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Cambridge, MA:  AAAI/MIT Press, 1994.Automated Modeling for Answering Prediction Questions:Selecting the Time Scale and System Boundary�Je� Rickel and Bruce PorterDepartment of Computer ScienceUniversity of TexasAustin, Texas 78712rickel@cs.utexas.edu, porter@cs.utexas.eduAbstractThe ability to answer prediction questions is cru-cial to reasoning about physical systems. A pre-diction question poses a hypothetical scenarioand asks for the resulting behavior of variables ofinterest. Prediction questions can be answeredby simulating a model of the scenario. An ap-propriate system boundary, which separates as-pects of the scenario that must be modeled fromthose that can be ignored, is critical to achievinga simple yet adequate model. This paper presentsan e�cient algorithm for system boundary selec-tion, it shows the important role played by themodel's time scale, and it provides a separate al-gorithm for selecting this time scale. Both algo-rithms have been implemented in a compositionalmodeling program called tripel and evaluated inthe plant physiology domain.1 IntroductionThe ability to answer prediction questions is crucial toreasoning about physical systems. A prediction ques-tion poses a hypothetical scenario (e.g., a plant whosesoil moisture is decreasing) and asks for the result-ing behavior of speci�ed variables of interest (e.g., theplant's growth rate). Such questions are important inverifying designs, testing diagnostic hypotheses, andtutoring in science and engineering.Prediction questions can be answered by simulat-ing a model of the scenario. Simulation provides thedesired predictions, and the model additionally sup-ports subsequent explanation. The model must be suf-�ciently comprehensive to ensure reliable predictionsyet simple so simulation is e�cient and the explana-tion is comprehensible.To balance these competing requirements, a modelermust choose a system boundary that separates aspectsof the scenario that must be modeled from those that�Support for this research is provided by a grant fromthe National Science Foundation (IRI-9120310), a contractfrom the Air Force O�ce of Scienti�c Research (F49620-93-1-0239), and donations from the Digital EquipmentCorporation.

can be ignored. Despite the importance of choosing asuitable system boundary, current modeling programsfor answering prediction questions shift responsibilityfor this issue to the people posing the question or rep-resenting the domain knowledge (see Section 8).This paper presents an e�cient algorithm forchoosing system boundaries and explains its role intripel, a modeling program for answering predictionquestions.1 The paper shows that the system bound-ary can be chosen e�ciently by �rst identifying thetime scale on which the variables of interest are af-fected in the scenario. It presents a separate algorithmfor determining this time scale. The correctness ande�ciency of our methods have been evaluated on ques-tions about plant physiology.2 The Modeling TaskThe input to the modeler consists of a predictionquestion and domain knowledge. The question hastwo parts: the scenario and the variables of interest.The scenario includes physical objects, relations amongthem, and behavioral conditions. Behavioral conditionsspecify the initial value of selected variables (e.g., theamount of soil water is above the permanent wiltingpercentage) and/or their behavior (e.g., the amount ofsoil water is decreasing).tripel uses the compositional modeling approachintroduced by Falkenhainer and Forbus (1991), inwhich the domain knowledge provides a set of modelfragments, the building blocks for models. Eachmodel fragment describes some aspect of the scenario.(Falkenhainer and Forbus show how to generate themodel fragments for a scenario from general domainknowledge.) The modeler constructs a model of thescenario by choosing a subset of the model fragments.Model fragments specify relations among variablesof the scenario. In plant physiology, inuences arethe most natural representation for such relations. Aninuence is a causal relation between two variables,as in Qualitative Process (QP) Theory (Forbus 1984),1tripel is an acronym for \Tailoring Relevant Inu-ences for Predictive and Explanatory Leverage." It is alsoa style of strong ale made by Trappist Monks in Belgium.



along with its operating conditions (behavioral condi-tions under which it holds) and associated modeling as-sumptions. The variables are real-valued, time-varyingproperties of the scenario. There are two types of inu-ences: a functional inuence speci�es that one variableis a function of another (e.g., QP theory's indirect in-uences), and a di�erential inuence speci�es that the�rst derivative of one variable is a function of anothervariable (e.g., QP theory's direct inuences).In tripel, each inuence serves as a model frag-ment. This is natural, since each is an independentfact. It also allows the modeler exibility to include orexclude any inuence from the model. To emphasizetheir role in modeling, we call the inuences (modelfragments) for a scenario the candidate inuences.The output of the modeler, the scenario model, is asubset of the candidate inuences. The variables ref-erenced in this model are partitioned into exogenousvariables, whose behavior is determined by inuencesexternal to the model, and dependent variables, whosebehavior is determined by the model. To determinewhich combinations of candidate inuences constitutean acceptable scenario model, the domain knowledgeincludes coherence constraints, which specify inconsis-tent combinations of modeling assumptions (e.g., as-sumption classes (Falkenhainer & Forbus 1991)).Once constructed, the scenario model is simulatedstarting from the initial state, and the model and sim-ulation results are used to answer the question andexplain the answer.3 Modeling AlgorithmThe exogenous variables of a scenario model consti-tute its system boundary. To illustrate the role of sys-tem boundary decisions in compositional modeling, webriey present our modeling algorithm.tripel conducts a best-�rst search for a scenariomodel for the question. Each state in the search spaceis a partial model, a model that may contain free vari-ables (variables not yet chosen as exogenous or depen-dent). The initial state in the search is a partial modelconsisting only of the variables of interest, all free. Thesuccessor function, described below, extends a partialmodel with alternative ways of modeling one of its freevariables; this may add new free variables to the model.A partial model is pruned from the search if it is in-coherent (i.e., violates the coherence constraints); anyextension of an incoherent partial model is also inco-herent. The goal of the search is to �nd the simplestadequate scenario model for the question.A scenario model is adequate if it satis�es the fol-lowing conditions: it includes all variables of interest,it satis�es all coherence constraints, its system bound-ary (set of exogenous variables) is adequate (discussedin Section 4), and each dependent variable has an ade-quate set of inuences on it (i.e., the inuences repre-sent all signi�cant inuencing phenomena at some levelof detail).

The adequate models are partially ordered by sim-plicity. While any simplicity criteria could be used, wede�ne one model as simpler than another if it has fewervariables. With this criterion, the search ends when anadequate model is found that is at least as simple asall remaining partial models; these partial models canonly grow. This criterion also serves as the evaluationfunction for the best-�rst search.The successor function, extend-model, extends a par-tial model with alternative ways of modeling one of itsfree variables. Extend-model �rst determines whetherall the free variables can be exogenous; if so, it markseach one as exogenous and returns the resulting model.Otherwise, it chooses a variable that must be depen-dent and determines all combinations of candidate in-uences on that variable that would provide an ade-quate model of it (multiple combinations arise fromalternative ways of modeling some of the underlyinginuencing phenomena).2 Extend-model returns a setof new partial models, each the result of extending theoriginal partial model with one of the combinations.To extend the original partial model with one ofthe combinations of candidate inuences, extend-modeladds the inuences to the model, marks the variableas dependent, and adds any new free variables to themodel. These new free variables include any variablereferenced by the new inuences that was not alreadyin the model (e.g., an inuencing variable or a variableappearing in operating conditions).System boundary decisions arise in the successorfunction extend-model. Given a partial model andone of its free variables, extend-model must determinewhether the variable can be exogenous. Such decisionsare important; if the variable is dependent, the modelmust be extended to include additional inuences (onthat variable) and variables (referenced by those in-uences). The next section describes tripel's criteriaand algorithm for determining if a variable can be clas-si�ed as exogenous.4 System Boundary SelectionSelection CriteriaAn exogenous variable must satisfy two criteria. First,by de�nition, the variable must not be \signi�cantly in-uenced" (de�ned below) by any other variable in themodel. Second, the variable must not be signi�cantlyinuenced by any driving variable (variable referencedin the question's behavioral conditions). The secondcriterion ensures that the system boundary doesn't dis-connect the model from relevant behavioral conditions.To determine whether one variable signi�cantly in-uences another, tripel uses the candidate inuences.2This step is not discussed in this paper. tripel has amethod for identifying these combinations, but any methodwill do; the algorithms in this paper do not depend on howthe combinations are determined.2



The candidate inuences form a graph in which vari-ables are nodes and the inuences are directed edgesfrom their inuencing variable to their inuenced vari-able. One variable signi�cantly inuences another vari-able if and only if there is an inuence path (path inthe graph) from the �rst variable to the second andevery inuence in the path is signi�cant.tripel determines whether an individual inuenceis signi�cant using time scale information. Processescause signi�cant change on widely disparate timescales. For example, in a plant, water ows throughmembranes on a time scale of seconds, solutes owthrough membranes on a time scale of minutes, growthrequires hours or days, and surrounding ecological pro-cesses may occur on a time scale of months or years.In tripel, each di�erential inuence, which speci�esan e�ect of a process, has an associated modeling as-sumption that speci�es the fastest time scale on whichthe e�ect is signi�cant. Functional inuences, beinginstantaneous, are signi�cant on any time scale. Afterchoosing an appropriate time scale of interest for thequestion (as discussed in Section 5), tripel concludesthat any candidate inuence with a slower time scaleis insigni�cant.For example, consider the question \What happensto the amount of ABA in a plant's guard cells whenthe turgor pressure in its leaves decreases?" Turgorpressure is the hydraulic pressure in plant cells. ABA(abscisic acid) is a hormone that controls the plant'sresponse to water stress. As will be discussed in Sec-tion 5, this question is best answered on a time scaleof minutes.Part (A) of Figure 1 shows some of the candidateinuences for the example question. Leaf turgor pres-sure signi�cantly inuences guard cell ABA amountbecause there is an inuence path from the former tothe latter (along the top of the �gure), and every in-uence in this path is signi�cant on a time scale ofminutes. However, the water uptake rate (lower leftcorner) does not signi�cantly inuence guard cell ABAamount, because the �rst inuence on the inuencepath is signi�cant only on a time scale of hours orlonger.Selection AlgorithmUsing the notion of inuence paths, extend-model couldrun a graph connectivity algorithm for each systemboundary decision. A free variable in a partial modelcan be exogenous if the graph algorithm determinesthat the variable is not signi�cantly inuenced by anydriving variable of the question or any other variablein the model.However, this naive algorithm is ine�cient. Eachrun of the graph algorithm will repeat much of thesearch that previous runs did. To avoid this prob-lem, tripel determines all variables and inuencesthat might be relevant to the question and computesand caches connectivity relations among the variables

before beginning the search for an adequate scenariomodel. These potentially relevant variables and inu-ences constitute the search space that would be repeat-edly searched by the naive algorithm.To identify all the potentially relevant variables andinuences, tripel starts with the variables of interestand conducts a breadth-�rst search backwards throughthe candidate inuences. If a variable is potentiallyrelevant, so is any signi�cant inuence on it. If aninuence is potentially relevant, so are its inuencingvariable and any variables appearing in its operatingconditions. This search ends at variables that are notsigni�cantly inuenced on the time scale of interestor variables that are signi�cantly inuenced only bypreviously-discovered relevant variables (i.e., throughfeedback loops).In the example in Figure 1, the search for poten-tially relevant variables and inuences begins with theinuences on guard cell ABA amount. The inuencesof transpiration on leaf mesophyll water and water up-take on xylem water are insigni�cant on the time scaleof interest (minutes); removing these two inuencesdisconnects the potentially relevant variables from theremainder of the candidate inuences, including thefeedback loop through transpiration. Part (B) of Fig-ure 1 shows the result, the potentially relevant vari-ables and inuences for the example.As illustrated by the example, the search for po-tentially relevant variables and inuences will typi-cally have to traverse only a fraction of the variablesand candidate inuences of the scenario. In naturalsystems, like plants, animals, and ecosystems, mod-ularity arises from the widely disparate time scalesat which processes cause change (Allen & Starr 1982;Kuipers 1987; O'Neill et al. 1986; Rosswall, Wood-mansee, & Risser 1988; Segal 1980). The result is a hi-erarchy of nearly decomposable subsystems; processesacting within a subsystem cause signi�cant changequickly, while processes acting across subsystems causechange more slowly (Allen & Starr 1982; Kuipers 1987;O'Neill et al. 1986; Simon & Ando 1961). The timescale of interest �lters out inuences that are signi�-cant only on slower time scales, thus isolating the vari-ables of interest in their own nearly decomposable sub-system. The search for potentially relevant variablesand inuences is con�ned to this subsystem becausethe inuences from other subsystems are insigni�cant.After determining the graph of potentially rele-vant variables and inuences, tripel constructs theadjacency matrix for the transitive closure of thisgraph. This two-dimensional, Boolean connectivityarray records the connectivity between every pair ofpotentially relevant variables; thus, tripel can tellwhether any variable signi�cantly inuences any othervariable by consulting a single cell of the array. Thisarray can be computed e�ciently; the Floyd-Warshallalgorithm computes it in �(n3) time, where n is thenumber of nodes (potentially relevant variables) in the3
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Figure 1:(A) A subset of the candidate inuences for the question \What happens to the amount of ABA in a plant's guard cells whenthe turgor pressure in its leaves decreases?" The driving variable, leaf turgor pressure, and the variable of interest, guardcell ABA amount, are shown in bold. Each inuence is labeled with its type (Q+ and Q� are types of functional inuences,and I+ and I� are types of di�erential inuences) and the time scale on which it is signi�cant (functional inuences aresigni�cant on any time scale). Ellipses indicate connection to the remainder of the candidate inuences. To focus on systemboundary issues, the �gure does not show alternative levels of detail. (B) The potentially relevant variables for the question.(C) An adequate scenario model for the question. 4



graph (Cormen, Leiserson, & Rivest 1989).After computing the connectivity array, tripelsearches for an adequate scenario model as describedin Section 3. Extend-model consults the array for eachsystem boundary decision. A free variable v in a par-tial model m must be dependent in m (and any exten-sion of m) if, in the connectivity array, v is inuencedby any other variable in m or any driving variable ofthe question. If not, v can be exogenous in m butnot necessarily in extensions of m, since they may con-tain additional variables that inuence v. Therefore,as described in Section 3, extend-model doesn't markvariables in a partial model as exogenous until all re-maining free variables in that model can be exogenous.At that point, the model is complete, so no other vari-ables need to be added.In the example, the search for an adequate scenariomodel begins with the partial model consisting onlyof guard cell ABA amount. tripel incrementally ex-tends this model until its contents match those shownin Part (C) of Figure 1. At this point, the free variableleaf turgor pressure is chosen as exogenous because itsatis�es both criteria: it is not signi�cantly inuencedby any other variable in the partial model nor by anyother driving variable. This model is the simplest ad-equate model for the question.5 Time Scale SelectionA time scale of interest provides an important source ofpower in modeling. Besides providing the criteria forassessing the signi�cance of inuences, a time scale ofinterest also allows tripel to use quasi-static approx-imations, in which fast processes are modeled throughsimple functional relations that summarize their equi-librium results (Iwasaki 1988; Kuipers 1987; Rickel &Porter 1992; Scha�er 1981; Simon & Ando 1961). Sim-ilarly, tripel can model separate pools of substance orenergy as a single aggregate compartment when theyare kinetically distinguishable only on time scales muchfaster than the time scale of interest (Jacquez 1985;Simon & Ando 1961; Zeigler 1980). Thus, a time scaleof interest allows many important model simpli�ca-tions.However, the person asking the question cannot beexpected to provide the time scale of interest. Typi-cally, this person will not even know which inuenceslink the behavioral conditions to the variables of in-terest, much less their time scales. The modeler mustchoose, as the time scale of interest, a time scale thatis adequate for answering the question. This sectiondescribes tripel's criteria and algorithm for choosinga time scale of interest.Selection CriteriaA prediction question asks for the e�ects of behavioralconditions on variables of interest. Therefore, a timescale is adequate for answering the question only if,

on that time scale, every variable of interest is signi�-cantly inuenced by some driving variable. Addition-ally, assuming that a prediction question asks for thebehavior of the variables of interest beyond the initialstate, the inuence paths relating the driving variablesto the variables of interest must be capable of causingchanges in the variables of interest.Through an individual inuence, one variable cancause change in another variable in two ways: (1) witha di�erential inuence, a speci�ed value for the inu-encing variable (along with values for other inuencingvariables) provides the rate of change of the inuencedvariable; (2) in contrast, a functional inuence cancause change only if the inuencing variable is chang-ing (Forbus 1984). This implies that a driving variablecan cause change in a variable of interest only if theinuence path connecting them contains a di�erentialinuence or the behavioral conditions specify that thedriving variable is changing (in which case a path offunctional inuences will propagate the change). If ei-ther case is satis�ed, the inuence path is a di�erentialinuence path.In our earlier example, since the question speci�esthat turgor pressure is decreasing, any inuence pathfrom turgor pressure to another variable is a di�eren-tial inuence path, capable of causing change. In con-trast, if the question only speci�ed that turgor pressureis above the \yield point" (above which the pressurecauses cell growth), an inuence path leading from tur-gor pressure is di�erential only if it contains a di�eren-tial inuence (as is the case with the inuence of turgorpressure on cell growth).Using this concept, the criterion for an adequatetime scale is more concrete: A time scale is adequatefor answering a prediction question only if, for ev-ery variable of interest, there is a di�erential inuencepath, consisting solely of candidate inuences that aresigni�cant on that time scale, leading from some driv-ing variable to that variable of interest. This criterionprevents tripel from selecting a time scale on whichsimulation could only predict the initial state of thevariables of interest resulting from the behavioral con-ditions.Selection AlgorithmWhile the search for inuence paths during systemboundary selection is kept manageable by the timescale of interest, no such focus is available when choos-ing the time scale of interest. The complete set ofcandidate inuences could be enormous, so generatingthat set and searching through it for inuence pathscould be prohibitively expensive. E�cient time scaleselection requires the ability to generate and searchthrough only a fraction of the candidate inuences.tripel gains e�ciency by starting with the fastestpossible time scale and testing successively slower timescales until it �nds one that is adequate. When tripeltests a time scale, it can ignore all inuences that are5



signi�cant only on slower time scales, so each test op-erates on a manageable fraction of the candidate inu-ences. The set of signi�cant inuences grows monoton-ically as tripel considers slower time scales, so tripelperforms the inexpensive tests before the more expen-sive ones. tripel chooses the �rst adequate time scaleit �nds as the time scale of interest.To determine whether a candidate time scale is ad-equate, tripel conducts a breadth-�rst search, start-ing from the driving variables, for variables that arereachable via signi�cant (on that time scale) inuencepaths. For each reachable variable, tripel recordswhether it is reachable via a di�erential inuence pathor a functional one. The actual inuence paths are notrecorded. The search ends when every variable of in-terest is reachable by a di�erential inuence path (inwhich case the time scale is adequate) or when the setof variables reachable at that time scale is exhausted(in which case the time scale is not adequate).For the example question, tripel �rst tests a timescale of seconds. Part (A) of Figure 1 illustrates thatonly the ABA synthesis rate is signi�cantly inuencedby leaf turgor pressure on this time scale. Next, tripeltests a time scale of minutes. On this time scale, thereis a di�erential inuence path from leaf turgor pressureto guard cell ABA amount (along the top of the �gure),so this time scale is chosen.6 EvaluationTo evaluate our methods of time scale and systemboundary selection, we tested tripel on seven pre-diction questions concerning the physiology of a proto-typical plant, including the example described above.Each question speci�es the qualitative behavior of onevariable and asks for the resulting behavior of another.Our plant physiology knowledge base provides 77variables and 155 candidate inuences for this plant.Of the variables, 33 represent an amount of some sub-stance or energy in a plant compartment, and 39 rep-resent the rates of di�erent processes. The candidateinuences cover processes of water regulation, carbondioxide regulation and carbohydrate regulation. Thetime scales of these processes range from seconds tohours. Many phenomena are represented at multiplelevels of detail, based on the following:� aggregation of pools (e.g., modeling water in theroots and stem as separate pools or as a single ag-gregate pool)� aggregation of processes (e.g., modeling photosyn-thesis as an aggregate process or separately model-ing its components, the light and dark reactions)� quasi-static approximations (i.e., modeling the netequilibrium result of a set of processes or modelingtheir underlying dynamics)For each question, tripel chose the appropriatetime scale and a reasonable system boundary, as

judged by a domain expert. Consequently, the cho-sen scenario models included the variables and inu-ences required for answering each question, and theyexcluded irrelevant ones. On average, the models con-tained 11 variables and 14 inuences, substantiallyfewer than the number in the knowledge base. Thelargest scenario model contained only 15 variables and20 inuences. While the simplicity of these modelsis partially due to omitting unnecessary detail, theirsimplicity also reects a well-chosen system boundary;each model excludes a number of plant subsystems.Moreover, tripel generated these models e�ciently,requiring less than 15 seconds to �nd the time scaleand the simplest adequate model for each question. Ineach case, connectivity analysis | the most expensivestep in determining the system boundary | was per-formed on only a fraction of the inuence graph. Inthe best case, connectivity analysis considered only 4potentially relevant variables, and it considered 51 inthe worst case. This shows how e�ectively the timescale of interest restricts the set of potentially relevantvariables and inuences; disregarding time scale, allthe variables in the knowledge base are connected. Weexpect the fraction of potentially relevant variables tobe even smaller for a knowledge base with a wider va-riety of time scales and a more extensive coverage ofplant subsystems.7 Future WorkOur method of time scale selection has several limi-tations. It assumes that a single time scale will suf-�ce for answering the question, but some questionsrequire multiple time scales (Iwasaki 1990; Kuipers1987). Also, the criteria for an adequate time scaleare necessary but not always su�cient; the most im-portant connections between the behavioral conditionsand the variables of interest may not lie at the fastestadequate time scale.The algorithm for system boundary selection can bestrengthened with additional methods for recognizinginsigni�cant inuences. Each such method further re-duces the number of potentially relevant variables andtightens the resulting system boundary.A more thorough evaluation requires more exten-sive domain knowledge. We are currently evaluatingtripel using the Botany Knowledge Base (Porter etal. 1988), which includes over 200 processes describedat multiple levels of detail.We expect our methods to apply to a wide varietyof domains. In addition to biological and ecologicaldomains, time scale knowledge appears useful in en-gineering domains as well. Kokotovic, O'Malley, andSannuti (1976) and Saksena, O'Reilly, and Kokotovic(1984) survey hundreds of applications in many di�er-ent engineering �elds in which models are simpli�edusing knowledge of the disparate time scales of pro-cesses.6



8 Related WorkThe modeling algorithm of Falkenhainer and Forbus(1991) requires, as input, a system decomposition forthe scenario. In contrast, our algorithm determinessystem boundaries using only the model fragments.Falkenhainer and Forbus assume the system decom-position is based on partonomic structure; however,O'Neill et al. (1986) argue that approximate systemboundaries in natural systems arise from di�erencesin process rates and that these boundaries may notcorrespond to standard structural decompositions. Fi-nally, as illustrated in our previous paper (Rickel &Porter 1992), Falkenhainer and Forbus's approach toselecting system boundaries is not su�ciently sensitiveto the connection between behavioral conditions andvariables of interest.The modeling algorithm of Nayak et al. (Nayak1992; Nayak, Joskowicz, & Addanki 1992) requires\model-as" constraints, provided in the domain knowl-edge, to identify potentially relevant model fragments.These constraints don't ensure that the model includesan inuence path from the driving variable to the vari-able of interest, so a subsequent step adds model frag-ments until the model is adequate. In contrast, ourmethod �nds all potentially relevant variables and in-uences using only the candidate inuences, and thesevariables and inuences will include the signi�cant in-uence paths from the driving variables to the variablesof interest. Furthermore, their criteria for choosing ex-ogenous variables are suitable for their task, explaininga speci�ed causal relation, but are too weak for predic-tion questions. Their criteria only require some inu-ence path from the driving variable to the variable ofinterest; the resulting scenario model may include anexogenous variable that, in reality, is signi�cantly in-uenced by another variable in the model.The modeling algorithms of Williams (1991) andIwasaki and Levy (1993) require, as input, the vari-ables that can be exogenous for the question. Althoughthese algorithms can determine which exogenous vari-ables must be included in the scenario model, neitheralgorithm can determine exogenous variables automat-ically.Iwasaki (1990), Kuipers (1987), and Yip (1993)present modeling and simulation methods that exploittime scale information, but they do not provide meth-ods for selecting the time scale of interest.The time scale on which a di�erential inuence issigni�cant bundles two pieces of knowledge: the ratesat which the inuencing process operates and the levelof change in the inuenced variable that is consideredsigni�cant. tripel directly associates di�erential in-uences with their time scale of signi�cance becausethis coarse level of knowledge is often more readilyavailable than the underlying knowledge. However, itmay be useful or necessary in some domains to inferthe time scale from the underlying knowledge, espe-cially if the level of signi�cant change depends on the

question. Iwasaki (1990) has explored this approach.The work described in this paper builds on our pre-vious methods for selecting a time scale and systemboundary (Rickel & Porter 1992). The previous meth-ods had to keep track of all the particular interactionpaths, which can be prohibitively expensive when thereare many candidate inuences. In contrast, our cur-rent methods require only connectivity information, fortwo reasons: (1) the inuences in a model are selectedthrough incremental extension of partial models (Sec-tion 3) rather than a search for all interaction paths,and (2) a time scale of interest is selected by testingcandidate time scales one by one (Section 5).9 ConclusionsTo provide a reliable, comprehensible answer to a pre-diction question, a modeler must choose an appropri-ate system boundary. The time scale of interest playsan important role in selecting the system boundary;tripel uses this time scale to identify insigni�cant in-uences. To choose the time scale of interest and sys-tem boundary, tripel searches for relevant inuencepaths. Time scale knowledge makes this search prac-tical. Our evaluation indicates that tripel e�cientlyselects appropriate time scales and system boundaries.10 AcknowledgementsWe appreciate the help of Susan Branting, Dan Clancy,Brian Falkenhainer, Bert Kay, and Rich Mallory, all ofwhom provided valuable comments on earlier drafts;and our botany experts Bassett Maguire and ArtSouther, both of whom helped evaluate tripel.ReferencesAllen, T., and Starr, T. 1982. Hierarchy. Chicago:University of Chicago Press.Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L.1989. Introduction to Algorithms. New York:McGraw-Hill.Falkenhainer, B., and Forbus, K. 1991. Composi-tional modeling: Finding the right model for the job.Arti�cial Intelligence 51:95{143.Forbus, K. 1984. Qualitative process theory. Arti�cialIntelligence 24:85{168.Iwasaki, Y., and Levy, A. Y. 1993. Automated modelselection for simulation. In Proceedings of the Sev-enth International Workshop on Qualitative Reason-ing, 108{116.Iwasaki, Y. 1988. Causal ordering in a mixed struc-ture. In Proceedings of AAAI-88, 313{318. San Ma-teo, CA: Morgan Kaufmann.Iwasaki, Y. 1990. Reasoning with multiple abstrac-tion models. In T. Ellman, R. K., and Mostow, J.,eds., Working Notes of the AAAI Workshop on Au-tomatic Generation of Approximations and Abstrac-tions, 122{134.7
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