
A Library of Generic Concepts
for Composing Knowledge Bases

Ken Barker and Bruce Porter

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712 USA
{kbarker, porter}@cs.utexas.edu

Peter Clark

Knowledge Systems
Boeing Math and Computing Technologies

m/s 7L66, PO Box 3707, Seattle, WA 68124 USA
peter.e.clark@boeing.com

ABSTRACT
Building a knowledge base for a specific domain
traditionally involves a subject matter expert and a
knowledge engineer. One of the goals of our research is to
eliminate the knowledge engineer. There are at least two
ways to accomplish this goal: train domain experts to write
axioms (i.e., turn them into knowledge engineers) or create
tools that allow users to build knowledge bases without
having to write axioms. Our strategy is to create tools that
allow users to build knowledge bases through instantiation
and assembly of generic knowledge components from a
small library.

In many ways, creating such a library is like designing an
ontology: What are the most general kinds of events and
entities? How are these things related hierarchically? What
is their meaning and how is it represented? The pressures of
making the library usable by domain experts, however,
leads to departures from the traditional ontology design
goals of coverage, consensus and elegance. In this paper we
describe our component library, a hierarchy of reusable,
composable, domain-independent knowledge units. The
library emphasizes coverage (what is an appropriate set of
components for our task), access (how can a domain expert
find appropriate components) and semantics (what
knowledge and what kind of representation permit useful
composition). We have begun building a library on these
principles, influenced heavily by linguistic resources. In
early evaluations we have put the library into the hands of
domain experts (in Biology) having no experience with
knowledge bases or knowledge acquisition.

Keywords
knowledge engineering, ontologies, knowledge reuse

INTRODUCTION
The traditional audience for concept taxonomies includes
knowledge engineers, ontologists and philosophers. This

audience is often interested in ontologies as elegant models
capturing a natural division of kinds of things in the
universe of discourse. When the intended audience includes
experts in particular fields of knowledge who hope to use
the ontology to represent abstractions from their fields, the
pressures on the design of the ontology shift.

It is a claim of our research [27] that users with no
experience in knowledge engineering will be able to
represent knowledge from their domain of expertise by
instantiating and composing generic components from a
small, hierarchical library. Components are coherent
collections of axioms that can be given an intuitive label —
usually a common English word. The components should
be general enough that their axiomatization is relatively
uncontroversial. Composition consists of specifying
relationships between instantiated components so that
additional implications can be computed.

In an attempt to make the library more accessible to users
unfamiliar with knowledge engineering, we have taken a
somewhat different approach to building our ontology: we
have taken inspiration from English lexical resources (such
as dictionaries, thesauri and English word lists) and
Linguistics research. We are certainly not rejecting
traditional knowledge engineering approaches. Rather we
are trying to reconcile them with language usage. Rather
than try to avoid the clash between knowledge base
concepts and English words, we are attempting to make our
component library intuitive to users accustomed to
expressing knowledge with natural language.

This paper is part of a larger context of ongoing research on
knowledge base construction by composition. Elsewhere we
have discussed:

• motivations for the approach and algorithms [5, 6, 8]

• a graphical user interface [8]

• a knowledge representation and reasoning system [6]

• question answering methods and explanation
generation [18, 25]

Within that context, this paper provides a brief tour of an
early version of our component library to highlight its
requirements, contents, and applications.

In the following section, we will describe our research
project in more detail and the design constraints it places on
our component library. We will then expose the contents of
the library: what components it contains, what the language
for composing components is and how we arrived at these.
We will describe the ways in which the user accesses the
library and report on some early observations of domain
experts using the library.

The component library itself is online and can be browsed
at http://www.cs.utexas.edu/users/mfkb/RKF/tree/.

THE PROJECT
A challenge problem for DARPA’s Rapid Knowledge
Formation (RKF) project [11] is to provide a software
environment in which a biologist can build a knowledge
base from information found in a textbook on Cell Biology.
It must be possible to query the resulting knowledge base to
obtain answers to the kinds of questions typically found at
the end of a textbook chapter.

Our component library is being used in software (called
SHAKEN) being developed by SRI, one of the primary
contractors on the RKF project [26]. A user of SHAKEN
builds a knowledge base by drawing generic components
from the library, instantiating them in a graph and
connecting the instantiations to represent such things as
static relationships between concepts, temporal and spatial
information, event structure and process plans.

Requirements for Library Components
Since all knowledge is captured through the graph interface,
it is imperative that the user have a sufficient variety of
components (coverage), that components that satisfy user
expectations can be found easily (access) and that
components are general enough to be used in a variety of
contexts but specific enough to express non-trivial
knowledge (semantics).

Coverage
There should be components to allow the user to encode a
variety of knowledge from any domain. This is not to say
that there should be as many components as there are words
in a dictionary. Rather, the library should be broad-
coverage with components specific enough that a user is
willing to make the abstraction from a domain specific
concept. Conversely, the components should not be so
specific that the user is handcuffed by her choice or does
not care enough about the fine distinctions to use the
components consistently.

Access
Although knowledge engineers and philosophers are
interested in the structure of upper-level ontologies, it is
less likely that a biologist describing DNA replication will
be interested in learning our hierarchy in order to find
components. Furthermore, since we are restricting the
library to a small number of components, it is unlikely that
there will be an exact match for a concept required by the
user. For both these reasons, it is important that the

interface provide assistance in finding appropriate
components.

Semantics
Our library is not merely a taxonomy of concepts. Each
component contains axioms that encode the meaning of the
component as well as how the component interacts with
other components. These axioms must be general enough
that the components are reusable. They must also be written
in such a way that they do not clash with the axioms of
other components in compositions.

In the next section we will discuss how these criteria, along
with previous successful work on broad-coverage intuitive
semantic inventories have guided the construction of our
library.

OTHER ONTOLOGIES
In theory an ontology could be strong on all dimensions:
coverage, access, semantics. In practice, however, an
ontology, like most artifacts, is the result of engineering
tradeoffs. For example, consider WordNet [22] and Sensus
[17]. On one hand, they are as easily accessed as a
thesaurus and have very broad coverage — they include the
variety of concepts, relations, and modifiers used in
everyday text. On the other hand, they provide very shallow
semantics. For each English word, these ontologies give its
senses along with their definitions, parts of speech,
subclasses, superclasses and sibling classes. However, the
definitions are text strings — which are of little use to
computer programs — and the taxonomic information is
only a small part of lexical semantics.

The ontologies in Ontolingua [14] represent a different
point in the space of tradeoffs. These ontologies are very
limited coverage (they apply mainly to isolated topics in
Engineering), but they have rich semantics. For example,
they can be used to compute answers to Engineering
problems stated in their vocabulary.

Cyc [10, 19, 20] represents yet another point. Its coverage
is arguably as broad as WorldNet’s, including many senses
for entries in its lexicon. By one account, however, it
receives lower scores on semantics and accessibility.
Parmar [24] compared the representations of a handful of
actions in Cyc and our component library. She found that
Cyc often lacks axioms that capture the effects of actions.
Consequently, the representation does not support
automated reasoning about change. In terms of
accessibility, Parmar measured the time she spent searching
the Cyc ontology for entries that correspond to fifteen
common actions represented in the component library.1 On
average, she spent over 3.5 minutes finding the Cyc term

1 BREAK an object, CREATE, MAKE-ACCESSIBLE,

MAKE-INACCESSIBLE, RELEASE from an enclosure,
MAKE-CONTACT between two objects, MOVE an object,
CARRY, ENTER an enclosure, EXIT an enclosure, REMOVE,
REPAIR, and TRANSFER possession.

that most closely matches each action. By her assessment,
many of these matches were not close: on a scale from 1
(poor) to 10 (perfect), the average score was less than 6.5.

For our project, rich semantics is the first priority. The
semantics of each component is expressed in KM [6],
which in turn is defined in first-order logic. KM includes
situation calculus — a knowledge representation and
reasoning formalism for actions and the changes they cause.
For example, the component for ENTER includes KM
encodings of these axioms:

• ENTER is a type of MOVE, so instances of ENTER inherit
axioms from MOVE, such as: the action changes the
location of the object of the MOVE

• before the ENTER, the object is outside but near some
enclosure

• after the ENTER, the object is inside that enclosure and
contained by it

• during the ENTER, the object passes through a portal of
the enclosure

• if the portal has a covering, as a precondition of the
action, it must be OPEN. Unless it is known to be
CLOSED, assume that it is OPEN.

We plan to achieve good coverage by encoding a small set
of general components for breadth. Depth can then be
achieved through specialization and composition of
components, without having the user write axioms.

We consider accessibility especially important, given that
our users are not knowledge engineers. The library has been
designed to allow retrieval of components by means of
semantically related search terms (as described below: see
Searching the Library).

THE COMPONENT LIBRARY
In deciding what components to encode, we took
inspiration from linguistic resources (such as dictionaries
and thesauri). Our goal was not to build an online
dictionary, but rather a library of components representing
concepts that are general and intuitive enough to have
obvious labels among common English words.

Furthermore, since domain experts are accustomed to
expressing their knowledge with words, having explicit
links between our components and dictionaries will help
provide access to the library (as described below).

These linguistic resources have much to offer:

• They have broad coverage of common terms. Our goal
is to have a library of domain-independent, general
components, not concepts specific to particular
domains. This is also where the strengths of common
dictionaries and thesauri lie.

• Lexicographers pay attention to consensus view of the
semantics of terms and common usage. Most

dictionaries and thesauri are the result of many years of
studying how terms are commonly used.

• They often group semantically related words into
general semantic categories. These categories may be
thought of as representing the most general concepts.

The Longman Dictionary of Contemporary English
(LDOCE) [28] uses a “defining vocabulary” of about 2,000
words. All definitions in the dictionary are supposed to
ground out eventually to the defining vocabulary. WordNet
groups semantically similar words into “synsets”, which are
themselves linked hierarchically. Roget’s Thesaurus (see,
for example, [21]) divides the universe into six classes.
Each class is subdivided into multiple divisions and
sections, themselves further subdivided. The one thousand
leaves in Roget’s tree contain semantically related words
(not quite synonyms), one of which is chosen as the
representative for the group: the headword.

Each of these resources (the Longman defining vocabulary,
a horizontal slice of the WordNet hierarchy, the Roget
headwords) could be used as a list of general concepts, or
as inspiration for an original list. (See Rick Harrison’s
“Vital English Vocabulary” [16] for a similar experiment).
None of these sources is perfect: LDOCE is not
semantically motivated and is apparently not without
circular references; WordNet has much less coverage than
the others, especially among the non-nouns; Roget is also
somewhat arbitrary, and obviously influenced by his
culture.

Generic Events
The main division in our component library is between
entities (roughly, things that are) and events (things that
happen).

Events in the library are states and actions. States represent
relatively static situations in the world that are brought
about or changed by actions.

Actions
The actions are grouped into fifteen top-level clusters, each
having several more specific subclasses (Table 1). The list
was developed under consultation of WordNet, the LDOCE
defining vocabulary and Roget.

For example, the list of actions was compared to those
headwords in Roget’s Thesaurus that most naturally
describe actions. In Roget, each headword heads several
paragraphs; each paragraph contains words of the same part
of speech. Although the headwords themselves are all
nouns, some of the nouns are nominalizations and represent
events more naturally than entities (for example, headwords
#161: Production and #264: Motion). For these headwords,
the noun paragraphs are often relatively empty, or contain
more nominalizations. Their verb paragraphs are the
richest. Although there are over one thousand headwords in
Roget, our actions are general enough to cover most of the
more action-like headwords (with the exception of those

having to do with “sentiment and moral power” — an area
we have so far ignored).

States
States are relatively temporally stable events. They are
coherent collections of axioms that represent situations
brought about or changed by actions. Many of our actions
are defined in terms of the change in state they cause.

This relationship between actions and states is made
explicit in the library, where there may be an action that
puts an object into a state, another action that takes an
object out of a state and an action (or many actions) whose
behavior is affected by the fact that an object is in a given
state. For example, the BREAK action puts an object into a
BE-BROKEN state. The REPAIR action takes an object in a
BE-BROKEN state out of that State. If an object is in a BE-
BROKEN state, it may not be the instrument of any of the
events for which it is the intended instrument (though it may
be instrument of other actions, such as using a broken
computer to hold a door open).

The states in the library include BE-RUINED, BE-CLOSED, BE-
CONFINED, BE-TOUCHING, BE-ATTACHED-TO among several
others.

There are other events that seem to fit somewhere between
our actions and states, such as “being in motion”. We
expect that most of our actions have non-conclusive,
durative counterparts (such as MOVING, CREATING, etc.) that
would account for these other state-like events. We are
investigating continuous representations of our actions for

the purpose of simulation. For now, our actions are all
represented as discrete events.

Entities and Roles
To date, our efforts have been concentrated on events. We
plan to research generic entities in a similar way. The entity
hierarchy in the library is currently a relatively
impoverished tree, serving as the root of a number of
concepts (just over 500 at the time of writing) from our test
domain: Cell Biology. Entities are divided into spatial-
entities and abstract-entities. Spatial-entities include
tangible-entities and places.

Our preliminary investigation into entities led us to
distinguish a separate class of role concepts. A role can be
thought of as a temporally unstable entity. It is what an
entity is in the context of some event. For example, PERSON
is an entity while EMPLOYEE is a role. A PERSON remains a
PERSON independent of the events in which she participates.
Conversely, someone is an EMPLOYEE only by virtue of
participation in an EMPLOY event.

Our library currently allows instances of roles to be linked
to instances of entities as adjunct instances that can be used
to capture both the role that an entity plays in an event, and
the role it is intended to play (its purpose).

In order to determine how common role concepts are, we
conducted an experiment with the Collins online dictionary
[9]. In that experiment we estimated that as many as 6% of
nouns satisfy our criteria for role concepts. Furthermore, the
most frequent nouns in the British National Corpus [4] also
contain an estimated 6% role concepts.

Action Description Example Subclasses

ADD add a part to an entity --

REMOVE remove a part from an entity --

COMMUNICATE* transfer information INTERPRET, ENCODE, REPLY

CREATE bring a new entity into existence COPY, PRODUCE, PUT-TOGETHER

BREAK cause an entity to be unable to be used as instrument (for events
in which it is the intended instrument)

DESTROY, RUIN, TAKE-APART

REPAIR “undo” a BREAK --

MOVE change the location of an entity CARRY, ENTER, SLIDE

TRANSFER change the possessor of an entity DONATE, LOSE, TAKE

MAKE-CONTACT make entities touch ATTACH, COLLIDE

BREAK-CONTACT make touching entities touch no longer DETACH, DISPERSE

MAKE-ACCESSIBLE allow an entity to participate (in various ways) in events ADMIT, EXPOSE, RELEASE

MAKE-INACCESSIBLE prevent an entity from participating in events BLOCK, CONCEAL, CONFINE

PERCEIVE* discern using senses IDENTIFY, TOUCH

SHAPE* change the shape of an entity FLATTEN, FOLD

ORIENT* change the orientation of an entity FACE, ROTATE, TURN

Table 1: The top-level action clusters (actions marked * are not yet available in the library)

A more detailed discussion of roles and justification for a
separate role hierarchy appear in [13].

COMPOSITION
The precoded axioms in library components provide much
of the power that allows domain experts to build knowledge
bases. Equally important is the ability to connect
components in such a way that our knowledge
representation system (KM [6]) can draw inferences from
the composition beyond the union of the individual axioms
of the components.

From the point of view of a user, composition is simply the
linking together of library components. From this linking,
however, KM is able to draw inferences by way of the
knowledge encoded in components:

• Conditional rules: many components specify additional
axioms that are asserted conditionally, dependent on
the kinds of components they are composed with and
the kinds of connections between them. For example, if
the raw material of a PRODUCE is a SUBSTANCE, then
the product is composed of that SUBSTANCE. If the raw
materials are OBJECTs, then the product has those
OBJECTs as parts.

• Definitions: many components specify the sufficient
conditions under which KM can automatically
reclassify instances. For example, an instance of MOVE
in which the destination is inside a container is
automatically reclassified as an instance of ENTER.

• Simulation: many components specify the
preconditions that must be satisfied for an action to
take place as well as the axioms that get asserted (or
retracted) as a result of the action taking place. KM is
able to simulate complex combinations of events and
their participating entities.

The Language of Composition
In order to enable the kind of inferencing we have
described, composition must have predictable semantics,
which we accomplish by defining a restricted composition
language of relations and properties. These relations and
properties have their own axioms that define what
inferences will be drawn from the composition of
components.

Relations
We have defined a small set of relations to connect Entities
and Events. Keeping the set small — we currently have
about eighty — will allow us to maintain detailed axioms
for each relation that capture the semantics of the
composition of the related components. Writing such
axioms for an open-ended set of relations might not be as
feasible. The small number of relations also makes it easier
for our inexperienced users to learn to use them.Our
relations that link an event to an entity describe the
participants involved in the event. Our original set was
inspired by a comprehensive study of case roles in

Linguistics [3]. The set has been refined to account for the
kinds of relationships expected for our particular event
components. Event-to-Entity relations include agent, donor,
instrument, object, recipient, result, etc.

To account for relationships between entities, we drew on
previous research into the semantics of English noun
phrases [2]. Since nouns can represent many things (not just
entities) the semantic relationships within noun phrases are
a superset of what is required to account for relations
between our entities. The set of entity-to-entity relations
currently includes content, has-part, location, material,
possesses and region.

The choice of relationships between events followed from
studies in discourse analysis [1] and process planning [23].
These relations include causes, defeats, enables, entails,
inhibits, by-means-of, prevents, resulting-state and
subevent. Other relations we are investigating include
preparatory-event, initiating-event and terminating-event.

In addition to the relations among events and entities, we
have a very small number of relations that involve roles
[13]. We have relations that link an Entity to the Role it
plays (or is intended to play) and between the Role and the
Event.

Properties
We also have a small number of properties. Properties link
entities to values. For example, the size of an entity is a
property that takes a value. The value can be a cardinal (25
kilograms), a scalar (big relative to housecats) or a
categorical (brown).

To define our set of properties, we turned once again to
linguistic studies. Whereas events and entities usually
surface as verbs and nouns in language, properties are
closely related to adjectives. Since adjectives can also
represent entities, we restricted our study to those adjectives
that ascribe values to features of the nouns they modify.
These adjectives are often called ascriptive adjectives.

We consulted work in Linguistics on adjective semantics,
most notably Dixon [12] and Frawley [15]. We then
conducted two exercises to build a list of properties.

For the first exercise we once again used WordNet, which
explicitly distinguishes ascriptive adjectives from non-
ascriptive adjectives (called pertainyms in WordNet). For
the ascriptive adjectives, there are occasionally links to the
noun that best describes the “attribute” to which the
adjective ascribes a value. For example, the attribute for
large is size. The complete list of attributes can be had by
running every adjective in the adjective index through
WordNet querying for attributes. The result is a list of
about 160 unique nouns that are used as attributes. We used
these attributes to populate the adjective classes proposed
by Dixon, resulting in a first draft of a list of properties.

For the second exercise we once again consulted Roget. As
described earlier, although the Roget headwords are nouns,

some of them more naturally describe events. For these
headwords the verb paragraphs are often the richest. For
other headwords, the adjective paragraphs are the richest
(for example, headword #192: Size). Some of the
headwords so naturally indicate properties that the verb
paragraphs are nearly vacuous. Often, the verb paragraph
contains little more than “be <adjective>”. For example, in
headword #201: Shortness, the first entry in the verb
paragraph is “be short”. The exercise, then, was to find
headwords whose verb paragraphs begin with copular
adjectival complementation phrases2, under the assumption
that these are the best candidates for properties. This test
also singles out ascriptive adjectives, since nonascriptive
adjectives do not appear as copular complements.
Nonascriptive adjectives can usually only appear in
attributive position (before the noun), not in predicative
position (as the adjective complement of a copula).
Unfortunately, the test did not filter out relations (such as
“be identical to”, “be different from”, etc.). In the exercise
we removed these relations by hand. The result was a list of
approximately 230 headwords representing properties.

We grouped all of the candidate properties into
approximately 25 general categories. This final list of
properties includes such properties as age, area, capacity,
color, length, shape, size, smell and wetness.

A Simple Example of Composition
Consider the simple example of “messenger RNA”
(mRNA) leaving a cell nucleus. In our interface, the user
might describe this action by making an MRNA the object
of a MOVE whose destination is outside of a CELL-NUCLEUS:

Since the MOVE has a destination, and that destination is
defined as being outside some place, KM will recognize
that this MOVE satisfies the definition of EXIT and will
reclassify this instance of MOVE to an instance of EXIT.
Through the semantics of EXIT, KM will infer that prior to
the EXIT the MRNA was inside the CELL-NUCLEUS, and that
the MRNA must have EXITed through a portal in the CELL-
NUCLEUS. KM can also infer that CELL-NUCLEUS must be
playing the role of CONTAINER in this example, and that the
content of the CELL-NUCLEUS prior to the EXIT included the
MRNA. In simulating the EXIT, KM will assert that the
location of the MRNA is a PLACE outside the CELL-NUCLEUS
in the situation immediately following the EXIT.

2 a phrase of the form “<copula> <adjective>”, where the

copulas include “be”, “become”, “seem”, etc.

USING THE LIBRARY
User Interface
Access to the component library is through a web-based
tool for building compositions through graph operations:

• add a component to a graph

• connect two components with a relation

• specialize a component to one of its subclasses

• unify two component instances

The use of this tool for knowledge entry is described in
detail in [8].

Searching or Browsing the Library
The main disadvantage in restricting ourselves to a small
number of generic components is that the library will
probably not have a component that exactly matches the
concept a user is looking for. The library interface, then,
must make it easy for the user to find a close enough match.
Our interface supports two modes of access to the library: a
tree-based browser and a search tool.

Browsing the Library
Since the components are arranged hierarchically in the
library, they can be browsed in the form of a tree. Our
library browser allows the user to selectively expand the
tree to view a component’s subclasses. Since the library is
small (by design) and we have attempted to make the
component names intuitive and transparent, browsing the
library through the tree is feasible. Nonetheless, given that
our users are expected to have little or no experience with
concept hierarchies, we believe it will be easier for them to
find components through a search facility.

Searching the Library
The SHAKEN interface allows two kinds of searching:
exact match searching and inexact matching.

Exact matching, as expected, will return a component
whose name exactly matches the search term.

Inexact matching works in two ways. First, it will return all
components whose names contain the search term. The
second kind of inexact matching traverses the WordNet
hierarchy for terms related to components.

As part of the documentation for each component we have
identified the WordNet entries that most closely match the
semantics of the component. Our WordNet-based search
tool finds the search term in WordNet, then climbs the
hierarchy of hypernyms (more general terms) finding all
components that list those hypernyms in their
documentation.

Table 2 shows some examples of search terms and their
results.

MOVE

CELL-NUCLEUS

MRNA

PLACE
object

destination

is-outside

search term components found

assemble ATTACH, CREATE, COME-TOGETHER,
MOVE-TOGETHER

mend REPAIR

gum-up OBSTRUCT, BLOCK

busted BE-BROKEN, BE-RUINED

Table 2: Examples of search terms and components found

Documentation
One of the disadvantages of giving components names that
are also English words is that users may have different
biases about the meanings of those words. These
expectations may clash with the actual semantics of the
components. This problem underlines the need for good
documentation.

Our documentation for components includes several things:

• Definitions. Given our particular users, it is important
to have simple, non-technical definitions that describe
all (and only) the meaning encoded in each component.

• One-line glosses. Early experiments have shown that
users often accept or reject a component based solely
on its name in a list. In our web-based interface one-
line glosses can be displayed as the mouse hovers over
a component name.

• More detailed documentation. We also document the
complete semantics of components, including
participants in an event, subevents, parts of an entity,
etc.

• Examples. Several examples of varying complexity
help show the intended use of components.

• Neighboring concepts. We are adding information to
the documentation on “neighboring concepts” (similar
components and how they differ from each other).

All documentation is available through the user interface,
which can also show a graph representation of any
component in the library. In the graph the user can choose
to see all, none or any subset of the links between the
component and components connected to it through our
relations.

LIMITATIONS AND FUTURE WORK
Early experiments with biologists have shown that our
library search facility is able to guide them to generic
components that they are willing to accept as abstractions of
concepts they wish to encode. For example, our users were
comfortable defining the process of transcribing DNA in
terms of such generic actions as COLLIDE, SLIDE, ATTACH,
COPY, RELEASE and DETACH.

Users identified a major weakness of this kind of
representation: biologists are interested (often more
interested) in representing functional aspects of processes,
not just physical/spatial descriptions. Including role

concepts and the notion of purpose is currently making the
encoding of functional knowledge easier. We are
continuing to expand our role hierarchy and our generic
entity hierarchy.

Our users also convinced us of the importance of choosing
simple names for components that do not have strong
connotations in a particular domain. Our general actions of
REPLICATE and TRANSCRIBE caused confusion among the
biologists. We are currently reviewing the names (and
documentation) of all our components. We are also
reviewing components that users found unintuitive for other
reasons. For example, users were not interested in the
distinction between MOVE and its subclasses MOVE-FROM
and MOVE-TO. We will likely remove these components in
the name of simplicity.

The main task ahead is to evaluate the library and the
ability of users to encode complex knowledge through
composition of components. As part of the RKF project,
our system will be used in an extended experiment by fresh
biologists this summer. Users will be expected to encode
knowledge from a textbook on Cell Biology with minimal
interference by knowledge engineers.

SUMMARY
In this paper we have described the process of building a
library of knowledge components under the pressures
imposed by our intended audience: domain experts with no
experience in ontologies or knowledge engineering. In
order to make the library accessible, we have taken
inspiration from linguistic resources and built hooks to
language into the components. In order to achieve power
through composition of components, we have limited the
library to a small number of components and relations with
rich semantics. Preliminary trials with users inexperienced
in knowledge engineering have been promising, giving us
hope that domain experts will soon be able to encode their
expertise in powerful knowledge bases.

ACKNOWLEDGMENTS
Support for this research is provided by a contract from
Stanford Research Institute as part of DARPA’s Rapid
Knowledge Formation project.

The authors are also indebted to Art Souther, James Fan,
Paul Navratil, Dan Tecuci, Peter Yeh, Marwan Elrakabawy,
Sarah Tierney, John Thompson, Vinay Chaudhri, Andres
Rodriguez, Jérôme Thoméré, Yolanda Gil, Jihie Kim, Pat
Hayes and Paul Cohen for input on the construction and use
of the component library.

REFERENCES
1. Barker, K., and Szpakowicz, S. Interactive Semantic

Analysis of Clause-Level Relationships, in Proceedings
of PACLING ‘95 (Brisbane, April 1995).

2. Barker, K., and Szpakowicz, S. Semi-Automatic
Recognition of Noun Modifier Relationships, in
Proceedings of COLING-ACL ‘98 (Montréal, August
1998), 96-102.

3. Barker, K., Copeck, T., Delisle, S. & Szpakowicz, S.
Systematic Construction of a Versatile Case System.
Journal of Natural Language Engineering 3, 4
(December 1997), 279-315.

4. BNC. The British National Corpus. Available at
http://info.ox.ac.uk/bnc/, 2001.

5. Clark, P., and Porter, B. Building Concept
Representations from Reusable Components, in
Proceedings of AAAI ‘97 (Providence RI, July 1997),
AAAI Press, 369-376.

6. Clark, P. and Porter, B. KM – The Knowledge Machine:
User’s Manual and Situations Manual. Available at
http://www.cs.utexas.edu/users/mfkb/RKF/km.html,
2001.

7. Clark, P., Thompson, J. and Porter, B. Knowledge
Patterns, in Proceedings of KR-2000 (Breckenridge CO,
April 2000), Morgan Kaufmann, 591-600.

8. Clark, P., Thompson, J., Barker, K., Porter, B.,
Chaudhri, V., Rodriguez, A., Thoméré, J., Gil, Y. and
Hayes, P. Knowledge Entry as the Graphical Assembly
of Components: The SHAKEN System, submitted to
K-CAP 2001 (Victoria BC, October 2001).

9. COLLINS. The Collins English Dictionary. William
Collins Sons, 1979. Available at the Linguistic Data
Consortium,
http://www.ldc.upenn.edu/Catalog/LDC93T1.html,
1993.

10. CYC. The Cyc Upper Ontology. Available at
http://www.cyc.com/cyc-2-1/index.html, 2001.

11. DARPA. The Rapid Knowledge Formation Project.
Available at http://reliant.teknowledge.com/RKF/, 2000.

12. Dixon, R. M. W. Where Have all the Adjectives Gone?
Mouton, The Hague, 1982.

13. Fan, J., Barker, K., Porter B. and Clark, P. Representing
Role Concepts, submitted to K-CAP 2001 (Victoria BC,
October 2001).

14. Fikes, R. and Farquhar, A. Distributed Repositories of
Highly Expressive Reusable Ontologies. IEEE
Intelligent Systems 14, 2 (March/April 1999), 73-79.

15. Frawley, W. Linguistic Semantics. Lawrence Erlbaum
Associates, Publishers, Hillsdale NJ, 1992.

16. Harrison, R. Vital English Vocabulary. Available at
http://www.rick.harrison.net/annex/vitaleng.html, 1997.

17. Knight, K. and Luk, S. Building a Large-Scale
Knowledge Base for Machine Translation, in
Proceedings of AAAI ’94 (Seattle WA, July-August
1994), AAAI Press, 773-778.

18. Lester, J. and Porter, B. Developing and Empirically
Evaluating Robust Explanation Generators: The
KNIGHT Experiments. Computational Linguistics 23, 1
(1997), 65-101.

19. Lenat, D. Cyc: A Large-Scale Investment in Knowledge
Infrastructure. Communications of the ACM 38, 11
(November 1995), 33-38.

20. Lenat, D. and Guha, R. Building Large Knowledge
Based Systems. Addison Wesley, Reading,
Massachusetts, 1990.

21. Lloyd, S. M. Roget’s Thesaurus. Longman, Essex,
1982.

22. Miller, G. A. (ed.). WordNet: An Online Lexical
Database. International Journal of Lexicography 3, 4
(Winter 1990).

23. Narayanan, S. Reasoning about Actions in Narrative
Understanding, in Proceedings of IJCAI ‘99
(Stockholm, August 1999), Morgan Kaufmann,
350-358.

24. Parmar, A. The Representation of Actions in KM and
Cyc. Department of Computer Science, Stanford
University technical report (forthcoming), 2001.

25. Rickel, J. and Porter, B. Automated Modeling of
Complex Systems to Answer Prediction Questions.
Artificial Intelligence Journal 93, 1-2 (1997), 201-260.

26. SRI. SRI’s Rapid Knowledge Formation Team.
Available at http://www.ai.sri.com/~rkf, 2001.

27. SRI. Proposal to DARPA’s Rapid Knowledge
Formation Project. Available at
http://reliant.teknowledge.com/RKF/proposals/SRI/SRI
proposal.htm, 2000.

28. Summers, D. (ed.). Longman Dictionary of
Contemporary English: New Edition. Longman, Essex,
1987.

