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AbstractThis paper describes a successful approach to concept learning for heuristic classi�cation.Almost all current programs for this task create or use explicit, abstract generalizations.These programs are largely ine�ective for domains with weak or intractable theories. Anexemplar-based approach is suitable for domains with inadequate theories but raises twoadditional problems: determining similarity and indexing exemplars. Our approach extendsthe exemplar-based approach with solutions to these problems. An implementation of ourapproach, called Protos, has been applied to the domain of clinical audiology. After reason-able training, Protos achieved a competence level equaling that of human experts and farsurpassing that of other machine learning programs. Additionally, an \ablation study" hasidenti�ed the aspects of Protos that are primarily responsible for its success.



1 IntroductionThis paper describes a successful approach to the task of concept learning for heuristicclassi�cation. This task di�ers from the usual concept learning task in three ways. First,classi�cations must be explained, not simply reported. Second, a program for this task mustaccommodate incomplete case descriptions. Third, the program must learn domain-speci�cknowledge for inferring case features needed for classi�cation. Section 2 summarizes thislearning and classi�cation task.The traditional approach to concept learning and classi�cation relies on generalizations.It requires a strong domain theory both to summarize training cases with concept descrip-tions and to classify new cases using these descriptions. Section 3 argues that this approachis ine�ective for many domains.An alternative approach relies on exemplars. Concepts are learned by retaining exem-plars, and new cases are classi�ed by matching them with exemplars. Our learning andclassi�cation program, Protos, uses the exemplar-based approach. Section 4 describes Pro-tos's design and its appropriateness for weak-theory domains.To evaluate the design, Protos was applied to the task in clinical audiology of identifyinga patient's hearing disorder from symptoms, test results, and history. An expert clinicianinstructed Protos with 200 cases { a level of training comparable to that received by studentclinicians. After this training, Protos's classi�cation accuracy was compared with that ofclinicians and several learning programs. Protos compared favorably with the best clinicianand was signi�cantly better than the other programs. Finally, an \ablation study" [14]identi�ed the aspects of Protos that are primarily responsible for its success. Section 5describes the evaluation.Section 6 summarizes the research. We conclude that exemplar-based learning and classi-�cation is appropriate and e�ective for domains lacking a strong domain theory. Our currentresearch focuses on shortcomings of Protos that became evident in these studies.2 The Task: Concept Learning for Classi�cation andExplanationOur research addresses the task of improving competence at classi�cation and explanation,starting at a level of utter incompetence and aiming for a level of expert competence. Im-provement results from learning concepts and acquiring knowledge from cases which areclassi�ed and explained by a human expert. This section speci�es this task in detail byde�ning classi�cation, explanation, and knowledge acquisition, and by giving measures ofcompetence for each. Figure 1 illustrates this task with a modestly abridged version of anactual dialogue between Protos and a domain expert (Section 4.4 is a detailed description ofthis scenario). 1



Expert: NewCase has the features : : :Protos: NewCase's classi�cation appears to be age-induced cochlearwith otitis-media because of its similarity with Patient163;some of the features of the cases are identical.Expert: Wrong diagnosis.Protos: NewCase is missing some of the features of Patient163 whichI thought were unimportant. Are any of bone(mild),acoustic ref u(absent),... more important than I thought?Expert: Yes. Acoustic ref u(absent) is very important for membershipin the category age-induced cochlear with otitis-media.Protos: I'll remember that. Now NewCase's classi�cation appears to beage and noise-induced cochlear because of its similaritywith Patient054; most of the features match directly, and thespeech feature is matched using the knowledge:IF the category is age and noise-induced cochlearTHEN speech(poor) is usually equivalent to speech(very poor).Expert: The category and explanation are correct.Protos: There are two weak points in the explanation I'd like toclear up. First, the feature bone(abnormal) is important inPatient054, but is not present in NewCase.Expert: Bone(abnormal) is sometimes equivalent to bone(unmeasured),which is present in NewCase.Protos: OK. The other weak point is that feature s neural(severe,1k)is important in Patient054, but is not present in NewCase.Expert: Yes, that is a genuine di�erence between the two cases.Protos: Then I'll retain NewCase as a separate exemplar of this category.Is there anything else I should know about this case?Expert: Yes, acoustic ref c(elevated) is spurious to age andnoise-induced cochlear; : : :Figure 1: An Abridged Dialogue between Protos and a Domain Expert in ClinicalAudiology. The expert presents a new case to Protos. Protos classi�es the case by matchingit with similar exemplars, and explains each classi�cation by presenting the match. Protosacquires knowledge from the expert to improve the correct match, and retains the case as anew exemplar. 2



2.1 Classi�cationClassi�cation2 is assigning a given input, called a case, to one of the categories in a pre-enumerated list. Competence at classi�cation is de�ned in terms of accuracy and e�ciency.A case is described by a collection of features. However, case descriptions di�er in twosigni�cant ways from the feature-vector descriptions common in machine learning. First, acase description may be incomplete, in the sense that it does not include some of the featurespresent in other case descriptions. Second, the features with which cases are describedmay not directly indicate category membership. Instead, inference using domain-speci�cknowledge may be necessary to determine category membership from a case description. Forexample, suppose a case is a con�guration of pieces on a chessboard, described in termsof pieces and their positions, and the categories are win-for-white-in-9-ply and no-win-for-white-in-9-ply. There is no known way to determine membership in these categories directlyfrom a case description, but it can be determined using knowledge-based inference, such asan exhaustive 9-ply look-ahead based on the knowledge of the rules of chess.The \heuristic classi�cation method" described by Clancey [11] is tailored to domains inwhich cases are described with features that do not directly indicate category membership.It explicitly includes \the important twist of relating concepts in di�erent classi�cation hier-archies by nonhierarchical, uncertain inferences"[11, p. 290]. Protos's classi�cation method,although it di�ers from Clancey's, is also appropriate for domains requiring this twist (seeSection 3).2.2 ExplanationIn this paper, classi�cation is combined with explanation: an input case must be classi�edand the classi�cation must be explained. Explanation, in the broadest sense, includes avariety of inference methods for reasoning, learning, and communicating [59]. However, wehave adopted a simpli�ed notion of explanation in order to concentrate on other aspects ofthe task. The main simplifying assumptions, similar to those made in �rst-generation expertsystems, are as follows.First, explanations are used for only two purposes: to justify classifying a case in aparticular way and to establish the degree of similarity of two cases. Explanations are notused to teach domain knowledge or to elaborate previous explanations (see [10, 38] for recentresearch on these tasks).Second, explanations are all of the same form: domain-speci�c terms (e.g., features,feature-values, categories) are related to one another in domain-independent ways (e.g.,\bone(abnormal) is sometimes equivalent to bone(unmeasured)", in Figure 1.)Third, explaining the classi�cation of a case only requires mentioning the evidence sup-porting the classi�cation. It is not necessary to mention evidence against the classi�cation orevidence pertaining to other possible classi�cations. For example, to explain how a particu-2Terms appear in boldface when they are de�ned.3



lar conclusion was reached, Mycin [53] lists only the satis�ed rules leading to the conclusion;it does not list the rules leading, with less con�dence, to di�erent conclusions.Finally, an explanation can be constructed by a simple transformation of the inferentialpath that leads to a classi�cation. The transformation may involve suppressing certaindetails and rephrasing or reorganizing the remaining details, but it does not involve complexprocesses such as natural language generation or adaptation to a model of the person towhom explanations are targeted.In our study, competence at explanation is de�ned in terms of the quality of the expla-nation, as assessed by a human expert.2.3 Knowledge AcquisitionKnowledge acquisition is the elicitation of knowledge from a human expert and the in-corporation of this knowledge into an existing body of knowledge. In the present task,knowledge is elicited in the form of training cases which are classi�ed and explained bythe expert.Knowledge acquisition is mixed initiative. The programmay request particular knowledgefrom the expert, or the expert may take the initiative and volunteer knowledge. The knowl-edge provided by the expert and the explanations produced by the program are expressedin the same language. New vocabulary (i.e., categories and features) can be introduced bythe expert at any time.Competence at knowledge acquisition is de�ned in terms of two factors. The �rst is thecompetence at classi�cation and explanation attained after a realistic amount of training.The second factor is the degree to which the knowledge acquisition program gains autonomyas the knowledge base develops. Autonomy may be measured by the number and nature ofprogram-issued requests for knowledge. For example, a program exhibits low autonomy if itasks questions of the expert that it could answer by consulting the existing knowledge base.A program's ability to gain autonomy is important because greater autonomy is requiredin the later stages of knowledge base development than in the early stages. Most existingconcept learning and knowledge acquisition programs do not gain autonomy, and so areappropriate for only a single stage of a knowledge base's development [4]. For example, ETS[7] and ROGET [6] create a knowledge base by eliciting the basic terminology and conceptualstructure of a domain. However, they are inappropriate for later stages of development suchas re�nement and reformulation. A full discussion of this issue and a survey of existingprograms, including Protos, is given in [5].
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3 Weaknesses of Generalization-BasedMethods for Learn-ing and Classi�cationAlmost all programs that learn to classify are generalization-based, in the sense that theycreate or use explicit, abstract generalizations. Generalization-based programs are eithersimple or theory-based, depending on whether the language with which cases are described(called the case language) and the language with which generalizations are expressed (calledthe generalization language) are closely related or entirely di�erent. Examples of simpleprograms are ID3 [44], CN2 [13], and connectionist programs (e.g., [49]). Examples oftheory-based programs are explanation-based programs (e.g., [16, 36]) and similarity-basedprograms that use background knowledge (e.g., [37, 35, 26, 21]). Both types of generalization-based programs have been applied successfully.A case language usually consists of intrinsic, readily perceivable features. Such featuresare called super�cial. An intrinsic feature of a case is one that is de�ned without referenceto the case's context, e.g., the role of the case in a particular task, or the situation inwhich the case occurs. For example, with intrinsic features, a desk would be describedas an arrangement of structural parts (e.g., drawers, legs, top) with physical properties(weight, size, strength). With nonintrinsic features it might be described as an arrangementof functional parts (e.g., work surface, storage areas) with use-related properties (e.g., ample,ergonomic, easy to clean). Features that are not super�cial are called abstract.Simple programs for learning and classi�cation are applicable when super�cial featuressu�ce to de�ne the generalizations of interest. For example, in a simulated blocks world, thesuper�cial features shape, size, color, and relative position su�ce to de�ne generalizationssuch as arch, stack, and large, red block.In most domains, super�cial features do not su�ce to de�ne generalizations. Gener-alizations such as cup [61] and hammer [15] are de�ned in terms of function, not form.Categories such as infected by pseudomonas [53] and seedless grape [2] are generalizationsde�ned in terms that are not readily perceivable in the context of classi�cation.When abstract features are required to de�ne generalizations, a gap exists between thecase language and the generalization language. This gap may be bridged in two ways.The �rst is to preprocess the case descriptions to add the required abstract features. It isusually necessary for human experts to do the preprocessing, because evaluating the abstractterms (e.g., \abnormal") requires expert judgement. In this way, simple programs can beused in domains in which the relationship between abstract and super�cial features is notwell understood. The second way to bridge the language gap is to construct a domaintheory describing the relationships between terms in the two languages and use theory-based programs. Note that theory-based programs provide no assistance in the di�cult taskof constructing a domain theory.Theory-based programs are applicable only if the domain theory is both tractable andstrong. A tractable domain theory is one in which the de�nitions of all terms can be5



computed e�ciently from super�cial features. The strength of a domain theory depends onthe certainty associated with the relationships between terms. The strongest theories, calledperfect, consist entirely of relationships of perfect certainty, such as standard logical andtaxonomic relationships. The weakest theories consist of correlational relationships, such as\X and Y often co-occur."Very few domains have the tractable, perfect domain theories required by current theory-based programs. Indeed, few domains have perfect domain theories, tractable or otherwise.Legal reasoning, for example, almost always involves open-textured concepts, i.e., conceptshaving only a weak domain theory [22, 23]. The fact that many �elds of diagnostic expertiselack a perfect domain theory is indicated by the widespread use of certainty factors in expertsystems. When a perfect domain theory does exist, it is often intractable. For example, therules of chess constitute a perfect, but intractable, theory of \winning position." Even forchess endgames involving very few pieces and analyzed extensively in textbooks, the rulesconstitute an intractable theory, and the existing tractable theories are far from perfect [52].The developers of theory-based programs have acknowledged this severe limitation [36],and have recently begun trying to adapt their programs to work with weak theories. Weanticipate that generalization-based programs will not adapt well to weak theories.With a weak theory, the most reliable and e�ciently found chains of inference are thosethat are short and involve individual steps of low uncertainty. Chains of inference bridgingthe language gap, which are necessary whenever a generalization is created or used, are usu-ally long and involve steps of high uncertainty. Consequently, generalization-based programs,when used with a weak theory, can be expected to be unreliable and ine�cient.By contrast, chains of inference consisting entirely of direct matches between features areshort and reliable. For example, a case can be classi�ed with certainty if it is identical to atraining case. The exemplar approach to learning and classi�cation, described in the nextsection, attempts to achieve reliability and e�ciency by maximizing the use of direct match.Training cases are recorded, and a case is classi�ed by comparing it, feature by feature, withthe training cases. Domain theory is used only for those features that have no direct match.The number of such features, and therefore the use of domain theory, can be minimized byretaining all training cases. However, this is only necessary when the domain theory is veryweak. With a strong domain theory, very few training cases need to be retained to achievereliable, e�cient inference.In summary, generalization-based methods are not likely to perform as well as exemplar-based methods in domains with weak theories. Furthermore, domains with weak theories arefar more common, in practical applications, than domains with strong, tractable theories.Other weaknesses of generalization-based methods are given in [55, 51, 2, 12, 62].6



Given:a set of exemplar-based categories C = fc1; c2; : : : ; cngand a case (NewCase) to classify.REPEATClassify:Find an exemplar of cj 2 C that Strongly Matches NewCaseand classify NewCase as cj.Explain the classi�cation.Learn:If the expert disagrees with the classi�cation or explanation thenacquire classi�cation and explanation knowledge and adjust Cso that NewCase is correctly classi�ed and explained.UNTIL the expert approves the classi�cation and explanation.Figure 2: Exemplar-Based Learning and Classi�cation Algorithm. The hard prob-lems of the exemplar-based approach are boxed.hiFigure 3: A Portion of the Exemplar-Based Category chair4 Protos: The Exemplar-Based AlternativeThis section describes the design of Protos, an exemplar-based program for concept learningand classi�cation. Simple exemplar-based programs, although supported by psychologicalstudies, su�er from two fundamental problems: determining similarity and indexing exem-plars. Protos's design includes solutions to these two problems. The design principles areintroduced with simple, familiar examples and demonstrated with a large-scale applicationof Protos to clinical audiology. Complete details of Protos are given in [3], and a CommonLisp reconstruction, available for distribution, is documented in [19].4.1 Simple Exemplar-Based Concept Learning and Classi�cationFigure 2 describes the exemplar-based approach to concept learning and classi�cationand identi�es the hard problems. Concepts are represented extensionally with a collection ofexemplars described with features in the case language. For example, the concept chair isrepresented in Figure 3 by two exemplars, chair1, a metal chair with a pedestal and wheels,7



and chair2, a wooden chair with four legs. Classifying a new case involves searching foran exemplar that strongly matches the case. The simplest method is an exhaustive searchfor a direct match. Explaining the classi�cation involves showing the line of reasoning usedduring match. The simplest explanation is a list of the common features of the case andthe exemplar. Learning from a case involves adjusting the categories so that the case willbe properly classi�ed and explained. The simplest adjustment adds the case to the correctcategory as a new exemplar and ensures that it will be found, should this case be classi�edagain.In some theories of exemplar-based categories, including Protos's theory, abstract featuresmay be de�ned by exemplars, just as categories are. Determining whether such a featureis present or absent in a given case involves matching the case with the exemplars of thefeature.Psychological experiments, devised to distinguish between the generalization-based ap-proach and the exemplar-based approach, support the exemplar-based approach. As inmachine learning, early psychological research assumed that generalization was automatic;researchers focused on what is abstracted and how generalization is performed, rather thanwhether cases are generalized [32]. Recent research indicates that people resist generalizationand retain cases. For example, Medin[32] and Brooks[9] found that people classify previouslyseen cases by direct matching. Tversky and Kahneman[57] found that people estimate thefrequency of a class or the probability of an event by their ability to recall instances of theclass or event. Holyoak and Glass [24] found that people reject false statements by recallingcategory exemplars for which the statement is untrue. For a range of cognitive tasks, thesestudies emphasize retaining, recalling, and matching category exemplars, rather than reason-ing with category-wide abstractions. To account for this data, psychological theories proposemodels involving exemplar-based concept learning and classi�cation [46, 33, 34, 55, 50].The simple exemplar-based method uses no domain theory. However, domain theory isindispensable for solving the hard problems indicated in Figure 2. For example, determiningthe strength of the match between an exemplar and a case requires knowing the basis forcategory membership. Murphy and Medin [39] argue that domain theory provides this basisand adds coherence to a collection of otherwise dissimilar exemplars. The following sectionsdescribe how Protos uses domain theory to determine the similarity of a case and an exemplarand to index exemplars.4.2 Determining the Similarity of a Case and an ExemplarThe simple exemplar-based method uses only direct match, and treats identically all un-matched features. This gives a very crude estimate of the quality of an imperfect matchbetween an exemplar and a new case. The problem of estimating the quality of an imperfectmatch is called the matching problem. To solve this problem Protos acquires and usesmatching knowledge, a form of domain theory.As illustrated in Figure 4, there are two types of matching knowledge. The �rst is8



hiFigure 4: Protos's Matching Knowledge for chair. The upper diagram indicates rela-tions among concepts. The lower diagram indicates featural importances (dotted line meansspurious, medium line means moderately important, and thick line means essential.)relations among concepts, for example \seat enables holds(person)." The second type ofmatching knowledge is featural importances. As de�ned by Medin and Scha�er [33], thisis knowledge of the \di�erential salience" of an exemplar's features to its category. Forexample, the wheels feature of chair1 is spurious to the category chair, and the seat featureis essential. Section 4.2.1 describes Protos's acquisition of matching knowledge.Given matching knowledge, Protos can match dissimilar features by �nding a path ofrelations connecting them. For example, in Figure 4, Protos can match pedestal with legs(4)because of the relations connecting each of them to seat support . These paths are an integralpart of the explanation of the classi�cation of a new case. For example, Protos could explainthat chair2 is a chair because it resembles chair1 , and the resemblance is strong because allthe di�erences between them can be explained away. Section 4.2.2 describes Protos's use ofmatching knowledge to determine similarity.Protos is equally applicable to all domains, regardless of the strength of the domaintheory. A perfect domain theory includes matching knowledge su�cient to match all themembers of a category with each other. When this is available, the category can be rep-resented with a single exemplar, called a prototype [31, 55]. When a perfect theory is notavailable, the category can still be represented, fairly accurately, by using several exemplars.For example, the category strike in baseball can be represented with two exemplars, one inwhich the batter swings and fails to hit the ball into fair play, and another in which theball crosses the plate through the strike zone. With a very weak domain theory, an accuraterepresentation of a category may require many exemplars.The polymorphy of a category is the amount of unexplained variability among themembers of a category [47]. In domains with a strong theory, the polymorphy of mostcategories will be low. In domains with a weak theory, the polymorphy of categories canvary considerably (e.g., see Figure 15 in Section 5.1). Because of this, Protos has beendesigned to cope with categories of any degree of polymorphy. Protos retains a case as anexemplar only if the case di�ers from existing exemplars in signi�cant ways that cannot beexplained using existing matching knowledge. If a case does match an exemplar strongly, itis not retained. Thus, the number of exemplars that Protos retains for a category is a directindication of the category's polymorphy. 9



4.2.1 Acquiring Matching Knowledge from Explained CasesProtos acquires matching knowledge from explained cases. When Protos fails on a new case,the expert provides the classi�cation and explanation. Protos installs this information in itsnetwork of matching knowledge. For example, part of the knowledge of chairs (Figure 4)was learned when the expert classi�ed chair1 and explained:pedestal is a specialization of seat support which enablesholds(person) which is the function of chair.Protos requires feature-to-category explanations relating each case feature to thecase's classi�cation. To explain the relationship, the expert typically introduces new conceptsand relations. For example, the previous explanation introduces the category seat support,the function holds(person), and three relations. Protos adds these concepts and relations toits current network of matching knowledge.Protos and the expert work together to explain the relationship between case featuresand categories. Often the expert provides feature-to-feature explanations and Protoscompletes the explanation of the classi�cation. For example, after the expert explains therelationship between pedestal and chair, Protos explains the relevance of legs(4) for chair2given only that \legs(4) is a specialization of seat support."Explanations are expressed in a prede�ned language of relations (see Figure 5). Therelations fall into three certainty classes:1. De�nitional relations denote invariant facts (e.g., \adolescent de�nitionally entails mi-nor").2. Causal/functional relations denote known mechanisms. (e.g., \air pollution causes acidrain").3. Correlational relations denote experiential knowledge (e.g., \sharp teeth suggest car-nivorous").Each relation can be strengthened or weakened with quali�ers, such as always, usually,sometimes, or occasionally.Some explanations, called conditional, are restricted to members of a particular cate-gory, cases with particular features, or matches with particular exemplars. For example,IF the category is apples THEN color(red) is equivalent to color(green)explains that the colors red and green are equivalent for the purposes of classifying apples.Conditional explanations are essential for concepts de�ned functionally such as hammer.They permit stating that a claw is spurious for a hammer qua nail-inserter but is essentialfor a hammer qua nail-extractor.Protos heuristically estimates the importance of a feature to a category by analyzinga feature-to-category explanation. For example, from the explanations relating chair1's10



De�nitional:de�nitionally entailsis equivalent torequiresif and only ifhas generalizationpart ofis mutually exclusive withCausal/Functional:causeshas functionenablesCorrelational:co-occurs withis consistent withimpliessuggestsspurious toFigure 5: Relations in Protos's Explanation Language. The relations are in equivalenceclasses with respect to certainty. Each relation has an inverse which is not shown (e.g., theinverse of has generalization is has specialization.)
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features to the category chair, Protos estimates that seat is an essential feature of a chair,that pedestal is a moderately important feature of a chair, and that wheels is a spuriousfeature of chair1 (see Figure 4). Internally, featural importances are represented as numbersbetween 0 (spurious) and 1 (essential). Protos's estimates of featural importances may berevised by the expert if they result in a misclassi�cation or an unacceptable explanation.The lower part of Figure 6 summarizes Protos's algorithm for learning matching knowl-edge. As this �gure indicates, the matching knowledge that is acquired depends on Protos'sassessment of the similarity of a case and an exemplar, and whether the expert agrees.Protos's algorithm for assessing similarity is discussed next.4.2.2 Using Matching Knowledge to Determine SimilarityProtos classi�es a new case by explaining its similarity to an exemplar. This method,summarized in the upper part of Figure 6, is called knowledge-based matching. It usesmatching knowledge and a collection of heuristics to evaluate explanations.During knowledge-based matching of an exemplar and a case, the exemplar is a modelfor interpreting the case. It determines which features are important for a successful match.If an important feature is absent from the case description, Protos attempts to infer it fromthe case features using matching knowledge. Unlike the models used by other expectation-driven classi�ers [58, 1, 42], exemplars are speci�c and numerous. Usually, case features andexemplar features match directly, and the range of category exemplars provides models forboth typical and atypical cases.Knowledge-based matching is a uniform-cost, heuristic search. The search begins fromeach unmatched exemplar feature and chains through the network of matching knowledgeuntil reaching either a case feature or the depth bound (step 6.2 in Figure 6). Each step ofthe search extends the current path with a relation. A path connecting an exemplar featurewith a case feature is an explanation of how the features are \equivalent," in the sense thatthe features suggest the same classi�cation.Knowledge-based matching uses 38 domain-independent heuristics to evaluate the qualityof a path ([4, appendix C]). The purpose of the heuristics is to �nd the strongest explanationand to prune weak explanations. When selecting from a set of relations to extend a path, theheuristics evaluate the potential contribution of each relation to the developing explanation.This is a function both of:� The individual relation and its quali�ers. For example, the heuristics penalize theinclusion of weak correlational relations such as \sometimes implies" in a causal expla-nation.� The overall explanation constructed thus far. For example, one heuristic prevents as-cribing the function of an assembly to a particular part. This heuristic would prune anexplanation that begins \steering wheel is part of car which has function transportation: : :" 12



GIVEN: a case (NewCase) to classify, and an exemplar (Exemplar).To determine the similarity of NewCase and Exemplar:6.1 Assign a high match strength to each feature of Exemplarthat directly matches a feature of NewCase.6.2 For each feature of Exemplar that is not directly matched, search matchingknowledge for the best explanation relating it to a feature of NewCase.Assign a match strength corresponding to the quality of the explanation.6.3 Compute the overall similarity of Exemplar and NewCase using thematch strength of each matched exemplar feature and the importance ofeach unmatched exemplar features.If the match between NewCase and Exemplar is su�ciently strong, Exemplar's categoryis used to classify NewCase, and the match between Exemplar and NewCase is used toexplain this classi�cation. Indexing knowledge is acquired by discussing this classi�cationand explanation with the expert, as follows.IF the expert rejects the classi�cation or explanation6.4 THEN Request new matching knowledge from the expert.6.5 ELSE (the expert accepts the classi�cation and explanation)IF some features of Exemplar are unmatched6.6 THEN request feature-to-feature explanations from the expert.IF the match is very strong6.7 THEN Discard NewCase.6.8 ELSE Retain NewCase as an exemplar.6.9 Construct feature-to-category explanations.6.10 Estimate featural importances.Figure 6: The Protos algorithms for using and learning matching knowledge. Steps6.1 through 6.3 describe how Protos uses matching knowledge to determine the similarityof a case and an exemplar. Steps 6.4 through 6.10 describe how Protos acquires matchingknowledge. 13



The depth bound for the search relating an exemplar feature and a case feature is afunction of the importance of the exemplar feature to the exemplar's category. If the featureis necessary, Protos will search extensively, allowing weak explanations to be found. If thefeature is moderately important, the search either will �nd a strong explanation or fail. Ifthe feature is spurious, Protos will not search at all.In calculating the overall match strength between a case and an exemplar (step 6.3)each feature of the exemplar contributes a factor between 0 and 1. The contribution of anunmatched feature with importance i is 1 � i (for example, 0 for an essential feature). Thecontribution of a matched feature is the strength of the explanation relating the featureto a case feature (1 for a direct match; a fraction for an explained match). The overallmatch strength is the product of these factors for all of the exemplar's features (cf., thesimilarity function of Medin and Scha�er's Context Model [33]). An important property ofthis de�nition of match strength is that matching numerous unimportant features does notcompensate for failing to match an important one.Using matching knowledge, the similarity of related cases is more accurately estimated.However, the matching knowledge in a weak domain theory is not perfect, and these imper-fections can cause the similarity of unrelated cases to be overestimated. For example,� Featural importances are generally ball park approximations of a quantity whose exactvalue is unknown. Small numerical di�erences in featural importance values, whichought to be negligible, can accumulate during match-strength calculation and distortthe similarity estimate.� expert-supplied explanations of relations between concepts can be overly general, andinadvertently \explain away" the signi�cant di�erences between unrelated cases. (cf.\promiscuous theories" in [17].)By causing the similarity of unrelated cases to be overestimated while causing the sim-ilarity of related cases to be accurately estimated, matching knowledge can result in themisclassi�cation of cases that would be correctly classi�ed using a simple feature-countingmeasure of similarity. In Protos, this problem is approached in two ways. First, matchingknowledge is revised whenever it leads to a misclassi�cation (step 6.4). Secondly, a new caseis not matched against every exemplar. Protos's method for selecting the exemplars withwhich to match a new case is discussed next.4.3 Indexing the Domain TheoryIn Protos, a new case is matched only with those exemplars most likely to be correct. Bydoing this, Protos overcomes two serious problems that arise when a new case is matchedwith all known exemplars:� misclassi�cations due to the inappropriate use of matching knowledge, as describedabove. 14



GIVEN: a case (NewCase) to classify.To �nd an exemplar matching NewCase:7.1 Collect remindings from NewCase's features to categories.7.2 Combine remindings to related categories.7.3 Retain the N categories with the strongest combined remindings.7.4 Select, in order of prototypicality , several exemplars of each category.7.5 Collect remindings from NewCase's features to exemplars, and add these tothe list of exemplars. Order this list by reminding strength.REPEAT (consider the exemplars in decreasing order)7.6 Let Exemplar1 be the exemplar with the next highest reminding strength.7.7 Determine the similarity of NewCase and Exemplar1.UNTIL a su�ciently strong match is found.7.8 Use exemplar di�erences from Exemplar1 to locate a better match (Exemplar2).Exemplar2's category is used to classify NewCase and the match between Exemplar2and NewCase is used to explain this classi�cation. Indexing knowledge is acquired bydiscussing this classi�cation and explanation with the expert, as follows.IF the expert rejects the classi�cation or explanation7.9 THEN Reassess the remindings from NewCase's features.ELSE (the expert accepts the classi�cation and explanation)7.10 Increase prototypicality of Exemplar2.IF NewCase is retained as an exemplar7.11 THEN Learn remindings for NewCase.IF NewCase was initially classi�ed or explained incorrectly7.12 THEN record exemplar di�erences .Figure 7: The Protos algorithms for using and learning indexing knowledge. Steps7.1 through 7.8 describe how Protos uses indexing knowledge to �nd an exemplar matching agiven case. Steps 7.9 through 7.12 describe how Protos acquires indexing knowledge. Boxeshighlight the di�erent types of indexing knowledge. The process of matching a case with anexemplar (step 7.7) is described in Figure 6. 15



hiFigure 8: The Indexing Knowledge for chair. In Protos, this knowledge overlays thenetwork of matching knowledge (Figure 4).� the ine�ciency of applying the computationally expensive process of knowledge-basedmatching to many exemplars.To select and order the exemplars to match with a given case, Protos uses three types ofindexing knowledge: remindings, prototypicality, and exemplar di�erences. This sectiondescribes this knowledge, how it is used (see the upper part of Figure 7) and how it is learned(see the lower part of Figure 7).The �rst type of indexing knowledge, remindings, indexes categories and exemplars bya new case's features (cf., [50, 27] and \cue validity" in [45]). Protos uses remindings ascues to the case's classi�cation. A reminding from a feature to a category, such as backrestindexing chair (Figure 8), suggests that the category is the most general classi�cation forcases described with the feature. A reminding from a feature to an exemplar, such as pedestalindexing chair1 (Figure 8), suggests that the exemplar will match cases described with thefeature (cf., \idiosyncratic information" in [32]). Each reminding has an associated strength,which is used to order the list of candidate exemplars.When searching for an exemplar that matches a new case, Protos �rst collects remind-ings to categories (step 7.1 in Figure 7). Related categories are combined by summing thestrengths of duplicate remindings and by inheriting remindings from general categories tosubcategories (step 7.2). Only theN strongest combined remindings are returned (step 7.3).3Protos then selects several of the most prototypical exemplars (de�ned below) to representeach category (step 7.4). Finally, Protos collects remindings from case features to particularexemplars (step 7.5). The result is an ordered list of exemplars to try matching with thenew case.Protos learns a reminding by compiling an expert-supplied explanation of a case feature(step 7.11). For example, Protos derives a reminding from seat to chair (Figure 8) from theexplanation: seat enables holds(person) which is the function of chairProtos heuristically analyzes each explanation to determine the category or exemplar towhich the reminding should refer and the strength of the reminding. As in the previousexample, a reminding often refers to the last term in an explanation. However, some re-mindings are derived from a portion of the explanation. For example, one heuristic appliesto explanations of the form:3In the current implementation, N = 5. 16



hcase featurei � � � category1 has specialization category2 � � �and derives a reminding from h case feature i to category1, the most general category named.The strength of a reminding is a function of the relations and quali�ers used in the expla-nation. For example, from the explanation:fur is usually required by mammal which has specialization catProtos derives a moderate strength reminding from fur to mammal.Some remindings, called censors, are negative associations between case features andcategories or exemplars. A censor from a feature to a category suggests that cases describedwith the feature should not be classi�ed in the category. Protos uses censors to removeentries from the set of candidate classi�cations. Censors are derived from mutual exclusionrelations used in explanations.Remindings are not foolproof. The explanation from which a reminding is derived mightchange. For example, a reminding from a feature f to a category C might be derived fromthe explanation that \f causes C". Later, the domain expert might change the explanationto \f sometimes causes C", or \f causes C2 which has specialization C". Protos does notcheck remindings when matching knowledge is altered. Rather, a reminding is reassessedonly when it suggests an incorrect classi�cation (step 7.9). Protos uses the current matchingknowledge to explain the relationship between the classi�cation and the case feature thatevokes the reminding. From this explanation Protos derives a replacement for the faultyreminding.The second type of indexing knowledge, prototypicality, orders the exemplars withina category according to their record of success in previous classi�cations. When a new casereminds Protos of a category, the exemplars of that category are matched with the case inorder of decreasing prototypicality (step 7.4). For example, given a case with remindings tochair but no remindings to particular exemplars, Protos attempts to match the case withchair1 before chair2 (Figure 8). Prototypicality is a heuristic estimate of the psychologicalnotion of \family resemblance" [47], which is the degree to which an exemplar is similar toother category members. Prototypicality is incrementally learned: if a match between a caseand an exemplar is accepted by the expert then the exemplar's prototypicality is increasedby an amount proportional to the strength of the match (step 7.10).The third type of indexing knowledge, exemplar di�erences, indexes exemplars by thefeatures that distinguish them from exemplars with similar descriptions (cf., \indexing offailures" in [54, 28, 29]). After �nding an exemplar that matches a new case, Protos hillclimbsto the best matching exemplar (step 7.8). For example, if the case partially matches chair2,but has the unmatched feature armrests, chair1 is suggested by the exemplar di�erencerelating chair1 to chair2 (Figure 8).Protos learns an exemplar di�erence by matching a new case to a \near miss" [60] beforematching the case to an exemplar preferred by the expert (step 7.12). The near miss andthe preferred exemplar may be members of the same category or di�erent categories. Protos17



relates them by their di�erences to improve classi�cation accuracy on subsequent cases.Relating only those pairs of exemplars that were actually confused during classi�cationavoids the problem of recording a plethora of exemplar di�erences.4.4 An Example of Protos in Clinical AudiologyThe Protos classi�cation and learning algorithm (Figure 9) combines the algorithms formatching and selecting exemplars. This section applies the algorithm to a typical case thatProtos processed in the clinical audiology domain. The dialogue in Figure 1 provides anoutline of this section. There, the interaction between Protos and the expert on this case isgiven in an abridged form. This section presents and discusses the unabridged form of theinteraction { e.g., Figures 10 through 13 are screen-dumps of actual Protos output { andProtos's internal processing.After training Protos with 175 cases, the expert asks Protos to classify NewCase, whichhas the features (symptoms and test results) listed in Figure 10.There are remindings from some of these features to diagnostic categories, but no remind-ings to individual exemplars (Figure 11). Protos combines these remindings to produce anordered list of possible classi�cations for NewCase (Figure 9, step 1). Duplicate remindings(such as the four remindings to cochlear) are summed, and remindings to general categoriesare inherited by subcategories. As a result, remindings to the general categories cochlear,age-induced cochlear, and otitis media are inherited by their shared subcategory age-inducedcochlear with otitis-media.The strongest combined reminding is to the category age-induced cochlear with otitis-media. Protos attempts to con�rm this classi�cation (steps 3 and 4) by explaining thesimilarity of NewCase and a prototypical exemplar, Patient163 (Figure 12). The match isstrong, and there is no exemplar-di�erence knowledge that indexes a better match (step 5).The match is presented to the expert, who rejects it as incorrect (step 6).In response to the expert's rejection, Protos reassesses the indexing and matching knowl-edge that led to the misclassi�cation. First, Protos veri�es the remindings by searching thedomain theory for feature-to-category explanations (step 7). Then, Protos discusses withthe expert the matching knowledge that overestimated the similarity of NewCase and Pa-tient163 (step 8). In the current match, there are no feature-to-feature explanations to bediscussed, because there are only direct matches. There are some unmatched features, andProtos asks the expert to reconsider their importances. The expert tells Protos that one ofthese features, acoustic ref u(absent), is actually very important for category membership.Consequently, Protos's assessment of the similarity of the two cases decreases.Protos attempts to classify NewCase using its second strongest reminding, which is tothe category age and noise-induced cochlear. Protos selects a prototypical exemplar andexplains its similarity to NewCase (Steps 3 and 4). The result is shown in Figure 13. Mostof the features match directly, and the speech feature is matched using the knowledge:IF the category is age and noise-induced cochlear18



GIVEN: a case (NewCase) to classify.1 Collect and combine remindings from NewCase's features.Retain only the N strongest combined remindings.2 Create a list of exemplars ordered by reminding strength.REPEATREPEAT (consider the exemplars in decreasing order)3 Let Exemplar1 be the exemplar with the next highest reminding strength.4 Determine the similarity of NewCase and Exemplar1.UNTIL an su�ciently strong match is found.5 Use exemplar di�erences from Exemplar1 to locate a better match (Exemplar2).6 Use Exemplar2's category to classify NewCase and use the matchbetween Exemplar2 and NewCase to explain this classi�cation.Discuss this classi�cation and explanation with the expert:IF the expert rejects the classi�cation or explanation7 THEN Reassess the remindings from NewCase's features.8 Request new matching knowledge from the expert.9 ELSE (the expert approves the classi�cation and explanation)10 Increase prototypicality of Exemplar2.IF some features of Exemplar2 are unmatched11 THEN request feature-to-feature explanations from the expert.IF the match is very strong12 THEN Discard NewCase.13 ELSE Retain NewCase as an exemplar.14 Construct feature-to-category explanations.15 Estimate featural importances.16 Learn remindings for NewCase.17 IF NewCase was initially classi�ed or explained incorrectlyTHEN record exemplar di�erences.UNTIL the expert approves the classi�cation and explanation.Figure 9: The Protos Classi�cation and Learning Algorithm, combining the algo-rithms in Figure 6 and Figure 7. hiFigure 10: The Features of NewCase19



hiFigure 11: Remindings from NewCase's Features to Diagnostic CategorieshiFigure 12: Match between NewCase and an Exemplar of Age-Induced Cochlear withOtitis Media THEN speech(poor) is usually equivalent to speech(very poor).Of the four unmatched exemplar features, two are believed to be important: s neural(severe,1k)and bone(abnormal). The expert accepts the classi�cation and the explanation.Because important features are unmatched, Protos solicits explanations from the expert(step 11). He tells Protos thatbone(unmeasured) is sometimes equivalent to bone(abnormal)but is unwilling to equate the value of feature s neural in the exemplar with its value inNewCase. Because this important exemplar feature remains unmatched, Protos retainsNewCase as an exemplar of age and noise-induced cochlear (step 13).Protos acquires more matching knowledge by constructing feature-to-category explana-tions for the new exemplar (step 14). It constructs most of the explanations using existingknowledge, and the expert adds:acoustic ref c(elevated) is spurious to age and noise-induced cochlears neural(profound,2k) is sometimes consistent with cochlearwhich has specialization age-induced cochlearwhich has specialization age and noise-induced cochlear.NewCase introduced features into the domain theory, and Protos estimates their impor-tance to the category age and noise-induced cochlear (step 15). Because acoustic ref c(elevated)was explained to be spurious, Protos considers it unimportant. Protos heuristically evaluatesthe explanation that relates s neural(profound,2k) to the category. Because the relation ishiFigure 13: Match Between NewCase and an Exemplar of Age & Noise-Induced Cochlear20



quali�ed by \sometimes," it infers that s neural(profound,2k) is moderately important toage and noise-induced cochlear.Protos adds indexing knowledge for the new exemplar (step 16). Because s neural(profound,2k)is explained to occur with any type of cochlear hearing loss, Protos derives a reminding froms neural(profound,2k) to cochlear. The presence of the quali�er \sometimes" causes Protosto assign only a moderate strength to the reminding.Recall that Protos initially misclassi�ed NewCase by matching it with Patient163, theexemplar of age-induced cochlear with otitis-media. Protos records this near-miss by addingexemplar-di�erence knowledge (step 17). Protos asks the expert which features reliablydistinguish the exemplars and then annotates the relationship. Before concluding, Protosasks the expert to provide any additional information he wishes, and he declines.5 Evaluating ProtosIn this section we empirically evaluate Protos's competence at the learning and classi�cationtask de�ned in Section 2. First we describe the results of training Protos in the audiologydomain. We then compare the classi�cation accuracy achieved by Protos to that achieved byhuman audiologists and by several other programs, including simpli�ed versions of Protos.Some of these programs have a potential advantage in this comparison because they arespeci�cally designed to achieve high classi�cation accuracy without regard for explanatoryadequacy. On the other hand, a potential advantage for Protos is that it acquires, anduses for classi�cation, a considerable amount of domain knowledge that the other programsare not designed to use. These comparisons are intended to determine the signi�cance ofProtos's results in audiology and to identify the aspects of Protos that are most importantin achieving these results.5.1 Protos's Competence at the Knowledge Acquisition TaskTo evaluate Protos, we applied it to the task in clinical audiology of identifying a patient'shearing disorder. This domain was chosen for three reasons. First, it is a representativeapplication of heuristic classi�cation. Patients are assigned to diagnostic categories as aresult of uncertain inferences involving features such as symptoms, test results, and patienthistory. Second, an interested expert was available to serve as Protos's teacher. Third, agraduate program in audiology at the University of Texas provided a population of expertand student diagnosticians to whom Protos could be compared.Protos was trained and tested in clinical audiology by Dr. Craig Wier, an expert au-diologist and a professor of Speech Communication at the University of Texas at Austin.Cases were chosen at random from the Speech and Hearing Laboratory of the MethodistHospital in Houston, Texas.4 A case was considered correctly diagnosed if Dr. Wier and4Professor James Jerger graciously provided access to the patient records.21



Cases First Class Correct Preferred Class Correcttraining 57.7 81.7test 92.3 100.0Table 1: Percentage of Correct Classi�cations. \First class correct" is the percentageof cases in which the strongest combined reminding which produced a matching exemplarresulted in the correct classi�cation. \Preferred class correct" is the percentage of cases inwhich the strongest match Protos found was the correct classi�cation. The 24 training casesthat introduced new categories were excluded from these calculations.the laboratory clinicians agreed. (Of an original set of 230 cases, they disagreed on 4, whichwere not used for Protos's training or testing.) Protos's classi�cation accuracy is thepercentage of cases which it correctly diagnosed.Dr. Wier interacted directly with Protos without a knowledge engineer's assistance. Hetrained Protos with 200 cases in 24 diagnostic categories. This is approximately the numberof cases seen by a student during graduate school preparation for state certi�cation. Afterthis training, Protos was tested with 26 di�erent cases. Learning was \turned-o�," and theexpert provided no explanations. Protos's competence is evident in the following �gures,which describe its classi�cation accuracy, e�ciency, and autonomy gain.Table 1 reports Protos's classi�cation accuracy during training and testing. Accuracyimproved during training, culminating in 100% agreement with the expert during testing.Moreover, Protos's misclassi�cations were usually plausible categories that the expert judgedwere more speci�c than the evidence permitted.Classi�cation e�ciency was measured in two ways, by the storage required for classi�ca-tion, and by the e�ort required to �nd a correct match. Figure 14 illustrates the growth ofProtos's storage requirements, as measured by the number of categories, indices, and exem-plars. Overall, Protos retained 120 exemplars of 24 diagnostic categories. Figure 15 reportsthe number of exemplars retained in several common categories. Some categories, such asnormal and unknown cochlear hearing loss, are highly polymorphic, whereas others, such as�xation, are not. During the �rst 100 training cases, exemplar retention was 86%. Thereare two reasons for this high rate of retention. First, Protos was learning two-thirds of itsdiagnostic categories from these cases, including many of the highly polymorphic categories.Second, the conditional explanation capability was added to Protos after the �rst hundredcases had been presented.5 The expert estimates 30{40 fewer exemplars would have been re-tained with conditional explanations. This is consistent with Protos's lower rate of exemplarretention during the second hundred cases.Table 2 reports the number of categories considered and the number of exemplar matchesattempted by Protos, on average, before (and including) making a correct match. Both num-bers increased at approximately the same rate as the number of categories and exemplars.5The experiment was not restarted because the expert's time was limited.22



hiFigure 14: Protos's Acquisition of Categories, Exemplars and Indexing KnowledgehiFigure 15: Exemplar Retention for a Sample of the 24 Diagnostic CategoriesThe disproportionate increases that occurred with cases 151{200 were due to the large num-ber of atypical cases in that group.6Protos discussed every successful match with the expert, not just the strongest one. Theclassi�cation could be accepted or rejected. If accepted, the expert would assess the adequacyof the explanation. The expert rarely disagreed with Protos's explanations.The number of matches Protos discussed with the expert is a measure of Protos's auton-omy. Table 3 shows that most of Protos's classi�cation e�ort was independent of the expert.An indication that Protos gained autonomy is that the number of matches discussed withthe expert remained constant as the number of exemplars and categories grew.5.2 The Classi�cation Accuracy Achieved by AudiologistsProtos's classi�cation performance was compared with that of 19 clinicians from the De-partment of Speech Communication of the University of Texas. Two were supervisors of thedepartment's clinical practicum. The other 17 were graduate students with more than oneyear of clinical experience. On average, the subjects did considerably less well than Protos,although one supervisor performed almost as well (Table 4).The student clinicians commonly complained that some cases could not be diagnosedbecause information that they believed was essential was missing from the case descriptions.6Dr. Wier counted seven atypical cases in this group, compared with two in the previous group of 50cases. Cases Classi�cations Exemplars1-50 2.7 *51-100 2.8 *101-150 2.5 4.6151-200 4.0 7.4test 3.7 5.3Table 2: Protos's Mean E�ort to Find a Correct Match (`*' indicates data unavail-able). 23



Cases Matches Discussed(per case)1-50 1.751-100 1.6101-150 1.5151-200 1.9test 1.1Table 3: Matches Discussed With the ExpertSubjects Preferred Class Correct Any Class CorrectSupervisor 1 85% 92%Supervisor 2 69% 81%Student (mean) 69% 73%Table 4: Correct Classi�cations by Clinicians. Each clinician rank-ordered his diagnosesof each case. \Preferred Class Correct" is the percentage of cases in which the clinician'stop-ranked diagnosis was correct. \Any Class Correct" is the percentage of cases in whichthe clinician listed the correct diagnosis.The case descriptions in the audiology data are extremely incomplete, supplying, on aver-age, less than half the possible features. However, the clinical supervisors found the casedescriptions adequate. 75.3 The Classi�cation Accuracy Achieved by ID3The incompleteness of the case descriptions was also an obstacle for ID3, a well-known con-cept formation program that learns decision trees from examples. In [44], Quinlan describesfour ways to adapt ID3 to cope with incomplete case descriptions. Each of these variants ofID3 was implemented, applied to the 200 audiology training cases, and evaluated by classify-ing the 26 audiology test cases with the resulting decision trees [18]. None of the variants ofID3 achieved high classi�cation accuracy. The highest accuracy, a mere 38%, was achieved bytreating \missing" as a feature-value. The other variants, which represent various methodsof estimating missing features, achieved considerably lower classi�cation accuracies.In [44], the methods of estimating missing features perform well on data with the followingproperties:� The percentage of features that are missing, called the \ignorance level," is very small.Quinlan claims that \in practice, an ignorance level of even 10% is unlikely" [44, p.7Fromyears of teaching, our domain expert believes that novice audiologists frequently rely on unnecessarydata. The reliance of novice diagnosticians on unnecessary data has also been reported in formal studies,e.g., [20]. 24



99].� Missing features are randomly distributed across cases.The methods perform poorly on the audiology data because the data exhibits neither ofthese properties. The data has an ignorance level exceeding 50%.8 Furthermore, missingfeatures are not distributed randomly throughout the audiology data set. For example,yes/no features are always missing when their value is \no." More generally, features aremissing when they are known to be irrelevant for classi�cation or redundant with featuresalready present in the case description.Protos performs well given data in which missing features have the properties exhibitedby the audiology data. Although the ignorance level is very high, important features eitherwere given or were inferable. Unimportant features, which may be missing in some casesand present in others, have little e�ect on the matching process.5.4 The Classi�cation Accuracy Achieved by Simple Exemplar-Based ProgramsKibler and Aha [25] describe three similarity-based exemplar learning programs, called Prox-imity, Growth, and Shrink. Like Protos, these programs learn by retaining exemplars, andthey classify a test case by assigning it to the category of the exemplar that best matchesthe test case. Unlike Protos, they do not use knowledge during classi�cation: a test case ismatched against all exemplars, and the strength of a match is determined by the number offeatures that are identical in the exemplar and the test case. The programs di�er from eachother only in the rule used to decide whether to retain a new training case as an exemplar.The matching algorithm in Kibler and Aha's programs is reasonably well-suited to datawhose missing features exhibit the properties of the audiology data. Consequently, thesealgorithms have a much better chance of achieving high classi�cation accuracy on the au-diology data than did any of the variants of ID3. And indeed, when the programs wereimplemented and tested, Shrink and Growth achieved a classi�cation accuracy of 65%, andProximity achieved a classi�cation accuracy of 77% [30]. The method of calculating matchstrength in Kibler and Aha's programs can be replaced with Protos's method by assumingthat no distinct features are equivalent and that all features have the same importance.When this was done, the performance of Shrink and Growth did not change, but Proximityachieved a classi�cation accuracy of only 62% [30]. This suggests that the low-level detailsof Protos's match strength calculation could be improved.8Very high ignorance may be quite common in practice. For example, [48] reports a 50% ignorance level.25



5.5 The E�ect of Deleting Knowledge from Protos on Classi�ca-tion AccuracyProtos derived indexing and matching knowledge from the explanations supplied by theexpert. To determine the degree to which Protos's high classi�cation accuracy dependedon these two types of knowledge, an ablation study [14] was conducted in which variouscombinations of Protos's knowledge were used to classify the audiology test cases. Becausethis type of study would be very di�cult to run on Protos itself, a program, called M-Protos, was constructed speci�cally for these experiments. M-Protos di�ers from Protos inmany ways, notably that it cannot acquire knowledge. However, its classi�cation process issu�ciently similar to Protos's that the results of the experiments apply equally to M-Protosand Protos. Details of M-Protos and of the experimental results are given in [30].In the absence of indexing knowledge, M-Protos matches all exemplars with the giventest case. In the absence of matching knowledge, M-Protos reduces the match strength a�xed amount for every feature in the exemplar that does not occur in the test case. M-Protos is considered to have correctly classi�ed the test case if the strongest of its attemptedmatches is an exemplar in the correct category. Given all of the audiology training cases,and no indexing or matching knowledge, M-Protos achieved a classi�cation accuracy of 65%,similar to that achieved by Kibler and Aha's programs. The accuracy dropped to 58% whenmatching knowledge was added. With indexing knowledge, but no matching knowledge, M-Protos achieved 92%. With both indexing and matching knowledge, M-Protos, like Protos,achieved 100% classi�cation accuracy.For the most part, these results are consistent with the general philosophy of exemplar-based programs. Classi�cation accuracy is primarily achieved by using direct match and alarge, well-indexed set of exemplars; knowledge-based matching boosts classi�cation accu-racy, but is not its primary source. Lack of indexing knowledge resulted in the inappropriateuse of matching knowledge and a concomitant increase in misclassi�cations (as discussed atthe end of section 4.2.2.).However, the dependence of classi�cation accuracy on matching knowledge in this experi-ment was surprisingly small. This may be explained by peculiarities of our audiology trainingthat will not necessarily arise in other domains, or even in the audiology domain given dif-ferent training. With the case language used in our experiments, direct match worked well.In a typical correct match between an exemplar and a case, 8 of the 11 exemplar featuresmatched features in the case, and 7 of these matched directly. Thus, there was limited op-portunity to use matching knowledge, either to increase the strength of the correct match orto reduce the strength of incorrect matches. Furthermore, much of the matching knowledgethat did exist was expressible only as conditional explanations of feature equivalence, a formof explanation that was not available during the �rst half of training. This prevented asigni�cant body of matching knowledge from being entered by the expert.26



6 SummaryOur research developed a successful approach to the task of concept learning for heuristicclassi�cation. This task di�ers from the usual concept learning task in three ways. A programfor this task must explain its classi�cations, accommodate incomplete case descriptions, andlearn domain-speci�c knowledge for inferring case features needed for classi�cation.Our approach to this task is exemplar-based. Concepts are learned by retaining exem-plars, and new cases are classi�ed by matching them to similar exemplars. This approachhas strong psychological support, but it raises two problems: measuring similarity and ef-�ciently �nding an exemplar to match. We solve these problems by augmenting exemplarswith matching knowledge and indexing knowledge. A new case is classi�ed by using indexingknowledge to �nd an exemplar and using matching knowledge to explain similarity. By inter-leaving heuristic classi�cation and knowledge acquisition, this approach permits a programto start at a level of utter incompetence and to achieve a level of expert competence.To evaluate our approach, we built the Protos program and applied it to the task inclinical audiology of identifying a patient's hearing disorder from symptoms, test results,and history. This evaluation yielded many encouraging results:� After a reasonable amount of training, Protos achieved very good classi�cation accuracywithout using excessive computational resources.� Protos's classi�cation accuracy is comparable to that of experienced human experts,and is signi�cantly better than that of the machine learning alternatives we examined.The two main reasons for this are (1) Protos's ability to deal with incomplete casedescriptions and (2) Protos's use of indexing and matching knowledge derived fromexplanations provided by the expert.� Most of the explanations Protos generated for a case's classi�cation were acceptableto the expert.� Protos gained autonomy. The number of matches Protos discussed with the expertremained constant as the number of exemplars and categories grew.The evaluation of Protos also revealed several shortcomings, which we are addressingwith our current research. The �rst shortcoming is that Protos adds new knowledge withoutconsidering its relation to existing knowledge. This allows inconsistencies to go undetecteduntil they cause a classi�cation or explanation failure, which is sometimes undesirable. KenMurray's research [41, 40] explores the task of integrating new information into existingknowledge. The second shortcoming of Protos is that it does not adapt its explanations todi�erent users. The research of Liane Acker, James Lester, and Art Souther [56] exploresthe generation of coherent explanations that can vary in viewpoint and level of abstraction.This research and Ken Murray's both use a large-scale, multifunctional knowledge base forthe domain of plant anatomy, physiology, and development [43]. The third shortcoming of27
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