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Abstract. Semantic matching is finding a mapping between two knowleege
resentations encoded using the same ontology. Solvingrihishing problem is
hard because the syntactic form of two knowledge repreensararely matches
exactly. Previous research has shown transformation calebe used to improve
matching, but acquiring transformations is difficult. lristpaper, we present an
algorithm for mining transformation rules for semantic oféng. This algorithm
was evaluated in two domains — battle space planning andistigrin both
cases, the resulting transformations helped to improvechirag significantly
compared to using only taxonomic knowledge.

1 Introduction

Many Al tasks require matching two structured knowledgereésentations encoded
using the same ontology to find a mapping between them. Fonglea rule-based
classification requires matching rule antecedents withkingrmemory; information
retrieval requires matching queries with documents; amdesknowledge acquisition
tasks require matching new information with already endokieowledge to expand
upon and debug both of them. We call this problem semantichmag.

Because structured representations can be encoded as gfakemantic match-
ing problem is a graph matching problem that finds a mappihgd®n the nodes of two
graphs. Solving this matching problem, however, is hardibse many valid mappings
between two graphs often cannot be established due to signdéterences. Previous
research [16, 17] showed that an imperfect match betweemdpm@sentations can be
significantly improved by using transformation rules toysBrm a mismatched portion
in one graph to match exactly a corresponding portion inteerograph. These trans-
formations were enumerated (by hand) from a domain-neupaér ontology. The re-
sulting transformations are domain-neutral in the senatttie contents of these trans-
formations are encoded using generic concepts not spexifioyt particular domain.
Previous research [16, 17] also showed matching can besfurttproved by using ad-
ditional domain-specific transformations whose contentésemcoded using concepts
specific to the domain of the application.

Although transformations can improve matching signifiant is difficult to ac-
quire these transformations. No algorithms exist for agggitransformations for se-
mantic matching, and enumerating transformations by hasdwo obvious problems.
First, we cannot enumerate all possible transformatiogalmse many domains have
mismatches specific to the domain. These domain-specifioatéhes are idiosyncratic



and result from modeling decisions or inherent properfpestic to that domain. Sec-

ond, enumerating transformations by hand is costly and-taresuming. Therefore,

having to enumerate domain-specific transformations feryemew domain makes us-
ing transformations impractical. Most existing semantiatching approaches, there-
fore, use only taxonomic knowledge [8, 11, 13, 18], whichelatively easy to acquire

for both general concepts and domain-specific ones.

Our work extends [16,17] by automating the task of discowgtransformations
which are effective at resolving mismatches — especialtpaa-specific mismatches.
Our solution is inspired by previous research in rule mifibg, 9, 10, 12, 14] where
the basic idea is to discover associations (and hence asisociules) from recurring
features within a data set. This approach has successfattpvbred association rules
in data sets ranging from transactions to text. We belieielibsic idea can also be
applied to our problem of discovering transformations fr&tnactured representations.

Although our approach is inspired by this body of researcHiffers in one fun-
damental way. We are not trying to discover associationsruRather, we are trying
to discover transformation rules to help improve semanttcimng. Hence, we are in-
terested in featuresot shared between items in a data set because transformaténs a
intended to resolve mismatches.

2 Background

In our framework, knowledge is represented using simpleeptual graphs which are
finite connected bipartite graphs without any nesting otedar{15]. The two types of
nodes in a simple conceptual graph are concepts and redatind an ontology provides
the vocabulary used to label these nodes.

A transformation is a rule of the formlhs = rhs where thelhs andrhs are
also simple conceptual graphs encoded using the same gytadahe representations
to which they are applied. Applying a transformation tramsfs the local portion of a
graph that can be projectednto by the ks into an alternative form encoded by thies
(see [16, 17] for a discussion of transformations and thegrfor semantic matching).

A semantic matcher [8,11, 13, 16-18] takes two representations (i.e. graphd) a
finds a mapping between the concepts and relationshese two graphs based on a
match criterion such as graph isomorphism, subgraph iseinm, Maximal Com-
mon Subgraph (MCSkgtc We use the MCS criterion [5] to find the largest connected
subgraph in one representation that can be projected g]niapped) onto the other
representation being matched. Tinatched parts between these two representations
are the subgraphs which project onto each other. Subgrapisatuded in this projec-
tion are theunmatched parts (i.e. mismatches). In this paper, we will uggandg; to
refer to the matched and unmatched parts, respectivelyiagrasentationy,.

A mismatch point is a pair of matched concepts connected to unmatched metatio
Formally, a mismatch point between two grapt, and G2, is a pair of concepts,
(c1,c2), that satisfies the following properties. Firgt,is in g; and is connected to a

! We require this projection to be 1-to-1 and onto — i.e. arpisgjection [6].
2 A mapping between two relation nodes can be establishedfamigppings can also be estab-
lished for the concept nodes they are directly connected to.



relation ing}. Secondgs is in g» and is connected to a relation ¢f. Finally, c; maps
to co as defined by the mappings returned from matclifagand G- (see Figure 1 for
an example).
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Fig. 1. The matched parts betweéh andG. are highlighted irbold. The dotted lines show the
mappings betwee@'; andG-». Concepts that are mismatch points are shown in gray.

The degree of match, which we catbr e, computes the similarity between two rep-
resentations based on their mappings. We require thisibumtd range from O (i.e. no
match) to 1 (i.e. every node was matched), but leave its definip to the application.

3 Mining Transformations

Our approach finds instances of mismatches between two kdgelrepresentations
that encode sufficiently similar content. These instanoeghen generalized into trans-
formation rules for use in semantic matching.

3.1 Search Biases

The space of mismatches through which we search for tramsfowns is very large.
To search this space efficiently, we exploit two propertiegansformations to use as
search biases.

First, we observed in [16,17] that transformations takatietly few syntactic
forms. Hence, we only search for mismatches that obey thagadic forms, which
are generalized rules of the forths = rhs. Thelhs andrhs are conceptual graphs
with variables in place of concepts and relations (we useuppse letters for concept
variables and lower-case letters for relation variables).example,

X—-r=>Y-—-r—>Z=X-r— 4

is a syntactic form describing a transitivity mismatch.

A mismatch (i.e. the unmatched parts®f andG-) obeys a syntactic fornf’ —
i.e.obey(F, g, g4) — if four conditions are satisfied. I is isomorphic talhs. 2) g5
is isomorphic torhs. 3) For every concept variablg, either anis-a or instance-of



relationship must exist between the labels of all the cotsciepy; andg), bounded to
X. 4) For every relation variable the labels of all the relations igf andg), bounded
tor must be the same.

Second, there is an intersection betweenltheandrhs of every transformation
because théhs is transformed into an alternative form encoded byrthe We use this
fact to reduce the search space by limiting the search tomsgif the mismatch space
around a mismatch point.

3.2 Algorithm for Mining Transfor mations

The outline of our algorithm foMining Transformations, which we call MinT, is shown
in Figure 2. MinT takes as input a semantic matcher (we’ll 84), two lists of graphs
(we'll call D; and D»), a similarity measure (we'll calécore), and three parameters
(we'll call minscore, minsupp, andmincert for the minimum match score, support,
and certainty respectively). It returns as output a listafisformation rules.

GIVEN: M (G4, Gj), D1 = {G1,...,Gn}, D2 = {G1, ..., G }, @andscore(mappings)
parameters: minscore, minsupp, mincert
FIND: A list of transformations.
PHASEL: Generate candidate transformations.
FOR all pairs(Gi, Gj) whereG; € D; andG; € D; DO
LET mappings = M (Gi, Gj)
IF score(mappings) > minscore THEN
FOR each mismatch poifft;, ¢;) betweenG; andG; DO
FOR each#y, in {F4, ..., Fn} DO
Searchy; andyg; starting at; andc;, respectively, for subgraphg; in g;
andsgj in g; that obeyFy.
IF obey(F, sgi, sg;) THEN Add sg; = sg; to T
ELSE IFobey(Fy, sg},sg;) THEN Add sg; = sg; toT.
PHASE?2: Generalize candidate transformations.
LET L = {}
FOR eacHl; in T DO
FOR each(cg;, Rj) in L DO
LET cgenl = minimum common generalizationBf andcg; .
IF cgenl exists THEN
Change(cg;, Rj) to (cgenl, Rj U {T;}) and break from inner FOR loop.
IF no common generalization found f&f THEN
Add (T;,{T:}) to L.
PHASES: Filter transformations.
LET RESULT = {}.
FOR each(cg;, Rj) in L DO
IF Support(cg;) > minsupp andd(Null(cg;),cg;) > Certainty(cg;, Rj, mincert)
THEN Addcg; to RESULT.
RETURNRESULT

Fig. 2. Outline of our algorithm, MinT.



In the first phase, MinT generates a ligt, of candidate transformations by match-
ing each grapli7; in D, with each graplds; in D,. If G; andG; are sufficiently similar
(i.e. the score betwed®; andG; is greater than or equal tainscore), then MinT will
search the unmatched parts®fandG; around each mismatch point for all subgraphs
that obey one of the syntactic forms{ifi , ..., Fy }. This search is a breadth-first search
rooted at the mismatch point and biased by the syntacticdofimose subgraphs found
through this process are returned as candidate transfiomat

In the second phase, MinT groups together those candidaisftrmations iril’
that have a common generalization. Two transformati@hsindT;, have a common
generalization if: 1)I; andT; obey the same syntactic form, 2) the labels of all the
corresponding concepts (i.e. concepts bound to the saneepbvariable) between;
and7; have a common ancestor, and 3) the labels of all the correlgppnelations
(i.e. relations bound to the same relation variable) betwEeandT}; are the same.
This generalization is minimum if the common ancestor fa kbels of all corre-
sponding concepts is the minimum common ancestor. Thetrssallist of the form
L = {(cg1, R1), ..., (cgn, Rn) } where each element @f consists of a subsét; of the
candidate transformations inand the minimum common generalizatiayy (which is
also a transformation) for this subset.

In the final phase, MinT removes those generalized transithomscg; from L that
do not satisfy the minimum support and certainty requireedupport is a metric we
borrowed from the rule mining literature [1, 2,9, 10, 12, f@tineasure how frequently
a generalized transformation occurs. We define this mettjgport(cg;) as the fraction
of sufficiently similar matches betwedp, and D, that contains a candidate transfor-
mation thaicg; is a generalization of.

Certainty is a metric we introduce to measure a generaliaedformation’s strength.
We argue that overly general transformations have littlengjth because they can align
almost anything. Hence, this metric corresponds to hovatedre we that a general-
ized transformation is not overly general. We measure ottaicgy in a generalized
transformationgg;, by first computing a range aroung; using

\/ZTieR]’ 5(Ti709j)2

Rj| @)

Certainty(cg;j, Rj, cert) = T(ap=|Rj|—1,cert)

Wherer(gr—|rj|—1,cert) 1S thet-score for df = |Rj| — 1 at the specified certainty level,
Rj are the candidate transformatiosys was generalized from, anf{T}, cg;) is the
distance betweefi; andcg,. We compute (T3, cg;) using

8(T;, cg;) = Z tazdist(c, corresp(c, cg;)) (2)
ceT;

wherec is a concept ifil;, corresp(c, cg;) is the corresponding concept efin cg;,
andtazdist is the taxonomic distance between the labels of these twoegis. We
computeazdist as the minimum number 6§-a andinstance-of links (as defined by
the ontology) between the labelscoéndcorresp(c, cg;). Next, we sayg; satisfies the
minimum certainty requirement if thidull generalization lies outside this range —i.e.
d(Null(cg;),cg;) > Certainty(cg;, Rj, mincert). We computes(Null(cg;), cg;)



using Equation 2 and thidull generalizationVuli(cg;) by replacing the labels of all
the concepts irg; with T — the root concept in the ontology.

4 Evaluation

We evaluate our algorithm by using it to mine for transforimas to use for two tasks —
Course of Action (COA) critiquing and finding examples taigtrate chemistry encod-
ing mistakes.

4.1 COA Critiquing

The COA critiquing task is one of the challenge problems inRPA's Rapid Knowl-
edge Formation project. COAs are large, detailed battlesitstended to meet a specific
military objective. Because of their complexity, militaapalysts have difficulty evalu-
ating them quickly and accurately. Thus, the task of COAquihg is to assess a COA's
strengths and weaknesses.

The solution to this problem has two parts. First, militanalysts build a knowledge
base of “critiquing patterns” using an ontology in the domafi Battle Space Planning
(BSP).2 Each pattern, encoded as a simple conceptual graph, deseriituation that
might arise in a COA, for example “blue aviation units attae# artillery units before
the main attack” or “blue holds an artillery unit in reserweidg the main attack”. This
library of patterns is compiled based on military doctrimel @xperience. Second, to
prepare for a battle, military commanders design a COA tdesehstated objectives.
It, too, is a simple conceptual graph and is encoded usin@@®ie ontology. These
COAs are evaluated by matching the library of critiquingtg@ats to them to assess
their strengths and weaknesses.

The knowledge base of critiquing patterns was built by twbj&ct Matter Experts
(SMESs) using the SHAKEN system [3]. The COAs were built byshee people using
a COA-authoring system called NuSketch [7]. The two SMEgIpoed a total of 44
patterns and three COAs. The patterns and COAs were botlded@s graphs but
authored using different knowledge-authoringtools. C@Aquing is therefore a graph
matching problem with many opportunities for mismatches.

Experimental Methodology We used the knowledge base of critiquing patterns and
COAs authored by the two SMESs as our data. We say a patterrhesatcCOA if the
match score meets or exceeds a pre-specified threshd This score is computed
based on the fraction of nodes in the pattern matched with & ®@cause of the size
and complexity of the COAs (each averaging several thousad@s), a pattern can
match a COA multiple times, in different ways.

To match the patterns with the COAs, we used four approattasliffer only in
the types of transformations used. First, we used a semanaicher that uses only
taxonomic knowledge as our baseline (i.e. no transformatieere used). We call this
matcher “TaxonMatch”, and we implement it using the aldoritdescribed in [16, 17].

3 This ontology can be browsed and downloaded at http://wsmtexas.edu/users/mfkb/RKF/tree



Second, we constructed a matcher called “TaxonMatch+Mibgdaugmenting
TaxonMatch with the transformations mined by MinT. To mine these transforma-
tions, we split our data into three sets where each set dercfi®mne COA and a set
of applicable patterns. We chose one set to serve as thestesingl the other two for
mining transformations. MinT’s inputs and parameters vegrteas follows. We set the
semantic matcher to TaxonMatch and the two lists of grapliseatterns and COAs
in the training set. We define the similarity measure as thetifsn of nodes in a pattern
matched with a COA, and we arbitrarily set the minimum matwres, support, and cer-
tainty to 0.6, 0.05, and 0.95 respectively. The syntactimBused for this experiment
are shown in Table 1.

lhs rhs
PHX—-r—=Y—-r—>27 X—-r—7
| X —r—=Y —-—s— 7 X—-r—7
F3l X —r—Y X —-s—=Y
Fil X—-r—=-Y—-s—>7Z-t—-W|X-s—-W
Table 1. The syntactic forms used for both this experiment and thencdtey experiment de-

scribed in Section 4.2.

The resulting transformations (see Figure 3 for examplexewsed by Taxon-
Match+Mined to match the patterns with the COA in the test Shts process was
repeated three times (each time a different training artcstdsvere selected), and we
totalled all the matches.

Time-Interval Time-Interval
nam% Is-| hesme ‘
Mmlary Unit \ucalmn—)@ end-time starttime-of
Move-| M\Inaw Unit Spanal Entity l“ ‘
[ End-Time-¥alue }hefnf!?*)[ Slaan\marva\ueJ

iy

Military-Unit \s-al

Wove-iilitary-Unit path ——{ Spatial-Entity Tirne-Interval before i

Fig. 3. Selected examples of transformations mined for the battees planning domain.

Third, we constructed a matcher called “TaxonMatch+DN” bigmenting Taxon-
Match with the human authored domain-neutral transformnatreported in [16, 17].

Finally, we constructed a matcher called “TaxonMatch+Bbthaugmenting Tax-
onMatch with both mined and human authored transformations

To evaluate the matches returned by each approach, and timeicperformance,
we note that applying patterns to COAs can be viewed as a foimfiasmation retrieval
where information of interest is retrieved from a COA basedgattern that is acting
as a query. Therefore, we use metrics of precision and rfcadlalculate these metrics,



we compared the match results for each approach againgt ti@shuman “oracle”,
who determined that there were a total of 927 correct matbeéseen the patterns
and the COAs. Table 2 shows the number of correct matcheghwéotal number of
matches given by each approach along with the precisionegdll results for match
thresholds between 0.5 and 1.0. We usediRdest to test for significant differences.

TaxonMatch TaxonMatch+Mined| TaxonMatch+DN | TaxonMatch+Both
TH| raw prec recall raw prec recall raw prec recall raw prec recall
0.5|508/1395 36.4 54.689/1535 38.4 63.5763/1714 44.5 82.5763/1732 44.1 82.3
0.6|508/1239 41.0 54.671/1431 39.9 61.6/45/1539 48.4 80.4/45/1680 44.4 80.4
0.7|459/686 66.9 49.5571/840 68.0 61.6696/965 72.1 75.1745/1014 73.5 80.4
L
p
3]

0.8|459/667 68.8 49.5522/772 67.6 56.3696/946 73.6 75.1696/946 73.6 75.
0.9|103/103 100.0 11.1516/652 79.1 55.7553/689 80.3 59.7679/815 83.3 73.]
1.0| 35/35 100.0 3.8 501/501 100.0 54.1424/424 100.0 45.y654/654 100.0 70.

Table 2. This table shows the raw data (iraw), precision (i.epred, and recall results given
by each approach. Precision is computed by dividing the murobcorrect matches given by the
total number of matches given. Recall is computed by digidime number of correct matches
given by the number of correct matches given by the “oracle”.

Discussion With respect to precision (see Table 2), the four approaaiees roughly
comparable. The 0.9 threshold, however, was an interestisg At this high threshold,
TaxonMatch was able to match only those patterns that aligmactly (or almost ex-
actly) with the COAs. Thus, there were no false-positives pirecision was high (this
difference was significant at the 0.01 level for thié test, i.ep < 0.01). Using trans-
formations, the other three approaches were able to estadudiditional mappings that
TaxonMatch was unable to find. This resulted in more patteersy matched, but there
was still room for false-positives at the 0.9 threshold leVais difference disappeared
at the 1.0 threshold level.

With respect to recall (see Table 2), the four approachésrdd significantly. Tax-
onMatch’s performance on recall was the worst, droppingiBaantly as the thresh-
old level was raised. TaxonMatch+Mined performed signiftabetter than Taxon-
Match at all threshold level® (< 0.01 for all points). Because TaxonMatch and Taxon-
Match+Mined differ only in the use of transformations, tféature alone must account
for the observed difference in recall. Therefore, thisat#hce shows transformations
mined by MinT helped to improve matching significantly comgahto using taxonomic
knowledge alone.

TaxonMatch+Mined performed significantly better than TaMatch+DN at the 1.0
threshold < 0.01). This difference, however, was reversed between the @Ddh
threshold levelsy < 0.01 at each point) because MinT was unable to discover some of
the human authored transformations used by TaxonMatch-8ohkhe useful candidate
transformations were excluded because either they didamitrdrequently enough or
their common generalization failed to satisfy the minimuerntainty requirement.



By using both human authored and machine discovered tnamafmns, Taxon-
Match+Both performed significantly better than both Taxatdh+Mined < 0.01
for all threshold levels) and TaxonMatch+DM (< 0.01 for the 0.7, 0.9, and 1.0
threshold levels). Interestingly, the difference betw&aronMatch+Both and Taxon-
Match+DN was most noticeable at the 0.9 and 1.0 thresholt¢heése high thresh-
olds, only those patterns that aligned exactly (or almoat#y) with the COAs would
count as matches. Because TaxonMatch+DN used only doneaitnah transforma-
tions, it was not able to resolve many domain-specific mishest. As a result, Taxon-
Match+DN could not align many patterns with the COAs. Mindwever, discovered
transformations that resolved those mismatches that wargyincratic to the COA cri-
tiquing domain. These results show domain-neutral transditions are less effective at
resolving domain-specific mismatches, and domain-speficformations are needed
to further improve matching.

4.2 Finding Examplesto Illustrate Chemistry Encoding Mistakes

The goal of the HALO project is to build a Knowledge B4§&B) that can answer
chemistry questions from an Advanced PlaceMéAP) test. In the initial phase of
this project [4], Knowledge Engineers (KEs) encoded thestjors to be answered.
Because KEs are familiar with the KB, their encodings do notude any mistakes
(i.e. discrepancies with the KB). The second phase of thogept, however, requires
SMEs to encode these questions. Because SMEs are not famiihighe KB, mistakes

are frequentin their encodings (see Figure 4). Thus, we toefiittl examples of correct
encodings to illustrate to SMEs their mistakes.

"What can be said about the decomposition of H202. The equation for this reaction is 2H202 — 2H20 + 02"

SME Encoding: KE Encoding:
ram-material —Veﬁu‘t '
)
result haa-baa\c-strlunlura\-uml
raw-material result résult Chernical
- o '
Hz0 has-basic-structural-unit coefficient coefficient
\ . ‘
Eneﬁimenl cnenimem has-basic-structural-unit
——— value walue —).

Fig. 4. This example shows two encodings of the same chemistryiqnesione by a SME and
the other by a KE.

Our solution to this problem has two parts. First, KEs wiltede a library of ques-
tions (we’'ll refer to the encodings of these questions asga&ach case is a simple
conceptual graph encoded using an ontology in the domaimemistry.® Second,

4 By knowledge base, we mean a set of axioms.
5 The AP test is an examination taken by U.S. high school stsderearn college credits.
% This ontology can be browsed and downloaded at http://wsmtexas.edu/users/mfkb/RKF/tree



questions encoded by SMEs (which are also simple concegtaphs encoded using
the same chemistry ontology) would be matched againstitiriary to find the most
similar case, which will serve as an example to point outakis¢ made.

The library of cases consists of correct encodings for 5Gtipres. Three SMEs
were each asked to encode these same 50 questions, and toeg@m total of 133
guestions (SMEs were allowed to skip questions they did noinkhow to encode).
Because SME questions and cases are encoded as graphs argsbdodependently,
the task of finding examples to illustrate encoding mista&kagraph matching problem
with many opportunities for mismatches. Hence, transfdiona are needed.

Experimental Methodology We use the SME questions and cases as our data. Each
SME question is matched against all cases, and the case ftstnosgly matches is
selected as the example to use. The strength of the matclsdaee) is based on the
fraction of nodes in a SME question matched with a case.

To match the SME questions with the cases, we used the fouoagpes from the
COA Critiquing task (see Section 4.1). With the exceptiofatonMatch+Mined, the
other three approaches were constructed the same way.

To mine for transformations used by TaxonMatch+Mined, wi spir data into
three sets, where each set consists of all the questionsletidry one of the SMEs.
We chose one set to serve as the test set, and the other twanfagriransformations.
MinT’s inputs and parameters were set as follows. We set é¢neastic matcher to
TaxonMatch. We set the two lists of graphs to the SME quesiiothe training set and
the cases encoded by KEs. We define the similarity measuhe disaction of nodes in
a SME question matched with a case, and we arbitrarily senthenum match score,
support, and certainty to 0.4, 0.05, and 0.95 respectiViédéyused the same syntactic
forms from the COA Critiquing task (see Table 1). The resgltransformations (see
Figure 5) were used by TaxonMatch+Mined to match the SME tipresin the test set
with the cases. This process was repeated three times {peaeHifferent training and
test sets were selected), and we totalled all the matches.

-Chemica\
Chemieal |—has-basic-structural-unit -
concentration Concentration-value value resul |
| | hase-of value
Reaction H
Chamicak Eniity Aguenus-Solution wolume —>{ Yolume-Value
coneentration—{_value_) result —>{Chamical-Enity Jalume

Fig.5. Selected examples of transformations mined for the cheyrdsimain.

To evaluate the performance of each approach, we measurauthber of SME
questions for which a correct case was selected. We say Heesedected for a SME
question is correct, if they are both encodings of the samneenddtry question. Table 3
shows the number of correct matches over the total numbelatgimas given by each



approach along with the precision and recall results forci#tresholds between 0.0
(exclusive) and 1.0 (inclusive). We used thié test to test for significant differences.

TaxonMatch TaxonMatch+Mined| TaxonMatch+DN | TaxonMatch+Both
TH| raw prec recall raw prec recall raw prec recall raw prec recall
0.0|128/1124 11.4 96.2128/203 63.1 96.2128/307 41.7 96.2128/203 63.1 96.2
0.2| 94/734 12.8 70.7128/200 64.0 96.2127/276 46.0 95.5128/200 64.0 96.2
D
D

0.4| 58/208 27.9 43.6127/176 72.2 95.3127/256 49.6 95.5127/176 72.2 95.5
06| 36/37 97.3 27.1127/176 72.2 95.5108/128 84.4 81.2127/176 72.2 95.5
08| 35/36 97.2 26.3 77/78 98.7 57.9 61/62 98.4 45.9 77/78 98.7 57.9
09| 32/33 96.9 24.1 68/69 98.6 51.1 55/56 98.2 41.4 68/69 98.6 51.]
1.0| 32/32 100.0 24.1 63/63 100.0 47.4 51/51 100.0 38.3 63/63 100.0 47.4

Table 3. This table shows the raw data (iraw), precision (i.eprec), and recall results given by
each approach.

Discussion With respect to precision, the four approaches were corbf@asdarting
from the 0.8 threshold level. TaxonMatch+Mined, howeverfgrmed significantly
better than TaxonMatch and TaxonMatch+DN from the 0.0 totfréshold levels
(p < 0.01 at each point).

With respect to recall, TaxonMatch+Mined performed sigaifitly better than Tax-
onMatch starting from the 0.2 threshold level £ 0.01 at each point). Because Tax-
onMatch and TaxonMatch+Mined differ only in the use of tfanmations, this fac-
tor alone must account for the observed difference in acgutiis difference further
shows transformations mined by MinT can help to improve matgsignificantly com-
pared to using taxonomic knowledge alone.

Interestingly, TaxonMatch+Mined performed significarigtter than TaxonMatch+DN
atthe 0.6 < 0.01) and 0.8 threshold level® (< 0.05). Although the domain-neutral
transformations used by TaxonMatch+DN helped to improealteignificantly com-
pared to TaxonMatchp(< 0.01 starting from the 0.2 threshold level), there were sev-
eral mismatches specific to the domain of chemistry that iidaich+DN could not
resolve — more so than the battle space domain. MinT, hoywewer able to discover
transformations that can resolve these mismatches. Thssks show domain-specific
transformations can further improve matching.

Finally, TaxonMatch+Mined and TaxonMatch+Both achieviled same precision
and recall (recall TaxonMatch+Both is constructed by augfing the human authored
domain-neutral transformations with those discovered layTyl Our analysis revealed
that in addition to discovering additional domain-spedifansformations, MinT was
able to discover all the domain-neutral transformatiorefulsfor this domain. This
explains why TaxonMatch+Mined and TaxonMatch+Both hadsérae performance.



5 Conclusion

The problem in semantic matching is to find a mapping betweerstructured knowl-
edge representations encoded using the same ontologyn&tiis matching problem
is hard because many valid mappings between two repregergatiten cannot be es-
tablished. Previous research has shown an imperfect matalebn two representations
can be improved significantly by using transformation ruleg acquiring these trans-
formations is problematic. As a result, most existing seinamatching approaches use
only taxonomic knowledge.

To address this problem, we presented an algorithm, calied,Nbr mining trans-
formations. We evaluated MinT by using it to mine for transfiations in two domains
— Battle Space Planning (BSP) and chemistry. The results froth evaluations were
encouraging. Transformations mined by MinT helped to impmmatching significantly
compared to using taxonomic knowledge alone. For the BSRadgmuman authored
transformations performed better than those mined by Minit,we showed MinT’s
transformations can augment those authored by hand to réameeither one used
alone. Interestingly, this was not the case for the cheynditmain — transformations
mined by MinT outperformed those authored by hand. This sabse most of the
mismatches were specific to the domain of chemistry and hémoain-specific trans-
formations are needed to resolve them.
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