
Mining Transformation Rules for Semantic Matching

Peter Yeh, Bruce Porter, and Ken Barker

University of Texas at Austin, Department of Computer Sciences
Austin, TX 78712 USA

e-mail:fpzyeh,porter,kbarkerg@cs.utexas.edu

Abstract. Semantic matching is finding a mapping between two knowledgerep-
resentations encoded using the same ontology. Solving thismatching problem is
hard because the syntactic form of two knowledge representations rarely matches
exactly. Previous research has shown transformation rulescan be used to improve
matching, but acquiring transformations is difficult. In this paper, we present an
algorithm for mining transformation rules for semantic matching. This algorithm
was evaluated in two domains – battle space planning and chemistry. In both
cases, the resulting transformations helped to improve matching significantly
compared to using only taxonomic knowledge.

1 Introduction

Many AI tasks require matching two structured knowledge representations encoded
using the same ontology to find a mapping between them. For example, rule-based
classification requires matching rule antecedents with working memory; information
retrieval requires matching queries with documents; and some knowledge acquisition
tasks require matching new information with already encoded knowledge to expand
upon and debug both of them. We call this problem semantic matching.

Because structured representations can be encoded as graphs, the semantic match-
ing problem is a graph matching problem that finds a mapping between the nodes of two
graphs. Solving this matching problem, however, is hard because many valid mappings
between two graphs often cannot be established due to syntactic differences. Previous
research [16, 17] showed that an imperfect match between tworepresentations can be
significantly improved by using transformation rules to transform a mismatched portion
in one graph to match exactly a corresponding portion in another graph. These trans-
formations were enumerated (by hand) from a domain-neutralupper ontology. The re-
sulting transformations are domain-neutral in the sense that the contents of these trans-
formations are encoded using generic concepts not specific to any particular domain.
Previous research [16, 17] also showed matching can be further improved by using ad-
ditional domain-specific transformations whose contents are encoded using concepts
specific to the domain of the application.

Although transformations can improve matching significantly, it is difficult to ac-
quire these transformations. No algorithms exist for acquiring transformations for se-
mantic matching, and enumerating transformations by hand has two obvious problems.
First, we cannot enumerate all possible transformations because many domains have
mismatches specific to the domain. These domain-specific mismatches are idiosyncratic

and result from modeling decisions or inherent properties specific to that domain. Sec-
ond, enumerating transformations by hand is costly and time-consuming. Therefore,
having to enumerate domain-specific transformations for every new domain makes us-
ing transformations impractical. Most existing semantic matching approaches, there-
fore, use only taxonomic knowledge [8, 11, 13, 18], which is relatively easy to acquire
for both general concepts and domain-specific ones.

Our work extends [16, 17] by automating the task of discovering transformations
which are effective at resolving mismatches – especially domain-specific mismatches.
Our solution is inspired by previous research in rule mining[1, 2, 9, 10, 12, 14] where
the basic idea is to discover associations (and hence association rules) from recurring
features within a data set. This approach has successfully discovered association rules
in data sets ranging from transactions to text. We believe this basic idea can also be
applied to our problem of discovering transformations fromstructured representations.

Although our approach is inspired by this body of research, it differs in one fun-
damental way. We are not trying to discover association rules. Rather, we are trying
to discover transformation rules to help improve semantic matching. Hence, we are in-
terested in featuresnot shared between items in a data set because transformations are
intended to resolve mismatches.

2 Background

In our framework, knowledge is represented using simple conceptual graphs which are
finite connected bipartite graphs without any nesting or context [15]. The two types of
nodes in a simple conceptual graph are concepts and relations, and an ontology provides
the vocabulary used to label these nodes.

A transformation is a rule of the formlhs) rhs where thelhs and rhs are
also simple conceptual graphs encoded using the same ontology as the representations
to which they are applied. Applying a transformation transforms the local portion of a
graph that can be projected1 onto by thelhs into an alternative form encoded by therhs
(see [16, 17] for a discussion of transformations and their use for semantic matching).

A semantic matcher [8, 11, 13, 16–18] takes two representations (i.e. graphs) and
finds a mapping between the concepts and relations2 of these two graphs based on a
match criterion such as graph isomorphism, subgraph isomorphism, Maximal Com-
mon Subgraph (MCS),etc. We use the MCS criterion [5] to find the largest connected
subgraph in one representation that can be projected [6] (i.e. mapped) onto the other
representation being matched. Thematched parts between these two representations
are the subgraphs which project onto each other. Subgraphs not included in this projec-
tion are theunmatched parts (i.e. mismatches). In this paper, we will usegi andg0i to
refer to the matched and unmatched parts, respectively, of arepresentationGi.

A mismatch point is a pair of matched concepts connected to unmatched relations.
Formally, a mismatch point between two graphs,G1 andG2, is a pair of concepts,(
1;
2), that satisfies the following properties. First,
1 is in g1 and is connected to a

1 We require this projection to be 1-to-1 and onto – i.e. an iso-projection [6].
2 A mapping between two relation nodes can be established onlyif mappings can also be estab-

lished for the concept nodes they are directly connected to.

relation ing01. Second,
2 is in g2 and is connected to a relation ing02. Finally,
1 maps
to
2 as defined by the mappings returned from matchingG1 andG2 (see Figure 1 for
an example).

Fig. 1. The matched parts betweenG1 andG2 are highlighted inbold. The dotted lines show the
mappings betweenG1 andG2. Concepts that are mismatch points are shown in gray.

The degree of match, which we callscore, computes the similarity between two rep-
resentations based on their mappings. We require this function to range from 0 (i.e. no
match) to 1 (i.e. every node was matched), but leave its definition up to the application.

3 Mining Transformations

Our approach finds instances of mismatches between two knowledge representations
that encode sufficiently similar content. These instances are then generalized into trans-
formation rules for use in semantic matching.

3.1 Search Biases

The space of mismatches through which we search for transformations is very large.
To search this space efficiently, we exploit two properties of transformations to use as
search biases.

First, we observed in [16, 17] that transformations take relatively few syntactic
forms. Hence, we only search for mismatches that obey these syntactic forms, which
are generalized rules of the formlhs) rhs. The lhs andrhs are conceptual graphs
with variables in place of concepts and relations (we use upper-case letters for concept
variables and lower-case letters for relation variables).For example,X � r ! Y � r ! Z) X � r ! Z:
is a syntactic form describing a transitivity mismatch.

A mismatch (i.e. the unmatched parts ofG1 andG2) obeys a syntactic formF –
i.e. obey(F; g01; g02) – if four conditions are satisfied. 1)g01 is isomorphic tolhs. 2) g02
is isomorphic torhs. 3) For every concept variableX , either anis-a or instan
e-of

relationship must exist between the labels of all the concepts in g01 andg02 bounded toX . 4) For every relation variabler, the labels of all the relations ing01 andg02 bounded
to r must be the same.

Second, there is an intersection between thelhs andrhs of every transformation
because thelhs is transformed into an alternative form encoded by therhs. We use this
fact to reduce the search space by limiting the search to regions of the mismatch space
around a mismatch point.

3.2 Algorithm for Mining Transformations

The outline of our algorithm forMining Transformations, which we call MinT, is shown
in Figure 2. MinT takes as input a semantic matcher (we’ll call M), two lists of graphs
(we’ll call D1 andD2), a similarity measure (we’ll calls
ore), and three parameters
(we’ll call mins
ore, minsupp, andmin
ert for the minimum match score, support,
and certainty respectively). It returns as output a list of transformation rules.

GIVEN: M(Gi;Gj), D1 = fG1; :::; Gng,D2 = fG1; :::; Gmg, ands
ore(mappings)
parameters: minscore, minsupp, mincert

FIND: A list of transformations.
PHASE1: Generate candidate transformations.
FOR all pairs(Gi; Gj) whereGi 2 D1 andGj 2 D2 DO

LET mappings =M(Gi; Gj)
IF s
ore(mappings) � mins
ore THEN

FOR each mismatch point(
i;
j) betweenGi andGj DO
FOR eachFk in fF1; :::; FNg DO

Searchg0i andg0j starting at
i and
j , respectively, for subgraphssg0i in g0i
andsg0j in g0j that obeyFk.

IF obey(Fk; sg0i; sg0j) THEN Add sg0i) sg0j toT .
ELSE IFobey(Fk; sg0j ; sg0i) THEN Addsg0j) sg0i to T .

PHASE2: Generalize candidate transformations.
LET L = fg
FOR eachTi in T DO

FOR each(
gj ; Rj) in L DO
LET cgenl = minimum common generalization ofTi and
gj .
IF cgenl exists THEN

Change(
gj ; Rj) to (
genl; Rj [fTig) and break from inner FOR loop.
IF no common generalization found forTi THEN

Add (Ti; fTig) toL.
PHASE3: Filter transformations.
LET RESULT = fg.
FOR each(
gj ; Rj) in L DO

IF Support(
gj) � minsupp andÆ(Null(
gj);
gj) > Certainty(
gj; Rj;min
ert)
THEN Add
gj toRESULT .

RETURNRESULT
Fig. 2. Outline of our algorithm, MinT.

In the first phase, MinT generates a list,T , of candidate transformations by match-
ing each graphGi inD1 with each graphGj inD2. If Gi andGj are sufficiently similar
(i.e. the score betweenGi andGj is greater than or equal tomins
ore), then MinT will
search the unmatched parts ofGi andGj around each mismatch point for all subgraphs
that obey one of the syntactic forms infF1; :::; FNg. This search is a breadth-first search
rooted at the mismatch point and biased by the syntactic forms. Those subgraphs found
through this process are returned as candidate transformations.

In the second phase, MinT groups together those candidate transformations inT
that have a common generalization. Two transformations,Ti andTj , have a common
generalization if: 1)Ti andTj obey the same syntactic form, 2) the labels of all the
corresponding concepts (i.e. concepts bound to the same concept variable) betweenTi
andTj have a common ancestor, and 3) the labels of all the corresponding relations
(i.e. relations bound to the same relation variable) between Ti andTj are the same.
This generalization is minimum if the common ancestor for the labels of all corre-
sponding concepts is the minimum common ancestor. The result is a list of the formL = f(
g1; R1); :::; (
gn; Rn)g where each element ofL consists of a subsetRj of the
candidate transformations inT and the minimum common generalization
gj (which is
also a transformation) for this subset.

In the final phase, MinT removes those generalized transformations
gj fromL that
do not satisfy the minimum support and certainty requirements. Support is a metric we
borrowed from the rule mining literature [1, 2, 9, 10, 12, 14]to measure how frequently
a generalized transformation occurs. We define this metricSupport(
gj) as the fraction
of sufficiently similar matches betweenD1 andD2 that contains a candidate transfor-
mation that
gj is a generalization of.

Certainty is a metric we introduce to measure a generalized transformation’s strength.
We argue that overly general transformations have little strength because they can align
almost anything. Hence, this metric corresponds to how certain are we that a general-
ized transformation is not overly general. We measure our certainty in a generalized
transformation,
gj , by first computing a range around
gj usingCertainty(
gj ; Rj;
ert) = �(df=jRjj�1;
ert)qPTi2Rj Æ(Ti;
gj)2jRjj (1)

where�(df=jRjj�1;
ert) is thet-s
ore for df = jRjj � 1 at the specified certainty level,Rj are the candidate transformations
gj was generalized from, andÆ(Ti;
gj) is the
distance betweenTi and
gj . We computeÆ(Ti;
gj) usingÆ(Ti;
gj) =X
2Ti taxdist(
;
orresp(
;
gj)) (2)

where
 is a concept inTi,
orresp(
;
gj) is the corresponding concept of
 in
gj ,
andtaxdist is the taxonomic distance between the labels of these two concepts. We
computetaxdist as the minimum number ofis-a andinstan
e-of links (as defined by
the ontology) between the labels of
 and
orresp(
;
gj). Next, we say
gj satisfies the
minimum certainty requirement if theNull generalization lies outside this range – i.e.Æ(Null(
gj);
gj) > Certainty(
gj ; Rj;min
ert). We computeÆ(Null(
gj);
gj)

using Equation 2 and theNull generalizationNull(
gj) by replacing the labels of all
the concepts in
gj with > – the root concept in the ontology.

4 Evaluation

We evaluate our algorithm by using it to mine for transformations to use for two tasks –
Course of Action (COA) critiquing and finding examples to illustrate chemistry encod-
ing mistakes.

4.1 COA Critiquing

The COA critiquing task is one of the challenge problems in DARPA’s Rapid Knowl-
edge Formation project. COAs are large, detailed battle plans intended to meet a specific
military objective. Because of their complexity, militaryanalysts have difficulty evalu-
ating them quickly and accurately. Thus, the task of COA critiquing is to assess a COA’s
strengths and weaknesses.

The solution to this problem has two parts. First, military analysts build a knowledge
base of “critiquing patterns” using an ontology in the domain of Battle Space Planning
(BSP).3 Each pattern, encoded as a simple conceptual graph, describes a situation that
might arise in a COA, for example “blue aviation units attackred artillery units before
the main attack” or “blue holds an artillery unit in reserve during the main attack”. This
library of patterns is compiled based on military doctrine and experience. Second, to
prepare for a battle, military commanders design a COA to achieve stated objectives.
It, too, is a simple conceptual graph and is encoded using theBSP ontology. These
COAs are evaluated by matching the library of critiquing patterns to them to assess
their strengths and weaknesses.

The knowledge base of critiquing patterns was built by two Subject Matter Experts
(SMEs) using the SHAKEN system [3]. The COAs were built by thesame people using
a COA-authoring system called NuSketch [7]. The two SMEs produced a total of 44
patterns and three COAs. The patterns and COAs were both encoded as graphs but
authored using different knowledge-authoring tools. COA critiquing is therefore a graph
matching problem with many opportunities for mismatches.

Experimental Methodology We used the knowledge base of critiquing patterns and
COAs authored by the two SMEs as our data. We say a pattern matches a COA if the
match score meets or exceeds a pre-specified threshold (TH). This score is computed
based on the fraction of nodes in the pattern matched with a COA. Because of the size
and complexity of the COAs (each averaging several thousandnodes), a pattern can
match a COA multiple times, in different ways.

To match the patterns with the COAs, we used four approaches that differ only in
the types of transformations used. First, we used a semanticmatcher that uses only
taxonomic knowledge as our baseline (i.e. no transformations were used). We call this
matcher “TaxonMatch”, and we implement it using the algorithm described in [16, 17].

3 This ontology can be browsed and downloaded at http://www.cs.utexas.edu/users/mfkb/RKF/tree

Second, we constructed a matcher called “TaxonMatch+Mined” by augmenting
TaxonMatch with the transformations mined by MinT. To mine for these transforma-
tions, we split our data into three sets where each set consists of one COA and a set
of applicable patterns. We chose one set to serve as the test set, and the other two for
mining transformations. MinT’s inputs and parameters wereset as follows. We set the
semantic matcher to TaxonMatch and the two lists of graphs tothe patterns and COAs
in the training set. We define the similarity measure as the fraction of nodes in a pattern
matched with a COA, and we arbitrarily set the minimum match score, support, and cer-
tainty to 0.6, 0.05, and 0.95 respectively. The syntactic forms used for this experiment
are shown in Table 1.

lhs rhsF1 X � r! Y � r! Z X � r! ZF2 X � r! Y � s! Z X � r! ZF3 X � r! Y X � s! YF4 X � r! Y � s! Z � t!W X � s! W
Table 1. The syntactic forms used for both this experiment and the chemistry experiment de-
scribed in Section 4.2.

The resulting transformations (see Figure 3 for examples) were used by Taxon-
Match+Mined to match the patterns with the COA in the test set. This process was
repeated three times (each time a different training and test set were selected), and we
totalled all the matches.

Fig. 3. Selected examples of transformations mined for the battle space planning domain.

Third, we constructed a matcher called “TaxonMatch+DN” by augmenting Taxon-
Match with the human authored domain-neutral transformations reported in [16, 17].

Finally, we constructed a matcher called “TaxonMatch+Both” by augmenting Tax-
onMatch with both mined and human authored transformations.

To evaluate the matches returned by each approach, and hencetheir performance,
we note that applying patterns to COAs can be viewed as a form of information retrieval
where information of interest is retrieved from a COA based on a pattern that is acting
as a query. Therefore, we use metrics of precision and recall. To calculate these metrics,

we compared the match results for each approach against those of a human “oracle”,
who determined that there were a total of 927 correct matchesbetween the patterns
and the COAs. Table 2 shows the number of correct matches overthe total number of
matches given by each approach along with the precision and recall results for match
thresholds between 0.5 and 1.0. We used theX 2 test to test for significant differences.

TaxonMatch TaxonMatch+Mined TaxonMatch+DN TaxonMatch+Both
TH raw prec recall raw prec recall raw prec recall raw prec recall
0.5 508/1395 36.4 54.8589/1535 38.4 63.5763/1714 44.5 82.3763/1732 44.1 82.3
0.6 508/1239 41.0 54.8571/1431 39.9 61.6745/1539 48.4 80.4745/1680 44.4 80.4
0.7 459/686 66.9 49.5571/840 68.0 61.6696/965 72.1 75.1745/1014 73.5 80.4
0.8 459/667 68.8 49.5522/772 67.6 56.3696/946 73.6 75.1696/946 73.6 75.1
0.9 103/103 100.0 11.1516/652 79.1 55.7553/689 80.3 59.7679/815 83.3 73.2
1.0 35/35 100.0 3.8 501/501 100.0 54.1424/424 100.0 45.7654/654 100.0 70.6

Table 2. This table shows the raw data (i.e.raw), precision (i.e.prec), and recall results given
by each approach. Precision is computed by dividing the number of correct matches given by the
total number of matches given. Recall is computed by dividing the number of correct matches
given by the number of correct matches given by the “oracle”.

Discussion With respect to precision (see Table 2), the four approacheswere roughly
comparable. The 0.9 threshold, however, was an interestingcase. At this high threshold,
TaxonMatch was able to match only those patterns that aligned exactly (or almost ex-
actly) with the COAs. Thus, there were no false-positives and precision was high (this
difference was significant at the 0.01 level for theX 2 test, i.e.p < 0:01). Using trans-
formations, the other three approaches were able to establish additional mappings that
TaxonMatch was unable to find. This resulted in more patternsbeing matched, but there
was still room for false-positives at the 0.9 threshold level. This difference disappeared
at the 1.0 threshold level.

With respect to recall (see Table 2), the four approaches differed significantly. Tax-
onMatch’s performance on recall was the worst, dropping significantly as the thresh-
old level was raised. TaxonMatch+Mined performed significantly better than Taxon-
Match at all threshold levels (p < 0:01 for all points). Because TaxonMatch and Taxon-
Match+Mined differ only in the use of transformations, thisfeature alone must account
for the observed difference in recall. Therefore, this difference shows transformations
mined by MinT helped to improve matching significantly compared to using taxonomic
knowledge alone.

TaxonMatch+Mined performed significantly better than TaxonMatch+DN at the 1.0
threshold (p < 0:01). This difference, however, was reversed between the 0.5 and 0.8
threshold levels (p < 0:01 at each point) because MinT was unable to discover some of
the human authored transformations used by TaxonMatch+DN.Some useful candidate
transformations were excluded because either they did not occur frequently enough or
their common generalization failed to satisfy the minimum certainty requirement.

By using both human authored and machine discovered transformations, Taxon-
Match+Both performed significantly better than both TaxonMatch+Mined (p < 0:01
for all threshold levels) and TaxonMatch+DN (p < 0:01 for the 0.7, 0.9, and 1.0
threshold levels). Interestingly, the difference betweenTaxonMatch+Both and Taxon-
Match+DN was most noticeable at the 0.9 and 1.0 thresholds. At these high thresh-
olds, only those patterns that aligned exactly (or almost exactly) with the COAs would
count as matches. Because TaxonMatch+DN used only domain-neutral transforma-
tions, it was not able to resolve many domain-specific mismatches. As a result, Taxon-
Match+DN could not align many patterns with the COAs. MinT, however, discovered
transformations that resolved those mismatches that were idiosyncratic to the COA cri-
tiquing domain. These results show domain-neutral transformations are less effective at
resolving domain-specific mismatches, and domain-specifictransformations are needed
to further improve matching.

4.2 Finding Examples to Illustrate Chemistry Encoding Mistakes

The goal of the HALO project is to build a Knowledge Base4 (KB) that can answer
chemistry questions from an Advanced Placement5 (AP) test. In the initial phase of
this project [4], Knowledge Engineers (KEs) encoded the questions to be answered.
Because KEs are familiar with the KB, their encodings do not include any mistakes
(i.e. discrepancies with the KB). The second phase of this project, however, requires
SMEs to encode these questions. Because SMEs are not familiar with the KB, mistakes
are frequent in their encodings (see Figure 4). Thus, we needto find examples of correct
encodings to illustrate to SMEs their mistakes.

Fig. 4. This example shows two encodings of the same chemistry question – one by a SME and
the other by a KE.

Our solution to this problem has two parts. First, KEs will encode a library of ques-
tions (we’ll refer to the encodings of these questions as cases). Each case is a simple
conceptual graph encoded using an ontology in the domain of chemistry.6 Second,

4 By knowledge base, we mean a set of axioms.
5 The AP test is an examination taken by U.S. high school students to earn college credits.
6 This ontology can be browsed and downloaded at http://www.cs.utexas.edu/users/mfkb/RKF/tree

questions encoded by SMEs (which are also simple conceptualgraphs encoded using
the same chemistry ontology) would be matched against this library to find the most
similar case, which will serve as an example to point out mistakes made.

The library of cases consists of correct encodings for 50 questions. Three SMEs
were each asked to encode these same 50 questions, and they encoded a total of 133
questions (SMEs were allowed to skip questions they did not know how to encode).
Because SME questions and cases are encoded as graphs and done so independently,
the task of finding examples to illustrate encoding mistakesis a graph matching problem
with many opportunities for mismatches. Hence, transformations are needed.

Experimental Methodology We use the SME questions and cases as our data. Each
SME question is matched against all cases, and the case it most strongly matches is
selected as the example to use. The strength of the match (i.e. score) is based on the
fraction of nodes in a SME question matched with a case.

To match the SME questions with the cases, we used the four approaches from the
COA Critiquing task (see Section 4.1). With the exception ofTaxonMatch+Mined, the
other three approaches were constructed the same way.

To mine for transformations used by TaxonMatch+Mined, we split our data into
three sets, where each set consists of all the questions encoded by one of the SMEs.
We chose one set to serve as the test set, and the other two for mining transformations.
MinT’s inputs and parameters were set as follows. We set the semantic matcher to
TaxonMatch. We set the two lists of graphs to the SME questions in the training set and
the cases encoded by KEs. We define the similarity measure as the fraction of nodes in
a SME question matched with a case, and we arbitrarily set theminimum match score,
support, and certainty to 0.4, 0.05, and 0.95 respectively.We used the same syntactic
forms from the COA Critiquing task (see Table 1). The resulting transformations (see
Figure 5) were used by TaxonMatch+Mined to match the SME questions in the test set
with the cases. This process was repeated three times (each time different training and
test sets were selected), and we totalled all the matches.

Fig. 5. Selected examples of transformations mined for the chemistry domain.

To evaluate the performance of each approach, we measure thenumber of SME
questions for which a correct case was selected. We say the case selected for a SME
question is correct, if they are both encodings of the same chemistry question. Table 3
shows the number of correct matches over the total number of matches given by each

approach along with the precision and recall results for match thresholds between 0.0
(exclusive) and 1.0 (inclusive). We used theX 2 test to test for significant differences.

TaxonMatch TaxonMatch+Mined TaxonMatch+DN TaxonMatch+Both
TH raw prec recall raw prec recall raw prec recall raw prec recall
0.0 128/1124 11.4 96.2128/203 63.1 96.2128/307 41.7 96.2128/203 63.1 96.2
0.2 94/734 12.8 70.7128/200 64.0 96.2127/276 46.0 95.5128/200 64.0 96.2
0.4 58/208 27.9 43.6127/176 72.2 95.5127/256 49.6 95.5127/176 72.2 95.5
0.6 36/37 97.3 27.1127/176 72.2 95.5108/128 84.4 81.2127/176 72.2 95.5
0.8 35/36 97.2 26.3 77/78 98.7 57.9 61/62 98.4 45.9 77/78 98.7 57.9
0.9 32/33 96.9 24.1 68/69 98.6 51.1 55/56 98.2 41.4 68/69 98.6 51.1
1.0 32/32 100.0 24.1 63/63 100.0 47.4 51/51 100.0 38.3 63/63 100.0 47.4

Table 3. This table shows the raw data (i.e.raw), precision (i.e.prec), and recall results given by
each approach.

Discussion With respect to precision, the four approaches were comparable starting
from the 0.8 threshold level. TaxonMatch+Mined, however, performed significantly
better than TaxonMatch and TaxonMatch+DN from the 0.0 to 0.4threshold levels
(p < 0:01 at each point).

With respect to recall, TaxonMatch+Mined performed significantly better than Tax-
onMatch starting from the 0.2 threshold level (p < 0:01 at each point). Because Tax-
onMatch and TaxonMatch+Mined differ only in the use of transformations, this fac-
tor alone must account for the observed difference in accuracy. This difference further
shows transformations mined by MinT can help to improve matching significantly com-
pared to using taxonomic knowledge alone.

Interestingly, TaxonMatch+Mined performed significantlybetter than TaxonMatch+DN
at the 0.6 (p < 0:01) and 0.8 threshold levels (p < 0:05). Although the domain-neutral
transformations used by TaxonMatch+DN helped to improve recall significantly com-
pared to TaxonMatch (p < 0:01 starting from the 0.2 threshold level), there were sev-
eral mismatches specific to the domain of chemistry that TaxonMatch+DN could not
resolve – more so than the battle space domain. MinT, however, was able to discover
transformations that can resolve these mismatches. These results show domain-specific
transformations can further improve matching.

Finally, TaxonMatch+Mined and TaxonMatch+Both achieved the same precision
and recall (recall TaxonMatch+Both is constructed by augmenting the human authored
domain-neutral transformations with those discovered by MinT). Our analysis revealed
that in addition to discovering additional domain-specifictransformations, MinT was
able to discover all the domain-neutral transformations useful for this domain. This
explains why TaxonMatch+Mined and TaxonMatch+Both had thesame performance.

5 Conclusion

The problem in semantic matching is to find a mapping between two structured knowl-
edge representations encoded using the same ontology. Solving this matching problem
is hard because many valid mappings between two representations often cannot be es-
tablished. Previous research has shown an imperfect match between two representations
can be improved significantly by using transformation rules, but acquiring these trans-
formations is problematic. As a result, most existing semantic matching approaches use
only taxonomic knowledge.

To address this problem, we presented an algorithm, called MinT, for mining trans-
formations. We evaluated MinT by using it to mine for transformations in two domains
– Battle Space Planning (BSP) and chemistry. The results from both evaluations were
encouraging. Transformations mined by MinT helped to improve matching significantly
compared to using taxonomic knowledge alone. For the BSP domain, human authored
transformations performed better than those mined by MinT,but we showed MinT’s
transformations can augment those authored by hand to outperform either one used
alone. Interestingly, this was not the case for the chemistry domain – transformations
mined by MinT outperformed those authored by hand. This is because most of the
mismatches were specific to the domain of chemistry and hencedomain-specific trans-
formations are needed to resolve them.

Acknowledgements

Support for this research was provided by a contract from SRIinternational as part of
DARPA’s Rapid Knowledge Formation project.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in
large databases. InACM SIGMOD, 1993.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. InVLDB, 1994.
3. K. Barker, J. Blythe, G. Borchardt, V. Chaudhri, P. Clark,P. Cohen, J. Fitzgerald, K. Forbus,

Y. Gil, B. Katz, J. Kim, G. King, S. Mishra, C. Morrison, K. Murray, C. Otstott, B. Porter,
R. Schrag, T. Uribe, J. Usher, and P. Yeh. A knowledge acquisition tool for course of action
analysis. InIAAI, 2003.

4. K. Barker, S. Chaw, J. Fan, B. Porter, D. Tecuci, P. Yeh, V. Chaudhri, D. Israel, S. Mishra,
P. Romero, and P. Clark. A question-answering system for ap chemistry: Assessing kr&r
technologies. InKR, 2004.

5. H. Bunke and K. Shearer. A graph distance metric based on the maximal common subgraph.
Pattern Recognition Letters, 19, 1998.

6. M. Chein and M.L. Mugnier. Conceptual graphs: Fundamental notions.Revue d’intelligence
artificielle, 6(4):365–406, 1992.

7. K. Forbus and J. Usher. Sketching for knowledge capture: Aprogress report. InIUI , 2002.
8. D. Genest and M. Chein. An experiment in document retrieval using conceptual graphs. In

ICCS, 1997.
9. M. Gomez, A. Gelbukh, and A. Lopez. Discovering association rules in semi-structured data

sets. InIJCAI, Workshop on knowledge discovery, 2001.

10. M. Gomez, A. Gelbukh, and A. Lopez. Text mining at detail level using conceptual graphs.
In ICCS, 2002.

11. N. Guarino, C. Masolo, and G. Vetere. Ontoseek: Content-based access to the web.IEEE
Intelligent Systems, 14(3):70–80, 1999.

12. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. InPKDD, 2000.

13. P. Mulhem, W.K. Leow, and Y.K. Lee. Fuzzy conceptual graphs for matching images of
natural scenes. InIJCAI, 2001.

14. U.Y. Nahm and R. Mooney. Mining soft-matching rules fromtextual data. InIJCAI, 2001.
15. J.F. Sowa.Conceptual Structures: Information Processing in Mind andMachine. Addison-

Wesley Publishing Company, 1984.
16. P. Yeh, B. Porter, and K. Barker. Transformation rules for knowledge-based pattern matching.

Technical Report UT-AI-TR-03-299, U.T. Austin, 2003.
17. P. Yeh, B. Porter, and K. Barker. Using transformations to improve semantic matching. In

KCAP, 2003.
18. J. Zhong, H. Zhu, J. Li, and Y. Yu. Conceptual graph matching for semantic search. InICCS,

2002.

