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ABSTRACT
Anaphora occur commonly in natural language text, and re-
solving them is essential for capturing the knowledge en-
coded in text. Indirect anaphora are especially challenging to
resolve because the referring expression and the antecedent
are related by unstated background knowledge. Such anaphora
need to be resolved properly in order to automatically cap-
ture the knowledge expressed in natural language. Resolving
indirect anaphora has been treated as a unique problem that
requires special-purpose methods, and these methods have
had limited success in precision and recall. In this study, we
used a generic tool for finding semantic paths between two
concepts to resolve these anaphora, and it achieved approx-
imately twice the recall of the best previous system without
loss of precision. A series of ablation study showed that the
biggest increase in recall came from an abductive stopping
criterion of the search.

Categories and Subject Descriptors
I.2 [Artificial Intelligence ]: [natural language processing]

General Terms
Languages, Experimentation

Keywords
anaphora, indirect anaphora, knowledge-based systems, on-
tology

1. INTRODUCTION
Indirect anaphora is a type of anaphora that requires back-
ground knowledge in order to identify the referent. It may
account for 15% of noun phrase anaphora [20], making it an
important type. Resolving indirect anaphora is a necessary
step for automatically capturing knowledge from text. How-
ever, resolving indirect anaphora is problematic for shal-
low processing systems because it usually requires common
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Link Type Example
Set/element a class ... thestudent...
Whole/part (metonymy) a room ... thewall ...
Hypernym/hyponym anoak ... thetree...
Event/role a murder ... thekiller ...
Cause/consequence anearthquake ... thedebris...

Table 1: Some frequent types of indirect anaphora.

sense knowledge. Because most knowledge sources contain
little common sense knowledge, achieving a high level of
recall in resolving indirect anaphora is especially difficult.

In this paper, we describe the results of resolving indirect
anaphora using an interpreter for finding short semantic paths
between concepts. However, we do not claim that this tool
can find any type of associations between any two concepts,
e.g. analogical associations are well outside its scope. In
this study, we found that when applied to indirect anaphora
resolution, our interpreter achieved a significant increase in
recall (with no drop in precision) compared to previous stud-
ies on the same data set using the same knowledge base.

2. INDIRECT ANAPHORA
Indirect anaphora, also known asbridging referenceor as-
sociative anaphora, arises “when a reference becomes part
of the hearer’s or reader’s knowledge indirectly rather than
by direct mention” [16]. The object that is being referred
to is called theanchoror theantecedent, the expression that
refers to the antecedent is called thereferring expression,
and the association between the referring expression and the
anchor is called thelink. For example, the following sen-
tence contains an instance of indirect anaphora.

When the detective got back tothe garage, the
doorwas unlocked.

The referring expression,the door, relates to the antecedent,
the garage, through a whole/part (metonymy) link.

Unlike other types of anaphora, which can often be resolved
using syntactic features, the resolution of indirect anaphora



requires semantic knowledge of the relationship between the
referring expression and the antecedent. Because such knowl-
edge was previously unavailable to computer programs, most
of the early studies in indirect anaphora were theoretical [5,
9]. These studies identified a variety of types of indirect
anaphora (see table 1).

Recently there has been more progress in experimental stud-
ies of indirect anaphora. These studies can be divided into
WordNet-based systems and machine-learning systems. The
WordNet-based systems [26] use WordNet as the knowledge
base. They take in a referring expression and a list of nouns
that appear earlier than the referring expression in the same
text. The systems choose one noun as the most likely an-
tecedent for the referring expression. They select the an-
tecedent by first grouping the nouns based on sentence bound-
ary, then using stack-based theory [23] to sort the candidate
associations and select the most promising one. Specifically,
the systems look back one sentence at a time and return a
candidate as the antecedent as soon as the candidate satisfies
one of the following conditions based on WordNet knowl-
edge:� The candidate is a synonym of the referring expression,

such asaviatorandflyer.� The candidate is a hypernym (superclass) or hyponym
(subclass) of the referring expression, such asoakand
tree.� The candidate is a coordinate sibling of the referring
expression, such ashomeandhouse.� The candidate has a meronymic (has-part) or holonymic
(is-part-of) relation with the referring expression, such
asroomandwall.

This approach not only returns the antecedent, but it can
also reveal the type of association between each referring ex-
pression and its antecedent, which is a piece of information
important for other parts of a full natural language process-
ing system. However, many frequently used types of links,
such as event/role or cause/consequence, cannot be discov-
ered by these systems because WordNet does not contain
such knowledge.

There have been many successful machine learning based-
coreference resolution systems, such as [4, 25, 12], however
most of them do not resolve indirect anaphora. The ones
that do [15, 2] typically use the web as the corpus. Instead
of searching through WordNet, they issue a series of web
search queries made of the referring expression and each
candidate antecedent. These systems use the number of web
pages that contain both the referring expression and the can-
didate antecedent being queried as a measure of the strength
of association. If the strength exceeds a threshold, then the
systems consider the candidate the true antecedent of the re-
ferring expression. Machine learning techniques are used to
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Figure 1: An example of how the algorithm works. Given
the nounsgarage and door, the solid bold lines show the
path found by breadth-first search starting at door and
ending atbuilding, which is a superclass ofgarage.

determine the best threshold. The strength of this approach
is that it provides a broad coverage of all types of links, andit
has achieved precision and recall that are comparable to the
WordNet-based systems. The weakness of this approach is
that it does not determine the semantic nature of the relation-
ship between the referring expression and the antecedent.

A more recent study of indirect anaphora has shown that
precision for either approach can be significantly improved
with a more sophisticated selection mechanism that learns
by combining several features, such as salience (the contex-
tual distance of a referring expression and its anchor) and
lexical distance (the semantic distance between a referring
expression and its anchor) [19]. Improving recall remains a
challenge.

3. OUR SYSTEM
We approach the indirect anaphora resolution problem from
a different perspective. Whereas previous researchers treated
indirect anaphora resolution as a unique problem requiring
special-purpose methods, we view it as an instance of a more
general problem: how to use background knowledge to infer
relations among linguistic constituents.

3.1 Our interpreter
Our interpreter considers a pair of concepts to semantically
related if it can find an interpretation for the pair. The inter-
pretation task can be viewed as follows: given a knowledge
base encoded as a semantic network, and a pair of nouns
corresponding to two nodes in the network, find a path of
semantic relations between them. First, the two nouns are
mapped to nodes in the knowledge base,C1 andC2, by a
process that is outside of the scope of this paper. Then, two
breadth-first searches of the knowledge base along all binary
semantic relations are conducted. The first search starts fromC1 and looks forC2 or any superclass or subclass of it. The
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Figure 2: Performance comparison of the two indirect anaphora resolution systems on the two data sets. As shown in
the data, our interpreter is as precise as Poesio’s system, but it approximately doubles the recall.

second search starts fromC2 and looks forC1, or any su-
perclass or subclass of it. Two searches are needed because
the semantic relations are directed. If any interpretations are
found, they are passed to a sorting function, which ranks in-
terpretations by ascending path length with preference given
to paths containing essential relations as determined by va-
lency theory [24]. During the evaluation, only the top inter-
pretation from the sorting function is returned as the inter-
pretation of the input.

Figure 1 is an example of how the algorithm works. Given
the nounsgarageanddoor, the first search begins at Door,
then traverses all the semantic relations from Door, such as
has-partandis-part-of. The search stops at Building, which
is a superclass of Garage. The solid bold lines indicate the
path found and returned. It describes that the door “is part of
a doorway, which is part of a wall, which is part of a build-
ing” (a superclass of Garage). The second search begins at
Garage, and looks for any superclass or subclass of Door.
The sorting function ranks the paths returned from the two
searches, and chooses the shortest path to return.

If multiple valid interpretations from different candidate an-
tecedents are found, the same sorting function selects the
interpretation whose path length is the shortest.1

3.2 Comparison with previous studies
Our system is most similar to WordNet based-systems be-
cause they infer relations among candidate antecedents and
referring expressions through a series of searches. How-
ever, there are some significant differences. First, unlike
the WordNet-based systems [26], which only search direct
1This is typically referred to as lexical distance.

properties of a class, our interpreter also searches inherited
properties from the ancestors of a class. For example, in
WordNet, the wordbarrack has asquad roompart, and it
inherits the partfoundationfrom its ancestorstructure. This
difference originates from the fact that our interpreter was
originally developed with a knowledge base of formal rep-
resentations of actions, entities and modifiers. Such knowl-
edge bases typically use subsumption to form a taxonomic
graph, and they use inheritance to infer that properties of a
general class apply to subclasses as well. In contrast, Word-
Net was developed as a lexical reference system, which does
not use inheritance.

Second, our interpreter uses a more relaxed stopping crite-
rion (superor subclass) which stops the search when a su-
perclass or subclass of the goal is found. Previous systems
[21, 27, 6, 11, 22, 18, 3] used a more restricted stopping
criterion (equality), in which the search stops when a class
identical to the goal is found. The more relaxed stopping
criterion allows both inductive reasoning and abductive rea-
soning when deciding if the search should terminate. When
a subclass of the goal is found, by inductive reasoning we in-
fer there is a path between the starting concept and the goal
concept; any instance of the subclass is an instance of the
class itself. For example, givena barrack ... the room ...,
the interpreter will start a search from Barrack and will stop
the search at the Squad-Room part of the Barrack because a
Squad-Room is a kind of Room, which is the goal concept.

When a superclass of the goal is found, by abductive reason-
ing we infer that there may be a path between the starting
concept and the goal concept: an instance of the superclass
may be an instance of the class itself. For example, givena
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Figure 3: Performance of our interpreter after a series of ablations. The effect of these ablations on precision is limited,
but recall suffered. Of all the ablations, a more restrictedstopping criterion has the biggest impact on recall. If all the
ablations take place at the same time, then our interpreter behaves essentially like Poesio’s system.

garage ... the door ..., the interpreter will conduct a search
starting from Door as illustrated in figure 1. The search
stops at Building, a superclass of the goal, Garage, because
if a door is part of a building, which can be a garage, then
the doormay be part of a garage to which the expression,
garage, refers.

In contrast, whenequalityis used in this example, the search
will not stop at Building because it is not equal to Garage.
Previous studies [14, 7] have shown that a combination of
inductive and abductive reasoning is effective for finding se-
mantic paths between two given concepts.

The third difference with WordNet-based algorithms is that
our interpreter conducts deeper searches. The search depth
limit of previous systems was set to one for computational
efficiency. Our interpreter can use a deeper limit because
its more relaxed stopping criterion stops most searches at a
shallow depth. It can afford to have deeper searches occa-
sionally.

Finally, our interpreter’s sorting and selecting functionde-
pends on lexical distance rather than salience. Salience is
not used because it utilizes the sequential order of sentences
in a discourse; our interpreter is a generic solution to the
semantic search problem, whose input is an unordered pair
of concepts. If experiments show that salience is key to the
interpreter’s performance for indirect anaphora resolution,
the interpreter can be tailored to indirect anaphora resolu-
tion problems by replacing the lexical distance based sorting
function with a salience based sorting function.

4. EXPERIMENT 1
We first evaluated the performance of our interpreter applied
to indirect anaphora by comparing it to our reimplementa-
tion of a WordNet-based system from previous studies [26].
Poesio’s system was chosen for comparison for two reasons.
First, it was one of the best WordNet-based systems. Sec-
ond, part of the data sets used in its evaluation is available
for easy comparison.

We used WordNet 2.0 as the knowledge base in our exper-
iments for both systems. In order to apply our interpreter,
we had to convert WordNet databases into our knowledge
base representation. First, we mapped each WordNet noun
or verb synset into a class concept. Then, we mapped Word-
Net hyponymy and meronymy relations intosubclass, has-
part, elementandmaterialrelations accordingly (meronymy
relation can be mapped to three relations: has-part, element
or material). Because it has been shown that the taxonomy
derived from WordNet in this way is not of particularly high
quality [17] (sometimes a taxonomic sibling should actually
be a descendant or an ancestor), we changed the stopping cri-
terion of the interpreter to besuperor subclassor sibling.

We used two data sets for the evaluation. The goal of the
evaluation is to measure the performance of the interpreter
for indirect anaphoraresolution, notdetection. The first data
set is a subset of the Brown corpus containing 32 articles
on various topics. This data set was annotated for indirect
anaphora and used in a previous study [2]. The annotation
marks all referring expressions and their antecedents. We
used six articles from the data set for debugging, and the rest
for testing. The training data were used to set the threshold



for the number of sentences in the window for candidate an-
tecedents. We used a 6 sentence window for our experiment.
In the data set, we excluded instances of direct anaphora to
isolate the effects on indirect anaphora. We also excluded
named entities because WordNet contains little knowledge
about them, and recognizing named entities is not central to
our task of indirect anaphora resolution. There are a total of
196 instances of indirect anaphora in the test set.

The second data set consists of 32 Wall Street Journal ar-
ticles from the Penn Treebank I corpus containing 82 in-
stances of indirect anaphora after removing all named en-
tities and direct anaphora. It was used previously [26], and
it was partially annotated. We completed the annotations for
our experiments.

Because each word in the data sets may be mapped to multi-
ple WordNet synsets, we needed a mechanism of word sense
disambiguation. As a simple approach we took the cross
product of all the possible word senses of each referring
expression and each candidate antecedent to form pairs of
synsets. This yields a set of candidate solutions, and the
the sorting and selecting function chooses among them. In
the previous example, the referring expression,door, has
five senses, and one candidate antecedent,garage, has two
senses. The cross product yields ten pairs of synsets (<door#1,
garage#1>, <door#1, garage#2>, <door#2, garage#1>,
...). The interpreter then interprets the pairs, and the sorting
and selecting function chooses the best among all the solu-
tions found as the interpretation for the candidate,garage.

The metrics we used to evaluate performance are precision
and recall, which are defined as follows [13]:Preision = tptp+ fpReall = tptp+ fn
For our experiment,tp (true positive) is the number of in-
direct anaphora whose selected antecedents match the an-
notated ones,fp (false positive) is the number of indirect
anaphora whose selected antecedents do not match the anno-
tated ones, andfn (false negative) is the number of indirect
anaphora for which the system cannot find an antecedent.
Precision estimates the likelihood of a correct resolutionwhen
an antecedent is found; recall is a measurement of coverage.

5. RESULTS
Figure 2 shows the performance of our system and Poesio’s
system on the two test sets. The left bar is the performance
of our interpreter applied to the task of resolving indirect
anaphora, and the right bar is the performance of our imple-

mentation of Poesio’s system.2 Our interpreter achieved
about the same precision as Poesio’s system with approxi-
mately twice the recall.

An analysis of the failed cases for both systems revealed
that nearly half of them (45% for the Brown corpus data and
49% for the Penn Treebank data) are caused by insufficient
knowledge. Because WordNet only provides formal encod-
ings of mereological knowledge (hypernym, hyponym, meronym
and holonym), several frequently used type of indirect anaphora,
such as Event/role and Cause/consequence, cannot be re-
solved. For example, given the referring expressionthe judge
and candidate antecedenttrial , WordNet does not contain
formally encoded knowledge that would associate “judge”
with “trial”. In order to improve the performance, other
knowledge sources, such as FrameNet [8], the Component
Library [1] or formal encodings of WordNet glosses [10],
are needed.

5.1 Ablation study
Although the analysis of the failed cases reveals that addi-
tional knowledge would improve both systems, it does not
explain why our system’s recall is significantly better than
that of Poesio’s. As described in an earlier section, there
are four main differences between our interpreter and Poe-
sio’s system (use of inherited properties, stopping criterion,
search depth bounds and use of lexical distance instead of
salience), and some combination of them must account for
the improvement in recall. We analyzed their relative contri-
butions through a series of ablations. Each ablation removes
one difference while leaving other aspects of the original in-
terpreter intact. We also removed all four differences at once.
This version of the system is functionally identical to Poe-
sio’s system, and it should have identical performance as our
reimplementation of Poesio’s system.

Figure 3 shows the results of the ablation study on the two
data sets. Replacing lexical distance-based sorting and se-
lecting by salience did not have a large impact on precision
or recall on the two data sets we tested. Shallow searches had
a small influence on recall (7 percentage points on the Brown
corpus data set and 7 percentage points on the Penn Tree-
bank data set). We have experimented with various search
depths, and we found that increasing the search depth be-
yond two has little effect on performance. As predicted,
removing inherited properties lowers recall (13 percentage
points on the Brown corpus data set and 7 percentage points
on the Penn Treebank data set) with little effect on precision.
Replacing the stopping criterion has the largest impact on re-
call. It lowered recall by 26 percentage points on the Brown
corpus data set, and 14 percentage points on the Penn Tree-
bank data set. In addition, as predicted, by removing all four
differences, our interpreter performs just like Poesio’s sys-
tem.

2We believe our implementation is faithful because on average it
performed within 4% of published results [26]. The difference is
due to different annotations in the corpora.
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Figure 4: Performance of the noun compound interpreter using four different stopping criteria on four different data
sets. The four bars for each domain, from left to right, represent the interpreter’s performance in that domain using
equality, subclass, superclass and super or subclass stopping criterion respectively. The interpreter that uses the most
common and restricted stopping criterion,equality, had the worst recall and second best precision. The interpreter that
uses the least restricted stopping criterionsuper or subclass had the best precision and recall.

6. EXPERIMENT 2
The ablation study showed that the biggest increase in recall
comes from an abductive stopping criterion. One may won-
der whether the effect is restricted to the data sets used in this
study, so we evaluated the influence of stopping criteria on
larger data sets and with a different application of semantic
path search using the same tool.

6.1 Setup
We evaluated the impact of four different stopping criteria
on semantic path search in this study. In addition tosu-
per or subclassandequality, we usedsuperclassandsub-
class. These are less restrictive thanequalitybut more re-
strictive thansuperor subclass. The superclasscriterion
stops the search when the system visits a class whose super-
class has already been visited. Thesubclasscriterion stops
the process when the system visits a class whose subclass
has already been visited.

When a more restrictive stopping criterion is used, false pos-
itives are expected to decrease because fewer answers will
be found by the system. Consequently precision should in-
crease. When a less restrictive stopping criterion is used,
false negatives are expected to decrease because fewer in-
puts will have no interpretation, and recall should increase.

We evaluated the impact of different stopping criteria on the
task of noun compound interpretation. Here, we define a
noun compound to be a pair of nouns composed of a head
noun and a modifier. The head noun determines the type

of the whole compound, and the modifier specializes the
type from the head noun. Longer sequences of nouns can
be bracketed into pairs of nouns (with few exceptions). To
interpret a noun compound is to find the semantic relation
between the head noun and its modifier.

It is worth noting that this task has a slightly different em-
phasis than indirect anaphora. For indirect anaphora resolu-
tion systems, the goal is to seeif a candidate antecedent is
related to the referring expression. For noun compound in-
terpretation systems, the head noun is assumed to be related
to the modifier for each input, and the goal is to determine
how they are related.

6.2 Test data
We used four sets of data drawn from different domains to
avoid getting results that are skewed to a particular domain,
knowledge base or data set. The first three data sets consist
of a total of 742 pairs of nouns extracted from three different
domains (a biology text book, a small engine repair man-
ual, and a Sparcstation owners manual). Noun compounds
are closely related to indirect anaphora, and they can be con-
verted into pairs of antecedent and referring expressions.For
example, the noun compoundengine manufacturercan be
converted to an indirect anaphora instance “... an engine ...
the manufacturer ...”. The knowledge bases we used to inter-
pret noun compounds are based on the Component Library
[1], an upper ontology composed of a set of general con-
cepts (entities, events and roles) and their associated axioms.
For each domain, we extended the Component Library in the



following ways. First, the biology knowledge base was ex-
tended to have an 18-level deep taxonomy containing 1937
concepts. On average, each concept is directly connected to
9 other concepts. Then, the knowledge bases for the other
two data sets (the small engine repair manual and the Sparc-
station manual) were augmented with WordNet knowledge
plus about ten concepts that are important to each of the two
domains (whose partonomies are not complete in WordNet).
The engine knowledge base contains an 18-level deep taxon-
omy and 2159 concepts. On average each concept is directly
connected to 11 other concepts. The Sparcstation knowledge
base contains a 16-level deep taxonomy and 2105 concepts.
Each concept is directly connected to 10 other concepts on
average.

The fourth data set consists of 55 noun compounds in the do-
main of airplane parts. These data are encodings of airplane-
related sentences found in various online sources. The knowl-
edge base used to interpret the airplane data is a custom-built
knowledge base about airplanes. The taxonomy is 15 levels
deep, and it has more than 8,000 concepts. Each concept is
directly connected to 70 other concepts on average.

7. RESULTS
Figure 4 shows the impact of different stopping criteria. Sim-
ilar to the previous experiment, recall is improved signifi-
cantly whensuperor subclassis used. The interpreter that
used the most restricted stopping criterion,equality, always
had the worst recall in all four data sets. The interpreter that
used the least restricted stopping criterion,superor subclass,
always had the best recall. In addition to the increased recall,
thesuperor subclassbased interpreter also had the best pre-
cision.

The results appear counterintuitive at first because the least
restrictive stopping criterion produces in unsound reasoning
and it may cause search to stop prematurely. Such stop-
page may induce many false positives and reduce the pre-
cision significantly. In practice we found this was rarely
the case. In fact, most of the interpretations found by the
superor subclassstopping criterion are true positives, not
false positives, so precision was not compromised. In addi-
tion, becausesuperor subclassis a more relaxed stopping
criterion, it can find more interpretations and it will have
lower false negatives and better recall. This explains the
performance difference between various stopping criteria.
The precision improvement does not extend to the indirect-
anaphora task because, unlike noun compounds, a candidate
antecedent may be completely unrelated to the referring ex-
pression, and a relaxed stopping criterion may find interpre-
tations when there are none, causing false positives to in-
crease and precision to reduce.

8. DISCUSSION AND SUMMARY
In this paper, we studied the application of a general tool for
finding semantic paths between concepts to the task of in-
direct anaphora resolution. Compared with a state of the
art system designed specifically for this task, our system

achieved twice the recall with no drop in precision. An
analysis of the failed cases suggested that more knowledge
sources could further improve the performance. Further, an
ablation study revealed that the biggest increase in recall
comes from a more relaxed stopping criterion, and an exper-
iment conducted on four noun compound data sets showed
that the most relaxed stopping criterion had the best perfor-
mance.

The results have some important implications. First, they
suggest that a single method that searches a knowledge base
for semantic paths between pairs of concepts can achieve
good results on two different linguistic tasks: resolving in-
direct anaphora and interpreting noun compounds. In future
work, we will assess its effectiveness on other natural lan-
guage processing tasks. Second, although thesuperor subclass
stopping criterion is not knowledge base dependent or do-
main dependent, it may be affected by the taxonomy it uses.
It will be interesting to see if the interpreter’s performance
can be further enhanced if methods such as OntoClean [17]
are used to realign the WordNet taxonomy. Third, because
superor subclassis a relaxed stopping criterion, it causes
search to stop early. This makes spreading activation feasi-
ble even on very large knowledge bases, such as the searches
required by many Semantic WEB tasks.
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