
Constructing a Semantic Interpreter Using Distributional Analysis

Michael Glass, Ken Barker, Rekha Kumar, Guhan Ravi and Bruce Porter
Department of Computer Science

University of Texas at Austin
{mrglass,kbarker,rekha,guhanceg,porter}@cs.utexas.edu

Abstract

Extracting a formal representation from
text that can be used to reason and answer
questions has long been a goal of Artifi-
cial Intelligence research. We demonstrate
a method for knowledge engineers to con-
struct a semantic interpeter that requires
little natural language processing exper-
tise. The resulting semantic interpreter
is also able to extend its coverage using
semi-supervised learning. We compare the
performance of an existing semantic inter-
pretation system to our resulting seman-
tic interpreter. Our semantic interpreter
shows considerably superior performance
on the two of the three test documents.

1 Introduction

There is a wealth of information available in
text. However, attempting to use the text di-
rectly to answer questions means only shallow,
direct questions can be answered (Etzioni et al.,
2008). Knowledge representation and reasoning
(KR&R) systems can answer questions that re-
quire inference, solve problems and even provide
explanations (Barker et al., 2004). But construct-
ing knowledge bases by hand requires consider-
able skill and is time consuming. We are working
towards a semantic interpretation system to use the
wealth of information in text to augment knowl-
edge bases. By approximating the text using exist-
ing, high level concepts and relations, we funnel
the complexity and ambiguity of text into a form
that retains the core of the meaning and supports
reasoning.

This work builds on the Möbius prototype sys-
tem (Barker et al., 2007). The system consists of
three major components:

• A parser, which can be combined with other
natural language processing components.

• A semantic interpeter that converts the de-
pendency tree into a set of triples using the
concepts and relations of the target knowl-
edge base.

• A knowledge integration component that
combines the interpretations of the sentences
and relates them to the existing knowledge
(Kim and Porter, 2009).

The KR&R system used in this research is
The Knowledge Machine (KM) (Clark and Porter,
1998) and the ontology is the Component Library
(Barker et al., 2001). The Component Library is a
richly axiomatized knowledge base of basic con-
cepts.

2 Existing Semantic Interpretation
Below is an example of a function used in the
Möbius prototype semantic interpreter.
HANDLE-CONSIST-OF(Triples)

¤ (consist NSUBJ X)(consist PREP OF Y) ⇒
¤ (X DS PART Y)
consist ← NIL,X ← NIL,Y ← NIL

for each t ∈ Triples

if trelation = INSTANCE-OF and ttail = “consist”

then consist ← thead

for each t ∈ Triples

if trelation = NSUBJ and thead = consist

then X ← thead

if trelation = PREP OF and thead = consist

then Y ← thead

if consist ̸= NIL and X ̸= NIL and Y ̸= NIL

then Triples ← Triples∪{(X DS PART Y)}

This function interprets a parse tree containing
a “X consists of Y” subtree into an intermediate
representation (X ds part Y). The ds part relation
will later be transformed into a “part-like” relation
such as has-part or subevent depending on whether
X is an Entity or Event.

It should be clear that writing an interpreter
this way is quite difficult. It requires knowledge

of the parser’s output, knowledge of the interme-
diate representations used by the semantic inter-
preter, knowledge of the order in which interpreta-
tion steps will be attempted and testing to confirm
that the function is working as intended.

The function is also not terribly general. It only
applies when the sentence contains a form of the
word “consist”. The function will not interpret
similar sentences such as “An insect is made up
of three segments”. The function could be made
to apply to more cases, at a cost in complexity.
However, the increase in complexity is only part
of the problem. Another problem is that although
any speaker of English will know many alterna-
tive ways of expressing “consists of”, they can not
easily list these alternations.

3 Increasing the Coverage of
Interpretation

The goal of our research is to address these two
key problems in interpretation coverage: the ex-
pertise and time required by development and the
identification of alternative ways semantic rela-
tionships can be expressed. To address these prob-
lems we built three systems.

• A rule creation tool allows knowledge en-
gineers with no background in parsing and
no knowledge of the semantic interpreter to
write useful, parser independent interpreta-
tion rules. The construction of the rules is
tightly integrated with their testing, to con-
firm that the rules are working as intended.

• A paraphrase acquisition system finds equiv-
alent ways of expressing the semantics cov-
ered by existing rules.

• A new semantic interpreter, SINDA (Seman-
tic INterpretation with Distributional Analy-
sis), uses these declarative rules for interpre-
tation, automatically ordering the rules and
selecting among alternative interpretations.

3.1 Rule Creation

The knowledge engineer begins with a sentence
they would like to have interpreted. Consider,
for example, “The virus attaches to the receptors.”
The knowledge engineer then creates the closest
representation using the Component Library on-
tology. In this case the representation is:

(attach instance-of Attach)
(virus instance-of Living-Entity)
(receptors instance-of Region)

(attach object virus) (attach base receptors)

To create the interpretation rule the knowledge
engineer generalizes the sentence and its interpre-
tation by marking some of the words as slots or
variables.

“The virus attaches to the receptors.”

The interpretation is also generalized by remov-
ing or generalizing some of the instance-of triples,
yielding:

(attach instance-of Attach)
(attach object virus) (attach base receptors)

The tool then parses the marked sentence (Figure
1) and finds the spanning tree that connects all the
marked words. The result is the parse tree pattern
in Figure 2.

Figure 1: Parse for “The virus attaches to the re-
ceptors.”

Figure 2: Parse pattern for “The virus attaches to
the receptors.”

The parsers used in this work are Minipar (Lin,
1993) and the Stanford parser (Klein and Man-
ning, 2003); any parser that produces labeled de-
pendency trees could be used. Parse tree pat-
terns are morphologically normalized so that a
pattern with “attaches” will also match “attach”,
“attached” and “attaching”. Also, part of speech
(POS) tags are grouped together in very general
categories with all the different verb POS tags
grouped under a single umbrella and another um-
brella all for nouns.

To confirm that the interpretation rule works as
intended the tool then searches a corpus of pre-
parsed text for sentences that match the pattern.
Each sentence, its parse and the resulting interpre-
tation is then displayed to the knowledge engineer.
The knowledge engineer marks the interpretation
as correct or incorrect. After several such trials an
estimate of the rule’s value in semantic interpreta-
tion can be made. If the rule generally results in

improved interpretations, the rule is saved to the
database.

To make clear the semantics of these rules an
example may be useful. The slots are the part
of the parse pattern that are variable, in this case
virus and receptors are the slots. When the parse
pattern matches a sentence, such as “In a signal
whip, the cracker attaches directly to the body
of the whip.”, the slots match fillers, in this case
cracker and body.

By transferring the fillers from the pattern to the
interpretation the sentence is partially interpreted
to mean:

(attach instance-of Attach)
(attach object cracker) (attach base body)

3.2 Paraphrase Acquisition

The rule creation process simplifies and acceler-
ates the process of adding coverage to a seman-
tic interpreter. However, enumerating all of the
ways a particular semantic relationship may be ex-
pressed in natural language is still too cumber-
some a task. We instead use the knowledge en-
gineer written patterns as seeds to discover alter-
nations and variations. Essentially we find para-
phrases for the patterns written by knowledge en-
gineers.

Previous work on paraphrase acquisition has
shown it is possible to use an unsupervised algo-
rithm operating on unannotated text to discover al-
ternate means of expressing the same semantics.
In a seminal work, Hearst (1992) demonstrated a
means of finding hyponyms from text using both
an initial set of regular-expression-like syntactic
patterns and a semi-automatically discovered set
of additional syntactic patterns. In Discovering In-
ference Rules from Text (DIRT) (Lin and Pantel,
2001), parse tree paths, similar to our parse tree
patterns but limited to two noun slots connected by
a verb, are extracted from a corpus and compared
for similarity. The result is a set of parse path to
parse path inference rules. We combine and gen-
eralize these approaches by searching for arbitrary
semantic relationships, as specified by seed parse
tree patterns with potentially more than two slots.

In order to explain our method of paraphrase
discovery, the following example traces a single
seed pattern through the process. The process (and
the semantic relation of interest) is similar to the
one presented by Hearst.

Consider the knowledge engineer authored pat-

tern below.
“A car is a vehicle” ⇒ (car superclass vehicle)

1) FIND ALL THE FILLERS FOR THE SEED

PATTERN, EXCLUDING FILLERS THAT OCCUR IN

THE CORPUS AT A HIGH FREQUENCY.
These two matching sentences are chosen to

highlight two key filler tuples that will become im-
portant in the next step.

• In North America, a flyover is a high-level
overpass, built above main overpass lanes, or
a bridge built over what had been an at-grade
intersection .

• A group automorphism is a group
isomorphism from a group to itself.

The result of the first step is a set of word tuples
(pairs in this case). These words are related ac-
cording to the interpretation of the pattern, in this
case by hyponymy.

2) SEARCH THE CORPUS FOR OTHER SEN-
TENCES THAT CONTAIN ONE OF THESE TUPLES

OF WORDS.
The two sentences below are found by the (auto-

morphism, isomorphism) and (overpass, flyover)
pairs.

• An order isomorphism from (S ,) to itself is
called an order automorphism

• An overpass (In UK , most Commonwealth
countries flyover) is a bridge , road , railway
or similar structure that crosses over another
road.

From each of these sentences we extract a “pos-
sible paraphrase” by finding the portion of the
parse tree that spans the key words. The “possi-
ble paraphrase” for (automorphism, isomorphism)
is shown in Figure 3.

Figure 3: Parse pattern for “An order isomor-
phism from (S ,) to itself is called an order auto-
morphism.”

3) FOR EACH “POSSIBLE PATTERN” FIND ALL

THE FILLERS.
The third step is to repeat the first step of filler

extraction for each of the “possible” syntactic pat-
terns. The result is a set of word tuples for each
pattern.

4) FOR EACH “POSSIBLE PATTERN” COM-
PARE ITS FILLERS TO THE SEED PATTERN’S

FILLERS

Following DIRT, we consider the similarity of
each slot separately. This is necessary because the
data is far too sparse to consider slots jointly.

The table below shows the overlap between the
car slot in the seed pattern with the automor-
phism slot in the discovered pattern. The last line
gives the total number of distinct words found in
each slot as well as the sum of all the frequencies.
Note that although the patterns are indeed similar,
most slot fillers do not overlap. For brevity, only
words that occur at least five times are included.

car freq. automorphism freq.
area 7 area 5

function 10 function 7
group 20 group 10

number 17 number 8
point 9 point 9

process 8 process 5
space 10 space 14

Total fillers Total freq. Total fillers Total freq.
76 860 21 137

Table 1: The overlap between the fillers of the car
slot and the automorphism slot.

Although this table shows raw frequency
counts, the similarity function uses a log-
likelihood adjustment to give more weight to
words that occur infrequently in the corpus since
these words are less likely to occur in two differ-
ent patterns by chance. In order to find the sim-
ilarity of two slots we view them as vectors with
a dimensionality equal to the number of distinct
words that occur as fillers. The value of each di-
mension is the log-likelihood adjusted frequency.
Now we may use traditional measures of vector
similarity to assess the similarity of slots in syn-
tactic patterns. For simplicity we use the cosine
measure. Following DIRT, to find the similarity of
syntactic patterns given the similarity of each slot
considered separately, we take the harmonic mean
of the slot similarities.

5) RETURN THE MOST SIMILAR n “POSSIBLE

PATTERNS” AS SIMILAR PATTERNS.

The number n is chosen to select the preci-
sion/recall tradeoff. The similar patterns are then
evaluated by a knowledge engineer to determine
if they do indeed have the same interpretation as
the seed pattern. The process for this is identical
to the process for confirming that a human created
interpretation rule is working as intended.

3.3 SINDA

So far we have focused on semantic interpretation
rules in isolation. However, the interaction be-
tween the rules may be complex. Certain verbs
require specialized interpretations depending on
their argument structure. Compare the sentence,
“The man moved.” to “The man moved the plate.”
In both sentences “the man” is the syntactic sub-
ject but his semantic role is different. The seman-
tic interpreter can be made aware of this distinc-
tion by two rules.

The ball moved. ⇒ (moved instance-of Move)
(moved object ball)

The man moved the ball. ⇒ (moved instance-of
Move) (moved object ball) (moved agent man)

Notice however, that the first pattern will match
any sentence that the second pattern matches,
since it is strictly less specific. We address this
problem by creating a partial ordering by speci-
ficity. And we add the constraint that a more spe-
cific rule blocks the application of all less specific
rules.

Additionally, there may be multiple possible in-
terpretations for a given syntactic construct. For
example, “engine’s piston” indicates partonomy
while “John’s boat” indicates ownership. These
two phrases have the same parse pattern.

Figure 4: Parse pattern for “engine’s piston” and
“John’s boat”

So phrases like “the instrument’s stereo speak-
ers” match both semantic interpretation rules. In
order to address this conflict we examine the
instance-of triples in each competing interpreta-
tion. The instance-of triples for “engine’s piston”
are (engine instance-of Physical-Object) (piston
instance-of Physical-Object) and in the rule for
“John’s boat” the triples are (John instance-of Per-
son) (boat instance-of Tangible-Entity). We use
these instance-of triples to limit the application of
rules, particularly when more than one rule may
be applied.

Another component to semantic interpretation,
the WORD2CONCEPT function helps to choose the
best interpretation. WORD2CONCEPT maps words
first to a WordNet (Fellbaum, 1998) synset and
then uses a synset to Component Library concept

mapping to determine the nearest concept for a
given word.

By applying WORD2CONCEPT on “instrument”
and “speaker” we can determine that “instrument”
is a Musical-Instrument and “speaker” is a De-
vice. By climbing the Component Library tax-
onomy we determine that Musical-Instrument is
a type of Physical-Object but certainly not a type
of Person. Therefore, the instance-ofs returned by
WORD2CONCEPT suggest that the partonomy rule
is the correct interpretation.

4 Evaluation

In order to evaluate both the method for construct-
ing the semantic interpreter and the resulting inter-
preter, two knowledge engineers used the rule cre-
ation tool to create 40 seed rules. The seed rules
focused on a fragment of the most basic Compo-
nent Library concepts, dealing with Communicate,
Create and Move events as well as common re-
lations such as “has-part”, “causes” and “super-
class”. The paraphrase acquisition component was
then run twice, once using Minipar and once us-
ing the Stanford parser. The corpus used was ap-
proximately 500MB of the Wikipedia XML cor-
pus (Denoyer and Gallinari, 2006) with XML tags
removed. The similar patterns returned were then
screened to find approximately 25 valid patterns
from each parser’s run.

We then chose three passages, each from a dif-
ferent domain, in order to test the semantic inter-
preter. Each passage was approximately 20 sen-
tences long with the sentences varied in length
from 5 to 40 words. The passages were taken from
Wikipedia entries on trade, chemical reactions and
a musical instrument and were not modified prior
to processing.

The two knowledge engineers, working sepa-
rately, each constructed a gold standard represen-
tation for the passages. A single, unified, gold
standard was then prepared by consensus. The hu-
man agreement for the passages was calculated as
the size of the intersection of the gold triples di-
vided by the size of their union. This resulted in
figures of 0.88 for the chemical reaction passage,
0.86 for the piano passage and 0.75 for the trade
passage. A single, unified, gold standard was then
prepared by consensus.

The passages were then run through an existing
semantic interpretation system, KLEO (Kim and
Porter, 2009), as well as both SINDA when com-

bined with Minipar and when combined with the
Stanford parser. The output of each system was
compared to the gold standard to determine preci-
sion and recall. Partial credit (the 0.5 · partial term
in the formulas) was given for instance-of triples
that gave a closely related concept such as an im-
mediate superclass or subclass of the concept in
the gold standard and for triples with semantic re-
lations similar, but not identical, to those in the
gold standard.

Recall =
correct +0.5 · partial

Total gold standard triples

Precision =
correct +0.5 · partial

Total semantic interpreter triples

4.1 Results
Figure 5 shows the precision and recall values for
each interpretation system. The performance of
SINDA was, as hoped, better than its predecessor
KLEO. A more suprising result is that SINDA us-
ing Minipar fared significantly better than SINDA
using Stanford. This may be because the Stan-
ford parser has more fine grained dependency re-
lations. Minipar has a single dependency relation
for the semantic subject of a sentence regardless
of whether that sentence is in the active or passive
voice. The Stanford parser distinguishes between
these cases. This tends to make patterns from
marked sentences parsed by the Stanford parser
less general.

4.2 Conclusion
We attempted to achieve broad coverage com-
bined with a rich representation by interpreting
sentences using the concepts and relations of a
high level, richly axiomatized knowledge base. By
improving the interpretations of texts from three
diverse domains we have moved closer to this
goal. Additionally, we hoped to reduce the exper-
tise and time required during the development of
interpretation rules. We did not track total devel-
opment time but the expertise required was lim-
ited primarily to KR&R expertise. The interpre-
tation rules were created by knowledge engineers
with no prior exposure to the parsers used and with
no knowledge of SINDA’s internal operation. Fi-
nally we attempted to automatically identify al-
ternative ways semantic relationships can be ex-
pressed. From 40 seed rules we discovered ap-
proximately 25 additional rules. If scaled to other
concepts and semantic relations in the Component

Figure 5: Performance of Semantic Interpretation
Systems

(a) Trade passage

(b) Musical passage

(c) Chemical reaction passage

Library we may expect to see a similar degree of
rule discovery as well as further improvements in
performance.

Acknowledgements

Support for this research was provided by a 2008
IBM Open Collaborative Faculty Award.

References

Ken Barker, Bhalchandra Agashe, Shaw Yi Chaw,
James Fan, Michael Glass, Jerry Hobbs, Ed-
uard Hovy, David Israel, Doo Soon Kim, Rutu

Mulkar, Sourabh Patwardhan, Bruce Porter,
Dan Tecuci, and Peter Yeh. 2007. Learning
by reading: A prototype system, performance
baseline and lessons learned. In Proceedings of
Twenty-Second National Conference on Artifi-
cial Intelligence.

Ken Barker, Shaw Yi Chaw, James Fan, Bruce
Porter, Dan Tecuci, Peter Yeh, Vinay K.
Chaudhri, David Israel, Sunil Mishra, Pedro
Romero, and Peter E. Clark. 2004. A question-
answering system for AP chemistry: Assessing
KR&R technologies. In Principles of Knowl-
edge Representation and Reasoning: Proceed-
ings of the Ninth International Conference.

Ken Barker, Bruce Porter, and Peter Clark. 2001.
A library of generic concepts for composing
knowledge bases. In Proceedings of the interna-
tional conference on Knowledge capture, pages
14–21. ACM Press.

Peter Clark and Bruce Porter. 1998. KM - The
Knowledge Machine: Reference manual. Tech-
nical report, University of Texas at Austin.
Http://www.cs.utexas.edu/users/mfkb/km.html.

Ludovic Denoyer and Patrick Gallinari. 2006. The
Wikipedia XML Corpus. SIGIR Forum.

Oren Etzioni, Michele Banko, Stephen Soderland,
and Daniel S. Weld. 2008. Open informa-
tion extraction from the web. Commun. ACM,
51(12):68–74.

C. Fellbaum. 1998. WordNet – An Electronic Lex-
ical Database. MIT Press.

Marti A. Hearst. 1992. Automatic acquisition of
hyponyms from large text corpora. In Pro-
ceedings of the 14th conference on Computa-
tional linguistics, pages 539–545. Association
for Computational Linguistics, Morristown, NJ,
USA.

Doo Soon Kim and Bruce Porter. 2009. KLEO:
A bootstrapping learning-by-reading system.
AAAI Spring Symposium.

Dan Klein and Christopher D. Manning. 2003.
Accurate unlexicalized parsing. In ACL ’03:
Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics, pages
423–430. Association for Computational Lin-
guistics, Morristown, NJ, USA.

Dekang Lin. 1993. Principle-based parsing with-
out overgeneration. In ACL-93, pages 112–120.

Dekang Lin and Patrick Pantel. 2001. DIRT dis-
covery of inference rules from text. In Knowl-
edge Discovery and Data Mining, pages 323–
328.

