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Abstract

This paper describes a successful approach to concept learning for heuristic classification.
Almost all current programs for this task create or use explicit, abstract generalizations.
These programs are largely ineffective for domains with weak or intractable theories. An
exemplar-based approach is suitable for domains with inadequate theories but raises two
additional problems: determining similarity and indexing exemplars. Our approach extends
the exemplar-based approach with solutions to these problems. An implementation of our
approach, called Protos, has been applied to the domain of clinical audiology. After reason-
able training, Protos achieved a competence level equaling that of human experts and far
surpassing that of other machine learning programs. Additionally, an “ablation study” has

identified the aspects of Protos that are primarily responsible for its success.



1 Introduction

This paper describes a successful approach to the task of concept learning for heuristic
classification. This task differs from the usual concept learning task in three ways. First,
classifications must be explained, not simply reported. Second, a program for this task must
accommodate incomplete case descriptions. Third, the program must learn domain-specific
knowledge for inferring case features needed for classification. Section 2 summarizes this
learning and classification task.

The traditional approach to concept learning and classification relies on generalizations.
It requires a strong domain theory both to summarize training cases with concept descrip-
tions and to classify new cases using these descriptions. Section 3 argues that this approach
is ineffective for many domains.

An alternative approach relies on exemplars. Concepts are learned by retaining exem-
plars, and new cases are classified by matching them with exemplars. Our learning and
classification program, Protos, uses the exemplar-based approach. Section 4 describes Pro-
tos’s design and its appropriateness for weak-theory domains.

To evaluate the design, Protos was applied to the task in clinical audiology of identifying
a patient’s hearing disorder from symptoms, test results, and history. An expert clinician
instructed Protos with 200 cases — a level of training comparable to that received by student
clinicians. After this training, Protos’s classification accuracy was compared with that of
clinicians and several learning programs. Protos compared favorably with the best clinician
and was significantly better than the other programs. Finally, an “ablation study” [14]
identified the aspects of Protos that are primarily responsible for its success. Section 5
describes the evaluation.

Section 6 summarizes the research. We conclude that exemplar-based learning and classi-
fication is appropriate and effective for domains lacking a strong domain theory. Our current

research focuses on shortcomings of Protos that became evident in these studies.

2 The Task: Concept Learning for Classification and

Explanation

Our research addresses the task of improving competence at classification and explanation,
starting at a level of utter incompetence and aiming for a level of expert competence. Im-
provement results from learning concepts and acquiring knowledge from cases which are
classified and explained by a human expert. This section specifies this task in detail by
defining classification, explanation, and knowledge acquisition, and by giving measures of
competence for each. Figure 1 illustrates this task with a modestly abridged version of an
actual dialogue between Protos and a domain expert (Section 4.4 is a detailed description of

this scenario).
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Figure 1: An

Audiology. The expert presents a new case to Protos. Protos classifies the case by matching
it with similar exemplars, and explains each classification by presenting the match. Protos

acquires knowledge from the expert to improve the correct match, and retains the case as a

new exemplar

: NewCase has the features ...
NewCase’s classification appears to be age-induced cochlear
with otitis-media because of its similarity with Patient163;
some of the features of the cases are identical.
Wrong diagnosis.
NewCase is missing some of the features of Patient163 which
I thought were unimportant. Are any of bone(mild),
acoustic_ref-u(absent),... more important than I thought?
Yes. Acoustic_ref-u(absent) is very important for membership
in the category age-induced cochlear with otitis-media.
I’ll remember that. Now NewCase’s classification appears to be
age and noise-induced cochlear because of its similarity
with Patient054; most of the features match directly, and the
speech feature is matched using the knowledge:

IF the category is age and noise-induced cochlear

THEN speech(poor) is usually equivalent to speech(very_poor).
The category and explanation are correct.
There are two weak points in the explanation I'd like to
clear up. First, the feature bone(abnormal) is important in
Patient054, but is not present in NewCase.
Bone(abnormal) is sometimes equivalent to bone(unmeasured),
which is present in NewCase.
OK. The other weak point is that feature s_neural(severe, 1k)
is important in Patient054, but is not present in NewCase.
Yes, that is a genuine difference between the two cases.
Then I'll retain NewCase as a separate exemplar of this category.
Is there anything else I should know about this case?
Yes, acoustic_ref-c(elevated) is spurious to age and

noise-induced cochlear; . . .

Abridged Dialogue between Protos and a Domain Expert in Clinical



2.1 Classification

Classification? is assigning a given input, called a case, to one of the categories in a pre-
enumerated list. Competence at classification is defined in terms of accuracy and efficiency.

A case is described by a collection of features. However, case descriptions differ in two
significant ways from the feature-vector descriptions common in machine learning. First, a
case description may be incomplete, in the sense that it does not include some of the features
present in other case descriptions. Second, the features with which cases are described
may not directly indicate category membership. Instead, inference using domain-specific
knowledge may be necessary to determine category membership from a case description. For
example, suppose a case is a configuration of pieces on a chessboard, described in terms
of pieces and their positions, and the categories are win-for-white-in-9-ply and no-win-for-
white-in-9-ply. There is no known way to determine membership in these categories directly
from a case description, but it can be determined using knowledge-based inference, such as
an exhaustive 9-ply look-ahead based on the knowledge of the rules of chess.

The “heuristic classification method” described by Clancey [11] is tailored to domains in
which cases are described with features that do not directly indicate category membership.
It explicitly includes “the important twist of relating concepts in different classification hier-
archies by nonhierarchical, uncertain inferences”[11, p. 290]. Protos’s classification method,
although it differs from Clancey’s, is also appropriate for domains requiring this twist (see
Section 3).

2.2 Explanation

In this paper, classification is combined with explanation: an input case must be classified
and the classification must be explained. Explanation, in the broadest sense, includes a
variety of inference methods for reasoning, learning, and communicating [59]. However, we
have adopted a simplified notion of explanation in order to concentrate on other aspects of
the task. The main simplifying assumptions, similar to those made in first-generation expert
systems, are as follows.

First, explanations are used for only two purposes: to justify classifying a case in a
particular way and to establish the degree of similarity of two cases. Explanations are not
used to teach domain knowledge or to elaborate previous explanations (see [10, 38] for recent
research on these tasks).

Second, explanations are all of the same form: domain-specific terms (e.g., features,
feature-values, categories) are related to one another in domain-independent ways (e.g.,
“bone(abnormal) is sometimes equivalent to bone(unmeasured)”, in Figure 1.)

Third, explaining the classification of a case only requires mentioning the evidence sup-
porting the classification. It is not necessary to mention evidence against the classification or

evidence pertaining to other possible classifications. For example, to explain how a particu-

2Terms appear in boldface when they are defined.



lar conclusion was reached, Mycin [53] lists only the satisfied rules leading to the conclusion;
it does not list the rules leading, with less confidence, to different conclusions.

Finally, an explanation can be constructed by a simple transformation of the inferential
path that leads to a classification. The transformation may involve suppressing certain
details and rephrasing or reorganizing the remaining details, but it does not involve complex
processes such as natural language generation or adaptation to a model of the person to
whom explanations are targeted.

In our study, competence at explanation is defined in terms of the quality of the expla-

nation, as assessed by a human expert.

2.3 Knowledge Acquisition

Knowledge acquisition is the elicitation of knowledge from a human expert and the in-
corporation of this knowledge into an existing body of knowledge. In the present task,
knowledge is elicited in the form of training cases which are classified and explained by
the expert.

Knowledge acquisition is mixed initiative. The program may request particular knowledge
from the expert, or the expert may take the initiative and volunteer knowledge. The knowl-
edge provided by the expert and the explanations produced by the program are expressed
in the same language. New vocabulary (i.e., categories and features) can be introduced by
the expert at any time.

Competence at knowledge acquisition is defined in terms of two factors. The first is the
competence at classification and explanation attained after a realistic amount of training.
The second factor is the degree to which the knowledge acquisition program gains autonomy
as the knowledge base develops. Autonomy may be measured by the number and nature of
program-issued requests for knowledge. For example, a program exhibits low autonomy if it
asks questions of the expert that it could answer by consulting the existing knowledge base.
A program’s ability to gain autonomy is important because greater autonomy is required
in the later stages of knowledge base development than in the early stages. Most existing
concept learning and knowledge acquisition programs do not gain autonomy, and so are
appropriate for only a single stage of a knowledge base’s development [4]. For example, ETS
[7] and ROGET [6] create a knowledge base by eliciting the basic terminology and conceptual
structure of a domain. However, they are inappropriate for later stages of development such
as refinement and reformulation. A full discussion of this issue and a survey of existing

programs, including Protos, is given in [5].



3 Weaknesses of Generalization-Based Methods for Learn-

ing and Classification

Almost all programs that learn to classify are generalization-based, in the sense that they
create or use explicit, abstract generalizations. Generalization-based programs are either
simple or theory-based, depending on whether the language with which cases are described
(called the case language) and the language with which generalizations are expressed (called
the generalization language) are closely related or entirely different. Examples of simple
programs are ID3 [44], CN2 [13], and connectionist programs (e.g., [49]). Examples of
theory-based programs are explanation-based programs (e.g., [16, 36]) and similarity-based
programs that use background knowledge (e.g., [37, 35, 26, 21]). Both types of generalization-
based programs have been applied successfully.

A case language usually consists of intrinsic, readily perceivable features. Such features
are called superficial. An intrinsic feature of a case is one that is defined without reference
to the case’s context, e.g., the role of the case in a particular task, or the situation in
which the case occurs. For example, with intrinsic features, a desk would be described
as an arrangement of structural parts (e.g., drawers, legs, top) with physical properties
(weight, size, strength). With nonintrinsic features it might be described as an arrangement
of functional parts (e.g., work surface, storage areas) with use-related properties (e.g., ample,
ergonomic, easy to clean). Features that are not superficial are called abstract.

Simple programs for learning and classification are applicable when superficial features
suffice to define the generalizations of interest. For example, in a simulated blocks world, the
superficial features shape, size, color, and relative position suffice to define generalizations
such as arch, stack, and large, red block.

In most domains, superficial features do not suffice to define generalizations. Gener-
alizations such as cup [61] and hammer [15] are defined in terms of function, not form.
Categories such as infected by pseudomonas [53] and seedless grape [2] are generalizations
defined in terms that are not readily perceivable in the context of classification.

When abstract features are required to define generalizations, a gap exists between the
case language and the generalization language. This gap may be bridged in two ways.
The first is to preprocess the case descriptions to add the required abstract features. It is
usually necessary for human experts to do the preprocessing, because evaluating the abstract
terms (e.g., “abnormal”) requires expert judgement. In this way, simple programs can be
used in domains in which the relationship between abstract and superficial features is not
well understood. The second way to bridge the language gap is to construct a domain
theory describing the relationships between terms in the two languages and use theory-
based programs. Note that theory-based programs provide no assistance in the difficult task
of constructing a domain theory.

Theory-based programs are applicable only if the domain theory is both tractable and

strong. A tractable domain theory is one in which the definitions of all terms can be



computed efficiently from superficial features. The strength of a domain theory depends on
the certainty associated with the relationships between terms. The strongest theories, called
perfect, consist entirely of relationships of perfect certainty, such as standard logical and
taxonomic relationships. The weakest theories consist of correlational relationships, such as
“X and Y often co-occur.”

Very few domains have the tractable, perfect domain theories required by current theory-
based programs. Indeed, few domains have perfect domain theories, tractable or otherwise.
Legal reasoning, for example, almost always involves open-textured concepts, i.e., concepts
having only a weak domain theory [22, 23]. The fact that many fields of diagnostic expertise
lack a perfect domain theory is indicated by the widespread use of certainty factors in expert
systems. When a perfect domain theory does exist, it is often intractable. For example, the
rules of chess constitute a perfect, but intractable, theory of “winning position.” Even for
chess endgames involving very few pieces and analyzed extensively in textbooks, the rules
constitute an intractable theory, and the existing tractable theories are far from perfect [52].

The developers of theory-based programs have acknowledged this severe limitation [36],
and have recently begun trying to adapt their programs to work with weak theories. We
anticipate that generalization-based programs will not adapt well to weak theories.

With a weak theory, the most reliable and efficiently found chains of inference are those
that are short and involve individual steps of low uncertainty. Chains of inference bridging
the language gap, which are necessary whenever a generalization is created or used, are usu-
ally long and involve steps of high uncertainty. Consequently, generalization-based programs,
when used with a weak theory, can be expected to be unreliable and inefficient.

By contrast, chains of inference consisting entirely of direct matches between features are
short and reliable. For example, a case can be classified with certainty if it is identical to a
training case. The exemplar approach to learning and classification, described in the next
section, attempts to achieve reliability and efficiency by maximizing the use of direct match.
Training cases are recorded, and a case is classified by comparing it, feature by feature, with
the training cases. Domain theory is used only for those features that have no direct match.
The number of such features, and therefore the use of domain theory, can be minimized by
retaining all training cases. However, this is only necessary when the domain theory is very
weak. With a strong domain theory, very few training cases need to be retained to achieve
reliable, efficient inference.

In summary, generalization-based methods are not likely to perform as well as exemplar-
based methods in domains with weak theories. Furthermore, domains with weak theories are
far more common, in practical applications, than domains with strong, tractable theories.

Other weaknesses of generalization-based methods are given in [55, 51, 2, 12, 62].



Given:
a set of exemplar-based categories C' = {¢1,¢2,...,¢,}

and a case (NewCase) to classify.
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Figure 2: Exemplar-Based Learning and Classification Algorithm. The hard prob-

lems of the exemplar-based approach are boxed.
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Figure 3: A Portion of the Exemplar-Based Category chair

4 Protos: The Exemplar-Based Alternative

This section describes the design of Protos, an exemplar-based program for concept learning
and classification. Simple exemplar-based programs, although supported by psychological
studies, suffer from two fundamental problems: determining similarity and indexing exem-
plars. Protos’s design includes solutions to these two problems. The design principles are
introduced with simple, familiar examples and demonstrated with a large-scale application
of Protos to clinical audiology. Complete details of Protos are given in [3], and a Common

Lisp reconstruction, available for distribution, is documented in [19].

4.1 Simple Exemplar-Based Concept Learning and Classification

Figure 2 describes the exemplar-based approach to concept learning and classification
and identifies the hard problems. Concepts are represented extensionally with a collection of
exemplars described with features in the case language. For example, the concept chair is

represented in Figure 3 by two exemplars, chairl, a metal chair with a pedestal and wheels,



and chair2, a wooden chair with four legs. Classifying a new case involves searching for
an exemplar that strongly matches the case. The simplest method is an exhaustive search
for a direct match. Explaining the classification involves showing the line of reasoning used
during match. The simplest explanation is a list of the common features of the case and
the exemplar. Learning from a case involves adjusting the categories so that the case will
be properly classified and explained. The simplest adjustment adds the case to the correct
category as a new exemplar and ensures that it will be found, should this case be classified
again.

In some theories of exemplar-based categories, including Protos’s theory, abstract features
may be defined by exemplars, just as categories are. Determining whether such a feature
is present or absent in a given case involves matching the case with the exemplars of the
feature.

Psychological experiments, devised to distinguish between the generalization-based ap-
proach and the exemplar-based approach, support the exemplar-based approach. As in
machine learning, early psychological research assumed that generalization was automatic;
researchers focused on what is abstracted and how generalization is performed, rather than
whether cases are generalized [32]. Recent research indicates that people resist generalization
and retain cases. For example, Medin[32] and Brooks[9] found that people classify previously
seen cases by direct matching. Tversky and Kahneman[57] found that people estimate the
frequency of a class or the probability of an event by their ability to recall instances of the
class or event. Holyoak and Glass [24] found that people reject false statements by recalling
category exemplars for which the statement is untrue. For a range of cognitive tasks, these
studies emphasize retaining, recalling, and matching category exemplars, rather than reason-
ing with category-wide abstractions. To account for this data, psychological theories propose
models involving exemplar-based concept learning and classification [46, 33, 34, 55, 50].

The simple exemplar-based method uses no domain theory. However, domain theory is
indispensable for solving the hard problems indicated in Figure 2. For example, determining
the strength of the match between an exemplar and a case requires knowing the basis for
category membership. Murphy and Medin [39] argue that domain theory provides this basis
and adds coherence to a collection of otherwise dissimilar exemplars. The following sections
describe how Protos uses domain theory to determine the similarity of a case and an exemplar

and to index exemplars.

4.2 Determining the Similarity of a Case and an Exemplar

The simple exemplar-based method uses only direct match, and treats identically all un-
matched features. This gives a very crude estimate of the quality of an imperfect match
between an exemplar and a new case. The problem of estimating the quality of an imperfect
match is called the matching problem. To solve this problem Protos acquires and uses
matching knowledge, a form of domain theory.

As illustrated in Figure 4, there are two types of matching knowledge. The first is
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Figure 4: Protos’s Matching Knowledge for chair. The upper diagram indicates rela-
tions among concepts. The lower diagram indicates featural importances (dotted line means

spurious, medium line means moderately important, and thick line means essential.)

relations among concepts, for example “seat enables holds(person).” The second type of
matching knowledge is featural importances. As defined by Medin and Schaffer [33], this
is knowledge of the “differential salience” of an exemplar’s features to its category. For
example, the wheels feature of chair! is spurious to the category chair, and the seat feature
is essential. Section 4.2.1 describes Protos’s acquisition of matching knowledge.

Given matching knowledge, Protos can match dissimilar features by finding a path of
relations connecting them. For example, in Figure 4, Protos can match pedestal with legs(4)
because of the relations connecting each of them to seat support. These paths are an integral
part of the explanation of the classification of a new case. For example, Protos could explain
that chair2is a chair because it resembles chairl, and the resemblance is strong because all
the differences between them can be explained away. Section 4.2.2 describes Protos’s use of
matching knowledge to determine similarity.

Protos is equally applicable to all domains, regardless of the strength of the domain
theory. A perfect domain theory includes matching knowledge sufficient to match all the
members of a category with each other. When this is available, the category can be rep-
resented with a single exemplar, called a prototype [31, 55]. When a perfect theory is not
available, the category can still be represented, fairly accurately, by using several exemplars.
For example, the category strike in baseball can be represented with two exemplars, one in
which the batter swings and fails to hit the ball into fair play, and another in which the
ball crosses the plate through the strike zone. With a very weak domain theory, an accurate
representation of a category may require many exemplars.

The polymorphy of a category is the amount of unexplained variability among the
members of a category [47]. In domains with a strong theory, the polymorphy of most
categories will be low. In domains with a weak theory, the polymorphy of categories can
vary considerably (e.g., see Figure 15 in Section 5.1). Because of this, Protos has been
designed to cope with categories of any degree of polymorphy. Protos retains a case as an
exemplar only if the case differs from existing exemplars in significant ways that cannot be
explained using existing matching knowledge. If a case does match an exemplar strongly, it
is not retained. Thus, the number of exemplars that Protos retains for a category is a direct

indication of the category’s polymorphy.



4.2.1 Acquiring Matching Knowledge from Explained Cases

Protos acquires matching knowledge from explained cases. When Protos fails on a new case,
the expert provides the classification and explanation. Protos installs this information in its
network of matching knowledge. For example, part of the knowledge of chairs (Figure 4)

was learned when the expert classified chair! and explained:

pedestal 1s a specialization of seat support which enables

holds(person) which is the function of chair.

Protos requires feature-to-category explanations relating each case feature to the
case’s classification. To explain the relationship, the expert typically introduces new concepts
and relations. For example, the previous explanation introduces the category seat support,
the function holds(person), and three relations. Protos adds these concepts and relations to
its current network of matching knowledge.

Protos and the expert work together to explain the relationship between case features
and categories. Often the expert provides feature-to-feature explanations and Protos
completes the explanation of the classification. For example, after the expert explains the
relationship between pedestal and chair, Protos explains the relevance of legs(4) for chair2
given only that “legs(4) is a specialization of seat support.”

Explanations are expressed in a predefined language of relations (see Figure 5). The

relations fall into three certainty classes:

1. Definitional relations denote invariant facts (e.g., “adolescent definitionally entails mi-

nor”).

2. Causal/functional relations denote known mechanisms. (e.g., “air pollution causes acid

rain”).

3. Correlational relations denote experiential knowledge (e.g., “sharp teeth suggest car-

nivorous”).

Each relation can be strengthened or weakened with qualifiers, such as always, usually,
sometimes, or occasionally.
Some explanations, called conditional, are restricted to members of a particular cate-

gory, cases with particular features, or matches with particular exemplars. For example,
[F the category is apples THEN color(red) is equivalent to color(green)

explains that the colors red and green are equivalent for the purposes of classifying apples.
Conditional explanations are essential for concepts defined functionally such as hammer.
They permit stating that a claw is spurious for a hammer gua nail-inserter but is essential
for a hammer gua nail-extractor.

Protos heuristically estimates the importance of a feature to a category by analyzing

a feature-to-category explanation. For example, from the explanations relating chairl’s
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Definitional:
definitionally entails
is equivalent to
requires
if and only if
has generalization
part of
is mutually exclusive with

Causal /Functional:
causes
has function
enables

Correlational:
co-occurs with
is consistent with
implies
suggests

spurious to

Figure 5: Relations in Protos’s Explanation Language. The relations are in equivalence
classes with respect to certainty. Each relation has an inverse which is not shown (e.g., the

inverse of has generalization is has specialization.)
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features to the category chair, Protos estimates that seat is an essential feature of a chair,
that pedestal is a moderately important feature of a chair, and that wheels is a spurious
feature of chairl (see Figure 4). Internally, featural importances are represented as numbers
between 0 (spurious) and 1 (essential). Protos’s estimates of featural importances may be
revised by the expert if they result in a misclassification or an unacceptable explanation.
The lower part of Figure 6 summarizes Protos’s algorithm for learning matching knowl-
edge. As this figure indicates, the matching knowledge that is acquired depends on Protos’s
assessment of the similarity of a case and an exemplar, and whether the expert agrees.

Protos’s algorithm for assessing similarity is discussed next.

4.2.2 Using Matching Knowledge to Determine Similarity

Protos classifies a new case by explaining its similarity to an exemplar. This method,
summarized in the upper part of Figure 6, is called knowledge-based matching. It uses
matching knowledge and a collection of heuristics to evaluate explanations.

During knowledge-based matching of an exemplar and a case, the exemplar is a model
for interpreting the case. It determines which features are important for a successful match.
If an important feature is absent from the case description, Protos attempts to infer it from
the case features using matching knowledge. Unlike the models used by other expectation-
driven classifiers [58, 1, 42], exemplars are specific and numerous. Usually, case features and
exemplar features match directly, and the range of category exemplars provides models for
both typical and atypical cases.

Knowledge-based matching is a uniform-cost, heuristic search. The search begins from
each unmatched exemplar feature and chains through the network of matching knowledge
until reaching either a case feature or the depth bound (step 6.2 in Figure 6). Each step of
the search extends the current path with a relation. A path connecting an exemplar feature
with a case feature is an explanation of how the features are “equivalent,” in the sense that
the features suggest the same classification.

Knowledge-based matching uses 38 domain-independent heuristics to evaluate the quality
of a path ([4, appendix C]). The purpose of the heuristics is to find the strongest explanation
and to prune weak explanations. When selecting from a set of relations to extend a path, the
heuristics evaluate the potential contribution of each relation to the developing explanation.
This is a function both of:

e The individual relation and its qualifiers. For example, the heuristics penalize the
inclusion of weak correlational relations such as “sometimes implies” in a causal expla-
nation.

e The overall explanation constructed thus far. For example, one heuristic prevents as-
cribing the function of an assembly to a particular part. This heuristic would prune an

explanation that begins “steering wheel is part of car which has function transportation

”

12



GIVEN: a case (NewCase) to classify, and an exemplar (Exemplar).
To determine the similarity of NewCase and Fremplar:

6.1  Assign a high match strength to each feature of Fxemplar
that directly matches a feature of NewClase.
6.2  For each feature of Fremplar that is not directly matched, search matching
knowledge for the best explanation relating it to a feature of NewClase.
Assign a match strength corresponding to the quality of the explanation.
6.3  Compute the overall similarity of Fremplar and NewCase using the
match strength of each matched exemplar feature and the importance of

each unmatched exemplar features.

If the match between NewCase and Exemplar is sufficiently strong, Fremplar’s category
is used to classify NewCase, and the match between Fremplar and NewCase is used to
explain this classification. Indexing knowledge is acquired by discussing this classification

and explanation with the expert, as follows.

IF the expert rejects the classification or explanation
6.4 THEN Request new matching knowledge from the expert.
6.5  ELSE (the expert accepts the classification and explanation)

IF some features of Fxemplar are unmatched

6.6 THEN request feature-to-feature explanations from the expert.
IF the match is very strong

6.7 THEN Discard NewClase.

6.8 ELSE Retain NewCase as an exemplar.

6.9 Construct feature-to-category explanations.

6.10 Estimate featural importances.

Figure 6: The Protos algorithms for using and learning matching knowledge. Steps
6.1 through 6.3 describe how Protos uses matching knowledge to determine the similarity
of a case and an exemplar. Steps 6.4 through 6.10 describe how Protos acquires matching

knowledge.
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The depth bound for the search relating an exemplar feature and a case feature is a
function of the importance of the exemplar feature to the exemplar’s category. If the feature
is necessary, Protos will search extensively, allowing weak explanations to be found. If the
feature is moderately important, the search either will find a strong explanation or fail. If
the feature is spurious, Protos will not search at all.

In calculating the overall match strength between a case and an exemplar (step 6.3)
each feature of the exemplar contributes a factor between 0 and 1. The contribution of an
unmatched feature with importance i is 1 — ¢ (for example, 0 for an essential feature). The
contribution of a matched feature is the strength of the explanation relating the feature
to a case feature (1 for a direct match; a fraction for an explained match). The overall
match strength is the product of these factors for all of the exemplar’s features (¢f., the
similarity function of Medin and Schaffer’s Context Model [33]). An important property of
this definition of match strength is that matching numerous unimportant features does not
compensate for failing to match an important one.

Using matching knowledge, the similarity of related cases is more accurately estimated.
However, the matching knowledge in a weak domain theory is not perfect, and these imper-

fections can cause the similarity of unrelated cases to be overestimated. For example,

e Featural importances are generally ball park approximations of a quantity whose exact
value is unknown. Small numerical differences in featural importance values, which
ought to be negligible, can accumulate during match-strength calculation and distort

the similarity estimate.

o expert-supplied explanations of relations between concepts can be overly general, and
inadvertently “explain away” the significant differences between unrelated cases. (cf.

“promiscuous theories” in [17].)

By causing the similarity of unrelated cases to be overestimated while causing the sim-
ilarity of related cases to be accurately estimated, matching knowledge can result in the
misclassification of cases that would be correctly classified using a simple feature-counting
measure of similarity. In Protos, this problem is approached in two ways. First, matching
knowledge is revised whenever it leads to a misclassification (step 6.4). Secondly, a new case
is not matched against every exemplar. Protos’s method for selecting the exemplars with

which to match a new case is discussed next.

4.3 Indexing the Domain Theory

In Protos, a new case is matched only with those exemplars most likely to be correct. By
doing this, Protos overcomes two serious problems that arise when a new case is matched

with all known exemplars:

e misclassifications due to the inappropriate use of matching knowledge, as described
above.
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GIVEN: a case (NewCase) to classify.

To find an exemplar matching NewCase:

7.1
7.2
7.3
74
7.5

7.6
7.7

7.8

Collect from NewCase’s features to categories.

Combine remindings to related categories.

Retain the NV categories with the strongest combined remindings.

Select, in order of ‘ prototypicality |, several exemplars of each category.
Collect |remindings | from NewCase’s features to exemplars, and add these to
the list of exemplars. Order this list by reminding strength.

REPEAT (consider the exemplars in decreasing order)
Let Exemplari be the exemplar with the next highest reminding strength.
Determine the similarity of NewCase and Fremplar].

UNTIL a sufficiently strong match is found.

Use ‘exemplar differences | from Fzemplari to locate a better match (Fxemplar?).

Exemplar2’s category is used to classify NewCase and the match between Eremplar?

and NewCase is used to explain this classification. Indexing knowledge is acquired by

discussing this classification and explanation with the expert, as follows.

7.9

7.10

7.11

7.12

Figure 7: The Protos algorithms for using and learning indexing knowledge. Steps
7.1 through 7.8 describe how Protos uses indexing knowledge to find an exemplar matching a
given case. Steps 7.9 through 7.12 describe how Protos acquires indexing knowledge. Boxes

highlight the different types of indexing knowledge. The process of matching a case with an

IF the expert rejects the classification or explanation

THEN Reassess the from NewCase’s features.

ELSE (the expert accepts the classification and explanation)

Increase ‘prototypicality‘ of Fremplar?.

IF NewClase is retained as an exemplar

THEN Learn for NewCase.

IF NewCase was initially classified or explained incorrectly

THEN record ‘exemplar differences ‘

exemplar (step 7.7) is described in Figure 6.
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Figure 8: The Indexing Knowledge for chair. In Protos, this knowledge overlays the
network of matching knowledge (Figure 4).

o the inefficiency of applying the computationally expensive process of knowledge-based

matching to many exemplars.

To select and order the exemplars to match with a given case, Protos uses three types of
indexing knowledge: remindings, prototypicality, and exemplar differences. This section
describes this knowledge, how it is used (see the upper part of Figure 7) and how it is learned
(see the lower part of Figure 7).

The first type of indexing knowledge, remindings, indexes categories and exemplars by
a new case’s features (¢f., [50, 27] and “cue validity” in [45]). Protos uses remindings as
cues to the case’s classification. A reminding from a feature to a category, such as backrest
indexing chair (Figure 8), suggests that the category is the most general classification for
cases described with the feature. A reminding from a feature to an exemplar, such as pedestal
indexing chair! (Figure 8), suggests that the exemplar will match cases described with the
feature (¢f., “idiosyncratic information” in [32]). Each reminding has an associated strength,
which is used to order the list of candidate exemplars.

When searching for an exemplar that matches a new case, Protos first collects remind-
ings to categories (step 7.1 in Figure 7). Related categories are combined by summing the
strengths of duplicate remindings and by inheriting remindings from general categories to
subcategories (step 7.2). Only the N strongest combined remindings are returned (step 7.3).”
Protos then selects several of the most prototypical exemplars (defined below) to represent
each category (step 7.4). Finally, Protos collects remindings from case features to particular
exemplars (step 7.5). The result is an ordered list of exemplars to try matching with the
new case.

Protos learns a reminding by compiling an expert-supplied explanation of a case feature
(step 7.11). For example, Protos derives a reminding from seat to chair (Figure 8) from the

explanation:
seat enables holds(person) which is the function of chair

Protos heuristically analyzes each explanation to determine the category or exemplar to
which the reminding should refer and the strength of the reminding. As in the previous
example, a reminding often refers to the last term in an explanation. However, some re-
mindings are derived from a portion of the explanation. For example, one heuristic applies

to explanations of the form:

3In the current implementation, N = 5.
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(case feature) - - - category, has specialization categorys; - - -

and derives a reminding from ( case feature ) to categorys, the most general category named.
The strength of a reminding is a function of the relations and qualifiers used in the expla-

nation. For example, from the explanation:
fur is usually required by mammal which has specialization cat

Protos derives a moderate strength reminding from fur to mammal.

Some remindings, called censors, are negative associations between case features and
categories or exemplars. A censor from a feature to a category suggests that cases described
with the feature should not be classified in the category. Protos uses censors to remove
entries from the set of candidate classifications. Censors are derived from mutual exelusion
relations used in explanations.

Remindings are not foolproof. The explanation from which a reminding is derived might
change. For example, a reminding from a feature f to a category € might be derived from
the explanation that “f causes C'”. Later, the domain expert might change the explanation
to “f sometimes causes (7, or “f causes 'y which has specialization C”. Protos does not
check remindings when matching knowledge is altered. Rather, a reminding is reassessed
only when it suggests an incorrect classification (step 7.9). Protos uses the current matching
knowledge to explain the relationship between the classification and the case feature that
evokes the reminding. From this explanation Protos derives a replacement for the faulty
reminding.

The second type of indexing knowledge, prototypicality, orders the exemplars within
a category according to their record of success in previous classifications. When a new case
reminds Protos of a category, the exemplars of that category are matched with the case in
order of decreasing prototypicality (step 7.4). For example, given a case with remindings to
chair but no remindings to particular exemplars, Protos attempts to match the case with
chairl before chair2 (Figure 8). Prototypicality is a heuristic estimate of the psychological
notion of “family resemblance” [47], which is the degree to which an exemplar is similar to
other category members. Prototypicality is incrementally learned: if a match between a case
and an exemplar is accepted by the expert then the exemplar’s prototypicality is increased
by an amount proportional to the strength of the match (step 7.10).

The third type of indexing knowledge, exemplar differences, indexes exemplars by the
features that distinguish them from exemplars with similar descriptions (¢f., “indexing of
failures” in [54, 28, 29]). After finding an exemplar that matches a new case, Protos hillclimbs
to the best matching exemplar (step 7.8). For example, if the case partially matches chair2,
but has the unmatched feature armrests, chairl is suggested by the exemplar difference
relating chairl to chair2 (Figure 8).

Protos learns an exemplar difference by matching a new case to a “near miss” [60] before
matching the case to an exemplar preferred by the expert (step 7.12). The near miss and

the preferred exemplar may be members of the same category or different categories. Protos
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relates them by their differences to improve classification accuracy on subsequent cases.
Relating only those pairs of exemplars that were actually confused during classification

avoids the problem of recording a plethora of exemplar differences.

4.4 An Example of Protos in Clinical Audiology

The Protos classification and learning algorithm (Figure 9) combines the algorithms for
matching and selecting exemplars. This section applies the algorithm to a typical case that
Protos processed in the clinical audiology domain. The dialogue in Figure 1 provides an
outline of this section. There, the interaction between Protos and the expert on this case is
given in an abridged form. This section presents and discusses the unabridged form of the
interaction — e.g., Figures 10 through 13 are screen-dumps of actual Protos output — and
Protos’s internal processing.

After training Protos with 175 cases, the expert asks Protos to classify NewCase, which
has the features (symptoms and test results) listed in Figure 10.

There are remindings from some of these features to diagnostic categories, but no remind-
ings to individual exemplars (Figure 11). Protos combines these remindings to produce an
ordered list of possible classifications for NewCase (Figure 9, step 1). Duplicate remindings
(such as the four remindings to cochlear) are summed, and remindings to general categories
are inherited by subcategories. As a result, remindings to the general categories cochlear,
age-induced cochlear, and otitis media are inherited by their shared subcategory age-induced
cochlear with otitis-media.

The strongest combined reminding is to the category age-induced cochlear with otitis-
media. Protos attempts to confirm this classification (steps 3 and 4) by explaining the
similarity of NewCase and a prototypical exemplar, Patient!63 (Figure 12). The match is
strong, and there is no exemplar-difference knowledge that indexes a better match (step 5).
The match is presented to the expert, who rejects it as incorrect (step 6).

In response to the expert’s rejection, Protos reassesses the indexing and matching knowl-
edge that led to the misclassification. First, Protos verifies the remindings by searching the
domain theory for feature-to-category explanations (step 7). Then, Protos discusses with
the expert the matching knowledge that overestimated the similarity of NewCase and Pa-
tient163 (step 8). In the current match, there are no feature-to-feature explanations to be
discussed, because there are only direct matches. There are some unmatched features, and
Protos asks the expert to reconsider their importances. The expert tells Protos that one of
these features, acoustic_ref-u(absent), is actually very important for category membership.
Consequently, Protos’s assessment of the similarity of the two cases decreases.

Protos attempts to classify NewCase using its second strongest reminding, which is to
the category age and noise-induced cochlear. Protos selects a prototypical exemplar and
explains its similarity to NewCase (Steps 3 and 4). The result is shown in Figure 13. Most

of the features match directly, and the speech feature is matched using the knowledge:

IF the category is age and noise-induced cochlear
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GIVEN: a case (NewCase) to classify.
1 Collect and combine remindings from NewCase’s features.
Retain only the N strongest combined remindings.
2 Create a list of exemplars ordered by reminding strength.
REPEAT
REPEAT (consider the exemplars in decreasing order)

3 Let Fxemplari be the exemplar with the next highest reminding strength.
4 Determine the similarity of NewCase and Fremplar].

UNTIL an sufficiently strong match is found.
5 Use exemplar differences from Frxemplar! to locate a better match (Ezemplar2).
6 Use Fxemplar2's category to classify NewCase and use the match

between Eremplar2 and NewCase to explain this classification.

Discuss this classification and explanation with the expert:

IF the expert rejects the classification or explanation

7 THEN Reassess the remindings from NewCase’s features.

8 Request new matching knowledge from the expert.

9 ELSE (the expert approves the classification and explanation)

10 Increase prototypicality of Frxemplar?2.
IF some features of Eremplar?2 are unmatched

11 THEN request feature-to-feature explanations from the expert.
IF the match is very strong

12 THEN Discard NewClase.

13 ELSE Retain NewCase as an exemplar.

14 Construct feature-to-category explanations.

15 Estimate featural importances.

16 Learn remindings for NewCase.

17 IF NewCase was initially classified or explained incorrectly

THEN record exemplar differences.
UNTIL the expert approves the classification and explanation.

Figure 9: The Protos Classification and Learning Algorithm, combining the algo-
rithms in Figure 6 and Figure 7.

hi

Figure 10: The Features of NewCase
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Figure 11: Remindings from NewCuse’s Features to Diagnostic Categories

hi

Figure 12: Match between NewCase and an Exemplar of Age-Induced Cochlear with
Otitis Media

THEN speech(poor) is usually equivalent to speech(very_poor).

Of the four unmatched exemplar features, two are believed to be important: s_neural(severe, 1k)
and bone(abnormal). The expert accepts the classification and the explanation.

Because important features are unmatched, Protos solicits explanations from the expert
(step 11). He tells Protos that

bone(unmeasured) is sometimes equivalent to bone(abnormal)

but is unwilling to equate the value of feature s_neural in the exemplar with its value in
NewCase. Because this important exemplar feature remains unmatched, Protos retains
NewCase as an exemplar of age and noise-induced cochlear (step 13).

Protos acquires more matching knowledge by constructing feature-to-category explana-
tions for the new exemplar (step 14). It constructs most of the explanations using existing

knowledge, and the expert adds:

acoustic_ref_c(elevated) is spurious to age and noise-induced cochlear

s-neural(profound,2k) is sometimes consistent with cochlear
which has specialization age-induced cochlear

which has specialization age and noise-induced cochlear.

NewCase introduced features into the domain theory, and Protos estimates their impor-
tance to the category age and noise-induced cochlear (step 15). Because acoustic_ref_c(elevated)
was explained to be spurious, Protos considers it unimportant. Protos heuristically evaluates

the explanation that relates s_neural(profound,2k) to the category. Because the relation is

hi

Figure 13: Match Between NewCase and an Exemplar of Age & Noise-Induced Cochlear
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qualified by “sometimes,” it infers that s_neural(profound,2k) is moderately important to
age and noise-induced cochlear.

Protos adds indexing knowledge for the new exemplar (step 16). Because s_neural(profound, 2k)
is explained to occur with any type of cochlear hearing loss, Protos derives a reminding from
s_neural(profound,2k) to cochlear. The presence of the qualifier “sometimes” causes Protos
to assign only a moderate strength to the reminding.

Recall that Protos initially misclassified NewCase by matching it with Patient163, the
exemplar of age-induced cochlear with otitis-media. Protos records this near-miss by adding
exemplar-difference knowledge (step 17). Protos asks the expert which features reliably
distinguish the exemplars and then annotates the relationship. Before concluding, Protos

asks the expert to provide any additional information he wishes, and he declines.

5 Evaluating Protos

In this section we empirically evaluate Protos’s competence at the learning and classification
task defined in Section 2. First we describe the results of training Protos in the audiology
domain. We then compare the classification accuracy achieved by Protos to that achieved by
human audiologists and by several other programs, including simplified versions of Protos.
Some of these programs have a potential advantage in this comparison because they are
specifically designed to achieve high classification accuracy without regard for explanatory
adequacy. On the other hand, a potential advantage for Protos is that it acquires, and
uses for classification, a considerable amount of domain knowledge that the other programs
are not designed to use. These comparisons are intended to determine the significance of
Protos’s results in audiology and to identify the aspects of Protos that are most important

in achieving these results.

5.1 Protos’s Competence at the Knowledge Acquisition Task

To evaluate Protos, we applied it to the task in clinical audiology of identifying a patient’s
hearing disorder. This domain was chosen for three reasons. First, it is a representative
application of heuristic classification. Patients are assigned to diagnostic categories as a
result of uncertain inferences involving features such as symptoms, test results, and patient
history. Second, an interested expert was available to serve as Protos’s teacher. Third, a
graduate program in audiology at the University of Texas provided a population of expert
and student diagnosticians to whom Protos could be compared.

Protos was trained and tested in clinical audiology by Dr. Craig Wier, an expert au-
diologist and a professor of Speech Communication at the University of Texas at Austin.
Cases were chosen at random from the Speech and Hearing Laboratory of the Methodist
Hospital in Houston, Texas.* A case was considered correctly diagnosed if Dr. Wier and

4Professor James Jerger graciously provided access to the patient records.
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H Cases H First Class Correct ‘ Preferred Class Correct H

training 57.7 81.7
test 92.3 100.0

Table 1: Percentage of Correct Classifications. “First class correct” is the percentage
of cases in which the strongest combined reminding which produced a matching exemplar
resulted in the correct classification. “Preferred class correct” is the percentage of cases in
which the strongest match Protos found was the correct classification. The 24 training cases

that introduced new categories were excluded from these calculations.

the laboratory clinicians agreed. (Of an original set of 230 cases, they disagreed on 4, which
were not used for Protos’s training or testing.) Protos’s classification accuracy is the
percentage of cases which it correctly diagnosed.

Dr. Wier interacted directly with Protos without a knowledge engineer’s assistance. He
trained Protos with 200 cases in 24 diagnostic categories. This is approximately the number
of cases seen by a student during graduate school preparation for state certification. After
this training, Protos was tested with 26 different cases. Learning was “turned-off,” and the
expert provided no explanations. Protos’s competence is evident in the following figures,
which describe its classification accuracy, efficiency, and autonomy gain.

Table 1 reports Protos’s classification accuracy during training and testing. Accuracy
improved during training, culminating in 100% agreement with the expert during testing.
Moreover, Protos’s misclassifications were usually plausible categories that the expert judged
were more specific than the evidence permitted.

Classification efficiency was measured in two ways, by the storage required for classifica-
tion, and by the effort required to find a correct match. Figure 14 illustrates the growth of
Protos’s storage requirements, as measured by the number of categories, indices, and exem-
plars. Overall, Protos retained 120 exemplars of 24 diagnostic categories. Figure 15 reports
the number of exemplars retained in several common categories. Some categories, such as
normal and unknown cochlear hearing loss, are highly polymorphic, whereas others, such as
fization, are not. During the first 100 training cases, exemplar retention was 86%. There
are two reasons for this high rate of retention. First, Protos was learning two-thirds of its
diagnostic categories from these cases, including many of the highly polymorphic categories.
Second, the conditional explanation capability was added to Protos after the first hundred
cases had been presented.® The expert estimates 30-40 fewer exemplars would have been re-
tained with conditional explanations. This is consistent with Protos’s lower rate of exemplar
retention during the second hundred cases.

Table 2 reports the number of categories considered and the number of exemplar matches
attempted by Protos, on average, before (and including) making a correct match. Both num-

bers increased at approximately the same rate as the number of categories and exemplars.

>The experiment was not restarted because the expert’s time was limited.
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Figure 14: Protos’s Acquisition of Categories, Exemplars and Indexing Knowledge
hi

Figure 15: Exemplar Retention for a Sample of the 24 Diagnostic Categories

The disproportionate increases that occurred with cases 151-200 were due to the large num-
ber of atypical cases in that group.®

Protos discussed every successful match with the expert, not just the strongest one. The
classification could be accepted or rejected. If accepted, the expert would assess the adequacy
of the explanation. The expert rarely disagreed with Protos’s explanations.

The number of matches Protos discussed with the expert is a measure of Protos’s auton-
omy. Table 3 shows that most of Protos’s classification effort was independent of the expert.
An indication that Protos gained autonomy is that the number of matches discussed with

the expert remained constant as the number of exemplars and categories grew.

5.2 The Classification Accuracy Achieved by Audiologists

Protos’s classification performance was compared with that of 19 clinicians from the De-
partment of Speech Communication of the University of Texas. Two were supervisors of the
department’s clinical practicum. The other 17 were graduate students with more than one
year of clinical experience. On average, the subjects did considerably less well than Protos,
although one supervisor performed almost as well (Table 4).

The student clinicians commonly complained that some cases could not be diagnosed

because information that they believed was essential was missing from the case descriptions.

5Dr. Wier counted seven atypical cases in this group, compared with two in the previous group of 50

cases.

H Cases H Classtfications ‘ Exemplars H
1-50 2.7 *
51-100 2.8 *
101-150 2.5 4.6
151-200 4.0 7.4
test 3.7 5.3

Table 2: Protos’s Mean Effort to Find a Correct Match (**’ indicates data unavail-
able).
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Cases Matches Discussed
(per case)

1-50 1.7

51-100 1.6

101-150 1.5

151-200 1.9

test 1.1

Table 3: Matches Discussed With the Expert

H Subjects H Preferred Class Correct | Any Class Correct H
Supervisor 1 85% 92%
Supervisor 2 69% 81%

Student (mean) 69% 3%

Table 4: Correct Classifications by Clinicians. Each clinician rank-ordered his diagnoses
of each case. “Preferred Class Correct” is the percentage of cases in which the clinician’s
top-ranked diagnosis was correct. “Any Class Correct” is the percentage of cases in which

the clinician listed the correct diagnosis.

The case descriptions in the audiology data are extremely incomplete, supplying, on aver-
age, less than half the possible features. However, the clinical supervisors found the case

descriptions adequate. *

5.3 The Classification Accuracy Achieved by ID3

The incompleteness of the case descriptions was also an obstacle for ID3, a well-known con-
cept formation program that learns decision trees from examples. In [44], Quinlan describes
four ways to adapt 1D3 to cope with incomplete case descriptions. Each of these variants of
ID3 was implemented, applied to the 200 audiology training cases, and evaluated by classify-
ing the 26 audiology test cases with the resulting decision trees [18]. None of the variants of
ID3 achieved high classification accuracy. The highest accuracy, a mere 38%, was achieved by
treating “missing” as a feature-value. The other variants, which represent various methods
of estimating missing features, achieved considerably lower classification accuracies.

In [44], the methods of estimating missing features perform well on data with the following

properties:

e The percentage of features that are missing, called the “ignorance level,” is very small.

Quinlan claims that “in practice, an ignorance level of even 10% is unlikely” [44, p.

"From years of teaching, our domain expert believes that novice audiologists frequently rely on unnecessary
data. The reliance of novice diagnosticians on unnecessary data has also been reported in formal studies,

e.g., [20].
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99].
e Missing features are randomly distributed across cases.

The methods perform poorly on the audiology data because the data exhibits neither of
these properties. The data has an ignorance level exceeding 50%.% Furthermore, missing
features are not distributed randomly throughout the audiology data set. For example,
yes/no features are always missing when their value is “no.” More generally, features are
missing when they are known to be irrelevant for classification or redundant with features
already present in the case description.

Protos performs well given data in which missing features have the properties exhibited
by the audiology data. Although the ignorance level is very high, important features either
were given or were inferable. Unimportant features, which may be missing in some cases

and present in others, have little effect on the matching process.

5.4 The Classification Accuracy Achieved by Simple Exemplar-
Based Programs

Kibler and Aha [25] describe three similarity-based exemplar learning programs, called Prox-
imity, Growth, and Shrink. Like Protos, these programs learn by retaining exemplars, and
they classify a test case by assigning it to the category of the exemplar that best matches
the test case. Unlike Protos, they do not use knowledge during classification: a test case is
matched against all exemplars, and the strength of a match is determined by the number of
features that are identical in the exemplar and the test case. The programs differ from each
other only in the rule used to decide whether to retain a new training case as an exemplar.

The matching algorithm in Kibler and Aha’s programs is reasonably well-suited to data
whose missing features exhibit the properties of the audiology data. Consequently, these
algorithms have a much better chance of achieving high classification accuracy on the au-
diology data than did any of the variants of ID3. And indeed, when the programs were
implemented and tested, Shrink and Growth achieved a classification accuracy of 65%, and
Proximity achieved a classification accuracy of 77% [30]. The method of calculating match
strength in Kibler and Aha’s programs can be replaced with Protos’s method by assuming
that no distinct features are equivalent and that all features have the same importance.
When this was done, the performance of Shrink and Growth did not change, but Proximity
achieved a classification accuracy of only 62% [30]. This suggests that the low-level details

of Protos’s match strength calculation could be improved.

8Very high ignorance may be quite common in practice. For example, [48] reports a 50% ignorance level.

25



5.5 The Effect of Deleting Knowledge from Protos on Classifica-
tion Accuracy

Protos derived indexing and matching knowledge from the explanations supplied by the
expert. To determine the degree to which Protos’s high classification accuracy depended
on these two types of knowledge, an ablation study [14] was conducted in which various
combinations of Protos’s knowledge were used to classify the audiology test cases. Because
this type of study would be very difficult to run on Protos itself, a program, called M-
Protos, was constructed specifically for these experiments. M-Protos differs from Protos in
many ways, notably that it cannot acquire knowledge. However, its classification process is
sufficiently similar to Protos’s that the results of the experiments apply equally to M-Protos
and Protos. Details of M-Protos and of the experimental results are given in [30].

In the absence of indexing knowledge, M-Protos matches all exemplars with the given
test case. In the absence of matching knowledge, M-Protos reduces the match strength a
fixed amount for every feature in the exemplar that does not occur in the test case. M-
Protos is considered to have correctly classified the test case if the strongest of its attempted
matches is an exemplar in the correct category. Given all of the audiology training cases,
and no indexing or matching knowledge, M-Protos achieved a classification accuracy of 65%,
similar to that achieved by Kibler and Aha’s programs. The accuracy dropped to 58% when
matching knowledge was added. With indexing knowledge, but no matching knowledge, M-
Protos achieved 92%. With both indexing and matching knowledge, M-Protos, like Protos,
achieved 100% classification accuracy.

For the most part, these results are consistent with the general philosophy of exemplar-
based programs. Classification accuracy is primarily achieved by using direct match and a
large, well-indexed set of exemplars; knowledge-based matching boosts classification accu-
racy, but is not its primary source. Lack of indexing knowledge resulted in the inappropriate
use of matching knowledge and a concomitant increase in misclassifications (as discussed at
the end of section 4.2.2.).

However, the dependence of classification accuracy on matching knowledge in this experi-
ment was surprisingly small. This may be explained by peculiarities of our audiology training
that will not necessarily arise in other domains, or even in the audiology domain given dif-
ferent training. With the case language used in our experiments, direct match worked well.
In a typical correct match between an exemplar and a case, 8 of the 11 exemplar features
matched features in the case, and 7 of these matched directly. Thus, there was limited op-
portunity to use matching knowledge, either to increase the strength of the correct match or
to reduce the strength of incorrect matches. Furthermore, much of the matching knowledge
that did exist was expressible only as conditional explanations of feature equivalence, a form
of explanation that was not available during the first half of training. This prevented a

significant body of matching knowledge from being entered by the expert.
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6 Summary

Our research developed a successful approach to the task of concept learning for heuristic
classification. This task differs from the usual concept learning task in three ways. A program
for this task must explain its classifications, accommodate incomplete case descriptions, and
learn domain-specific knowledge for inferring case features needed for classification.

Our approach to this task is exemplar-based. Concepts are learned by retaining exem-
plars, and new cases are classified by matching them to similar exemplars. This approach
has strong psychological support, but it raises two problems: measuring similarity and ef-
ficiently finding an exemplar to match. We solve these problems by augmenting exemplars
with matching knowledge and indexing knowledge. A new case is classified by using indexing
knowledge to find an exemplar and using matching knowledge to explain similarity. By inter-
leaving heuristic classification and knowledge acquisition, this approach permits a program
to start at a level of utter incompetence and to achieve a level of expert competence.

To evaluate our approach, we built the Protos program and applied it to the task in
clinical audiology of identifying a patient’s hearing disorder from symptoms, test results,

and history. This evaluation yielded many encouraging results:

o After a reasonable amount of training, Protos achieved very good classification accuracy

without using excessive computational resources.

e Protos’s classification accuracy is comparable to that of experienced human experts,
and is significantly better than that of the machine learning alternatives we examined.
The two main reasons for this are (1) Protos’s ability to deal with incomplete case
descriptions and (2) Protos’s use of indexing and matching knowledge derived from

explanations provided by the expert.

o Most of the explanations Protos generated for a case’s classification were acceptable

to the expert.

e Protos gained autonomy. The number of matches Protos discussed with the expert

remained constant as the number of exemplars and categories grew.

The evaluation of Protos also revealed several shortcomings, which we are addressing
with our current research. The first shortcoming is that Protos adds new knowledge without
considering its relation to existing knowledge. This allows inconsistencies to go undetected
until they cause a classification or explanation failure, which is sometimes undesirable. Ken
Murray’s research [41, 40] explores the task of integrating new information into existing
knowledge. The second shortcoming of Protos is that it does not adapt its explanations to
different users. The research of Liane Acker, James Lester, and Art Souther [56] explores
the generation of coherent explanations that can vary in viewpoint and level of abstraction.
This research and Ken Murray’s both use a large-scale, multifunctional knowledge base for

the domain of plant anatomy, physiology, and development [43]. The third shortcoming of
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Protos is its very restricted explanation language. Karl Branting’s research [8] explores the
representation and reuse of complex explanations for automated reasoning in weak-theory

domains, using as a testbed the domain of Worker’s Compensation case law.
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