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ABSTRACT 
Building a knowledge base for a specific domain 
traditionally involves a subject matter expert and a 
knowledge engineer. One of the goals of our research is to 
eliminate the knowledge engineer. There are at least two 
ways to accomplish this goal: train domain experts to write 
axioms (i.e., turn them into knowledge engineers) or create 
tools that allow users to build knowledge bases without 
having to write axioms. Our strategy is to create tools that 
allow users to build knowledge bases through instantiation 
and assembly of generic knowledge components from a 
small library. 

In many ways, creating such a library is like designing an 
ontology: What are the most general kinds of events and 
entities? How are these things related hierarchically? What  
is their meaning and how is it represented? The pressures of 
making the library usable by domain experts, however, 
leads to departures from the traditional ontology design 
goals of coverage, consensus and elegance. In this paper we 
describe our component library, a hierarchy of reusable, 
composable, domain-independent knowledge units. The 
library emphasizes coverage (what is an appropriate set of 
components for our task), access (how can a domain expert 
find appropriate components) and semantics (what 
knowledge and what kind of representation permit useful 
composition). We have begun building a library on these 
principles, influenced heavily by linguistic resources. In 
early evaluations we have put the library into the hands of 
domain experts (in Biology) having no experience with 
knowledge bases or knowledge acquisition. 
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INTRODUCTION 
The traditional audience for concept taxonomies includes 
knowledge engineers, ontologists and philosophers. This 

audience is often interested in ontologies as elegant models 
capturing a natural division of kinds of things in the 
universe of discourse. When the intended audience includes 
experts in particular fields of knowledge who hope to use 
the ontology to represent abstractions from their fields, the 
pressures on the design of the ontology shift.  

It is a claim of our research [27] that users with no 
experience in knowledge engineering will be able to 
represent knowledge from their domain of expertise by 
instantiating and composing generic components from a 
small, hierarchical library. Components are coherent 
collections of axioms that can be given an intuitive label — 
usually a common English word. The components should 
be general enough that their axiomatization is relatively 
uncontroversial. Composition consists of specifying 
relationships between instantiated components so that 
additional implications can be computed. 

In an attempt to make the library more accessible to users 
unfamiliar with knowledge engineering, we have taken a 
somewhat different approach to building our ontology: we 
have taken inspiration from English lexical resources (such 
as dictionaries, thesauri and English word lists) and 
Linguistics research. We are certainly not rejecting 
traditional knowledge engineering approaches. Rather we 
are trying to reconcile them with language usage. Rather 
than try to avoid the clash between knowledge base 
concepts and English words, we are attempting to make our 
component library intuitive to users accustomed to 
expressing knowledge with natural language. 

This paper is part of a larger context of ongoing research on 
knowledge base construction by composition. Elsewhere we 
have discussed: 

• motivations for the approach and algorithms [5, 6, 8] 

• a graphical user interface [8] 

• a knowledge representation and reasoning system [6] 

• question answering methods and explanation 
generation [18, 25] 

Within that context, this paper provides a brief tour of an 
early version of our component library to highlight its 
requirements, contents, and applications. 



In the following section, we will describe our research 
project in more detail and the design constraints it places on 
our component library. We will then expose the contents of 
the library: what components it contains, what the language 
for composing components is and how we arrived at these. 
We will describe the ways in which the user accesses the 
library and report on some early observations of domain 
experts using the library. 

The component library itself is online and can be browsed 
at http://www.cs.utexas.edu/users/mfkb/RKF/tree/. 

THE PROJECT 
A challenge problem for DARPA’s Rapid Knowledge 
Formation (RKF) project [11] is to provide a software 
environment in which a biologist can build a knowledge 
base from information found in a textbook on Cell Biology. 
It must be possible to query the resulting knowledge base to 
obtain answers to the kinds of questions typically found at 
the end of a textbook chapter. 

Our component library is being used in software (called 
SHAKEN) being developed by SRI, one of the primary 
contractors on the RKF project [26]. A user of SHAKEN 
builds a knowledge base by drawing generic components 
from the library, instantiating them in a graph and 
connecting the instantiations to represent such things as 
static relationships between concepts, temporal and spatial 
information, event structure and process plans. 

Requirements for Library Components 
Since all knowledge is captured through the graph interface, 
it is imperative that the user have a sufficient variety of 
components (coverage), that components that satisfy user 
expectations can be found easily (access) and that 
components are general enough to be used in a variety of 
contexts but specific enough to express non-trivial 
knowledge (semantics). 

Coverage 
There should be components to allow the user to encode a 
variety of knowledge from any domain. This is not to say 
that there should be as many components as there are words 
in a dictionary. Rather, the library should be broad-
coverage with components specific enough that a user is 
willing to make the abstraction from a domain specific 
concept. Conversely, the components should not be so 
specific that the user is handcuffed by her choice or does 
not care enough about the fine distinctions to use the 
components consistently.  

Access 
Although knowledge engineers and philosophers are 
interested in the structure of upper-level ontologies, it is 
less likely that a biologist describing DNA replication will 
be interested in learning our hierarchy in order to find 
components. Furthermore, since we are restricting the 
library to a small number of components, it is unlikely that 
there will be an exact match for a concept required by the 
user. For both these reasons, it is important that the 

interface provide assistance in finding appropriate 
components.  

Semantics 
Our library is not merely a taxonomy of concepts. Each 
component contains axioms that encode the meaning of the 
component as well as how the component interacts with 
other components. These axioms must be general enough 
that the components are reusable. They must also be written 
in such a way that they do not clash with the axioms of 
other components in compositions. 

In the next section we will discuss how these criteria, along 
with previous successful work on broad-coverage intuitive 
semantic inventories have guided the construction of our 
library. 

OTHER ONTOLOGIES 
In theory an ontology could be strong on all dimensions: 
coverage, access, semantics. In practice, however, an 
ontology, like most artifacts, is the result of engineering 
tradeoffs. For example, consider WordNet [22] and Sensus 
[17]. On one hand, they are as easily accessed as a 
thesaurus and have very broad coverage — they include the 
variety of concepts, relations, and modifiers used in 
everyday text. On the other hand, they provide very shallow 
semantics. For each English word, these ontologies give its 
senses along with their definitions, parts of speech, 
subclasses, superclasses and sibling classes. However, the 
definitions are text strings — which are of little use to 
computer programs — and the taxonomic information is 
only a small part of lexical semantics. 

The ontologies in Ontolingua [14] represent a different 
point in the space of tradeoffs. These ontologies are very 
limited coverage (they apply mainly to isolated topics in 
Engineering), but they have rich semantics. For example, 
they can be used to compute answers to Engineering 
problems stated in their vocabulary. 

Cyc [10, 19, 20] represents yet another point. Its coverage 
is arguably as broad as WorldNet’s, including many senses 
for entries in its lexicon. By one account, however, it 
receives lower scores on semantics and accessibility. 
Parmar [24] compared the representations of a handful of 
actions in Cyc and our component library. She found that 
Cyc often lacks axioms that capture the effects of actions. 
Consequently, the representation does not support 
automated reasoning about change. In terms of 
accessibility, Parmar measured the time she spent searching 
the Cyc ontology for entries that correspond to fifteen 
common actions represented in the component library.1 On 
average, she spent over 3.5 minutes finding the Cyc term 
                                                           
1  BREAK an object, CREATE, MAKE-ACCESSIBLE, 

MAKE-INACCESSIBLE, RELEASE from an enclosure, 
MAKE-CONTACT between two objects, MOVE an object, 
CARRY, ENTER an enclosure, EXIT an enclosure, REMOVE, 
REPAIR, and TRANSFER possession. 



that most closely matches each action. By her assessment, 
many of these matches were not close: on a scale from 1 
(poor) to 10 (perfect), the average score was less than 6.5. 

For our project, rich semantics is the first priority. The 
semantics of each component is expressed in KM [6], 
which in turn is defined in first-order logic.  KM includes 
situation calculus — a knowledge representation and 
reasoning formalism for actions and the changes they cause.  
For example, the component for ENTER includes KM 
encodings of these axioms: 

• ENTER is a type of MOVE, so instances of ENTER inherit 
axioms from MOVE, such as: the action changes the 
location of the object of the MOVE  

• before the ENTER, the object is outside but near some 
enclosure 

• after the ENTER, the object is inside that enclosure and 
contained by it 

• during the ENTER, the object passes through a portal of 
the enclosure 

• if the portal has a covering, as a precondition of the 
action, it must be OPEN. Unless it is known to be 
CLOSED, assume that it is OPEN. 

We plan to achieve good coverage by encoding a small set 
of general components for breadth. Depth can then be 
achieved through specialization and composition of 
components, without having the user write axioms. 

We consider accessibility especially important, given that 
our users are not knowledge engineers. The library has been 
designed to allow retrieval of components by means of 
semantically related search terms (as described below: see 
Searching the Library). 

THE COMPONENT LIBRARY 
In deciding what components to encode, we took 
inspiration from linguistic resources (such as dictionaries 
and thesauri). Our goal was not to build an online 
dictionary, but rather a library of components representing 
concepts that are general and intuitive enough to have 
obvious labels among common English words.  

Furthermore, since domain experts are accustomed to 
expressing their knowledge with words, having explicit 
links between our components and dictionaries will help 
provide access to the library (as described below). 

These linguistic resources have much to offer: 

• They have broad coverage of common terms. Our goal 
is to have a library of domain-independent, general 
components, not concepts specific to particular 
domains. This is also where the strengths of common 
dictionaries and thesauri lie. 

• Lexicographers pay attention to consensus view of the 
semantics of terms and common usage. Most 

dictionaries and thesauri are the result of many years of 
studying how terms are commonly used. 

• They often group semantically related words into 
general semantic categories. These categories may be 
thought of as representing the most general concepts. 

The Longman Dictionary of Contemporary English 
(LDOCE) [28] uses a “defining vocabulary” of about 2,000 
words. All definitions in the dictionary are supposed to 
ground out eventually to the defining vocabulary. WordNet  
groups semantically similar words into “synsets”, which are 
themselves linked hierarchically. Roget’s Thesaurus (see, 
for example, [21]) divides the universe into six classes. 
Each class is subdivided into multiple divisions and 
sections, themselves further subdivided. The one thousand 
leaves in Roget’s tree contain semantically related words 
(not quite synonyms), one of which is chosen as the 
representative for the group: the headword. 

Each of these resources (the Longman defining vocabulary, 
a horizontal slice of the WordNet hierarchy, the Roget 
headwords) could be used as a list of general concepts, or 
as inspiration for an original list. (See Rick Harrison’s 
“Vital English Vocabulary” [16] for a similar experiment). 
None of these sources is perfect: LDOCE is not 
semantically motivated and is apparently not without 
circular references; WordNet has much less coverage than 
the others, especially among the non-nouns; Roget is also 
somewhat arbitrary, and obviously influenced by his 
culture. 

Generic Events 
The main division in our component library is between 
entities (roughly, things that are) and events (things that 
happen).  

Events in the library are states and actions. States represent 
relatively static situations in the world that are brought 
about or changed by actions. 

Actions 
The actions are grouped into fifteen top-level clusters, each 
having several more specific subclasses (Table 1). The list 
was developed under consultation of WordNet, the LDOCE 
defining vocabulary and Roget. 

For example, the list of actions was compared to those 
headwords in Roget’s Thesaurus that most naturally 
describe actions. In Roget, each headword heads several 
paragraphs; each paragraph contains words of the same part 
of speech. Although the headwords themselves are all 
nouns, some of the nouns are nominalizations and represent 
events more naturally than entities (for example, headwords 
#161: Production and #264: Motion). For these headwords, 
the noun paragraphs are often relatively empty, or contain 
more nominalizations. Their verb paragraphs are the 
richest. Although there are over one thousand headwords in 
Roget, our actions are general enough to cover most of the 
more action-like headwords (with the exception of those 



having to do with “sentiment and moral power” — an area 
we have so far ignored). 

States 
States are relatively temporally stable events. They are 
coherent collections of axioms that represent situations 
brought about or changed by actions. Many of our actions 
are defined in terms of the change in state they cause. 

This relationship between actions and states is made 
explicit in the library, where there may be an action that 
puts an object into a state, another action that takes an 
object out of a state and an action (or many actions) whose 
behavior is affected by the fact that an object is in a given 
state. For example, the BREAK action puts an object into a 
BE-BROKEN state. The REPAIR action takes an object in a 
BE-BROKEN state out of that State. If an object is in a BE-
BROKEN state, it may not be the instrument of any of the 
events for which it is the intended instrument (though it may 
be instrument of other actions, such as using a broken 
computer to hold a door open). 

The states in the library include BE-RUINED, BE-CLOSED, BE-
CONFINED, BE-TOUCHING, BE-ATTACHED-TO among several 
others. 

There are other events that seem to fit somewhere between 
our actions and states, such as “being in motion”. We 
expect that most of our actions have non-conclusive, 
durative counterparts (such as MOVING, CREATING, etc.) that 
would account for these other state-like events. We are 
investigating continuous representations of our actions for 

the purpose of simulation. For now, our actions are all 
represented as discrete events. 

Entities and Roles 
To date, our efforts have been concentrated on events. We 
plan to research generic entities in a similar way. The entity 
hierarchy in the library is currently a relatively 
impoverished tree, serving as the root of a number of 
concepts (just over 500 at the time of writing) from our test 
domain: Cell Biology. Entities are divided into spatial-
entities and abstract-entities. Spatial-entities include 
tangible-entities and places. 

Our preliminary investigation into entities led us to 
distinguish a separate class of role concepts. A role can be 
thought of as a temporally unstable entity. It is what an 
entity is in the context of some event. For example, PERSON 
is an entity while EMPLOYEE is a role. A PERSON remains a 
PERSON independent of the events in which she participates. 
Conversely, someone is an EMPLOYEE only by virtue of 
participation in an EMPLOY event.  

Our library currently allows instances of roles to be linked 
to instances of entities as adjunct instances that can be used 
to capture both the role that an entity plays in an event, and 
the role it is intended to play (its purpose). 

In order to determine how common role concepts are, we 
conducted an experiment with the Collins online dictionary 
[9]. In that experiment we estimated that as many as 6% of 
nouns satisfy our criteria for role concepts. Furthermore, the 
most frequent nouns in the British National Corpus [4] also 
contain an estimated 6% role concepts. 

Action Description Example Subclasses 

ADD add a part to an entity -- 

REMOVE remove a part from an entity -- 

COMMUNICATE* transfer information INTERPRET, ENCODE, REPLY 

CREATE bring a new entity into existence COPY, PRODUCE, PUT-TOGETHER 

BREAK cause an entity to be unable to be used as instrument (for events 
in which it is the intended instrument) 

DESTROY, RUIN, TAKE-APART 

REPAIR “undo” a BREAK -- 

MOVE change the location of an entity CARRY, ENTER, SLIDE 

TRANSFER change the possessor of an entity DONATE, LOSE, TAKE 

MAKE-CONTACT make entities touch ATTACH, COLLIDE 

BREAK-CONTACT make touching entities touch no longer DETACH, DISPERSE 

MAKE-ACCESSIBLE allow an entity to participate (in various ways) in events ADMIT, EXPOSE, RELEASE 

MAKE-INACCESSIBLE prevent an entity from participating in events BLOCK, CONCEAL, CONFINE 

PERCEIVE* discern using senses IDENTIFY, TOUCH 

SHAPE* change the shape of an entity FLATTEN, FOLD 

ORIENT* change the orientation of an entity FACE, ROTATE, TURN 

Table 1: The top-level action clusters (actions marked * are not yet available in the library) 



A more detailed discussion of roles and justification for a 
separate role hierarchy appear in [13].  

COMPOSITION 
The precoded axioms in library components provide much 
of the power that allows domain experts to build knowledge 
bases. Equally important is the ability to connect 
components in such a way that our knowledge 
representation system (KM [6]) can draw inferences from 
the composition beyond the union of the individual axioms 
of the components. 

From the point of view of a user, composition is simply the 
linking together of library components. From this linking, 
however, KM is able to draw inferences by way of the 
knowledge encoded in components: 

• Conditional rules: many components specify additional 
axioms that are asserted conditionally, dependent on 
the kinds of components they are composed with and 
the kinds of connections between them. For example, if 
the raw material of a PRODUCE is a SUBSTANCE, then 
the product is composed of that SUBSTANCE. If the raw 
materials are OBJECTs, then the product has those 
OBJECTs as parts.  

• Definitions: many components specify the sufficient 
conditions under which KM can automatically 
reclassify instances. For example, an instance of MOVE 
in which the destination is inside a container is 
automatically reclassified as an instance of ENTER. 

• Simulation: many components specify the 
preconditions that must be satisfied for an action to 
take place as well as the axioms that get asserted (or 
retracted) as a result of the action taking place. KM is 
able to simulate complex combinations of events and 
their participating entities. 

The Language of Composition 
In order to enable the kind of inferencing we have 
described, composition must have predictable semantics, 
which we accomplish by defining a restricted composition 
language of relations and properties. These relations and 
properties have their own axioms that define what 
inferences will be drawn from the composition of 
components. 

Relations 
We have defined a small set of relations to connect Entities 
and Events. Keeping the set small — we currently have 
about eighty — will allow us to maintain detailed axioms 
for each relation that capture the semantics of the 
composition of the related components. Writing such 
axioms for an open-ended set of relations might not be as 
feasible. The small number of relations also makes it easier 
for our inexperienced users to learn to use them.Our 
relations that link an event to an entity describe the 
participants involved in the event. Our original set was 
inspired by a comprehensive study of case roles in 

Linguistics [3]. The set has been refined to account for the 
kinds of relationships expected for our particular event 
components. Event-to-Entity relations include agent, donor, 
instrument, object, recipient, result, etc. 

To account for relationships between entities, we drew on 
previous research into the semantics of English noun 
phrases [2]. Since nouns can represent many things (not just 
entities) the semantic relationships within noun phrases are 
a superset of what is required to account for relations 
between our entities. The set of entity-to-entity relations 
currently includes content, has-part, location, material, 
possesses and region. 

The choice of relationships between events followed from 
studies in discourse analysis [1] and process planning [23]. 
These relations include causes, defeats, enables, entails, 
inhibits, by-means-of, prevents, resulting-state and 
subevent. Other relations we are investigating include 
preparatory-event, initiating-event and terminating-event. 

In addition to the relations among events and entities, we 
have a very small number of relations that involve roles 
[13]. We have relations that link an Entity to the Role it 
plays (or is intended to play) and between the Role and the 
Event. 

Properties 
We also have a small number of properties. Properties link 
entities to values. For example, the size of an entity is a 
property that takes a value. The value can be a cardinal (25 
kilograms), a scalar (big relative to housecats) or  a 
categorical (brown). 

To define our set of properties, we turned once again to 
linguistic studies. Whereas events and entities usually 
surface as verbs and nouns in language, properties are 
closely related to adjectives. Since adjectives can also 
represent entities, we restricted our study to those adjectives 
that ascribe values to features of the nouns they modify. 
These adjectives are often called ascriptive adjectives. 

We consulted work in Linguistics on adjective semantics, 
most notably Dixon [12] and Frawley [15]. We then 
conducted two exercises to build a list of properties. 

For the first exercise we once again used WordNet, which 
explicitly distinguishes ascriptive adjectives from non-
ascriptive adjectives (called pertainyms in WordNet). For 
the ascriptive adjectives, there are occasionally links to the 
noun that best describes the “attribute” to which the 
adjective ascribes a value. For example, the attribute for 
large is size. The complete list of attributes can be had by 
running every adjective in the adjective index through 
WordNet querying for attributes. The result is a list of 
about 160 unique nouns that are used as attributes. We used 
these attributes to populate the adjective classes proposed 
by Dixon, resulting in a first draft of a list of properties. 

For the second exercise we once again consulted Roget. As 
described earlier, although the Roget headwords are nouns, 



some of them more naturally describe events. For these 
headwords the verb paragraphs are often the richest. For 
other headwords, the adjective paragraphs are the richest 
(for example, headword #192: Size). Some of the 
headwords so naturally indicate properties that the verb 
paragraphs are nearly vacuous. Often, the verb paragraph 
contains little more than “be <adjective>”. For example, in 
headword #201: Shortness, the first entry in the verb 
paragraph is “be short”. The exercise, then, was to find 
headwords whose verb paragraphs begin with copular 
adjectival complementation phrases2, under the assumption 
that these are the best candidates for properties. This test 
also singles out ascriptive adjectives, since nonascriptive 
adjectives do not appear as copular complements. 
Nonascriptive adjectives can usually only appear in 
attributive position (before the noun), not in predicative 
position (as the adjective complement of a copula). 
Unfortunately, the test did not filter out relations (such as 
“be identical to”, “be different from”, etc.). In the exercise 
we removed these relations by hand. The result was a list of 
approximately 230 headwords representing properties. 

We grouped all of the candidate properties into 
approximately 25 general categories. This final list of 
properties includes such properties as age, area, capacity, 
color, length, shape, size, smell and wetness. 

A Simple Example of Composition 
Consider the simple example of “messenger RNA” 
(mRNA) leaving a cell nucleus. In our interface, the user 
might describe this action by making an MRNA the object 
of a MOVE whose destination is outside of a CELL-NUCLEUS: 

Since the MOVE has a destination, and that destination is 
defined as being outside some place, KM will recognize 
that this MOVE satisfies the definition of EXIT and will 
reclassify this instance of MOVE to an instance of EXIT. 
Through the semantics of EXIT, KM will infer that prior to 
the EXIT the MRNA was inside the CELL-NUCLEUS, and that 
the MRNA must have EXITed through a portal in the CELL-
NUCLEUS. KM can also infer that CELL-NUCLEUS must be 
playing the role of CONTAINER in this example, and that the 
content of the CELL-NUCLEUS prior to the EXIT included the 
MRNA. In simulating the EXIT, KM will assert that the 
location of the MRNA is a PLACE outside the CELL-NUCLEUS 
in the situation immediately following the EXIT. 

                                                           
2 a phrase of the form “<copula> <adjective>”, where the 

copulas include “be”, “become”, “seem”, etc. 

USING THE LIBRARY 
User Interface 
Access to the component library is through a web-based 
tool for building compositions through graph operations: 

• add a component to a graph 

• connect two components with a relation 

• specialize a component to one of its subclasses 

• unify two component instances 

The use of this tool for knowledge entry is described in 
detail in [8]. 

Searching or Browsing the Library 
The main disadvantage in restricting ourselves to a small 
number of generic components is that the library will 
probably not have a component that exactly matches the 
concept a user is looking for. The library interface, then, 
must make it easy for the user to find a close enough match. 
Our interface supports two modes of access to the library: a 
tree-based browser and a search tool. 

Browsing the Library 
Since the components are arranged hierarchically in the 
library, they can be browsed in the form of a tree. Our 
library browser allows the user to selectively expand the 
tree to view a component’s subclasses. Since the library is 
small (by design) and we have attempted to make the 
component names intuitive and transparent, browsing the 
library through the tree is feasible. Nonetheless, given that 
our users are expected to have little or no experience with 
concept hierarchies, we believe it will be easier for them to 
find components through a search facility. 

Searching the Library 
The SHAKEN interface allows two kinds of searching: 
exact match searching and inexact matching.  

Exact matching, as expected, will return a component 
whose name exactly matches the search term. 

Inexact matching works in two ways. First, it will return all 
components whose names contain the search term. The 
second kind of inexact matching traverses the WordNet 
hierarchy for terms related to components. 

As part of the documentation for each component we have 
identified the WordNet entries that most closely match the 
semantics of the component. Our WordNet-based search 
tool finds the search term in WordNet, then climbs the 
hierarchy of hypernyms (more general terms) finding all 
components that list those hypernyms in their 
documentation. 

Table 2 shows some examples of search terms and their 
results. 

MOVE 

CELL-NUCLEUS 

MRNA

PLACE 
object 

destination 

is-outside 



search term components found 

assemble ATTACH, CREATE, COME-TOGETHER, 
MOVE-TOGETHER 

mend REPAIR 

gum-up OBSTRUCT, BLOCK 

busted BE-BROKEN, BE-RUINED 

Table 2: Examples of search terms and components found 

Documentation 
One of the disadvantages of giving components names that 
are also English words is that users may have different 
biases about the meanings of those words. These 
expectations may clash with the actual semantics of the 
components. This problem underlines the need for good 
documentation. 

Our documentation for components includes several things: 

• Definitions. Given our particular users, it is important 
to have simple, non-technical definitions that describe 
all (and only) the meaning encoded in each component. 

• One-line glosses. Early experiments have shown that 
users often accept or reject a component based solely 
on its name in a list. In our web-based interface one-
line glosses can be displayed as the mouse hovers over 
a component name. 

• More detailed documentation. We also document the 
complete semantics of components, including 
participants in an event, subevents, parts of an entity, 
etc. 

• Examples. Several examples of varying complexity 
help show the intended use of components. 

• Neighboring concepts. We are adding information to 
the documentation on “neighboring concepts” (similar 
components and how they differ from each other). 

All documentation is available through the user interface, 
which can also show a graph representation of any 
component in the library. In the graph the user can choose 
to see all, none or any subset of the links between the 
component and components connected to it through our 
relations. 

LIMITATIONS AND FUTURE WORK 
Early experiments with biologists have shown that our 
library search facility is able to guide them to generic 
components that they are willing to accept as abstractions of 
concepts they wish to encode. For example, our users were 
comfortable defining the process of transcribing DNA in 
terms of such generic actions as COLLIDE, SLIDE, ATTACH, 
COPY, RELEASE and DETACH. 

Users identified a major weakness of this kind of 
representation: biologists are interested (often more 
interested) in representing functional aspects of processes, 
not just physical/spatial descriptions. Including role 

concepts and the notion of purpose is currently making the 
encoding of functional knowledge easier. We are 
continuing to expand our role hierarchy and our generic 
entity hierarchy. 

Our users also convinced us of the importance of choosing 
simple names for components that do not have strong 
connotations in a particular domain. Our general actions of 
REPLICATE and TRANSCRIBE caused confusion among the 
biologists. We are currently reviewing the names (and 
documentation) of all our components. We are also 
reviewing components that users found unintuitive for other 
reasons. For example, users were not interested in the 
distinction between MOVE and its subclasses MOVE-FROM 
and MOVE-TO. We will likely remove these components in 
the name of simplicity. 

The main task ahead is to evaluate the library and the 
ability of users to encode complex knowledge through 
composition of components. As part of the RKF project, 
our system will be used in an extended experiment by fresh 
biologists this summer. Users will be expected to encode 
knowledge from a textbook on Cell Biology with minimal 
interference by knowledge engineers. 

SUMMARY 
In this paper we have described the process of building a 
library of knowledge components under the pressures 
imposed by our intended audience: domain experts with no 
experience in ontologies or knowledge engineering. In 
order to make the library accessible, we have taken 
inspiration from linguistic resources and built hooks to 
language into the components. In order to achieve power 
through composition of components, we have limited the 
library to a small number of components and relations with 
rich semantics. Preliminary trials with users inexperienced 
in knowledge engineering have been promising, giving us 
hope that domain experts will soon be able to encode their 
expertise in powerful knowledge bases. 
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