
A Library of Generic Concepts
for Composing Knowledge Bases

Ken Barker and Bruce Porter

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712 USA
{kbarker, porter}@cs.utexas.edu

Peter Clark

Knowledge Systems
Boeing Math and Computing Technologies

m/s 7L66, PO Box 3707, Seattle, WA 68124 USA
peter.e.clark@boeing.com

ABSTRACT
Building a knowledge base for a given domain traditionally
involves a subject matter expert and a knowledge engineer.
One of the goals of our research is to eliminate the
knowledge engineer. There are at least two ways to achieve
this goal: train domain experts to write axioms (i.e., turn
them into knowledge engineers) or create tools that allow
users to build knowledge bases without having to write
axioms. Our strategy is to create tools that allow users to
build knowledge bases through instantiation and assembly
of generic knowledge components from a small library.

In many ways, creating such a library is like designing an
ontology: What are the most general kinds of events and
entities? How are these things related hierarchically? What
is their meaning and how is it represented? The pressures of
making the library usable by domain experts, however,
leads to departures from the traditional ontology design
goals of coverage, consensus and elegance. In this paper we
describe our component library, a hierarchy of reusable,
composable, domain-independent knowledge units. The
library emphasizes coverage (what is an appropriate set of
components for our task), access (how can a domain expert
find appropriate components) and semantics (what
knowledge and what kind of representation permit useful
composition). We have begun building a library on these
principles, influenced heavily by linguistic resources. In
early evaluations we have put the library into the hands of
domain experts (in Biology) having no experience with
knowledge bases or knowledge acquisition.

Keywords
knowledge engineering, ontologies, knowledge reuse

INTRODUCTION
The traditional audience for concept taxonomies includes
knowledge engineers, ontologists and philosophers. This

audience is often interested in ontologies as elegant models
capturing a natural division of kinds of things in the
universe of discourse. When the intended audience includes
experts in particular fields of knowledge who hope to use
the ontology to represent abstractions from their fields, the
pressures on the design of the ontology shift.

It is a claim of our research [28] that users with no
experience in knowledge engineering will be able to
represent knowledge from their domain of expertise by
instantiating and composing generic components from a
small, hierarchical library. Components are coherent
collections of axioms that can be given an intuitive label —
usually a common English word. The components should
be general enough that their axiomatization is relatively
uncontroversial. Composition consists of specifying
relationships between instantiated components so that
additional implications can be computed.

As a guiding principle in building the library we have
chosen to restrict both the number of components (to a few
hundred) and the size of the language of composition — the
relationships between components (currently less than a
hundred). Our goal is to achieve coverage through
composition rather than through enumeration of a large
number of concepts. The small library and simple
composition language also have the benefit of being easy to
learn for users with no knowledge engineering experience.

This design principle presents two research questions: 1) is
such a system easy for users to master? 2) is such a system
sufficient to represent sophisticated domain knowledge?
We have evidence that the system is indeed usable by
domain experts. The quality of the representations created
by our domain experts is under review.

In an attempt to make the library more accessible to users
unfamiliar with knowledge engineering, we have taken a
somewhat different approach to building our ontology: we
have taken inspiration from English lexical resources (such
as dictionaries, thesauri and English word lists) and
Linguistics research. We are certainly not rejecting
traditional knowledge engineering approaches, trying
instead to reconcile them with language usage. Rather than
try to avoid the clash between knowledge base concepts and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010…$5.00

English words, we are attempting to make our component
library intuitive to users accustomed to expressing
knowledge with natural language.

This paper is part of a larger context of ongoing research on
knowledge base construction by composition. Elsewhere we
have discussed:

• motivations for the approach and algorithms [5, 6, 7]

• a graphical user interface [8]

• a knowledge representation and reasoning system [6]

• question answering and explanation generation [17, 24]

Within that context, this paper provides a brief tour of an
early version of our component library to highlight its
requirements, construction, contents and applications.

In the following section, we will describe our research
project in more detail and the design constraints it places on
our component library. We will then expose the contents of
the library: what components it contains, what the language
for composing components is and how we arrived at these.
We will describe the ways in which the user accesses the
library and report on some early observations of domain
experts using the library.

The component library itself is online and can be browsed
at http://www.cs.utexas.edu/users/mfkb/RKF/tree/.

THE PROJECT
A challenge problem for DARPA’s Rapid Knowledge
Formation (RKF) project [11] is to provide a software
environment in which a biologist can build a knowledge
base from information found in a textbook on Cell Biology.
It must be possible to query the resulting knowledge base to
obtain answers to the kinds of questions typically found at
the end of a textbook chapter.

Our component library is being used in software (called
SHAKEN) being developed by SRI, one of the primary
contractors on the RKF project [27]. A user of SHAKEN
builds a knowledge base by taking generic components
from the library, instantiating them in a graph and
connecting the instantiations to represent such things as
static relationships between concepts, temporal and spatial
information, event structure and process plans.

Requirements for Library Components
Given the project requirements, it is imperative that the user
have a sufficient variety of components (coverage), that
components that satisfy user expectations can be found
easily (access) and that components are general enough to
be used in a variety of contexts but specific enough to
express non-trivial knowledge (semantics).

Coverage
There should be components to allow the user to encode a
variety of knowledge from any domain. This is not to say
that there should be as many components as there are words
in a dictionary. Rather, the library should be broad-
coverage with components specific enough that a user is

willing to make the abstraction from a domain concept.
Conversely, the components should not be so specific that
the user is handcuffed or does not care enough about the
fine distinctions to use the components consistently.

Access
Although knowledge engineers and philosophers are
interested in the structure of upper-level ontologies, it is
less likely that a biologist describing DNA replication will
be interested in learning our hierarchy in order to find
components. Furthermore, since we are restricting the
library to a small number of components, it is unlikely that
there will be an exact match for a concept required by the
user. For both these reasons, it is important that the
interface help the user to find appropriate components.

Semantics
Our library is not merely a taxonomy of concepts. Each
component contains axioms that encode the meaning of the
component as well as how the component interacts with
other components. These axioms must be general enough
that the components are reusable. They must also be written
in such a way that they do not clash with the axioms of
other components when composed.

In the next sections we will discuss how these criteria,
along with previous successful work on broad-coverage
intuitive semantic inventories have guided the construction
of our library.

RELATED WORK
In theory an ontology could be strong on all dimensions:
coverage, access, semantics. In practice, however, an
ontology, like most artifacts, is the result of engineering
tradeoffs. For example, consider WordNet [21] and Sensus
[16]. On one hand, they are as easily accessed as a
thesaurus and have very broad coverage — they include the
variety of concepts, relations, and modifiers used in
everyday text. On the other hand, they provide very shallow
semantics. For each English word, these ontologies give its
senses along with their definitions, parts of speech,
subclasses, superclasses and sibling classes. The definitions
are free text (of limited use to computer programs) and the
encoded relations are the only semantics.

The ontologies in Ontolingua [14] represent a different
point in the space of tradeoffs. These ontologies are very
limited coverage (they apply mainly to isolated topics in
Engineering), but they have rich semantics. For example,
they can be used to compute answers to Engineering
problems stated in their vocabulary.

Cyc [10, 18, 19] represents yet another point. Its coverage
is arguably as broad as WorldNet’s, including many senses
for entries in its lexicon. By one account, however, it
receives lower scores on semantics and accessibility.
Parmar [23] compared the representations of a handful of
actions in Cyc and our component library. She found that
Cyc often lacks axioms that capture the effects of actions —
the representation does not support automated reasoning

about change. In terms of accessibility, Parmar measured
the time she spent searching the Cyc ontology for entries
that correspond to fifteen common actions represented in
the component library.1 On average, she spent over 3.5
minutes finding the Cyc term that most closely matches
each action. By her assessment, many of these matches
were not close: on a scale from 1 (poor) to 10 (perfect), the
average score was less than 6.5.

It is clear, though, that Cyc is an example of a very different
approach to coverage than what we propose, making it
difficult to compare Cyc and our library. Cyc achieves
coverage through enumeration. The semantics of concepts
is often encoded in the fine distinctions between specialized
subclasses.

Given our small number of components and relations, there
is an obvious overlap with work on semantic primitives in
Linguistics and Natural Language Processing. Schank’s
Conceptual Dependency Theory [25] enumerated a very
small number of primitive actions and the relations between
actions and their participants. A later refinement [26]
included relations between pairs of actions. The extremely
small number of primitives forces each one to cover many
different concepts. The avoidance of names that clash with
English words makes the Conceptual Dependency language
less intuitive to users.

For our project, rich semantics is the first priority. The
semantics of each component is expressed in KM [6],
which in turn is defined in first-order logic. KM includes
situation calculus — a knowledge representation and
reasoning formalism for actions and the changes they cause.
For example, the component for ENTER includes KM
encodings of these axioms:

• ENTER is a type of MOVE, so instances of ENTER inherit
axioms from MOVE, such as: the action changes the
location of the object of the MOVE

• before the ENTER, the object is outside some enclosure

• after the ENTER, the object is inside that enclosure and
contained by it

• during the ENTER, the object passes through a portal of
the enclosure

• if the portal has a covering, it must be OPEN; and unless
it is known to be CLOSED, assume that it is OPEN.

We plan to achieve good coverage by encoding a small set
of general components for breadth. Depth can then be
achieved through specialization and composition of
components, without having the user write axioms.

We consider accessibility especially important, given that
our users are not knowledge engineers. The library has been

1 BREAK, CARRY, CREATE, ENTER, EXIT, MAKE-ACCESSIBLE,

MAKE-CONTACT, MAKE-INACCESSIBLE, MOVE, RELEASE,
REMOVE, REPAIR and TRANSFER.

designed to allow retrieval of components by means of
semantically related search terms (as described below: see
Searching the Library).

THE COMPONENT LIBRARY
In deciding what components to encode, we took
inspiration from linguistic resources (such as dictionaries
and thesauri). Our goal was not to build an online
dictionary, but rather a library of components representing
concepts that are general and intuitive enough to have
obvious labels among common English words.

Furthermore, since domain experts are accustomed to
expressing their knowledge with words, having explicit
links between our components and dictionaries will help
provide access to the library (as described below). These
linguistic resources have much to offer:

• They have broad coverage of common terms. Our goal
is to have a library of domain-independent, general
components. This is where the strengths of general-
purpose dictionaries and thesauri lie.

• Lexicographers pay attention to consensus view of the
semantics of terms and common usage. Most
dictionaries and thesauri are the result of many years of
studying how terms are commonly used.

• They often group semantically related words into
general semantic categories. These categories may be
thought of as the most general concepts.

The Longman Dictionary of Contemporary English
(LDOCE) [29] uses a “defining vocabulary” of about 2,000
words. All definitions in the dictionary ground out
eventually to the defining vocabulary. WordNet groups
semantically similar words into “synsets”, which are
themselves linked hierarchically. Roget’s Thesaurus [20]
divides the universe into six classes. Each class is
subdivided into multiple sections, themselves subdivided.
The thousand leaves in Roget’s tree contain semantically
related words (not quite synonyms), one of which is chosen
as the representative for the group: the headword.

Each of these resources (the Longman defining vocabulary,
a horizontal slice of the WordNet hierarchy, the Roget
headwords) could be used as a list of general concepts, or
as inspiration for an original list. None of these would suit
our purposes as-is: the LDOCE vocabulary is not organized
semantically; WordNet has considerably less coverage and
fewer relations among non-nouns; Roget is somewhat
arbitrary, and obviously influenced by his culture.

Generic Events
The main division in our component library is between
entities (things that are) and events (things that happen).
Events are states and actions. States represent relatively
static situations brought about or changed by actions.

Actions
The actions are grouped into fifteen top-level clusters, each
having several more specific subclasses (Table 1). The list

was developed under consultation of WordNet, the LDOCE
defining vocabulary and Roget.

For example, the list of actions was compared to those
headwords in Roget’s Thesaurus that most naturally
describe actions. In Roget, each headword heads several
paragraphs; each paragraph contains words of the same part
of speech. Although the headwords themselves are all
nouns, some of the nouns are nominalizations and represent
events more naturally than entities (for example, headwords
#161: Production and #264: Motion). For these headwords,
the noun paragraphs are often relatively empty, or contain
more nominalizations. Their verb paragraphs are the
richest. Although there are over one thousand headwords in
Roget, our actions are general enough to cover most of the
more action-like headwords (with the exception of those
having to do with “sentiment and moral power” — an area
we have so far ignored).

States
States are relatively temporally stable events. They are
coherent collections of axioms that represent situations
brought about or changed by actions. Many of our actions
are defined in terms of the change in state they cause.

This relationship between actions and states is made
explicit in the library: there are actions that put objects into
states, actions that take objects out of states and actions
whose behavior is affected by objects being in states. For
example, the BREAK action puts an object into a BE-BROKEN
state. The REPAIR action takes an object in a BE-BROKEN
state out of that State. If an object is in a BE-BROKEN state,
it may not be the instrument of any of the events for which

it is the intended instrument (though it may be instrument of
other actions, such as using a broken computer to hold a
door open). Other states include BE-RUINED, BE-CLOSED,
BE-CONFINED, BE-TOUCHING, BE-ATTACHED-TO, etc.

There are other events that seem to fit somewhere between
our actions and states, such as “being in motion”. We
expect that most of our actions have non-conclusive,
durative counterparts (such as MOVING, CREATING, etc.).
We are investigating continuous representations of our
actions for the purpose of simulation. For now, our actions
are all represented as discrete events.

Entities and Roles
To date, we have concentrated on events. We plan to
research generic entities in a similar way. Our entity
hierarchy is currently a relatively impoverished tree, serving
as the root of a number of concepts from our test domain:
Cell Biology (just over 500 at the time of writing).

Our preliminary investigation into entities led us to
distinguish a separate class of role concepts. A role can be
thought of as a temporally unstable entity. It is what an
entity is in the context of some event. For example, PERSON
is an entity while EMPLOYEE is a role. A PERSON remains a
PERSON independent of the events in which she participates.
Conversely, someone is an EMPLOYEE only by virtue of
participation in an EMPLOY event.

Our library allows instances of roles to be linked to
instances of entities as adjunct instances that can be used to
capture both the role that an entity plays in an event, and
the role it is intended to play (its purpose).

In order to determine how common role concepts are, we

Action Description Example Subclasses

ADD add a part to an entity --

REMOVE remove a part from an entity --

COMMUNICATE* transfer information INTERPRET, ENCODE, REPLY

CREATE bring a new entity into existence COPY, PRODUCE, PUT-TOGETHER

BREAK cause an entity to be unable to be used as instrument (for events
in which it is the intended instrument)

DESTROY, RUIN, TAKE-APART

REPAIR “undo” a BREAK --

MOVE change the location of an entity CARRY, ENTER, SLIDE

TRANSFER change the possessor of an entity DONATE, LOSE, TAKE

MAKE-CONTACT make entities touch ATTACH, COLLIDE

BREAK-CONTACT make touching entities touch no longer DETACH, DISPERSE

MAKE-ACCESSIBLE allow an entity to participate (in various ways) in events ADMIT, EXPOSE, RELEASE

MAKE-INACCESSIBLE prevent an entity from participating in events BLOCK, CONCEAL, CONFINE

PERCEIVE* discern using senses IDENTIFY, TOUCH

SHAPE* change the shape of an entity FLATTEN, FOLD

ORIENT* change the orientation of an entity FACE, ROTATE, TURN

Table 1: The top-level action clusters (actions marked * are under construction in the library)

conducted an experiment with the Collins online dictionary
[9]. In that experiment we estimated that as many as 6% of
nouns satisfy our criteria for role concepts. Furthermore, the
most frequent nouns in the British National Corpus [4] also
contain an estimated 6% role concepts. A more detailed
discussion of roles and justification for a separate role
hierarchy appear in [13].

COMPOSITION
The precoded axioms in library components provide much
of the power that allows domain experts to build knowledge
bases. Equally important is the ability to connect
components in such a way that our knowledge
representation system (KM [6]) can draw inferences from
the composition beyond the union of the individual axioms
of the components.

From the point of view of a user, composition is simply the
linking together of library components. From this linking,
however, KM is able to draw inferences by way of the
knowledge encoded in components:

• Conditional rules: many components specify additional
axioms that are asserted conditionally, dependent on
the kinds of components they are composed with and
the kinds of connections between them. For example, if
the raw material of a PRODUCE is a SUBSTANCE, then
the product is composed of that SUBSTANCE. If the raw
materials are OBJECTs, then the product has those
OBJECTs as parts.

• Definitions: many components specify the sufficient
conditions under which KM can automatically
reclassify instances. For example, an instance of MOVE
whose destination is inside a container is automatically
reclassified as an instance of ENTER, allowing KM to
apply the axioms of that more specific component.

• Simulation: many components include preconditions
that must be satisfied for an action to take place and the
axioms that get asserted (or retracted) as a result of the
action taking place. KM is able to simulate complex
combinations of events and their participating entities.

The Language of Composition
In order to enable the kind of inferencing we have
described, composition must have predictable semantics,
which we accomplish by defining a restricted composition
language of relations and properties. These relations and
properties have their own axioms defining what inferences
will be drawn from the composition of components.

Relations
We have defined a small set of relations to connect Entities
and Events. Keeping the set small — we currently have
about eighty — will allow us to maintain detailed axioms
for each relation that capture the semantics of the
composition of the related components. Writing such
axioms for an open-ended set of relations might not be as
feasible. The small number of relations also makes it easier

for our inexperienced users to learn to use them. Our
relations that link an event to an entity describe the
participants involved in the event. Our original set was
inspired by a comprehensive study of case roles in
Linguistics [3]. The set has been refined to account for the
kinds of relationships expected for our particular event
components. Event-to-Entity relations include agent, donor,
instrument, object, recipient, result, etc.

To account for relationships between entities, we drew on
previous research into the semantics of English noun
phrases [2]. Since nouns can represent many things (not just
entities) the semantic relationships within noun phrases are
a superset of what is required to account for relations
between our entities. The set of entity-to-entity relations
currently includes content, has-part, location, material,
possesses, region, etc.

The choice of relationships between events followed from
studies in discourse analysis [1] and process planning [22].
These relations include causes, defeats, enables, entails,
inhibits, by-means-of, prevents, resulting-state and
subevent.

In addition to the relations among events and entities, we
have a very small number of relations that involve roles
[13]: relations that link an Entity to the Role it plays (or is
intended to play) and between the Role and the Event.

Properties
We also have a small number of properties. Properties link
entities to values. For example, the size of an entity is a
property that takes a value. The value can be a cardinal (25
kilograms), a scalar (big relative to housecats) or a
categorical (brown).

To define our set of properties, we turned once again to
linguistic studies. Whereas events and entities usually
surface as verbs and nouns in language, properties are
closely related to adjectives. Since adjectives can also
represent entities, we restricted our study to those adjectives
that ascribe values to features of the nouns they modify.
These adjectives are often called ascriptive adjectives.

We consulted work in Linguistics on adjective semantics,
most notably Dixon [12] and Frawley [15]. We then
conducted two exercises to build a list of properties.

For the first exercise we once again used WordNet, which
explicitly distinguishes ascriptive adjectives from non-
ascriptive adjectives (called pertainyms in WordNet). For
the ascriptive adjectives, there are occasionally links to the
noun that best describes the “attribute” to which the
adjective ascribes a value. For example, the attribute for
large is size. WordNet identifies about 160 unique nouns
that are used as attributes. We used these attributes to
populate the adjective classes proposed by Dixon, resulting
in a first draft of a list of properties.

For the second exercise we once again consulted Roget. As
described earlier, although the Roget headwords are nouns,

some of them more naturally describe events and have rich
verb paragraphs. For other headwords, the adjective
paragraphs are the richest (for example, headword #192:
Size). Some of the headwords so naturally indicate
properties that the verb paragraphs contain little more than
“be <adjective>”. In headword #201: Shortness, the first
entry in the verb paragraph is “be short”. Our experiment
pulled headwords whose verb paragraphs begin with
copular adjectival complementation phrases2, producing a
list of candidates for properties. This test also singles out
ascriptive adjectives, since nonascriptive adjectives do not
appear as copular complements. Unfortunately, the test did
not filter out certain relations (such as “be identical to”, “be
different from”, etc.). In the exercise we removed these
relations by hand. The result was a list of approximately
230 headwords representing properties.

We then grouped all of the candidate properties into
approximately 25 general categories. This final list of
properties includes such properties as age, area, capacity,
color, length, shape, size, smell and wetness.

A Simple Example of Composition
Consider the simple example of messenger RNA (mRNA)
leaving a cell nucleus. In our interface, the user might
describe this action by making an MRNA the object of a
MOVE whose destination is outside a CELL-NUCLEUS:

The composition is richer than the mere connection of
components due to the extra inferences KM can draw from
the connection. Since the destination of the MOVE is outside
some place, KM will recognize that this MOVE satisfies the
definition of EXIT and will reclassify this instance of MOVE
to be an instance of EXIT. Through the semantics of EXIT,
KM will infer that prior to the EXIT the MRNA was inside
the CELL-NUCLEUS, and that the MRNA must have EXITed
through a portal in the CELL-NUCLEUS. KM can also infer
that CELL-NUCLEUS must be playing the role of CONTAINER,
and that its content prior to the EXIT included the MRNA. In
simulating the EXIT, KM will assert that the location of the
MRNA is a PLACE outside the CELL-NUCLEUS in the
situation immediately following the EXIT.

USING THE LIBRARY
User Interface
Access to the component library is through a web-based
tool for building compositions through graph operations:

2 a phrase of the form “<copula> <adjective>”, where the

copulas include “be”, “become”, “seem”, etc.

• add a component to a graph

• connect two components with a relation

• specialize a component to one of its subclasses

• unify two component instances

The use of this tool for knowledge entry is described in
detail in [8].

Searching or Browsing the Library
The main disadvantage in restricting ourselves to a small
number of generic components is that the library will
probably not have a component that exactly matches the
concept a user is looking for. The library interface, then,
must make it easy for the user to find a close enough match.
Our interface supports two modes of access to the library: a
tree-based browser and a search tool.

Browsing the Library
Since the components are arranged hierarchically in the
library, they can be browsed in the form of a tree. Our
library browser allows the user to selectively expand the
tree to view a component’s subclasses. Since the library is
small (by design) and we have attempted to make the
component names intuitive and transparent, browsing the
library through the tree is feasible. Nonetheless, given that
our users are expected to have little or no experience with
concept hierarchies, we believe it will be easier for them to
find components through a search facility.

Searching the Library
The SHAKEN interface allows two kinds of searching:
token match searching and semantic matching.

Token matching will return a component whose name
exactly matches (or contains) the search term.

Semantic matching traverses the WordNet hierarchy for
terms semantically related to components.

As part of the documentation for each component we have
identified the WordNet entries that most closely match the
semantics of the component. Our WordNet-based search
tool finds the search term in WordNet, then climbs the
hierarchy of hypernyms (more general terms) finding all
components listing those hypernyms in their documentation.

Table 2 shows examples of search terms and their results.

search term components found

assemble ATTACH, CREATE, COME-TOGETHER, MOVE-TOGETHER

mend REPAIR

gum-up OBSTRUCT, BLOCK

busted BE-BROKEN, BE-RUINED

Table 2: Examples of search terms and components found

One of the advantages of semantic searching is that results
are sorted on the WordNet distance between the search term
and the component, and on the depth of the component in
our hierarchy. This gives preference to more specific library

MOVE

CELL-NUCLEUS

MRNA

PLACE
object

destination

is-outside

components, meaning the user is more likely to choose a
more specific (and therefore more semantically loaded)
component than if she browsed top-down through the tree.

Documentation
One of the disadvantages of giving components names that
are also English words is that users may have different
biases about the senses of those words. These expectations
may clash with the semantics of the components. This
problem underlines the need for good documentation. Our
documentation for components includes several things:

• Definitions. Given our particular users, it is important
to have simple, non-technical definitions that describe
all of (and only) the meaning of each component.

• One-line glosses. Early experiments have shown that
users often accept or reject a component based solely
on its name in a list. In our web-based interface one-
line glosses are displayed as the mouse hovers over a
component name.

• More detailed documentation. We also document the
full semantics of components, including participants in
an event, subevents, parts of an entity, etc.

• Examples. Several examples of varying complexity
help show the intended use of components.

• Neighboring concepts. We are adding information to
the documentation on “neighboring concepts” (similar
components and how they differ from each other).

All documentation is available through the user interface,
which can also show a graph representation of components
in the library. In the graph the user can choose to see all,
none or any subset of the links between the component and
components connected to it through our relations.

EVALUATION
We have conducted three experiments in which biologists
with no experience in knowledge engineering were asked to
encode knowledge using our library and SHAKEN. In the
first two experiments, users were given roughly one day of
training on how to use the system and one day to encode a
biological process (DNA transcription). In the third
experiment we provided roughly one week of training.
Users then (over eight weeks) encoded the knowledge from
one chapter of a textbook in Cell Biology. All interaction
between the users and developers was indirect, mediated by
an impartial “gatekeeper” knowledge engineer.

In all three experiments the users have shown that our
library search facility is able to guide them to generic
components that they are willing to accept as abstractions of
concepts they wish to encode. For example, our users were
comfortable defining biological processes in terms of such
generic actions as COLLIDE, SLIDE, ATTACH, RELEASE, etc.

At the end of each experiment, users were also asked to fill
out a questionnaire. On average users found it moderately
easy (slightly over 3 on a scale of 1-to-5) to find relevant

components in the library. They found it easy (4 on a scale
of 1-to-5) to understand the components. They found the
components useful (4) for representing knowledge. They
found the restricted language of relations easy (4) to
understand and use. They found it moderately difficult
(slightly under 3) to cast biological knowledge in terms of
the components and relations in the library.

More objective data on the quality of the representations of
the knowledge built by the users is being collected.

LIMITATIONS AND FUTURE WORK
It is part of our claim that arbitrarily complex knowledge
can be represented through the composition of simple
generic components. The goal of knowledge reuse,
however, suggests that the library will be even more
powerful if it allows users to compose these more complex
compositions themselves. One of our main tasks ahead is to
populate the library with more complex (yet still general)
components, such as processes of DELIVERY, PRODUCTION,
COMMUNICATION, etc. We are also investigating ways to
automate the composition of more complex components,
such as through the use of interface templates.

Users identified several ways in which the library could be
improved. For example, biologists are often interested in
representing functional aspects of processes, not just
physical/spatial descriptions. Including role concepts and
the notion of purpose is currently making the encoding of
functional knowledge easier. We have made extensions to
our relationship language and are continuing to expand our
role hierarchy and our generic entity hierarchy to admit
functional representations more easily.

Experiments also underlined the importance of simple
component names that do not have strong connotations in a
particular domain. Our general actions of REPLICATE and
TRANSCRIBE caused confusion among the biologists. We are
currently reviewing the names (and documentation) of all
our components. We are also reviewing components that
users found unintuitive for other reasons. For example,
users were not interested in the distinction between MOVE
and its subclasses MOVE-FROM and MOVE-TO. We will
likely remove these components for the sake of simplicity.

SUMMARY
In this paper we have described the process of building a
library of knowledge components under the pressures
imposed by our intended audience: domain experts with no
experience in ontologies or knowledge engineering. In
order to make the library accessible, we have taken
inspiration from linguistic resources and built hooks to
language into the components. In order to achieve power
through composition of components, we have limited the
library to a small number of components and relations with
rich semantics. Preliminary trials with users inexperienced
in knowledge engineering have been promising, giving us
hope that domain experts will soon be able to encode their
expertise in powerful knowledge bases.

ACKNOWLEDGMENTS
The authors are indebted to Art Souther, James Fan, Paul
Navratil, Dan Tecuci, Peter Yeh, Marwan Elrakabawy,
Sarah Tierney, John Thompson, Vinay Chaudhri, Andres
Rodriguez, Jérôme Thoméré, Yolanda Gil, Jim Blythe, Jihie
Kim, Pat Hayes and Paul Cohen for input on the
construction and use of the component library.

Support for this research is provided by a contract from
Stanford Research Institute as part of DARPA’s Rapid
Knowledge Formation project. This material is based upon
work supported by the Space and Naval Warfare Systems
Center - San Diego under Contract No. N66001-00-C-8018.

REFERENCES
1. Barker, K., and Szpakowicz, S. Interactive Semantic

Analysis of Clause-Level Relationships, in Proceedings
of PACLING ‘95 (Brisbane, April 1995).

2. Barker, K., and Szpakowicz, S. Semi-Automatic
Recognition of Noun Modifier Relationships, in
Proceedings of COLING-ACL ‘98 (Montréal, August
1998), 96-102.

3. Barker, K., Copeck, T., Delisle, S. & Szpakowicz, S.
Systematic Construction of a Versatile Case System.
Journal of Natural Language Engineering 3, 4
(December 1997), 279-315.

4. BNC. The British National Corpus. Available at
http://info.ox.ac.uk/bnc/, 2001.

5. Clark, P., and Porter, B. Building Concept
Representations from Reusable Components, in
Proceedings of AAAI ‘97 (Providence RI, July 1997),
AAAI Press, 369-376.

6. Clark, P. and Porter, B. KM – The Knowledge Machine:
User’s Manual and Situations Manual. Available at
http://www.cs.utexas.edu/users/mfkb/RKF/km.html, 2001.

7. Clark, P., Thompson, J. and Porter, B. Knowledge
Patterns, in Proceedings of KR-2000 (Breckenridge CO,
April 2000), Morgan Kaufmann, 591-600.

8. Clark, P., Thompson, J., Barker, K., Porter, B.,
Chaudhri, V., Rodriguez, A., Thoméré, J., Gil, Y. and
Hayes, P. Knowledge Entry as the Graphical Assembly
of Components: The SHAKEN System, in Proceedings
of K-CAP 2001 (Victoria BC, October 2001).

9. COLLINS. The Collins English Dictionary. William
Collins Sons, 1979. At the Linguistic Data Consortium,
http://www.ldc.upenn.edu/Catalog/LDC93T1.html, 1993.

10. CYC. The Cyc Upper Ontology. Available at
http://www.cyc.com/cyc-2-1/index.html, 2001.

11. DARPA. The Rapid Knowledge Formation Project.
Available at http://reliant.teknowledge.com/RKF/, 2000.

12. Dixon, R. M. W. Where Have all the Adjectives Gone?
Mouton, The Hague, 1982.

13. Fan, J., Barker, K., Porter B. and Clark, P. Representing
Role Concepts, in Proceedings of K-CAP 2001
(Victoria BC, October 2001).

14. Fikes, R. and Farquhar, A. Distributed Repositories of
Highly Expressive Reusable Ontologies. IEEE
Intelligent Systems 14, 2 (March/April 1999), 73-79.

15. Frawley, W. Linguistic Semantics. Lawrence Erlbaum
Associates, Publishers, Hillsdale NJ, 1992.

16. Knight, K. and Luk, S. Building a Large-Scale
Knowledge Base for Machine Translation, in
Proceedings of AAAI ’94 (Seattle WA, July-August
1994), AAAI Press, 773-778.

17. Lester, J. and Porter, B. Developing and Empirically
Evaluating Robust Explanation Generators: The
KNIGHT Experiments. Computational Linguistics 23, 1
(1997), 65-101.

18. Lenat, D. Cyc: A Large-Scale Investment in Knowledge
Infrastructure. Communications of the ACM 38, 11
(November 1995), 33-38.

19. Lenat, D. and Guha, R. Building Large Knowledge
Based Systems. Addison Wesley, Reading,
Massachusetts, 1990.

20. Lloyd, S. M. Roget’s Thesaurus. Longman, Essex, 1982.

21. Miller, G. A. (ed.). WordNet: An Online Lexical
Database. International Journal of Lexicography 3, 4
(Winter 1990).

22. Narayanan, S. Reasoning about Actions in Narrative
Understanding, in Proceedings of IJCAI’99 (Stockholm,
August 1999), Morgan Kaufmann, 350-358.

23. Parmar, A. The Representation of Actions in KM and
Cyc. Department of Computer Science, Stanford
University technical report (forthcoming), 2001.

24. Rickel, J. and Porter, B. Automated Modeling of
Complex Systems to Answer Prediction Questions.
Artificial Intelligence Journal 93, 1-2 (1997), 201-260.

25. Schank, R. C. Conceptual Information Processing.
North-Holland Publishing Company, Amsterdam, 1975.

26. Schank, R. C. and Abelson, R. P. Scripts, Plans, Goals
and Understanding. Erlbaum, Hillsdale NJ, 1977.

27. SRI. SRI’s Rapid Knowledge Formation Team.
Available at http://www.ai.sri.com/~rkf, 2001.

28. SRI. Proposal to DARPA’s Rapid Knowledge
Formation Project. Available at
http://reliant.teknowledge.com/RKF/proposals/SRI/SRIproposal.htm,
2000.

29. Summers, D. (ed.). Longman Dictionary of
Contemporary English: New Edition. Longman, Essex,
1987.

