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ABSTRACT
Many AI tasks require determining whether two knowl-
edge representations encode the same knowledge. Solv-
ing this matching problem is hard because represen-
tations may encode the same content but differ sub-
stantially in form. Previous approaches to this prob-
lem have used either syntactic measures, such as graph
edit distance, or semantic knowledge to determine the
“distance” between two representations. Although se-
mantic approaches outperform syntactic ones, previous
research has focused primarily on the use of taxonomic
knowledge. We show that this is not enough because
mismatches between representations go largely unad-
dressed. In this paper, we describe how transformations
can augment existing semantic approaches to further
improve matching. We also describe the application of
our approach to the task of critiquing military Courses
of Action and compare its performance to other leading
algorithms.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and

Methods]: semantic networks

General Terms
Algorithms

Keywords
conceptual graphs, inexact matching, ontology, seman-
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1. INTRODUCTION
A requirement common to many AI applications is de-
termining whether (and how) two knowledge represen-
tations, encoded using the same ontology, encode the
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same knowledge. For example, rule-based classification
systems match rule antecedents with working memory;
information retrieval systems match queries with doc-
uments; and some knowledge-acquisition tools match
new information with already encoded knowledge to ex-
pand upon and debug both of them.

The core problem, of course, is that multiple encod-
ings of the same knowledge rarely match exactly, so a
matcher must be flexible to avoid a high rate of false-
negatives. However, a matcher that is too flexible can
suffer from a high rate of false-positives. This problem
has various causes, including:

• the ontology is expressive enough to allow the same
information to be encoded in different ways

• the representations are built by different knowl-
edge engineers (or computer programs), raising the
likelihood they differ

• the representations are large, increasing the oppor-
tunity for differences

Our goal is to build a matcher that does well under
these conditions.

Previous solutions to this problem have produced two
types of matchers. Syntactic matchers use only the
graphical form of the representations, judging their sim-
ilarity by the amount of common structures shared [3, 4]
or the number of edit operations required to transform
one graph into the other [17, 23, 24, 26]. Approaches
that focus on the amount of shared common structures
do not handle mismatches. Approaches that use edit
operations can handle mismatches but are sensitive to
the cost assigned to the edit operations and tuning these
parameters optimally is problematic.

In contrast, semantic matchers use knowledge, stored
in an ontology, of the terms referenced in the repre-
sentations. Previous semantic matchers use this knowl-
edge to determine, for example, that two representa-
tions match because one consistently generalizes the



other [12, 14, 20, 30]. However, these matchers do not
fully account for the various types of mismatches that
can occur. Both syntactic and semantic approaches are
examined in detail in section 5.

Our approach, described in section 3, is to augment ex-
isting semantic matchers with additional non-taxonomic
knowledge in the form of transformation rules. We have
methodically compiled a library of about 300 transfor-
mations for a general-purpose ontology. The result is
a knowledge rich method for matching representations
that handles a wide range of mismatches.

We applied our method to the task of critiquing mil-
itary Courses of Action (COAs), one of the challenge
problems posed in DARPA’s Rapid Knowledge Forma-
tion (RKF) project. This application requires matching
critiquing knowledge – engineered by military analysts
– with Courses of Action – engineered by military com-
manders – to generate a report on their strengths and
weaknesses along various dimensions. We thoroughly
evaluated our method’s ability to handle mismatches,
and compared it with other match algorithms. In sec-
tion 4, we show empirically that our matcher performs
significantly better than either syntactic matchers or se-
mantic matchers that rely solely on taxonomic knowl-
edge.

Our underlying formalism for this project is a frame-
based knowledge representation language called KM [6].
The knowledge encoded in this language can be equiva-
lently encoded as conceptual graphs [25] with one excep-
tion: conceptual graphs support full negation, but we
only support the negation of relations. For ease of expo-
sition and generality, we will use conceptual graphs as
the representation medium throughout the rest of this
paper.

2. TYPES OF MISMATCH
As an initial study – which is neither formal nor com-
plete – we analyzed the results from the COA critiquing
task to get a sense of the types of mismatches that
can occur. These are cases in which a military ana-
lyst expected that a piece of critiquing knowledge (a
rule) would match a particular COA, but it did not.
We found that most of the mismatches fall into one of
a few categories.

Equivalent Alternatives. We found that often en-
codings of the same knowledge by different sources dif-
fer only in form. As an example, Figure 1 shows two
independently encoded representations of a simple con-
cept: one military unit engaging another unit to pre-
vent it from moving. Structurally, the two represen-
tations differ substantially. The top graph represents
an Attack-By-Fire that has the objective to enable
Blocking the enemy’s movement. The bottom graph
says that the Engagement-Military-Task prevents the

Figure 1: Two independent encodings of the

same knowledge by a Subject Matter Expert

participating in the RKF project. Attack-by-

Fire is a subclass of Engagement-Military-Task.

enemy’s movement. Despite this difference, we would
like these representations to match. The match should
be based on: (1) the assumption that actions (such as
the Attack-By-Fire) achieve their stated objectives;
and (2) the knowledge that to Block means to prevent
movement.

Omissions. We found that different sources represent-
ing the same knowledge leave out different pieces of in-
formation from the encoding. Omissions can result from
indirect references or missing co-references in the rep-
resentation. A piece of information may also be omit-
ted from a representation because it is deemed irrele-
vant. Figure 2 provides an example. The two concep-
tual structures, built independently, represent knowl-
edge about a mechanized infantry brigade engaging a
mechanized infantry battalion. The conceptual struc-
ture on the top does not include information about the
subevent and its participant.

Granularity. We found that different sources encode
the same knowledge at different levels of detail. For ex-
ample, a subject matter expert encoding an attack by
a battalion that is part of a brigade might also encode
that the attack is by the brigade. A different subject
matter expert might leave out this detail from his en-
coding.

Differing Viewpoints. We found that sometimes dif-
ferent sources encode the same knowledge from different
conceptual views. For example, a river can be viewed as
either a barrier preventing movement or a conduit en-
abling it, and representations of these viewpoints will
include different features of the river.



Figure 2: The concept “a brigade engaging

a battalion” encoded by two different Sub-

ject Matter Experts participating in the RKF

project. The top graph omits information

present in the bottom graph. Also, Destroy-Unit
is a subclass of Engagement-Military-Task.

3. KNOWLEDGE-BASED MATCHING
Match algorithms that use knowledge about the terms
in a representation are not new. Previous methods,
described more fully in section 5, use taxonomic knowl-
edge to determine, for example, that the terms in one
representation consistently generalize the terms in the
other. Our work extends these methods by using addi-
tional, non-taxonomic knowledge in the form of trans-
formation rules. Each rule is of the form lhs ⇒ rhs
and is applied in a forward chaining manner. Further-
more, the antecedent and consequent of each rule are
conceptual graphs encoded using the same ontology as
the representations to which they are applied.

Previous research [9, 22, 27] has studied a related prob-
lem: reasoning with conceptual graphs using both de-
ductive rules and projection. Although our method of
applying rules is derived from this body of research, it
differs in two significant ways.

First, we permit only those transformation rules whose
antecedent and consequent are alternative encodings
of the same information. We impose this restriction
because a transformation’s purpose is to resolve mis-
matches, and mismatches are alternative – but not nec-
essarily equivalent – encodings of the same information.

Second, we modify the procedure for determining when
a rule is applicable. With conventional forward chain-
ing, a rule is applicable to a representation G if there
is a projection from the rule’s lhs to G [22, p. 251].
This procedure, however, does not consider that when
performing a match there are two representations in-
volved and the purpose for applying a rule is to better

align them. Failure to consider this factor can generate
a lot of unused work and increase the size of the search
space. We account for these factors in the following
way. When matching two graphs G1 and G2, we say
that a rule, R : lhs ⇒ rhs, is applicable to G1 w.r.t.
G2 if both of the following conditions are satisfied:

• There is a projection from lhs to G1.

• There is a projection either from rhs to G2 or from
G2 to rhs.

The application of R to G1 with respect to G2, i.e.
apply(R, G1, G2), adds the match instance of R’s rhs
to G1, just as in conventional forward chaining.

Imposing these conditions to determine if a rule is appli-
cable might cause a match to fail in one interesting case.
Consider the rules R1 : X ⇒ Y and R2 : Y ⇒ Z and
the graphs G1 : Z and G2 : X , and note that R1 and
R2 are not applicable under the conditions established
above. As a result, G1 and G2 will not match because Z
cannot be derived from G2. We avoid this problem by
computing the transitive closure of all the transforma-
tion rules to establish transitive relations not explicitly
defined. This is feasible because we require that the
consequent and antecedent of every rule be alternative
encodings of the same information.

3.1 Types of Transformations
It’s important to understand our ontology – at least, its
design considerations – before delving into the transfor-
mations themselves. Our ontology is designed to enable
Subject Matter Experts (SMEs), with little help from
knowledge engineers, to build knowledge-bases about
specialized topics without training in knowledge repre-
sentation and logic. The approach is to give them a
domain-neutral ontology containing a few hundred gen-
eral concepts 1 that can be instantiated and assembled
– using a set of 80 binary relations – to build new rep-
resentations. Aspects of this work are described more
fully in [2, 7, 8].

Because we kept our ontology small and gave each con-
cept in our ontology well-defined semantics, we were
able to methodically enumerate many transformations.
These transformations were intentionally kept simple
because each rule’s antecedent and consequent are also
susceptible to mismatches when matched against a rep-
resentation. The resulting transformations are based on
three types of general inference (see Table 1).

Transitivity: Causal relations like causes, enables, and
by-means-of are transitive. However, there are subtle

1The complete library of general concepts and
relations can be browsed and downloaded at
http://www.cs.utexas.edu/users/mfkb/RKF/public



Table 1: Some of the transformations in our library – those involving causal relations.

relation Transitive Part Ascension Transfers Through

causes X - subevent, resulting-state
caused-by X subevent-of resulting-from
defeats - - -
defeated-by - subevent-of caused-by
enables X - causes, resulting-state, subevent
enabled-by X subevent-of caused-by, resulting-from
inhibits - subevent-of resulting-state
inhibited-by - subevent-of caused-by, resulting-from
by-means-of X - -
means-by-which X - -
prevents - subevent-of -
prevented-by - subevent-of caused-by, resulting-from
resulting-state - - causes
resulting-from - - -

exceptions, such as prevents and inhibits. Partonomic
relations (i.e. has-part, subevent, element, and has-
region), and their inverses, are transitive. Also, some
spatial and temporal relations (e.g. is-inside, is-near,
and before) are transitive.

Part Ascension: Some information about a part ap-
plies to the whole to which it belongs. For example, the
caused-by relation ascends through subevent-of. There-
fore, because “Terrorism is caused-by Drug-Purchases
which is a subevent-of the Drug-Trade”, “Terrorism it-
self is caused-by the Drug-Trade”. Other examples of
part ascension include the object of an action, which as-
cends through is-part-of. However, exceptions include
the agent of an action, which does not ascend through
parts.

Transfers Through: Transitive and part ascendent
transformations conform to a more general notion called
“transfers through”. A relation r transfers through an-
other relation r′ if

X − r → Y − r′ → Z ⇒ X − r → Z

As shown in Table 1, enables transfers through causes
and inhibits transfers through resulting-state. This no-
tion is similar to the one used in Cyc [15].

Thus, one of our contributions is identifying, in a sys-
tematic manner, about 300 transformations and the
general class of inference to which they belong. Because
these transformations are based on a domain-neutral
ontology and are expressed at the knowledge-level, they
should be generally useful to others. For the complete
list of transformations see [29].

3.2 Match Algorithm
Before we describe our matching algorithm, we define
some of the terms used:

• A triple is a 3-tuple of the form (head, rel, tail)
where head and tail are concepts or instances (i.e.
nodes in a conceptual graph) and rel is an edge
in the graph. Every two nodes connected by an
edge in a conceptual graph can be converted to a
triple. Thus, a conceptual graph can be mechani-
cally converted into a set of triples.

• t1 = (head1, rel1, tail1) and t2 = (head2, rel2, tail2)
align if head1 ≥ head2, uneg(rel1) ≥ uneg(rel2),
and tail1 ≥ tail2. uneg(rel) unnegates rel if it’s
negated, otherwise it just returns rel.

• Given l = {(t11, t21),...,(t1n, t2n)}, a list of aligned
triples. The bindings for l, i.e. binding(l), is
{head11/head21, tail11/tail21, ..., head1n/head2n,
tail1n/tail2n}.

Figure 3 shows our algorithm for finding a match be-
tween two representations. Below, we describe the steps
for finding this match and illustrate them with a run-
ning example. This example will match the two graphs,
G1 and G2, shown in Figure 4. The taxonomy and the
transformations used in this example are shown in Fig-
ure 5. For reference, we label each triple in G1 with
a unique number and each triple in G2 with a unique
letter. We use subscripts to differentiate terms that ap-
pear multiple times (e.g. Military-Unit).

Step 1: Our algorithm compares each triple in G1 with
each triple in G2 to find all possible alignments. In our
example, triple 1 aligns with triple A. Triple 1, however,
does not align with triple B because the relations differ.
This process is illustrated in Figure 6. The result of this
initial match (we’ll call it M) is also shown in Figure 6.
We note that each element of M is a list called li. For
example, {(1, A)} is called l1, {(2, B)} is called l2, etc..



GIVEN: Two graphs G1 = {t11, ..., t1n} and G2 =
{t21, ..., t2m} where t1i and t2j are triples in G1

and G2 respectively, and a set of transformations
R where R = {R1, ..., Rn}.

FIND: A common subgraph of G1 and G2 called SG .
1. M = NIL and l = NIL

FOR each triple t1i in G1

FOR each triple t2j in G2

IF t1i aligns t2j

THEN add (t1i, t2j) to l.
Add l to M and reset l to NIL.

2. Use M to construct a common subgraph of G1

and G2 called SG. SG = {(t11, t21),...,(t1n, t2n)}
where (t1i, t2i) are the aligned triples between G1

and G2 respectively.
3. IF SG is inconsistent

THEN stop and return NIL.
4. FOR each rule Ri in R,

IF Ri is applicable to G1 w.r.t. G2,
THEN apply(Ri, G1, G2).
ELSE IF Ri is applicable to G2 w.r.t. G1,
THEN apply(Ri, G2, G1)

5. FOR each unaligned triple t1i in G1

FOR each unaligned triple t2j in G2

IF t1i aligns t2j and binding({(t1i, t2j)})
is consistent with binding(SG),

THEN add (t1i, t2j) to SG and break.
UNTIL SG reaches quiescence go to step 4.

6. RETURN SG.

Figure 3: Outline of our algorithm.

Step 2: Our algorithm uses M to construct a common
subgraph of G1 and G2 called SG. Our algorithm be-
gins by selecting a member, li, of M to serve as the seed
of the construction process (recall that M = {l1, ..., lm}
and li = {(t1i, t2i), ..., (t1i, t2k)}). This seed is selected
based on a heuristic scoring function:

h(li) =

∑k

j=i num(head1i/head2j) + num(tail1i/tail2j)

k
(1)

where head1i/head2j and tail1i/tail2j are the bindings
between t1i and t2j , and num(b) is the number of times
the binding b occurs in binding(M). This function is
a heuristic that favors those li in M with high inter-
connectivity. Bindings that occur frequently indicate
high interconnectivity. We want to select these li as
the seeds because they have more potential for allowing
larger common subgraphs to be constructed. Therefore,
the algorithm selects the li in M with the highest score,
as determined by the function h.

Returning to our example, the bindings for l1 = {(1, A)}
is {Support-Attack1/Support-Attack2, Military-Unit1/
Military-Unit3}. The number of times Support-Attack1/
Support-Attack2 occurs in binding(M) (see Figure 6) is

Figure 4: The graphs being matched.

Figure 5: The taxonomy and transformations

used in our example.

Figure 6: Illustration of Step 1.



2. The number of times Military-Unit1/Military-Unit3
occurs in binding(M) is 2 also. Therefore, h(l1) = 4.
Applying the h to each li of M , we find that l1 and l2
have the highest scores (each has a score of 4). To break
this tie, we randomly select l1 as the seed.

After a li is selected as the seed, it is removed from
M . Our algorithm will then construct a SG for each
pair pj in li (i.e. the seed). Each SG is constructed
in the following way. First, SG is set to {pj}. SG
is then extended with those pairs of aligned triples in
M whose bindings intersect the bindings of the pairs
in SG. Pairs in M that extend SG are removed from
M along with the lj they belong to. This process is
repeated until SG can no longer be extended. After a
SG has been constructed for each pair in the seed, our
algorithm selects the SG that is the largest. The result
is an approximation of maximal common subgraph of
G1 and G2.

In our example, we select l1 as the seed. Since l1 con-
tains only one pair, we only need to construct one SG.
We begin by setting SG to {(1, A)}. We then extend SG
with those pairs in M whose bindings intersect the bind-
ings of (1, A). For example, we extend SG with (2, B).
The bindings for (2, B) is {Support-Attack1/Support-
Attack2, Military-Unit2/Military-Unit4} and Support-
Attack1/Support-Attack2 intersects with the bindings
of (1, A). We cannot, however, extend SG with (3, D)
because its bindings do not intersect with those of (1, A).
Because we extended SG with the pair (2, B), we must
remove it and the list it belongs to (i.e. we remove
l2 = {(2, B)}) from M . This process is repeated until
SG cannot be extended. Figure 7 illustrates this pro-
cess.

Steps 3-5: Our algorithm checks if SG is consistent.
SG is inconsistent if it contains an aligned pair of triples
(t1i, t2i) where the relation of t1i is negated and the rela-
tion of t2i is not negated (or vice versa). If SG contains
such a pair, then our algorithm stops and returns NIL.
Otherwise, our algorithm applies transformations to im-
prove the match (i.e. steps 4 and 5). Steps 4 and 5 are
repeated until SG reaches quiescence. In step 4, our al-
gorithm applies transformations to resolve mismatches
between G1 and G2. In step 5, our algorithm will try
to align additional triples between G1 and G2. Step 5
is like step 1 except it focuses on the unaligned triples.

Returning to our example, SG is consistent, so we apply
transformations to improve the match. In step 4, R1

is applicable to G2 w.r.t. G1 because the lhs of R1

projects onto G2, and the rhs of R1 projects onto G1.
Therefore, we add the match instance of R1’s rhs to
G2 (i.e. (Military-Unit3, supports, Armored-Division)).
For future reference, let’s label this new triple G. R2,
however, is not applicable because only the rhs of R2

can project onto G2.

Figure 7: Illustration of Step 2.

After transformations have been applied, we try to align
the remaining triples in G1 (i.e. {3,6}) with the remain-
ing triples in G2 (i.e. {C,D,G}). We start with triple 3
and try to align it with triples C, D, and G. Triple 3 does
not align with triple C. Triple 3 aligns with triple D, but
the bindings for (3, D) (i.e. {Military-Unit1/Armored-
Battalion, Military-Division1/Armored-Division}) are in-
consistent with SG’s bindings: Military-Unit1 is al-
ready bound to Military-Unit3 in binding(SG). Triple
3 aligns with triple G, and the bindings for (3, G) are
consistent with SG’s bindings. Therefore, we add (3, G)
to SG. We use the same procedure to align triple 6.
Through this process, only (3, G) is added to SG. Fur-
thermore, SG reaches quiescence after one iteration,
so our algorithm stops applying transformations to im-
prove the match.

Step 6: After transformations have been applied, SG
is returned along with a numeric score reflecting the
fitness of the match between G1 and G2. This score is
computed based on the number of matched triples over
the size of the graphs being matched (see [29] for the
details).

4. EVALUATION
We present the results from two experiments conducted
in the context of the COA critiquing task. The first
experiment evaluates our matcher’s ability to cope with
discrepancies between representations as compared with
two other match algorithms. The second experiment
evaluates the efficiency of our matcher compared with
a variant that uses conventional forward chaining.

4.1 Performance Task
We evaluate our matcher in the context of the COA cri-
tiquing task – one of the challenge problems in DARPA’s
RKF project. COAs are large, detailed battle plans in-
tended to meet a specific military objective. Because of
their complexity, military analysts have difficulty eval-
uating them quickly and accurately. Thus, the task of



the COA critiquer is to analyze a COA along several
dimensions to assess its strengths and weaknesses. Our
matcher was one of the critiquing methods used in a
knowledged-base tool called SHAKEN [1].

Our approach to this problem has two parts. First,
military analysts build a knowledge-base of “critiquing
patterns” (see Figure 8). Each pattern, encoded as a
conceptual graph, describes a situation that might arise
in a COA, for example “blue aviation units attack red
artillery units before the main attack” or “blue holds
an artillery unit in reserve during the main attack”.
Because COAs are evaluated on eleven dimensions –
such as risk, use-of-terrain and simplicity – each
pattern has an associated list of < dimension, score >
tuples. This library of patterns is compiled in the lab,
without concern for any particular battle plan, based
on military doctrine and experience.

Second, to prepare for a battle, military commanders
design a Course of Action to achieve stated objectives.
It, too, is a conceptual graph. Our system evaluates the
COA by applying the library of critiquing patterns to it
to generate a report that assesses the COA’s strengths
and weaknesses.

The knowledge-base of critiquing patterns was built by
two military analysts using the SHAKEN system. The
COAs were built by the same personnel using NWU’s
NuSketch COA-authoring system [11]. The two SMEs
produced a total of 44 patterns and three COAs. Be-
cause the patterns and COAs were authored separately,
and by using different knowledge-authoring tools, there
were many opportunities for mismatches.

4.2 Experiment: Coping with Mismatches
To evaluate our matcher’s ability to cope with mis-
matches, we compared our matcher with two estab-
lished algorithms:2

• Maximal Common Substructure (MCS): Uses a
graph distance metric based on the maximal com-
mon substructure of two graphs [4]3.

• Semantic Search Lite (SSL): Uses taxonomic knowl-
edge to match two graphs [14, 30]. Importantly,
SSL is equivalent to our matcher with transforma-
tions ablated.

We used the following experimental methodology for
this evaluation. We used the knowledge-base of cri-
2Graph edit distance was not compared. Its performance
relies heavily on the cost assigned to each edit operation.
We did not have enough time to derive the optimal costs for
a meaningful comparison. Taxonomic knowledge could have
been used to derive the edit costs, but the resulting system
would have been equivalent to SSL.
3Our implementation of MCS differs slightly from Bunke’s.
We do not require the labels of the nodes and edges to match.

Figure 8: SHAKEN’s interface for authoring

and editing patterns. This screen capture shows

a pattern authored by a SME regarding timing

of attacks.

tiquing patterns and COAs built by the two SMEs as
the data set. For each match algorithm, we used that
matcher to find the COAs that a pattern matched. We
say that a pattern matches a COA if the match score
meets or exceeds a prespecified threshold. This score is
computed based on the fraction of information in the
pattern that an algorithm matched with a COA.

Because of the size and complexity of the COAs (each
averaging a few thousand edges), a pattern often matches
a COA multiple times, in different ways, yielding dozens,
sometimes hundreds, of matches. To evaluate these
matches, and hence the algorithms’ performance, we
note that applying patterns to COAs can be viewed as
a form of information retrieval where information of in-
terest is retrieved from a COA based on a pattern that
is acting as a query. Therefore, we use metrics of pre-
cision and recall.

To calculate these metrics, we compared the results for
each match algorithm against those of a human oracle,
who determined that there were a total of 927 correct
matches between the patterns and the COAs. To test
for significant differences in the results, we used Pear-
son’s X 2 test. Table 2 shows the number of correct
answers over the total number of answers given by each
algorithm for match thresholds between 0.5 and 0.95.

Figure 9 shows the precision of the three algorithms.
Our algorithm and SSL outperformed MCS at all levels
of the match threshold (p < 0.01 for all points). MCS
had terrible precision at all match thresholds. This was
due to the complexity and high interconnectivity of the
COAs (i.e. there were many substructures that were
syntactically identical to the patterns). With MCS, a
pattern would match all these substructures, although
most were false-positives.



Table 2: The number of correct answers over the

total number of answers given by each algorithm

for match thresholds between 0.5 and 0.95.
KB Match SSL MCS

0.5 805/1839 508/1395 474/20304
0.6 805/1810 508/1239 474/17299
0.7 805/1219 459/686 425/8563
0.8 805/1087 459/667 425/8437
0.9 805/950 103/103 107/3915
0.95 750/750 35/35 34/3394

Figure 9: Precision is computed by dividing the

number of correct answers given by the total

number of answers given.

With respect to precision, our algorithm and SSL were
comparable. Our system performed better than SSL at
the 0.5 (p < 0.01) and 0.8 (p < 0.02) threshold. SSL,
however, performed better than our system at the 0.9
threshold (p < 0.01). The 0.9 threshold is an interesting
case. At this high threshold, SSL was able to match only
those patterns that aligned exactly (or almost exactly)
with the COAs. Thus, there were no false-positives.
Using transformations, our algorithm was able to match
features that SSL was unable to match. This resulted in
more patterns being matched, but there was still room
for false-positives at the 0.9 threshold. This difference
disappears at the 0.95 threshold level.

Figure 10 shows the recall of the three algorithms. SSL
and MCS had low recall rates, which dropped signif-
icantly as the match threshold was raised. Our al-
gorithm, however, performed significantly better than
both SSL (p < 0.01 for all points) and MCS (p < 0.01
for all points). Because our algorithm and SSL differ
only in the use of transformations, this feature alone
must account for the observed difference in recall.

4.3 Experiment: Efficiency
This experiment is designed to evaluate the effective-
ness of the conditions we defined for when a rule is

Figure 10: Recall is computed by dividing the

number of correct answers given by the total

number of correct answers given by the “oracle”.

applicable. Specifically, we measure the efficiency gains
(i.e. the reduction in the number of unnecessary rules
applied) obtained by using our conditions for applying
rules as compared with conventional forward chaining.

We used the same data set as that used in section 4.2,
and the experimental methodology is as follows. We
took our algorithm (see Figure 3) and generated a vari-
ant that uses conventional forward chaining to deter-
mine if a rule is applicable. This resulted in two frame-
works: our specialized forward chaining (SFC) frame-
work and the conventional forward chaining (FC) frame-
work. For each framework, we applied all the patterns
to the applicable COAs and recorded the number of
transformation rules applied when determining whether
a particular pattern matched a particular COA. Every-
thing else (i.e. data set, transformation rules, etc..)
was kept the same, and the answers returned by each
framework was identical. Therefore, the only difference
between the two frameworks is in how a rule is applied.

Table 3 shows the results for SFC and FC. The optimal
number of transformations required to match a pattern
to a COA is given as a baseline. As expected, there
was a major difference in the average number of rules
applied between SFC and FC. SFC was more efficient,
and this difference was significant at the 0.01 level for
the 2-tail t test.

The observed efficiency gains can be attributed to the
additional condition we imposed for when a rule applies.
By requiring both the lhs and rhs of a rule must match
the representations being aligned (each to a different
representation), the match process focused only on rules
that can potentially align the mismatches between two
representations. As a result, irrelevant transformations
were not considered and not applied. This, in turn,
helped to control the size of the search space.



Table 3: This table shows the average number of

transformations applied under each framework.

N is the sample size.

Optimal SFC FC

Mean 17.38 343.76 2619.93
Std. Dev. 25.07 840.34 1619.33
Max 118 3410 4470
Min 0 0 0
N 71 71 71

5. RELATED WORK
Previous approaches to matching conceptual structures
range from purely syntactic to semantically based. The
Structure Mapping Engine[10, 13], for example, finds
shared substructures between two graphs by matching
the syntactic names of the relations. A heuristic called
the systematicity principle is used to focus on shared
substructures with high interconnectivity, for they are
the most relevant. Similar metrics, such as the max-
imal common subgraph [4] and the minimal common
supergraph [3], also find shared structures between two
graphs. In the case of the maximal common subgraph,
a subgraph that is isomorphic to both graphs is first
obtained. A similarity distance between the two graphs
is then calculated based on this subgraph. The minimal
common supergraph operates in the inverse manner.
These approaches do not account for mismatches be-
tween representations, and in our studies, MCS proved
to be sensitive when the graphs being matched have
high interconnectivity because many of the subgraphs
appeared syntactically identical.

Graph edit/transformation approaches [17, 23, 24, 26]
can cope with discrepancies and errors between two con-
ceptual structures. A set of edit operations is defined,
and a cost is usually assigned to each operation. The
similarity between two graphs is the shortest sequence
of edits that transforms one graph into the other. The
performance of these approaches is sensitive to the cost
of the edit operations and tuning these parameters op-
timally is problematic.

Conceptual retrieval or content-based search use seman-
tics to improve performance. These approaches employ
an ontology to aid in the matching of a query to a re-
source. In [28], a query is a simple conceptual struc-
ture consisting of the search terms and the relation-
ships between the terms. The content being queried (or
resource) is organized as a taxonomy. Structural sub-
sumption is used as the matching mechanism. Works
by [12, 14, 20, 30] also use taxonomic knowledge to aid
in matching. The query and resource are represented
as conceptual graphs and allow for more expressiveness.
A query matches a resource if there is a projection from
the query to the resource or the query shares a common
subgraph with the resource. Although these approaches

use semantics, its use is limited to taxonomic knowl-
edge. As a result, mismatches between representations
go largely unaddressed.

Related research by [18, 19] addresses how representa-
tions can be normalized to improve the structural sim-
ilarity of semantically similar objects for classification
and indexing. Knowledge is normalized at acquisition
time, so all representations in the knowledge-base con-
form to the same standards. Some of the proposed
normalization procedures include determining, a priori,
which relations are “privileged” in order to handle in-
verses, propagating transitive relations, and grammar
validation check. We believe that normalizing a repre-
sentation at acquisition time is unnecessary for match-
ing and may even adversely affect performance. Fur-
thermore, forcing the user to decide, a priori, which
relations are “privileged” and what rules to propagate
is arbitrary.

Another line of related research is ontology merging and
translation [5, 16, 21]. Works in this area either merge
multiple ontologies into one or translate a representa-
tion from one ontology into another. Some of the dif-
ficulties in ontology merging and translation also effect
us.

6. SUMMARY
In this paper, we presented a matcher designed to han-
dle mismatches between representations. Mismatches
are addressed by using transformation rules whose an-
tecedent and consequent are alternative encodings of
the same information. These transformations along with
the algorithm for applying them were described in de-
tail, and our method was applied to the task of cri-
tiquing military Courses of Actions. Our method’s per-
formance on this task was compared with other match
algorithms. The results showed that our matcher per-
formed significantly better because of its use of trans-
formations.
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