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Abstract
Knowledge integration is the process of incor-
perating new information into a body of exist-
ing knowledge. It involves determining how new

and existing knowledge interact and how exisi-
ing knowledge should be modified to accommo-
date the new information. Kl is a machine learn-
ing program that performs knowledge integra-
tion. ihzo&gh actively investigating the interac-
ion of new information with existing knowledge
Klis capable of Qetectmg and exploiting a variety
of diverse learning opportunities during a single
learning cp1<ode Empirical evaluation suggests
that KI provides significant assistance to knowl-
edge engineers while integrating new information
into a large knowledge base.

Introduction

<nowledge integration is the process of incorporating
ew information into a body of existing knowledge. It
volves determining how new and exzstmg l\nowledge
zyteraw and how existing kz\omedge should be mod-
ified to a.ccomfzodate th new vmozmabzon.

o

approaches to ieaznmg flon. ins tmcmor because no
specific performance task is assumed. Consequent

ly, the learning system must assess the sxgmﬁccme of

new information to determine how existing knowledge
sxouc’ be mocuﬁpd to accon Hﬁodote it. i‘m’c
ormation ha

dge mtegramon
e 'i stwr's

i\_nowledge integration addresses several critical is-
sues that arise when developing knowledge bases. It
is important to assess how new information interacts
with existing knowledge because knowledge base mod-
ifications that are intended to correct a shortcoming
may conflict with existing knowledge and introduce
problems. For example, extending a drug therapy advi-
sor (e.g., Mycin} to minimize the number of drugs pre-
scribed to each patient conflicts with the therapy goal
of maximizing the number of symptoms covered by the
prescribed treatment (Mostow & Swartout 1986). De-
tecting and adjudicating conflicts as new information is
entered prevents subsequent problem solving failures.

Alternatively, new information may interact syner-
gistically with existing knowledge. One common type
of beneficial interaction occurs when the new infor-
mation explains existing knowledge. For example,
adding the new information that chloroplasts contain
the green pigment chlorophyll to a botanical knowledge
base helps to explain the existing default beliefs that
the leaves of plants are green and capable of conducp-
ing photosynthesis (Murray 1990). Recognizing
interaction between new and prior knowledge per
the system to better explain its conclusions.

Figure 1 presents a learning scenario that exempii-
fies learning as knowledge integration. The teacher
presents new information about the anatomy of a plant
feaf. Tl ized student is very Eeactive an
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Teacher: The epidermis of the plant leaf is covered by the
leaf cuticle, which is composed of cutin.

Student: Cutin is impermeable to gases, so the cuticle
restricts water loss from the leaf.

Teacher: Yes, that’s right.

Student: By reducing water loss, the cuticle helps the
leaf avoid dehydration. Other plant organs that transpire
would also benefit from a cuticle. Do stems, fruits, and
flowers have cuticles?

Teacher: Yes.

Student: But the cuticle also causes the leaf to starve.
Teacher: Explain.

Student: The cuticle is impermeable to gases. This
prevents carbon dioxide in the atmosphere from passing
through the leaf’s epidermis. Without carbon dioxide, the
leaf cannot conduct photosynthesis and starves.

Teacher: Well, the cuticle is impermeable to carbon diox-
ide; however, the leaf survives.

Student: Does the cuticle only partially cover the epider-
mis? Or, are there portals in the epidermis that permit
restricted gas flow?

Teacher: Yes, the epidermis has portals called stomata.

Figure 1: Learning about leaf cuticle

As illustrated in Figure 1, learning proceeds with-
out assuming how acquired knowledge will eventually
be used. Consequently, the learning method cannot
be tailored to a particular performance task, such as
classification. Furthermore, the new information in-
cludes general rules. Thus knowledge integration dif-
fers from traditional machine learning tasks in two re-
spects. First, the learning system cannot assume that
new information conforms to a narrow format and con-
tent, such as classified instances of a target concept.
Second, the significance of new information is often
varied and hidden; therefore, the learning system must
assess the significance of new information to determine
how existing knowledge should be modified to accom-
modate it. When new information has many signific-
ant consequences for existing knowledge, many learn-
ing opportunities will result from the single learning
episode. The following sections describe how KI ex-
hibits the learning behavior presented in Figure 1.

KI: An Overview

KI is an interactive tool for knowledge integration. It
was developed to help extend the Botany Knowledge
Base, a large knowledge base representing plant anato-
my, physiology, and development (Porter et al. 1988).
The knowledge base contains about 4000 terms and
17,000 rules. However, it was implemented in a ver-
sion (circa 1990) of the Cyc knowledge base (Lenat &
Guha 1990), which contains about 27,000 terms and
40,000 rules, all of which are accessible to KI.
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KI interacts with a knowledge engineer to facilitate
adding new general statements about the domain to
the knowledge base and explore the consequences of
the new information. When a knowledge engineer pro-
vides new information, KI uses the existing knowledge
base to identify possible gaps or conflicts between new
and existing knowledge and to identify beliefs sup-
ported by the new information. By identifying beliefs
supported by the new information KI helps to veri-
fy that the actual effect of the new information ac-
cords with the knowledge engineer’s intended effect.
By posing questions back to the knowledge engineer,
KI solicits additional information. Thus, KI provides a
highly interactive, knowledge-editing interface between
the knowledge engineer and the knowledge base that
guides knowledge-base development.

KI goes beyond identifying “surface” inconsisten-
cies, such as explicit constraint violations, by deter-
mining indirect interactions between new information
and existing knowledge. This involves a focused, best-
first search exploring the consequences of new informa-
tion. KI’s computational model of knowledge integra-
tion comprises three prominent activities:

1. Recognition: identifying the knowledge relevant to
new information.

9. Elaboration: applying relevant domain rules to de-

termine the consequences of the new information.

3. Adaptation: modifying the knowledge base to ac-

commodate the elaborated information.

During recognition, KI identifies concepts in the
knowledge base that are relevant to the new infor-
mation. KI uses wiews to determine which concepts,
beyond those explicitly referenced by the new informa-
tion, are relevant (Murray & Porter 1989; Murray 1990;
1995). Each view identifies a set of propositions that
interact in some significant way. The views for con-
cepts rteferenced in the new information determine
which existing knowledge structures are recalled during
recognition. When new information is presented, KI
identifies the views defined for concepts referenced by
the new information and heuristically selects one. The
concepts contained in the selected view are deemed rel-
evant to the new information, and KI limits its search
to consider only the interaction of the new information
with the existing knowledge of concepts recalled during
recognition.

During elaboration, KI investigates the conse-
quences of the new information for relevant concepts
in the knowledge base. This involves applying domain
rules defined for the concepts recalled during recogni-
tion. Elaboration “expands the information content”
of the new information and identifies new views rel-
evant to the elaborated concepts. KI enters a cycle
of recognition (i.e., selecting views) and elaboration
(i.e., applying domain rules) as it searches for the con-
sequences of new information. Conflicts are revealed
when inferences completed during elaboration assert



Cutin
composedOf

LeafCuticle | € 1LeafEpidermis1

Numerical subscripts:denote class membership
(e.g., isa(LeafEpidermisy Leaprz’ydermis)).

Figure 2: The initial learning context

inconsistent- conclusions. . Novel explanations are de-
tected when the new information enables inferences.
Both conflicts and novel explanations suggest learning
opportunities.

During adaptation, KI assists the user in modify-
ing the knowledge base to accommodate the elaborat-
ed information. In response to conflicts, KI analyzes
the support: of the conflicting predictions to suggest
modifications to the knowledge base that would resolve
the conflict. Identifying and correcting conflicts’ dur-
ing knowledge integration prevents subsequent prob-
lem solving failures. In response:.to novel explanations,
K1 evaluates the explanations to suggest ways in which
the new information can be generalized -or the repre-
sentations of existing concepts can be augmented.

Through recognition; elaboration; and adaptation,
KI determines what existing knowledge:is relevant to
the new information; the consequences of the new in-
formation for the relevant knowledge, and how the rel-
evant knowledge should be modified to accommodate
the new information. The following three sections illus-
trate these -activities while describing how KI performs
the learning scenario presented in Figure 1. !

Recognition

During recognition KI identifies knowledge that is rel-
evant to the new information. This involves maintain-
ing a learning contezt comprising only propositions on
concepts deemed relevant to the new information.
The new information presented to KI is:
[V (x)-isa(x LeafEpidermis)
3(y) isa(y LeafCuticle) & cover(x y) & composedOf(y Cutin)]

KI initializes the learning context by creating a-set of
propositions that satisfy the new information (see Fig-
ure 2). This involves binding each variable appearing
in the new information to a hypothetical instance of
the class of objects over which the variable may range.
To extend the learning context, KI uses views to de-
termine which concepts in the knowledge base; beyond
those explicitly referenced in the new information, are
relevant.

1This description is simplified for presentation; for a
more precise discussion see (Murray 1995).
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The ‘view type Qua Container identifies relations that are
relevant when .considering ‘a concept as a container. The
view LeafEpidermis Qua Container a semantic network con-
taining those propositions in the knowledge base that are
relevant to LeafEpidermis in its.role as a container.

Figure 3: An example view type and view

Views are sets of propositions that interact in some
significant - way and should therefore be considered to-
gether. Each view is created dynamically by applying
a generic view iype to a domain concept. Each view
type is a parameterized semantic net, represented as a
set of paths emanating from a root node. Applying a
view type to a conecept involves binding the concept to
the root node and instantiating each path.

Figure 3 presents an example view type and view.
View type Qua Containeridentifies the knowledge base
paths emanating from a concept that access properties
relevant toits function as a container. ‘These properties
include the contents of the container and the process-
es that transport items into and out of the contain-
er. Applying this view type to leaf epidermis identifies
the segment of the knowledge ‘base representing the
leaf epidermis in its role as:-a container. For example,
this segment includes propesitions representing that
leaf transpiration transports water vapor from the leaf
mesophyll, contained within the leaf epidermis, to the
atmosphere outside the leaf epidermis.
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rule 1: If an object.is composed of cutin, then it is impermeable
to gases. [V (x) composedOf(x Cutin) => impermeableTo(x Gas)]

rule 2: [f the covering part of an object is impermeable to a sub-
stance, then the object is impermeable to the substance. [V.(w x y
z) cover(w x) & impermeableTo(x y) & unless(partialCover(w x)) &
unless(portal(w z) & =~cover(z x)) = impermeableTo(w y)]

rule 3: If the conduit is impermeable to the transportee, then
the transportation event is disabled. [¥: (v w x y z) conduit(v
w) & transportee(v x) & isa(x y) & impermeableTo(w y) & un-
less(conduit(v z) & -~impermeableTo(z y)) = status(v Disabled)]

rule 4: If resource acquisition is disabled, then resource utilization
is also disabled. [V (w x y 2z) acquiredIn(w x) & utilizedIn(w y) &
status(x Disabled) & unless(acquiredin(w z) & -status(z Disabled))
= status(y Disabled)]

rule 5: If a living thing’s method of attaining nutrients is disabled,
then it is starving. [V (w x y 2) attainerIn(w x) & attainedIn(y x)
& isa(y Sugar) & status(x Disabled) & unless(~health(w Starving))
=> health(w Starving)]

The operator unless permits: negation-as-failure: wunless(p)
succeeds when p carnnot be established.

Figure 4: Example domain rules

To extend the learning context, KI identifies the
views defined for objects already contained in the
learning context. Typically, several different views will
be defined for each object, so a method is needed for
selecting one from among the many candidate views.

Each candidate view is scored with heuristic mea-
sures of its relevance to the current learning context
and its interestingness. Intuitively, relevance is a mea-
sure of reminding strength and is computed as a func-
tion of the overlap between the candidate view and
the context (e.g., the percentage of concepts that are
represented in the candidate view that are also repre-
sented in the learning context). Interestingness is com-
puted-using a small set of heuristics that apply to the
individual propositions contained in the view. For ex-
ample, propositions on concepts referenced by the new
information are deemed more interesting than propo-
sitions on other concepts. The interestingness of each
candidate view is a function of the interestingness of
the propositions it contains. The candidate views are
ordered by the product of their relevance and interest-
ingness measures, and the view: with the highest score
is selected. The set of propositions contained in the
selected view are added to the learning context. This
results in a learning context containing propositions on
those concepts in the knowledge base considered most
relevant to the new information.

Elaboration

During elaboration KI determines how the new infor-
mation interacts with the existing knowledge within
the learning context. Non-skolemizing rules in the
knowledge base are allowed to exhaustively forward-
chain, propagating the consequences of the new infor-
mation throughout the context. For example, one con-
sequence of having a cuticle is that the leaf epidermis
is impermeable to gases. Some of the domain rules
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Figure 5: The extended learning context

applicable to this example are listed in Figure 4.

K1 enters a cycle of recognition (i.e.; selecting views;
and elaboration (i.e., applying rules) that ‘explicates
the consequences of :the new: information within an
ever-expanding context. The propositions added t6 the
learning context during recognition determine whi
implicit consequences of the new information will b
made explicit during elaboration.. This cycle contint
until the user intervenes to react to some consegqiier
that KI has identified, or until the computational e
sources expended. exceeds a threshold. Figure 5 ili

trates the second round of this cycle. The recognition

phase extends the learning context with a view contain.
ing propositions that describe how the leaf acquires a
makes use of carbon dioxide. The elaboration phas
propagates the consequences of the new: informs
throughout the extended context and predicts the
cannot perform photosynthesis and starves.

Adaptation

During adaptation, KI appraises the inferences com
pleted during elaboration and assists the user in migi
ifying the knowledge base to accommodate the conss
quences of the new information. This involves dete
ing and exploiting learning opportunities that emlb
lish existing knowledge structures or solicit additi
knowledge from the knowledge engineer. 2

A common learning opportunity occurs when iness
sistent predictions are made. For example, elabots
reveals that the leaf’s cuticle prevents the leaf from
acquiring carbon dioxide from the atmosphere. &

?In this example, KI suggests or directly asserts unvat
one hundred new domain rules.




carbon dioxide is an essential resource for photosyn-
thesis, KI concludes that leaves having cuticle cannot
perform photosynthesis. This conflicts with the expec-
tation that leaves, in general, must be able to perform
photosynthesis. To resolve this conflict, KI inspects
the censors.of rules participating in the support of the
anomalous prediction. Censors are conditions assumed
false whenever a riile'is used (see the unless conditions
of rules in Figure 4). Each censor identifies plausi-
ble modifications to the knowledge base that would
allow the leaf to attain carbon dioxide and perform
photosynthesis. Suggesting these plausible modifica-
tions prompts the knowledge engineer to provide ad-
ditional information describing stomata, portals in the
leaf’s epidermis that allow restricted gas flow between
the ‘atmosphere and: the leaf’s interior: This adapta-
tion method is an example of anomaly-based abduction:
conditions are identified: which if assumed to be true
would resolve a contradiction.

A second learning opportunity occurs when conse-
quences of the new information suggest generalizations
of the new information. For example, elaboration re-
veals that the leaf cuticle enhances: the leaf’s physi-
ology by testricting water loss through transpiration.
KI recognizes this as a teleological consequence of the
new information: the physiological benefit' of moder-
ating water loss explains why the leaf has a cuticle. A
weakest-preconditions analysis of the explanation sup-
porting this conclusion shows that other organs of a
plant’s shoot system (e.g., stems, fruit, flowers) will
also benefit from having a cuticle, and KI suggests this
generalization to the knowledge engineer. Consequent-
ly, the knowledge structures representing stems, fruit
and flowers are embellished to denote they also have
cuticles. While this adaptation method constitutes a
form of abductive learning, no anomaly is involved.
Abduction is motivated by the completion of a tele-
ological explanation rather than a contradiction or a
failure to explain some observation.

A third learning opportunity occurs when a proper-
ty of a particular object in the learning context can
be generalized into a property for every instance of a
class of objects. For example, elaboration reveals that
the hypothetical leaf cuticle is assumed to be translu-
cent. 2 By analyzing the explanation of why the leaf
cuticle is translucent, KI determines that all leaf cuticle
are, by default, translucent. Consequently, KI asserts
the inheritance specification that all instances of leaf
cuticle are assumed to be translucent. This is an ex-
ample of explanation-based learning (EBL) (Mitchell,
Keller, & Kedar-Cabelli 1986). However, unlike exist-
ing EBL systems, compilation is not triggered when
an instance of some specific goal concept has been
established. Instead, compilation occurs whenever a

37This assumption is made when KI determines that light
energy, (typically) used by the leaf during photosynthesis,
is acquired from the atmosphere and must pass through the
leaf cuticle.

sequence of inferences can be summarized by a rule
having a specific format. In this case, the' permit-
ted format is restricted to the inheritance specification:
(V(z) isa(z Y) = si(z Z)), for arbitrary binary pred-
icate s1; class Y, and constant Z. Speed-up learning
(Dietterich 1986) has occurred since a chain of rule-
firings which collectively reference an extensive set of
preconditions has been compiled into a single rule hav-
ing an exceedingly simple precondition.

Discussion

This example illustrates how a tool for knowledge in-
tegration assists adding a new general rule to a large
knowledge base. KI identifies appropriate generaliza-
tions of the new information and resolves indirect con-
flicts between the new information-and existing knowl-
edge. It exploits the existing domain knowledge to
determine the consequences of new information and
guide knowledge-base development.

Intuitively, recognition and elaboration model the
learner’s comprehension of new information. In this
model, comprehension is heavily influenced by the
learner’s existing knowledge: recognition determines
what existing knowledge is relevant to the new infor-
mation; elaboration determines what beliefs are sup-
ported by combining the new information with the
knowledge selected ~during recognition. Thus, com-
prehension produces a set of beliefs that reflect how
the new information interacts with existing knowledge.
This set of beliefs, and ‘their justifications, afford many
diverse learning opportunities, which are identified and
exploited during adaptation. This accords with the
goals of multistrategy learning (e.g., (Michalski 1994)).

The computational model of learning presented in
this paper and embodied in KI does not require a pri-
ori assumptions about the use of the new information.
Existing approaches to compositional modeling (e.g.,
(Falkenhainer & Forbus 1991; Rickel & Porter 1994;
Iwasaki & .Levy 1994)) require a given goal query to
guide the creation of a domain model, and tradition-
al approaches machine learning (e.g., (Michalski 1986;
Dietterich 1986)) exploit assumptions about the even-
tual uses of acquired knowledge to determine what
is ‘to be learned. =~ While such- assumptions, when
available, can provide substantial guidance to learn-
ing, they are not appropriate in many learning situ-
ations (e.g., reading a newspaper or textbook). KI
relies on generic learning goals; such as reésolving con-
flicts (to promote consistency) and embellishing the
knowledge of the system’s explicitly represented (i.e.,
named) concepts (to promote completeness). Conse-
quently, this model of learning is not limited to skill
refinement, where learning necessarily occurs in the
context of problem solving, but can also be applied
to learning activities where the eventual uses of ac-
quired knowledge are as yet unknown (Lenat 1977,
Morik 1989).
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Empirical Analysis
This section presents an empirical analysis of KI’s
learning behavior during several learning episodes.
The learning trials used for this analysis fall into three
categories (Murray 1995):

1. The first three trials are scripted trials. These trials
were deliberately engineered to demonstrate learn-
ing behaviors that exemplify learning as knowledge
integration. For each, a targeted learning behavior
was identified and the knowledge base was extended
and corrected as necessary to support that learning
behavior.

2. The fourth through the tenth learning trials are
representative irials. These were developed as a
coherent progression of knowledge base extensions
thought to be representative for developing a botany
knowledge base. For these trials, minor modifica-
tions to the knowledge base were performed in or-
der to facilitate reasonable behaviors. This included,
for example, correcting pre-existing knowledge-base
errors that prevented any reasonable interpretation
of the new information and launched the subsequent
search for consequences in spurious directions.

3. The eleventh through the seventeenth learning trials
are blind irials. These were desired knowledge-base
extensions submitted by knowledge engineers devel-
oping the Botany Knowledge Base. No modifications
to the knowledge base were performed to facilitate
these trials.

Each group of learning trials has a significantly dif-
ferent origin and extent to which the knowledge base
was modified to facilitate desired learning behaviors.
Consequently, the following empirical analyses include
separate consideration for each of these three groups.

Diversity of learning behaviors

K1 was designed to exploit a method of searching for
the consequences of new information that was not ded-
icated to a single adaptation method. The methods for
elaboration and recognition reveal the consequences of
new and relevant prior knowledge; a suite of adaptation
methods then searches these consequences for learning
opportunities. This approach separates the search for
the consequences of new and prior knowledge from the
detection and exploitation of learning opportunities.
This separation affords a single, uniform method for
identifying consequences that can be used seamlessly
and concurrently with a variety of adaptation methods
and thus supports a variety of learning behaviors.

To provide evidence for this, the frequencies for each
type of learning opportunity that was detected and ex-
ploited during the examples are summarized in Figure
6. The data indicate that the learning opportunities
were both substantial and diverse: a variety of learning
behaviors were exhibited during the learning trials as
demonstrated by the diversity of the types of knowl-
edge acquired.

840 Learning

Trials | tax inh skol arg | teleo | abd

1-3 2.7 9.7 53.0 4.0 6.0 1.0 1
4 - 10 2.1 20.0 105.1 14.9 1.3 0.7 143 0
11 - 17 3.4 10.6 71.4 11.9 4.9 0.0 100.6
1-17 | 28 [ 143 | 821 | 117 36 | 05 | 1130 ¢

The average quantities of acquired rules per learning tn
al by type. Presented are the numbers 0% acquired taxe
nomic rules (tax), inheritance rules (inh), skolemizing rulss
(skol), argument-typing constraints (arg), rules resulting
from teleological learning (teleo), rules resulting from oth
er abductive reasoning {abd), and all acquired rules (total;

Figure 6: Scope of learning opportunitics

Measuring learning gain

The obligation of every non-trivial learning system 1
to acquire knowledge beyond the literal content of new
information. Learning gain is defined as the amount
of acquired knowledge (e.g., measured in terms of thr
number of beliefs asserted or retracted) not include
explicitly in the new information; it provides a natu
ral measure to estimate the effectiveness of a learning
program. The relative learning gain is defined as the
amount of knowledge acquired by one agent (e.g., s
learning program) beyond that acquired by another
(e.g., a knowledge engineer).

To determine the relative learning gain of KI, profes
sional knowledge engineers were recruited to perform
the same seventeen learning trials. These knowledge
engineers were quite familiar with the representation
language but only marginally familiar with botany and
the contents of the knowledge base. However, most of
these trials involve only a basic and common knowl
edge of botany.

For each trial, a knowledge engineer was provided
with the new information presented both as a seman
tic network and as a statement in English. The knowl
edge engineers were free to make any knowledge-base
modifications they felt were appropriate and to inquire
about either the domain or the contents of the knowl
edge base. They were encouraged to follow their nor-
mal practices when formalizing and entering knowl
edge.

The number of axioms produced manually by the
knowledge engineers was then compared to the num
ber of axioms produced automatically by KI. Figure 7
presents the results of this experiment. The relative
knowledge gain exhibited by KI is significant. Over-
all, KI derives many times more axioms during thesc
learning trials than was derived manually.

Measuring learning utility

While the data in figures 6 and 7 indicate that KI id-
entifies a diverse and relatively large number of learn
ing opportunities during the learning trials, they do
not indicate how useful are the new axioms that result
from those opportunities. Traditionally, in machinc



‘Trials KE K1 gain
1-3 5.0 81.3 76.3
4~ 10 10.1 176.4 | 166.3
11-17 1174 | 141.3 | 123.9
1-17 1122 | 145.2 | 132.9

The relative learning gain is computed as the difference
between the number of axioms produced b and the
number of axioms developed manually by a knowledge en-
gineer.

Figure 7: Relative learning gain

‘Trials all KE | umque KE | all KI | unique KI
1-3 3.6 2.2 4.5 3.8
4~ 10 43 2.2 4.9 4.6
11 =17 4.7 4.0 4.5 3.5
117 4.5 3.2 4.7 3.8

The subjective utility scores for all axioms produced by the
knowledge engineer, axioms é)roduced only by the knowl-
edge engineer, all axioms produced by KI, and axioms pro-
duced only by KI.

Figure 8: The utility of acquired axioms

learning, evaluating the utility of acquired knowledge
is demonstrated by showing that after learning the
system’s performance has improved on a set of test
queries. This approach is problematic for evaluating
KI since by design there is no assumed application task
with which to test the system’s performance. However,
a relative measure of utility can be estimated by sub-
jectively comparing the axioms produced by KI with
those produced manually by the knowledge engineers.

For each learning trial, the axioms produced by KI
that “correspond” to the axioms produced manual-
ly by a knowledge engineer ‘were selected. Two ax-
ioms correspond if they are the same or if the predi-
cates match and most of the arguments match (e.g.,
(genls GroundWater Water) and (genls GroundW ater
PlantAssimilableW ater) correspond). *

Next, for each learning trial, the selected KI axioms
were compared to the corresponding axioms developed
by the knowledge engineer, and three sets of axioms
were defined. The first set includes axioms produced
both by KI and the knowledge engineer (i.e., those pro-
duced by KI that differed from manually produced ax-
iom only by variable names or by the order of literals).
The second set includes axioms produced only by the
knowledge engineer. The third set includes axioms pro-
duced only by KI. For each trial, the second and third
sets were randomly labeled as resulting from Method 1
and Method 2.

Finally, for each trial, a knowledge engineer (other
than the knowledge engineer who performed the learn-
ing trial) assessed the utility of the axioms that were
produced by either KI or the knowledge engineer but
not both. For each Method 1 axiom the evaluator was
asked to indicate how much she agreed with the state-
ments This aziom is useful and This aziom is subsumed
by azioms of Method 2 and the prior knowledge base.
For each statement, the evaluator scored each Method 1
axiom with an integer ranging from 1 (denoting strong
disagreement with the statement) to 5 denoting (de-
noting strong agreement with the statement). The
evaluator was then asked to perform a similar eval-

*The knowledge engineers did not produce axioms cor-
responding to the targeted learning behaviors of the first
three trials. Therefore, these engineered learning behaviors
were not included in this study.

Trials all KE axioms | useful KE axioms
1-3 3.8 4.4
4~ 10 4.8 5.0

11 -17 4.4 4.4
1=17 4.5 4.6

The subjective estimates of the extent to which axioms pro-
duced by a knowlecil&e engineer were subsumed by the ax-
ioms produced by and the prior knowledge base. Col-
umn 2 gresents the scores for all ‘manually produced ax-
joms. Column 3 presents the scores for those manually
produced axioms deemed useful (i.e., by having a utility
score greater than 3).

Figure 9: KI’s coverage of KE axioms

uation of the Method 2 axioms. The axioms that were
produced by both KI and the knowledge engineer were
given the scores of 5 both for utility and subsumption.

Figure 8 presents the average utility score for axioms
produced by KI and for axioms produced by the knowl-
edge engineer. The overall utility score for axioms pro-
duced only by KI was 0.6 (or about 19%) higher than
the scores for axioms produced only by the knowledge
engineer. This difference is statistically significant at
.95 level of confidence.

Figure 9 presents the extent to which axioms pro-
duced by the human knowledge engineer were sub-
sumed by axioms produced by KI. In almost every
learning trial, both KI and the knowledge engineer pro-
duced axioms that transcend the explicit.content of the
new information. Learning systems that exploit sign-
ificant bodies of background knowledge are inherently
idiosyncratic, and- it would be unreasonable to expect
that any learning system (e.g., KI) to completely sub-
sume the learning behavior of another learning system
(e.g., a knowledge engineer). However, the data indi-
cate that KI was fairly effective at. producing axioms
during these learning trials that subsume the useful ax-
ioms produced by human knowledge engineers, Over-
all, KI scored a4.6 out of a possible 5.0 for subsuming
the useful axioms produced manually by professional
knowledge engineers on these learning trials. Statis-
tical analysis determined that with a 95% confidence
coefficient this score would range between 4.4 and 4.8.
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Summary

Knowledge integration is the task of incorporating new
information into an existing body of knowledge. This
involves determining how new and existing knowledge
interact. Knowledge integration differs significantly
from traditional machine learning tasks because no
specific performance task is assumed. Consequent-
ly, the learning system must assess the significance of
new information to determine how existing knowledge
should be modified to accommodate it.

KI is a machine learning program that performs
knowledge integration. It emphasizes the signific-
ant role of existing knowledge during learning, and
it has been designed to facilitate learning from gen-
eral statements rather than only from ground obser-
vations. When presented with new rules, KI creates
a learning context comprising propositions on hypo-
thetical instances that model the new information. By
introducing additional propositions that model exist-
ing knowledge into the learning context and allowing
applicable domain rules to exhaustively forward chain,
KI determines how the new information interacts with
existing knowledge.

Through actively investigating the interaction of
new information with existing knowledge KI is capable
of detecting and exploiting a variety of diverse learning
opportunities. First, KI identifies plausible generaliz-
ations of new information. For example, when told
that leaves have cuticle, KI recognizes that the cuti-
cle inhibits water loss and suggests that other organs
of the plant’s shoot system, such as fruit and stems,
also have cuticle. Second, KI identifies indirect in-
consistencies introduced by the new information and
suggests plausible modifications to the knowledge base
that resolve the inconsistencies. For example, KI pre-
dicts the leaf cuticle will inhibit the intake of carbon
dioxide from the atmosphere and disrupt photosynthe-
sis; consequently, KI suggests the leaf epidermis also
has portals to allow the passage of carbon dioxide.
Third, KI compiles inferences to embellish the repre-
sentations of concepts. For example, KI suggests ev-
ery leaf cuticle is translucent since they must transmit
the light assimilated into the leaf from the atmosphere
and used during photosynthesis. By identifying the
consequences of new information, KI provides a highly
reactive, knowledge-editing interface that exploits the
existing knowledge base to guide its further develop-
ment.
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