialogue contexts. Accessing the knowledge
base at the level of viewpoints allows an explanation generator to concentrate on issues of
discourse management, and it facilitates portability [75].

In addition to their utility for explanation generation, viewpoints are also important for a
variety of other applications, including natural language processing, compositional modeling,
problem solving, default reasoning, and learning. Although viewpoints are crucial for a
variety of tasks, existing methods for dynamically generating viewpoints from a knowledge
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base are limited. This research provides general methods for generating viewpoints. In
particular, this work provides

e a framework of viewpoint types that are independent of any domain and task, and
e methods for generating viewpoints of each type, either singly or in combinations.

The current framework of viewpoint types consists of as-kind-of viewpoints, viewpoints
constructed along basic dimensions, and as-having viewpoints. As-kind-of viewpoints de-
scribe a concept by relating it to a more general concept. The View Retriever constructs
as-kind-of viewpoints by first selecting relevant features of the concept of interest (features
subsumed by some feature of the more general concept), then adding the connections between
these features and the more general features. These connections provide the justification for
the viewpoint’s contents.

As-kind-of viewpoints provide two kinds of filtering. The first filter removes redundant
features, those that the concept of interest and the more general concept have in common.
The second filter removes irrelevant features, features of the concept of interest that do not
fit within the conceptual structure of the more general concept.

The second type of viewpoint is viewpoints constructed along basic dimensions. Basic
dimensions are general types of facts, such as facts about an object’s structure, function,
or appearance, or facts about a process’s actors or steps. Facts within the same basic
dimension convey similar kinds of information. Basic dimensions are especially useful for
providing added focus to as-kind-of viewpoints.

The set of basic dimensions given in Section 4.3 provides broad coverage for domains
concerned with physical objects and processes. The list must be extended to reflect the kinds
of knowledge found in other domains. Because knowledge of basic dimensions is represented
declaratively in the knowledge base, however, the View Retriever easily accommodates any
set of basic dimensions.

As-having viewpoints include features about the concept of interest that are relevant to
a user-specified feature of the concept (the feature of interest). Ideally, the View Retriever
would construct as-having viewpoints by using a theory of relevance. Unfortunately, a gen-
eral, prescriptive measure of relevance is not yet available. Therefore, the View Retriever
depends on knowledge of relevance stored in the knowledge base in the form of cached view-
points. The View Retriever looks for a cached as-having viewpoint similar to the requested
viewpoint and uses this viewpoint to determine which facts to include in the new viewpoint.

If the View Retriever does not find a similar viewpoint, then the View Retriever de-
termines what other type of viewpoint includes the feature of interest and returns that
viewpoint. This method takes advantage of the inter-relevance of features within the same
basic dimension.

In addition to constructing individual viewpoints, the View Retriever also constructs
composite viewpoints. This involves more than simply concatenating the contents of two
individual viewpoints. Rather, it involves putting them into correspondence and removing
the portions that do not correspond. The View Retriever constructs three types of composite
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viewpoints. The first two are compare and contrast, wherein the View Retriever highlights
the similarities or differences between two concepts under a particular viewpoint. In the third
type of composite viewpoint, correspondence is determined by a knowledge-base relation,
such as part-of or actor-in.

A user or application program specifies a viewpoint by indicating the type of viewpoint
required and the concept of interest. Figure 4.17 shows the grammar for the viewpoint
specification language. This specification language allows the concept of interest to be a
concept represented either by a frame or by an embedded unit. Furthermore, the concept of
interest can be specified by description or by name, and it can be a concept in the actual or
virtual knowledge base. For example, in the following viewpoint specification

((Water (composes Plant)) dimension Influence-Recipient)

the concept of interest (“the water that composes a plant”) is given by description rather
than by name, and that concept is represented in the knowledge base by an embedded
unit rather than by an explicit frame. (Figure 4.6 shows the viewpoint that the View
Retriever constructs given this specification.) The Finder and Creator modules of KASTL
replace concept descriptions in viewpoint specifications with frame names (or embedded unit
addresses) as a preprocessing step, using the methods described in Chapter 3.

This work includes two evaluations of the methods developed for generating viewpoints.
The first is an analysis to assess the completeness of the current set of viewpoint types and to
guide further refinements and extensions. Although the analysis is subjective and speculative,
its results suggest that the framework of viewpoint types developed here provides broad
coverage for physical domains such as botany. Limited coverage is the major limitation of
past work on generating viewpoints [46, 47, 54, 57, 77, 78, 48, 49]. The analysis also suggests
important directions for future work. For example, the textbook analysis reveals that most
explanations consist of several viewpoints used in concert. Although the View Retriever
can construct composite viewpoints, an important area for future work is identifying which
combinations are most useful.

The second evaluation of this work assesses the quality of the viewpoints the View Re-
triever generates. Ten independent judges rated the content coherence of both machine-
generated viewpoints and viewpoints taken from a textbook. The results of this evaluation
indicate that viewpoints the View Retriever generates are comparable in coherence to human-
generated viewpoints.

One limitation of the View Retriever is that it has no knowledge of which viewpoint(s)
of a given concept are the most significant or of which facts within a particular viewpoint
are most important. A more sophisticated View Retriever would assist users in requesting
salient viewpoints and provide “viewpoint highlighting” to call attention to facts that are
especially relevant.

A second limitation of this work is that, although the View Retriever provides general
methods for accessing viewpoints, it does not prescribe how to select the viewpoint most
appropriate for a particular task. Although this work provides a task independent language
for describing viewpoints and task independent methods for generating viewpoints, viewpoint
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selection requires task specific heuristics. Many of the systems described in Section 4.1.4
include such heuristics. The next chapter discusses early work on heuristics for selecting the
most appropriate viewpoint for explanation generation.

A third limitation of this work is the lack of evidence as to the utility of the View
Retriever for application programs. Although the utility of viewpoints for applications is
apparent, whether a system can benefit from the services of the View Retriever depends on
whether the View Retriever generates the types of viewpoints needed. The results of the text
analysis described in Section 4.7.1 suggests that the View Retriever is based on a framework
of viewpoint types that makes appropriate distinctions, but conclusive evidence of the utility
of the View Retriever requires designing and developing application programs that use the
View Retriever to access viewpoints. The next chapter describes initial efforts and plans for
future work in this direction.
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Chapter 5

Summary and Future Work

The plain fact is that there are no conclusions. Sir James Jeans

5.1 Summary

The goal of this research is to develop methods for representing and accessing knowledge to
support multiple tasks. The specific goals of the research are threefold:

e to provide an expressive and convenient language for representing multifunctional
knowledge,

e to insulate users of the knowledge base from the effects of (sometimes arbitrary)
decisions of knowledge representation, and

e to provide access to coherent portions of knowledge about a given concept (viewpoints).

5.1.1 Multifunctional Knowledge Representation

The motivations for developing a new representation language were, first, the need for more
expressive power than existing frame-based languages provide and, second, the need for
constructs that enable convenient representation of common kinds of assertions. These
goals reflect the point of view that it is preferable for a representation language to be more
convenient for people to use, even if it means that it is less convenient for computer systems
to use.

Chapter 2 presents KM, an expressive, frame-based language for representing multifunc-
tional knowledge. KM includes three major extensions that collectively distinguish it from
traditional languages. These are constructs for

e representing quantified assertions,

e representing both definitional and nondefinitional statements, and
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e representing information contextually.

The first extension to KM allows quantified assertions to be represented with the same
ease as ground assertions, as simple (frame slot value) triples. This is accomplished by over-
loading slots (in the same sense that operators of a programming language are sometimes
overloaded) with different semantics, depending on the frames and values that a slot relates.
Different combinations of categories and noncategory instances give rise to different quan-
tificational patterns. Slots that are overloaded in the same way (and that share the same
semantic mapping) are grouped into equivalence classes called semantic types. When the
semantic type of each slot is explicitly represented, a system can automatically determine
the semantics of a particular triple. Slot overloading makes knowledge representation more
convenient than with conventional languages, and it allows the representation of several
different forms of quantified assertions.

The second extension of KM, semantic annotations, provides greater expressiveness by
providing constructs for representing both the definitional and assertional components of a
description. Definitions are represented using semantic annotations that distinguish between
definitionally necessary features and definitionally sufficient features. This distinction allows
concepts having partial definitions to be represented. Nondefinitional assertions are also
represented using semantic annotations (likelihood, necessity, cue-validity, and uniqueness).
By attaching probabilities to these semantic annotations to represent degrees of belief, KM
accommodates both defeasible and nondefeasible assertions as well as assertions of graded
defeasibility.

The third extension of KM is value annotations for representing information contextually.
Although value annotations do not add expressive power to the language, they have several
advantages:

e they make knowledge representation much more convenient,
e they do not require the use of a rule or constraint language,

e information represented with value annotations is just as accessible
as the rest of the information in the knowledge base, and

e the resulting knowledge base is easier to inspect and use, because
only the most important domain concepts are reified as frames.

5.1.2 A Content Addressable, Virtual Knowledge Base

The second goal of this research is to insulate users of the knowledge base from the effects
of arbitrary decisions made during knowledge representation. One kind of arbitrary deci-
sion is the choice of frame names (e.g., Plant-Stem vs. Stem-of-Plant). KASTL insulates
knowledge-base users from the effects of arbitrary frame-name choices by providing content
addressability.
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With content addressability, users can access frames using either the frame name or a
description of the concept that the frame represents. When given an access request containing
a concept description, KASTL searches the relevant portion of the knowledge base for a frame
with a definitional component that matches that description. KASTL then substitutes the
name of the matching frame for the description in the access request and passes the request
to the appropriate access function.

The advantage of content addressability is that users can access the knowledge base
without extensive prior knowledge of how it has been represented. In particular, users
can access concepts without knowing the names of all the frames in the knowledge base.
They need only know the names of the most general frames and slots (the top level of
the taxonomy), and they can access other concepts by describing them in terms of more
general frames and slots. Thus, users have more flexibility in requesting information from
the knowledge base. Application programs can pass this flexibility on to their users. For
example, a question-answering system that accesses a content addressable knowledge base
can accept questions whose topics are descriptions of concepts, rather than frame names.
This flexibility is crucial for systems whose users are unfamiliar with the knowledge base,
such as students using a tutoring system.

Another kind of knowledge representation decision is the choice of which concepts to reify
in the knowledge base. This choice depends on the knowledge engineer’s subjective judgment
of the relative importance of concepts. Because the importance of concepts varies from one
task to another, decisions the knowledge engineer makes regarding which concepts to reify
in a multifunctional knowledge base are not appropriate for all tasks in all situations.

To insulate users from the effects of this kind of representational decision, KASTL pro-
vides access to concepts in the virtual knowledge base. With a virtual knowledge base,
concepts that are implicit in the knowledge base are just as accessible as concepts that are
explicit (i.e., that have an associated frame). When KASTL receives an access request con-
taining a concept description for which it cannot find a match in the knowledge base, KASTL
creates a new frame to represent the described concept and modifies the knowledge base to
accommodate it.

The advantage of providing a virtual knowledge base is that users are less vulnerable
to the particulars of how knowledge is represented. If users have access only to concepts
that are explicitly represented in the knowledge base, then the knowledge engineer’s decision
not to reify a concept that is important for a particular task limits the user’s ability to
perform that task. For example, if a question-answering system has access only to the actual
knowledge base, then that system can generate answers only to questions about concepts that
have been explicitly represented. By providing access to concepts in the virtual knowledge
base, an access method allows users to retrieve information about any concept that can
be described in terms of other knowledge base concepts, regardless of whether it has been
explicitly represented.

Accessing concepts in the virtual knowledge base requires performing automatic classifi-
cation of the given concept within the knowledge-base taxonomy. Many existing systems
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perform automatic classification, including most languages in the KL-ONE family [86]. These
systems, however, have several limitations. First, many of them limit expressiveness to
achieve tractable algorithms for the subsumption step of classification [86]. This results in
languages so limited that they are no longer generally useful.

The second limitation of traditional classifiers is that they use ill-characterized subsump-
tion algorithms. Past systems use the extensional definition of subsumption, in which X
subsumes Y when the extension of X must be a superset of the extension of Y. Extensional
subsumption has been found to be intractable for most languages [86, 58]. As a result,
systems that are based on extensional subsumption have retreated to tractable but incom-
plete algorithms [66]. These algorithms lack a precise specification of what subsumption
relationships they detect.

The third limitation of traditional classifiers is that they are based on extensional sub-
sumption, but they are restricted to using only definitional (terminological) knowledge,
knowledge that has no assertional import [12, 11]. Extensional subsumption cannot always
be computed solely from definitional knowledge.

To address the limitations of existing classifiers, KASTL is based on the intensional
subsumption criterion Woods gives [85]. Intensional subsumption means that X subsumes
Y when the definition (intension) of X is more general than the definition of Y. Intensional
subsumption makes possible a well-characterized classification algorithm without limiting
the expressiveness of the representation language.

KASTL performs both the tasks of accessing concepts by description and accessing con-
cepts in the virtual knowledge base by using a single module with a single user interface.
This has two advantages. First, the procedure that reifies a concept in the virtual knowledge
base can use information gathered while attempting to find that concept in the actual knowl-
edge base, making the system more efficient. Second, users of KASTL do not need to know
whether concepts exist in the actual knowledge base; they simply provide a description of the
concept. If KASTL fails to find a frame representing that concept, it automatically creates
one. Users do not need to know or specify whether they are accessing existing concepts by
description or accessing concepts in the virtual knowledge base.

In addition to dynamically reifying concepts that are in the virtual knowledge base,
KASTL also performs dynamic partitioning. For a particular partitioning slot (specializa-
tions, has-parts, etc.), the knowledge engineer typically represents only a few of the possible
partitionings. Application programs may need some of the unrepresented partitionings to
support some task. For example, a tutoring system generating a description of the different
ways that a leaf acquires glucose throughout its lifetime would need a partitioning of Leaf
into stages according to glucose acquisition method. KASTL allows users to access partition-
ings that are not explicit in the knowledge base by dynamically creating new partitionings.

To summarize, KASTL makes users of a knowledge base less vulnerable to the particulars
of how knowledge is represented by

e providing content addressability,

e providing access to concepts in the virtual knowledge base, and

131



e providing dynamic partitioning.

These facilities make it easier for users to access the concepts that are relevant to a particular
task. Once the relevant concepts have been found, users must then determine what informa-
tion about those concepts is relevant. KASTL assists users in selecting relevant information
by providing access to viewpoints of concepts.

5.1.3 Accessing Viewpoints of Concepts

The third goal of this research is to provide access to viewpoints of concepts. A viewpoint
is a coherent collection of facts that describes a concept from a particular perspective (e.g.,
a structural viewpoint of Seed-Coat, a viewpoint of Seed-Coat as a kind of container, a
viewpoint of Seed-Coat as having no chlorophyll).

Viewpoints are essential for a variety of tasks. Explanation-generation, advisory, and
tutoring systems depend on viewpoints to ensure the coherence of the explanations they
generate [43, 46, 47, 49, 78, 64, 65, 79, 51, 52|. Learning systems also use viewpoints. For
example, KI uses views to constrain the search for consequences of adding new information
to a knowledge base [54, 57], and Shrager uses views to guide incremental changes to a
learner’s theory of how a device works so that only coherent theories are learned [72]. Other
systems use viewpoints to constrain automated reasoning. For example, Falkenhainer and
Forbus use perspectives in compositional modeling to ensure consistent modeling assumptions
and to increase efficiency [23]. ISAAC [62] and APEX [38] use viewpoints in solving physics
problems. BLAH [82] and Algernon [19] use partitions and views to constrain problem solving
and default reasoning. Finally, systems use viewpoints for natural language processing.
For example, Grosz uses focus spaces to guide disambiguation in discourse understanding
[28], and KING uses views to guide linguistic and conceptual choices in natural language
generation [37].

Although viewpoints are crucial for a variety of tasks, existing methods for dynamically
generating viewpoints from a knowledge base are limited. This research provides general
methods for generating viewpoints. In particular, this work provides, first, a framework
of viewpoint types that are independent of any particular domain and task, and second,
methods for generating viewpoints of each type, either singly or in combinations.

The current framework of viewpoint types consists of

e as-kind-of viewpoints, which describe a concept by relating it to a more general con-
cept. For example, the viewpoint of Seed-Coat as a kind of Container is an as-kind-of
viewpoint.

e viewpoints constructed along basic dimensions, which describe particular kinds of fea-
tures of a concept (structural features, functional features, etc.). An example is a
structural viewpoint of Seed-Coat. Section 4.3 gives a set of basic dimensions that pro-
vides broad coverage for physical domains. The View Retriever easily accommodates
basic dimensions for other kinds of domains as well.
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e as-having viewpoints, which include features about a concept that are relevant to a
user-specified feature of the concept. For example, the viewpoint of Seed-Coat as
having no chlorophyll is an as-having viewpoint.

In addition to constructing individual viewpoints of these three types, the View Retriever
also constructs composite viewpoints. This involves more than simply concatenating the
contents of two individual viewpoints. Rather, it involves putting them into correspondence
and removing the portions that do not correspond. The View Retriever constructs three
types of composite viewpoints. The first two are compare and contrast, wherein the View
Retriever highlights the similarities or differences between two concepts under a particular
viewpoint. In the third type of composite viewpoint, correspondence is determined by a
knowledge-base relation, such as part-of or actor-in.

This work includes two evaluations of the methods developed for generating viewpoints.
The first is an analysis to assess the completeness of the current set of viewpoint types
and to guide further refinements and extensions. Although the analysis is subjective and
speculative, its results suggest that the framework of viewpoint types developed here provides
broad coverage for physical domains such as botany. Limited coverage is the major limitation
of past work on generating viewpoints [46, 47, 54, 57, 77, 78, 48, 49]. The analysis also
suggests important directions for future work.

The second evaluation of this work assesses the quality of the viewpoints the View Re-
triever generates, as compared to the quality of viewpoints found in human-generated text.
In this experiment, biologists and botanists judged the coherence of text passages consist-
ing of viewpoints the View Retriever generated and viewpoints taken from textbooks. The
results of this experiment show no statistically significant difference in the mean coherence
of viewpoints the View Retriever generates and the mean coherence of human-generated
viewpoints.

5.2 Future Work

This section discusses two predominant areas for future work. The first is extending the
set of access methods developed here to include new paradigms for knowledge access. The
second is designing application programs that take advantage of these access methods to
perform knowledge intensive tasks.

5.2.1 New Paradigms for Knowledge Access

The two traditional access methods for frame-based knowledge bases are frame-slot access,
wherein the user specifies a (frame slot) pair and the system returns the value(s) of that
slot on that frame, and the second is frame access, wherein the user specifies a frame name
and the system returns all the (frame slot value) triples stored on that frame. This research
extends traditional methods to include methods for
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accessing concepts by description,

e accessing concepts in the virtual knowledge base,

e accessing partitionings in the virtual knowledge base, and
e accessing viewpoints of concepts.

One area for future research is to further expand this set with new paradigms for knowledge
access.

Model Composition

A relatively new paradigm of knowledge access that researchers are investigating is model
composition. A model of an object or process differs from a viewpoint in that a model can be
executed (e.g., via numerical or qualitative simulation) to yield predictions. Thus, models
typically require fewer kinds of knowledge than viewpoints do (usually only structural knowl-
edge of objects, modulatory relationships between processes, and functional and differential
relationships between quantities). Model composition is the task of automatically selecting
from a knowledge base the information that constitutes the minimal model adequate for a
particular task.

As with viewpoint construction, the goal of model composition is to identify all and only
the domain knowledge that is pertinent to a particular task. If a model includes too much
information, then execution of the model (i.e., simulation) will be inefficient and costly. In
addition, an overly complex model does not yield a coherent explanation. If a model includes
too little information, then it may not be adequate to make the required predictions, or its
predictions may be unsound.

Falkenhainer and Forbus have made a significant contribution to model composition [23].
They propose constructing models from fine grained model fragments. Each model fragment
is conditioned on the set of assumptions that it requires. These assumptions prescribe
which domain objects to include in the model, what viewpoints to impose on them, and
other simplifying assumptions. Falkenhainer and Forbus’s system selects a minimal set of
model fragments that constitutes a model of the quantities to be predicted (the quantities of
interest). By attending to the assumptions accompanying each model fragment, the system
ensures that the model it constructs is consistent.

Rickel points out that a major limitation of Falkenhainer and Forbus’s method is that
it does not always construct an adequate model [70]. For example, consider the prediction
question, “How would a decrease in the amount of water in the soil affect the growth rate of
a plant?” Because it is possible to reason about growth rate independently of the soil, there
is a minimal model of growth rate that excludes the soil (and hence excludes the amount of
water in the soil as well). Falkenhainer and Forbus’s method will construct such a model,
even though satisfactorily answering the given prediction question requires a model that
includes the interaction between soil water amount and plant growth rate.
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Addressing this limitation of the “minimal model” approach is nontrivial because the
system cannot assume that every quantity mentioned in the question should be included in
the model. The user may provide a complex scenario, much of which is irrelevant. Users can-
not be expected to know what information is relevant to their questions, and automatically
determining what is relevant is difficult.

Rickel has proposed research to address this problem [70]. Rickel’s approach is to find
and exploit interaction paths, sets of functional and differential relationships that connect
given quantities (e.g., the amount of water in the soil) with quantities of interest (e.g., plant
growth rate), describing how they affect each other. Interaction paths guide the selection of
objects to include in the model and the selection of an appropriate level of detail at which to
model each object and each relationship. By exploiting interaction paths, Rickel’s method
ensures that the resulting model is adequate for the given prediction task.

Accessing Levels of Detail

Another new paradigm for knowledge access is accessing deeper levels of detail for a given
fact. Often a fact is an abstraction of a collection of facts at a finer level of detail. The
detailed facts provide an explanation of the more general fact. For example, one can describe
a causal relationship between two events at a finer level of detail as a sequence of causal
relationships involving intermediate events. Similarly, one can explain a logical implication
by a series of logical implications. One can detail functional relationships between quantities
either by replacing qualitative relationships with more precise quantitative relationships or
by specifying more detailed dynamics at a faster time scale [70].

Although fine grained knowledge bases often contain multiple levels of detail, the bound-
aries of these levels are usually not explicitly represented. That is, accessing deeper levels of
detail usually requires searching the knowledge base. Because a variety of applications re-
quire multiple levels of detail, including compositional modeling and explanation generation,
an access method capable of retrieving the information that constitutes a deeper level of de-
tail for a given fact would simplify the design of these application programs. In addition, it
would enhance their modularity and portability across domains and across representational
formalisms.

An access method for levels of detail would perform the following task:

Given:

e a knowledge base,
e a triple, (F S V), and

e the type of detail needed for the given triple,

Return: A collection of one or more triples that provides more detail (of the given type)
for the given triple. This collection of triples forms a path through the knowledge base
starting at F' and ending at V. For example, given a request for causal detail for the triple
(Plant-Dehydration causes Stoma-Closing), an access method could return
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Plant-Dehydration causes Concentration-of-Guard-Cell-ABA),

Concentration-of-Guard-Cell-ABA causes Guard-Cell-Potassium-Loss),

Guard-Cell-Potassium-Loss causes Guard-Cell-Osmosis),

Guard-Cell-Osmosis causes Guard-Cell-Water-Loss),

(
(
(
(
(Guard-Cell-Water-Loss causes Guard-Cell-Collapse), and
(

e (Guard-Cell-Collapse causes Stoma-Closing),
assuming each of these triples was represented in the knowledge base.

The challenge in developing an access method that performs this task is identifying
important types of detail (ways that a fact can be refined by other facts). The types of
detail mentioned above are causal refinement, logical refinement, qualitative-to-quantitative
refinement, and time-scale refinement. The type of detail needed constrains the search
through the knowledge base; for each type, only certain classes of slots need to be explored.
For instance, to access causal detail (as in the above example), an access method need
only traverse relations such as causes, enables, and prevents. As with basic dimensions for
viewpoints, it is likely that the knowledge of which slots are pertinent to each type of detail
can be represented directly in the knowledge base, on the frames that represent slots. In
this way, the access tool can operate on any knowledge base.

Like viewpoints, levels of detail that users access frequently could be cached in the knowl-
edge base. Mallory is developing a formalism for representing the collection of facts that
detail a given fact. (The formalism is currently limited to facts about how an increase or
decrease in one quantity causes an increase or decrease in another quantity.) In this for-
malism, a (frame slot value) triple in the knowledge base can have an associated story that
comprises the triples that explain it. Mallory is also developing methods for presenting these
stories in a human-readable form.

5.2.2 Applications

The second area of future work is to design application programs that use the access methods
developed here to perform knowledge intensive tasks. Aside from the merits of the application
programs themselves, designing them will provide an empirical evaluation of the utility of
the access methods.

Knowledge Acquisition

One application of the access methods developed here is knowledge acquisition. Knowl-
edge acquisition is a machine-learning task in which a computer system assists a knowledge
engineer in constructing or augmenting a knowledge base.

Extending a knowledge base includes
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e adding new concepts to the taxonomy, and
e extending existing concepts by adding new slots and values.

A knowledge-acquisition tool incorporating the access methods developed here can assist the
knowledge engineer in these activities by

e suggesting new concepts and new slot values to add to the knowledge base,
using knowledge of viewpoint types,

e making concept creation easier by reifying concepts from the virtual knowledge base,
and

e making concept extension easier by providing content addressability.

First, a knowledge-acquisition tool can suggest new information to add to the knowledge
base, using knowledge of viewpoint types. A problem that knowledge engineers face when
constructing a multifunctional knowledge base is deciding what information to add next.
Because the knowledge is not tailored to a specific problem-solving task, the knowledge
engineer needs another source of guidance to identify gaps in the knowledge base. Viewpoints
provide this guidance.

A knowledge-acquisition tool can use viewpoints to guide knowledge entry in the following
way. Given a concept to be extended, the system first determines which viewpoint types
apply to that concept. For each of these types, the system attempts to construct a viewpoint.
If it cannot find some of the relations that the viewpoint type requires, the system suggests
that the knowledge engineer add them to the knowledge base. By soliciting information
within one viewpoint at a time, the system provides a sense of focus to knowledge entry.

Murray’s KI system performs a similar function as it does knowledge integration [55].
When KI attempts to apply a view type to a domain concept, and KI cannot complete the
view, then it suggests that the knowledge engineer enter values for the necessary slots. In ad-
dition, KI sometimes makes suggestions for appropriate entries of those slots. A knowledge-
acquisition tool can generalize this method by augmenting KI's limited set of view types
with the more general set of viewpoint types described in Chapter 4.

The second way that a knowledge-acquisition tool can assist in knowledge entry is by
making it easier for the knowledge engineer to create new concepts by reifying concepts from
the virtual knowledge base. The usual technique for adding a new concept to the knowledge
base is for the knowledge engineer to

1. create a new frame to represent the concept,
2. name the new frame,
3. select the generalizations of the new concept,

4. select the specializations of the new concept,
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5. install generalization and specialization relations between the new frame and its
generalizations and specializations, and

6. install defining properties of the new concept that distinguish it from its generalizations,
if applicable.

A knowledge-acquisition tool can simplify this process by performing these steps automati-
cally. Given a description of the concept to be created (in the specification language given
in Chapter 3), the system uses the method described in Chapter 3 to reify the concept from
the virtual knowledge base and reorganize the existing knowledge base to accommodate it.
The knowledge engineer can then proceed to add additional slot values to the new frame.

Third, a knowledge-acquisition tool can make it easier for the knowledge engineer to locate
the frame to which new knowledge is to be added, by providing content addressability. To
add new knowledge about a particular concept, the knowledge engineer normally specifies
the name of the frame representing that concept, and the system presents that frame for
editing. If the knowledge engineer does not know or cannot remember the name of the frame,
then he must search the knowledge base for it. With content addressability, the knowledge
engineer can find the frame easily by describing it (in the specification language given in
Chapter 3). Similarly, to specify a frame as the value of a slot on some other frame, the
knowledge engineer can give a description, and the system will replace it with the appropriate
frame name, using the method described in Chapter 3.

Question Answering

A second application of the access methods developed here is question answering. The
question-answering task can be described as follows:
Given:

e a question, and
e a knowledge base,

Do:

e query interpretation: translate the question into an unambiguous internal
representation grounded in knowledge-base frames and slots,

e content determination: select the portion of the knowledge base that constitutes a
correct and coherent response,

e organization: arrange the information in a linear sequence of facts for presentation,
and

e realization: translate the information into a form for presentation
(e.g., natural language).
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Question answering is an important component of intelligent tutoring systems, expert sys-
tems, and advisory systems.

Query interpretation involves translating user-supplied descriptions of concepts into names
of frames in the knowledge base. For example, given the question “How does the amount
of water in the soil around a plant affect the plant’s growth rate?” the system must deter-
mine that “the soil around a plant” refers to the frame Plant-Ambient-Soil. The methods
given in Chapter 3 for accessing concepts by description simplify this translation greatly.
Furthermore, if a concept described in a user’s question is not explicitly represented in the
knowledge base, then the system can reify it from the virtual knowledge base. This facility
gives the system more flexibility in answering unanticipated questions.

Content determination involves selecting coherent portions of knowledge from the knowl-
edge base. As Chapter 4 describes, accessing viewpoints of concepts is one technique for
selecting coherent portions of knowledge. Accessing knowledge at the viewpoint level also
increases the modularity and portability of the system. To use viewpoints as the building
blocks of a response, a question answerer must solve the following problems:

e determine which sequences and combinations of viewpoints are most useful
and most coherent, and

e determine which types of viewpoints are most appropriate for the given question.

One way to determine useful sequences and combinations of viewpoints is to analyze
human-generated texts. For example, in the text analysis described in Chapter 4, some
patterns of viewpoints are apparent. The most common is structural-functional-behavioral.
In this sequence of viewpoints, the text first gives a structural viewpoint of an object (which
describes its parts), followed by a functional viewpoint of each part (which describes the
processes in which it is an actor), followed by a behavioral viewpoint of each process (which
describes the other actors in the process). Another common pattern is behavioral-modulatory.
In this sequence, the text first gives a behavioral viewpoint of a process (which describes
its actors) followed by a modulatory viewpoint of the same process (which describes what
processes it causes or enables. The text then describes those processes by another behavioral-
modulatory viewpoint combination.

Lester has developed a representation for this kind of discourse knowledge, called Abstract
Discourse Plans, or ADPs [41]. An ADP for a given topic includes a list of potential subtopics
to be discussed, conditions that govern when to include each subtopic, and instructions on
how to create viewpoint specifications to pass to the View Retriever. ADPs also specify how
to organize the information that the View Retriever returns. An important area for future
work is building a library of domain independent ADPs that capture common patterns of
viewpoints found in human-generated text. This effort will serve to further evaluate the
coverage of the set of viewpoint types developed here and the extent to which domain
independent viewpoint types are sufficient.

Another problem in using viewpoints for question answering is determining which view-
points are most appropriate for the given question. Presumably, different types of questions
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require different types of viewpoints. The selection of viewpoints should also be sensitive to
the system’s model of the user (responses should contain viewpoints that relate new informa-
tion to what the user already knows) and the preceding dialogue (the viewpoints contained
in a response should continue the theme of the preceding discourse).

When knowledge of common patterns of viewpoints is available in the form of ADPs,
the problem of selecting the viewpoints appropriate for a given question is reduced to the
problem of selecting an appropriate ADP. Lester is developing heuristics for selecting the
ADP most appropriate for a given question. These heuristics use the type and the main
topic(s) of the given question to index into a library of ADPs stored in the knowledge base.
The heuristics are also sensitive to the system’s model of the user and the dialogue history.

Once a question-answering system has selected the appropriate viewpoints to constitute
the content of the response, it must then organize the material. The knowledge selected
during content determination constitutes a network of (frame slot value) triples. Natural
language, however, has a strictly linear physical representation. Thus, the system must
organize the selected knowledge linearly before it translates it into natural language.

Using viewpoints as the building blocks of an explanation simplifies organization. Because
the information within a viewpoint forms a coherent whole, the task of organizing a response
is reduced to organizing the material within each viewpoint and then imposing a linear
ordering on the viewpoints. Lester shows how viewpoints also guide restructuring of an
explanation when the initial organization is suboptimal [42].

Finally, the question answerer must translate the response it has constructed into natural
language. As demonstrated by the KING natural language generator, the knowledge of
which viewpoint the system imposes on concepts in the explanation can guide linguistic and
conceptual choices [37].

5.3 Conclusions

A primary goal of artificial intelligence is to develop an artificially intelligent agent capable
of performing a variety of knowledge-based tasks. For an agent to have such capabilities,
it must first possess a body of knowledge that supports multiple tasks. In other words, it
must have multifunctional knowledge. This research provides an expressive and convenient
language for representing multifunctional knowledge.

For an agent to perform a variety of knowledge-base tasks, it must also be able to access
from its knowledge base the domain concepts that it requires for the task at hand. This
research provides methods for accessing the concepts that are needed through content ad-
dressability. The agent must also be able to access the knowledge of those concepts that is
relevant in the current problem-solving context. This research provides methods for accessing
relevant knowledge in coherent groups, called viewpoints.

An important aspect of this research is its broad applicability. Although this work
is presented in the context of a frame-based representation language, many of the ideas
(particularly those regarding viewpoint access) apply to other representational paradigms as
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well. Furthermore, any application program can use the knowledge access methods developed
in this research, regardless of its task or domain.

Much of the past research in artificial intelligence has focused on problem solving tasks,
assuming that the relevant knowledge to support those tasks will be available. This research
provides methods for making the relevant knowledge available.
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