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ABSTRACT 
Building a knowledge base for a given domain traditionally 
involves a subject matter expert and a knowledge engineer. 
One of the goals of our research is to eliminate the 
knowledge engineer. There are at least two ways to achieve 
this goal: train domain experts to write axioms (i.e., turn 
them into knowledge engineers) or create tools that allow 
users to build knowledge bases without having to write 
axioms. Our strategy is to create tools that allow users to 
build knowledge bases through instantiation and assembly 
of generic knowledge components from a small library. 

In many ways, creating such a library is like designing an 
ontology: What are the most general kinds of events and 
entities? How are these things related hierarchically? What 
is their meaning and how is it represented? The pressures of 
making the library usable by domain experts, however, 
leads to departures from the traditional ontology design 
goals of coverage, consensus and elegance. In this paper we 
describe our component library, a hierarchy of reusable, 
composable, domain-independent knowledge units. The 
library emphasizes coverage (what is an appropriate set of 
components for our task), access (how can a domain expert 
find appropriate components) and semantics (what 
knowledge and what kind of representation permit useful 
composition). We have begun building a library on these 
principles, influenced heavily by linguistic resources. In 
early evaluations we have put the library into the hands of 
domain experts (in Biology) having no experience with 
knowledge bases or knowledge acquisition. 
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INTRODUCTION 
The traditional audience for concept taxonomies includes 
knowledge engineers, ontologists and philosophers. This 

audience is often interested in ontologies as elegant models 
capturing a natural division of kinds of things in the 
universe of discourse. When the intended audience includes 
experts in particular fields of knowledge who hope to use 
the ontology to represent abstractions from their fields, the 
pressures on the design of the ontology shift.  

It is a claim of our research [28] that users with no 
experience in knowledge engineering will be able to 
represent knowledge from their domain of expertise by 
instantiating and composing generic components from a 
small, hierarchical library. Components are coherent 
collections of axioms that can be given an intuitive label — 
usually a common English word. The components should 
be general enough that their axiomatization is relatively 
uncontroversial. Composition consists of specifying 
relationships between instantiated components so that 
additional implications can be computed. 

As a guiding principle in building the library we have 
chosen to restrict both the number of components (to a few 
hundred) and the size of the language of composition — the 
relationships between components (currently less than a 
hundred). Our goal is to achieve coverage through 
composition rather than through enumeration of a large 
number of concepts. The small library and simple 
composition language also have the benefit of being easy to 
learn for users with no knowledge engineering experience.  

This design principle presents two research questions: 1) is 
such a system easy for users to master? 2) is such a system 
sufficient to represent sophisticated domain knowledge? 
We have evidence that the system is indeed usable by 
domain experts. The quality of the representations created 
by our domain experts is under review. 

In an attempt to make the library more accessible to users 
unfamiliar with knowledge engineering, we have taken a 
somewhat different approach to building our ontology: we 
have taken inspiration from English lexical resources (such 
as dictionaries, thesauri and English word lists) and 
Linguistics research. We are certainly not rejecting 
traditional knowledge engineering approaches, trying 
instead to reconcile them with language usage. Rather than 
try to avoid the clash between knowledge base concepts and 
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English words, we are attempting to make our component 
library intuitive to users accustomed to expressing 
knowledge with natural language. 

This paper is part of a larger context of ongoing research on 
knowledge base construction by composition. Elsewhere we 
have discussed: 

• motivations for the approach and algorithms [5, 6, 7] 

• a graphical user interface [8] 

• a knowledge representation and reasoning system [6] 

• question answering and explanation generation [17, 24] 

Within that context, this paper provides a brief tour of an 
early version of our component library to highlight its 
requirements, construction, contents and applications.  

In the following section, we will describe our research 
project in more detail and the design constraints it places on 
our component library. We will then expose the contents of 
the library: what components it contains, what the language 
for composing components is and how we arrived at these. 
We will describe the ways in which the user accesses the 
library and report on some early observations of domain 
experts using the library. 

The component library itself is online and can be browsed 
at http://www.cs.utexas.edu/users/mfkb/RKF/tree/. 

THE PROJECT 
A challenge problem for DARPA’s Rapid Knowledge 
Formation (RKF) project [11] is to provide a software 
environment in which a biologist can build a knowledge 
base from information found in a textbook on Cell Biology. 
It must be possible to query the resulting knowledge base to 
obtain answers to the kinds of questions typically found at 
the end of a textbook chapter. 

Our component library is being used in software (called 
SHAKEN) being developed by SRI, one of the primary 
contractors on the RKF project [27]. A user of SHAKEN 
builds a knowledge base by taking generic components 
from the library, instantiating them in a graph and 
connecting the instantiations to represent such things as 
static relationships between concepts, temporal and spatial 
information, event structure and process plans. 

Requirements for Library Components 
Given the project requirements, it is imperative that the user 
have a sufficient variety of components (coverage), that 
components that satisfy user expectations can be found 
easily (access) and that components are general enough to 
be used in a variety of contexts but specific enough to 
express non-trivial knowledge (semantics). 

Coverage 
There should be components to allow the user to encode a 
variety of knowledge from any domain. This is not to say 
that there should be as many components as there are words 
in a dictionary. Rather, the library should be broad-
coverage with components specific enough that a user is 

willing to make the abstraction from a domain concept. 
Conversely, the components should not be so specific that 
the user is handcuffed or does not care enough about the 
fine distinctions to use the components consistently.  

Access 
Although knowledge engineers and philosophers are 
interested in the structure of upper-level ontologies, it is 
less likely that a biologist describing DNA replication will 
be interested in learning our hierarchy in order to find 
components. Furthermore, since we are restricting the 
library to a small number of components, it is unlikely that 
there will be an exact match for a concept required by the 
user. For both these reasons, it is important that the 
interface help the user to find appropriate components.  

Semantics 
Our library is not merely a taxonomy of concepts. Each 
component contains axioms that encode the meaning of the 
component as well as how the component interacts with 
other components. These axioms must be general enough 
that the components are reusable. They must also be written 
in such a way that they do not clash with the axioms of 
other components when composed. 

In the next sections we will discuss how these criteria, 
along with previous successful work on broad-coverage 
intuitive semantic inventories have guided the construction 
of our library. 

RELATED WORK 
In theory an ontology could be strong on all dimensions: 
coverage, access, semantics. In practice, however, an 
ontology, like most artifacts, is the result of engineering 
tradeoffs. For example, consider WordNet [21] and Sensus 
[16]. On one hand, they are as easily accessed as a 
thesaurus and have very broad coverage — they include the 
variety of concepts, relations, and modifiers used in 
everyday text. On the other hand, they provide very shallow 
semantics. For each English word, these ontologies give its 
senses along with their definitions, parts of speech, 
subclasses, superclasses and sibling classes. The definitions 
are free text (of limited use to computer programs) and the 
encoded relations are the only semantics. 

The ontologies in Ontolingua [14] represent a different 
point in the space of tradeoffs. These ontologies are very 
limited coverage (they apply mainly to isolated topics in 
Engineering), but they have rich semantics. For example, 
they can be used to compute answers to Engineering 
problems stated in their vocabulary. 

Cyc [10, 18, 19] represents yet another point. Its coverage 
is arguably as broad as WorldNet’s, including many senses 
for entries in its lexicon. By one account, however, it 
receives lower scores on semantics and accessibility. 
Parmar [23] compared the representations of a handful of 
actions in Cyc and our component library. She found that 
Cyc often lacks axioms that capture the effects of actions —
the representation does not support automated reasoning 



about change. In terms of accessibility, Parmar measured 
the time she spent searching the Cyc ontology for entries 
that correspond to fifteen common actions represented in 
the component library.1 On average, she spent over 3.5 
minutes finding the Cyc term that most closely matches 
each action. By her assessment, many of these matches 
were not close: on a scale from 1 (poor) to 10 (perfect), the 
average score was less than 6.5. 

It is clear, though, that Cyc is an example of a very different 
approach to coverage than what we propose, making it 
difficult to compare Cyc and our library. Cyc achieves 
coverage through enumeration. The semantics of concepts 
is often encoded in the fine distinctions between specialized 
subclasses. 

Given our small number of components and relations, there 
is an obvious overlap with work on semantic primitives in 
Linguistics and Natural Language Processing. Schank’s 
Conceptual Dependency Theory [25] enumerated a very 
small number of primitive actions and the relations between 
actions and their participants. A later refinement [26] 
included relations between pairs of actions. The extremely 
small number of primitives forces each one to cover many 
different concepts. The avoidance of names that clash with 
English words makes the Conceptual Dependency language 
less intuitive to users. 

For our project, rich semantics is the first priority. The 
semantics of each component is expressed in KM [6], 
which in turn is defined in first-order logic.  KM includes 
situation calculus — a knowledge representation and 
reasoning formalism for actions and the changes they cause.  
For example, the component for ENTER includes KM 
encodings of these axioms: 

• ENTER is a type of MOVE, so instances of ENTER inherit 
axioms from MOVE, such as: the action changes the 
location of the object of the MOVE  

• before the ENTER, the object is outside some enclosure 

• after the ENTER, the object is inside that enclosure and 
contained by it 

• during the ENTER, the object passes through a portal of 
the enclosure 

• if the portal has a covering, it must be OPEN; and unless 
it is known to be CLOSED, assume that it is OPEN. 

We plan to achieve good coverage by encoding a small set 
of general components for breadth. Depth can then be 
achieved through specialization and composition of 
components, without having the user write axioms. 

We consider accessibility especially important, given that 
our users are not knowledge engineers. The library has been 

                                                           
1  BREAK, CARRY, CREATE, ENTER, EXIT, MAKE-ACCESSIBLE, 

MAKE-CONTACT, MAKE-INACCESSIBLE, MOVE, RELEASE, 
REMOVE, REPAIR and TRANSFER. 

designed to allow retrieval of components by means of 
semantically related search terms (as described below: see 
Searching the Library). 

THE COMPONENT LIBRARY 
In deciding what components to encode, we took 
inspiration from linguistic resources (such as dictionaries 
and thesauri). Our goal was not to build an online 
dictionary, but rather a library of components representing 
concepts that are general and intuitive enough to have 
obvious labels among common English words.  

Furthermore, since domain experts are accustomed to 
expressing their knowledge with words, having explicit 
links between our components and dictionaries will help 
provide access to the library (as described below). These 
linguistic resources have much to offer: 

• They have broad coverage of common terms. Our goal 
is to have a library of domain-independent, general 
components. This is where the strengths of general-
purpose dictionaries and thesauri lie. 

• Lexicographers pay attention to consensus view of the 
semantics of terms and common usage. Most 
dictionaries and thesauri are the result of many years of 
studying how terms are commonly used. 

• They often group semantically related words into 
general semantic categories. These categories may be 
thought of as the most general concepts. 

The Longman Dictionary of Contemporary English 
(LDOCE) [29] uses a “defining vocabulary” of about 2,000 
words. All definitions in the dictionary ground out 
eventually to the defining vocabulary. WordNet groups 
semantically similar words into “synsets”, which are 
themselves linked hierarchically. Roget’s Thesaurus [20] 
divides the universe into six classes. Each class is 
subdivided into multiple sections, themselves subdivided. 
The thousand leaves in Roget’s tree contain semantically 
related words (not quite synonyms), one of which is chosen 
as the representative for the group: the headword. 

Each of these resources (the Longman defining vocabulary, 
a horizontal slice of the WordNet hierarchy, the Roget 
headwords) could be used as a list of general concepts, or 
as inspiration for an original list. None of these would suit 
our purposes as-is: the LDOCE vocabulary is not organized 
semantically; WordNet has considerably less coverage and 
fewer relations among non-nouns; Roget is somewhat 
arbitrary, and obviously influenced by his culture. 

Generic Events 
The main division in our component library is between 
entities (things that are) and events (things that happen). 
Events are states and actions. States represent relatively 
static situations brought about or changed by actions. 

Actions 
The actions are grouped into fifteen top-level clusters, each 
having several more specific subclasses (Table 1). The list 



was developed under consultation of WordNet, the LDOCE 
defining vocabulary and Roget. 

For example, the list of actions was compared to those 
headwords in Roget’s Thesaurus that most naturally 
describe actions. In Roget, each headword heads several 
paragraphs; each paragraph contains words of the same part 
of speech. Although the headwords themselves are all 
nouns, some of the nouns are nominalizations and represent 
events more naturally than entities (for example, headwords 
#161: Production and #264: Motion). For these headwords, 
the noun paragraphs are often relatively empty, or contain 
more nominalizations. Their verb paragraphs are the 
richest. Although there are over one thousand headwords in 
Roget, our actions are general enough to cover most of the 
more action-like headwords (with the exception of those 
having to do with “sentiment and moral power” — an area 
we have so far ignored). 

States 
States are relatively temporally stable events. They are 
coherent collections of axioms that represent situations 
brought about or changed by actions. Many of our actions 
are defined in terms of the change in state they cause. 

This relationship between actions and states is made 
explicit in the library: there are actions that put objects into 
states, actions that take objects out of states and actions 
whose behavior is affected by objects being in states. For 
example, the BREAK action puts an object into a BE-BROKEN 
state. The REPAIR action takes an object in a BE-BROKEN 
state out of that State. If an object is in a BE-BROKEN state, 
it may not be the instrument of any of the events for which 

it is the intended instrument (though it may be instrument of 
other actions, such as using a broken computer to hold a 
door open). Other states include BE-RUINED, BE-CLOSED, 
BE-CONFINED, BE-TOUCHING, BE-ATTACHED-TO, etc. 

There are other events that seem to fit somewhere between 
our actions and states, such as “being in motion”. We 
expect that most of our actions have non-conclusive, 
durative counterparts (such as MOVING, CREATING, etc.). 
We are investigating continuous representations of our 
actions for the purpose of simulation. For now, our actions 
are all represented as discrete events. 

Entities and Roles 
To date, we have concentrated on events. We plan to 
research generic entities in a similar way. Our entity 
hierarchy is currently a relatively impoverished tree, serving 
as the root of a number of concepts from our test domain: 
Cell Biology (just over 500 at the time of writing).  

Our preliminary investigation into entities led us to 
distinguish a separate class of role concepts. A role can be 
thought of as a temporally unstable entity. It is what an 
entity is in the context of some event. For example, PERSON 
is an entity while EMPLOYEE is a role. A PERSON remains a 
PERSON independent of the events in which she participates. 
Conversely, someone is an EMPLOYEE only by virtue of 
participation in an EMPLOY event.  

Our library allows instances of roles to be linked to 
instances of entities as adjunct instances that can be used to 
capture both the role that an entity plays in an event, and 
the role it is intended to play (its purpose). 

In order to determine how common role concepts are, we 

Action Description Example Subclasses 

ADD add a part to an entity -- 

REMOVE remove a part from an entity -- 

COMMUNICATE* transfer information INTERPRET, ENCODE, REPLY 

CREATE bring a new entity into existence COPY, PRODUCE, PUT-TOGETHER 

BREAK cause an entity to be unable to be used as instrument (for events 
in which it is the intended instrument) 

DESTROY, RUIN, TAKE-APART 

REPAIR “undo” a BREAK -- 

MOVE change the location of an entity CARRY, ENTER, SLIDE 

TRANSFER change the possessor of an entity DONATE, LOSE, TAKE 

MAKE-CONTACT make entities touch ATTACH, COLLIDE 

BREAK-CONTACT make touching entities touch no longer DETACH, DISPERSE 

MAKE-ACCESSIBLE allow an entity to participate (in various ways) in events ADMIT, EXPOSE, RELEASE 

MAKE-INACCESSIBLE prevent an entity from participating in events BLOCK, CONCEAL, CONFINE 

PERCEIVE* discern using senses IDENTIFY, TOUCH 

SHAPE* change the shape of an entity FLATTEN, FOLD 

ORIENT* change the orientation of an entity FACE, ROTATE, TURN 

Table 1: The top-level action clusters (actions marked * are under construction in the library) 



conducted an experiment with the Collins online dictionary 
[9]. In that experiment we estimated that as many as 6% of 
nouns satisfy our criteria for role concepts. Furthermore, the 
most frequent nouns in the British National Corpus [4] also 
contain an estimated 6% role concepts. A more detailed 
discussion of roles and justification for a separate role 
hierarchy appear in [13].  

COMPOSITION 
The precoded axioms in library components provide much 
of the power that allows domain experts to build knowledge 
bases. Equally important is the ability to connect 
components in such a way that our knowledge 
representation system (KM [6]) can draw inferences from 
the composition beyond the union of the individual axioms 
of the components. 

From the point of view of a user, composition is simply the 
linking together of library components. From this linking, 
however, KM is able to draw inferences by way of the 
knowledge encoded in components: 

• Conditional rules: many components specify additional 
axioms that are asserted conditionally, dependent on 
the kinds of components they are composed with and 
the kinds of connections between them. For example, if 
the raw material of a PRODUCE is a SUBSTANCE, then 
the product is composed of that SUBSTANCE. If the raw 
materials are OBJECTs, then the product has those 
OBJECTs as parts.  

• Definitions: many components specify the sufficient 
conditions under which KM can automatically 
reclassify instances. For example, an instance of MOVE 
whose destination is inside a container is automatically 
reclassified as an instance of ENTER, allowing KM to 
apply the axioms of that more specific component. 

• Simulation: many components include preconditions 
that must be satisfied for an action to take place and the 
axioms that get asserted (or retracted) as a result of the 
action taking place. KM is able to simulate complex 
combinations of events and their participating entities. 

The Language of Composition 
In order to enable the kind of inferencing we have 
described, composition must have predictable semantics, 
which we accomplish by defining a restricted composition 
language of relations and properties. These relations and 
properties have their own axioms defining what inferences 
will be drawn from the composition of components. 

Relations 
We have defined a small set of relations to connect Entities 
and Events. Keeping the set small — we currently have 
about eighty — will allow us to maintain detailed axioms 
for each relation that capture the semantics of the 
composition of the related components. Writing such 
axioms for an open-ended set of relations might not be as 
feasible. The small number of relations also makes it easier 

for our inexperienced users to learn to use them. Our 
relations that link an event to an entity describe the 
participants involved in the event. Our original set was 
inspired by a comprehensive study of case roles in 
Linguistics [3]. The set has been refined to account for the 
kinds of relationships expected for our particular event 
components. Event-to-Entity relations include agent, donor, 
instrument, object, recipient, result, etc. 

To account for relationships between entities, we drew on 
previous research into the semantics of English noun 
phrases [2]. Since nouns can represent many things (not just 
entities) the semantic relationships within noun phrases are 
a superset of what is required to account for relations 
between our entities. The set of entity-to-entity relations 
currently includes content, has-part, location, material, 
possesses, region, etc. 

The choice of relationships between events followed from 
studies in discourse analysis [1] and process planning [22]. 
These relations include causes, defeats, enables, entails, 
inhibits, by-means-of, prevents, resulting-state and 
subevent. 

In addition to the relations among events and entities, we 
have a very small number of relations that involve roles 
[13]: relations that link an Entity to the Role it plays (or is 
intended to play) and between the Role and the Event. 

Properties 
We also have a small number of properties. Properties link 
entities to values. For example, the size of an entity is a 
property that takes a value. The value can be a cardinal (25 
kilograms), a scalar (big relative to housecats) or a 
categorical (brown). 

To define our set of properties, we turned once again to 
linguistic studies. Whereas events and entities usually 
surface as verbs and nouns in language, properties are 
closely related to adjectives. Since adjectives can also 
represent entities, we restricted our study to those adjectives 
that ascribe values to features of the nouns they modify. 
These adjectives are often called ascriptive adjectives. 

We consulted work in Linguistics on adjective semantics, 
most notably Dixon [12] and Frawley [15]. We then 
conducted two exercises to build a list of properties. 

For the first exercise we once again used WordNet, which 
explicitly distinguishes ascriptive adjectives from non-
ascriptive adjectives (called pertainyms in WordNet). For 
the ascriptive adjectives, there are occasionally links to the 
noun that best describes the “attribute” to which the 
adjective ascribes a value. For example, the attribute for 
large is size. WordNet identifies about 160 unique nouns 
that are used as attributes. We used these attributes to 
populate the adjective classes proposed by Dixon, resulting 
in a first draft of a list of properties. 

For the second exercise we once again consulted Roget. As 
described earlier, although the Roget headwords are nouns, 



some of them more naturally describe events and have rich 
verb paragraphs. For other headwords, the adjective 
paragraphs are the richest (for example, headword #192: 
Size). Some of the headwords so naturally indicate 
properties that the verb paragraphs contain little more than 
“be <adjective>”. In headword #201: Shortness, the first 
entry in the verb paragraph is “be short”. Our experiment 
pulled headwords whose verb paragraphs begin with 
copular adjectival complementation phrases2, producing a 
list of candidates for properties. This test also singles out 
ascriptive adjectives, since nonascriptive adjectives do not 
appear as copular complements. Unfortunately, the test did 
not filter out certain relations (such as “be identical to”, “be 
different from”, etc.). In the exercise we removed these 
relations by hand. The result was a list of approximately 
230 headwords representing properties. 

We then grouped all of the candidate properties into 
approximately 25 general categories. This final list of 
properties includes such properties as age, area, capacity, 
color, length, shape, size, smell and wetness. 

A Simple Example of Composition 
Consider the simple example of messenger RNA (mRNA) 
leaving a cell nucleus. In our interface, the user might 
describe this action by making an MRNA the object of a 
MOVE whose destination is outside a CELL-NUCLEUS: 

The composition is richer than the mere connection of 
components due to the extra inferences KM can draw from 
the connection. Since the destination of the MOVE is outside 
some place, KM will recognize that this MOVE satisfies the 
definition of EXIT and will reclassify this instance of MOVE 
to be an instance of EXIT. Through the semantics of EXIT, 
KM will infer that prior to the EXIT the MRNA was inside 
the CELL-NUCLEUS, and that the MRNA must have EXITed 
through a portal in the CELL-NUCLEUS. KM can also infer 
that CELL-NUCLEUS must be playing the role of CONTAINER, 
and that its content prior to the EXIT included the MRNA. In 
simulating the EXIT, KM will assert that the location of the 
MRNA is a PLACE outside the CELL-NUCLEUS in the 
situation immediately following the EXIT. 

USING THE LIBRARY 
User Interface 
Access to the component library is through a web-based 
tool for building compositions through graph operations: 
                                                           
2 a phrase of the form “<copula> <adjective>”, where the 

copulas include “be”, “become”, “seem”, etc. 

• add a component to a graph 

• connect two components with a relation 

• specialize a component to one of its subclasses 

• unify two component instances 

The use of this tool for knowledge entry is described in 
detail in [8]. 

Searching or Browsing the Library 
The main disadvantage in restricting ourselves to a small 
number of generic components is that the library will 
probably not have a component that exactly matches the 
concept a user is looking for. The library interface, then, 
must make it easy for the user to find a close enough match. 
Our interface supports two modes of access to the library: a 
tree-based browser and a search tool. 

Browsing the Library 
Since the components are arranged hierarchically in the 
library, they can be browsed in the form of a tree. Our 
library browser allows the user to selectively expand the 
tree to view a component’s subclasses. Since the library is 
small (by design) and we have attempted to make the 
component names intuitive and transparent, browsing the 
library through the tree is feasible. Nonetheless, given that 
our users are expected to have little or no experience with 
concept hierarchies, we believe it will be easier for them to 
find components through a search facility. 

Searching the Library 
The SHAKEN interface allows two kinds of searching: 
token match searching and semantic matching.  

Token matching will return a component whose name 
exactly matches (or contains) the search term. 

Semantic matching traverses the WordNet hierarchy for 
terms semantically related to components. 

As part of the documentation for each component we have 
identified the WordNet entries that most closely match the 
semantics of the component. Our WordNet-based search 
tool finds the search term in WordNet, then climbs the 
hierarchy of hypernyms (more general terms) finding all 
components listing those hypernyms in their documentation. 

Table 2 shows examples of search terms and their results. 

search term components found 

assemble ATTACH, CREATE, COME-TOGETHER, MOVE-TOGETHER 

mend REPAIR 

gum-up OBSTRUCT, BLOCK 

busted BE-BROKEN, BE-RUINED 

Table 2: Examples of search terms and components found 

One of the advantages of semantic searching is that results 
are sorted on the WordNet distance between the search term 
and the component, and on the depth of the component in 
our hierarchy. This gives preference to more specific library 

MOVE 

CELL-NUCLEUS 

MRNA 

PLACE 
object 

destination 

is-outside 



components, meaning the user is more likely to choose a 
more specific (and therefore more semantically loaded) 
component than if she browsed top-down through the tree. 

Documentation 
One of the disadvantages of giving components names that 
are also English words is that users may have different 
biases about the senses of those words. These expectations 
may clash with the semantics of the components. This 
problem underlines the need for good documentation. Our 
documentation for components includes several things: 

• Definitions. Given our particular users, it is important 
to have simple, non-technical definitions that describe 
all of (and only) the meaning of each component. 

• One-line glosses. Early experiments have shown that 
users often accept or reject a component based solely 
on its name in a list. In our web-based interface one-
line glosses are displayed as the mouse hovers over a 
component name. 

• More detailed documentation. We also document the 
full semantics of components, including participants in 
an event, subevents, parts of an entity, etc. 

• Examples. Several examples of varying complexity 
help show the intended use of components. 

• Neighboring concepts. We are adding information to 
the documentation on “neighboring concepts” (similar 
components and how they differ from each other). 

All documentation is available through the user interface, 
which can also show a graph representation of components 
in the library. In the graph the user can choose to see all, 
none or any subset of the links between the component and 
components connected to it through our relations. 

EVALUATION 
We have conducted three experiments in which biologists 
with no experience in knowledge engineering were asked to 
encode knowledge using our library and SHAKEN. In the 
first two experiments, users were given roughly one day of 
training on how to use the system and one day to encode a 
biological process (DNA transcription). In the third 
experiment we provided roughly one week of training. 
Users then (over eight weeks) encoded the knowledge from 
one chapter of a textbook in Cell Biology. All interaction 
between the users and developers was indirect, mediated by 
an impartial “gatekeeper” knowledge engineer. 

In all three experiments the users have shown that our 
library search facility is able to guide them to generic 
components that they are willing to accept as abstractions of 
concepts they wish to encode. For example, our users were 
comfortable defining biological processes in terms of such 
generic actions as COLLIDE, SLIDE, ATTACH, RELEASE, etc. 

At the end of each experiment, users were also asked to fill 
out a questionnaire. On average users found it moderately 
easy (slightly over 3 on a scale of 1-to-5) to find relevant 

components in the library. They found it easy (4 on a scale 
of 1-to-5) to understand the components. They found the 
components useful (4) for representing knowledge. They 
found the restricted language of relations easy (4) to 
understand and use. They found it moderately difficult 
(slightly under 3) to cast biological knowledge in terms of 
the components and relations in the library. 

More objective data on the quality of the representations of 
the knowledge built by the users is being collected. 

LIMITATIONS AND FUTURE WORK 
It is part of our claim that arbitrarily complex knowledge 
can be represented through the composition of simple 
generic components. The goal of knowledge reuse, 
however, suggests that the library will be even more 
powerful if it allows users to compose these more complex 
compositions themselves. One of our main tasks ahead is to 
populate the library with more complex (yet still general) 
components, such as processes of DELIVERY, PRODUCTION, 
COMMUNICATION, etc. We are also investigating ways to 
automate the composition of more complex components, 
such as through the use of interface templates. 

Users identified several ways in which the library could be 
improved. For example, biologists are often interested in 
representing functional aspects of processes, not just 
physical/spatial descriptions. Including role concepts and 
the notion of purpose is currently making the encoding of 
functional knowledge easier. We have made extensions to 
our relationship language and are continuing to expand our 
role hierarchy and our generic entity hierarchy to admit 
functional representations more easily. 

Experiments also underlined the importance of simple 
component names that do not have strong connotations in a 
particular domain. Our general actions of REPLICATE and 
TRANSCRIBE caused confusion among the biologists. We are 
currently reviewing the names (and documentation) of all 
our components. We are also reviewing components that 
users found unintuitive for other reasons. For example, 
users were not interested in the distinction between MOVE 
and its subclasses MOVE-FROM and MOVE-TO. We will 
likely remove these components for the sake of simplicity. 

SUMMARY 
In this paper we have described the process of building a 
library of knowledge components under the pressures 
imposed by our intended audience: domain experts with no 
experience in ontologies or knowledge engineering. In 
order to make the library accessible, we have taken 
inspiration from linguistic resources and built hooks to 
language into the components. In order to achieve power 
through composition of components, we have limited the 
library to a small number of components and relations with 
rich semantics. Preliminary trials with users inexperienced 
in knowledge engineering have been promising, giving us 
hope that domain experts will soon be able to encode their 
expertise in powerful knowledge bases. 
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