Robust Natural Language Generation

from Large-Scale Knowledge Bases!

Charles B. Callaway James C. Lester

(theoristQcs.utexas.edu) (lester@adm.csc.ncsu.edu)
Department of Computer Sciences Department of Computer Science
The University of Texas at Austin North Carolina State University

Austin, TX 78712-1188 Raleigh, NC 27695-8206

Content areas: Natural Language Generation, Large-Scale Knowledge Bases

Abstract

In recent years, the natural language generation community has begun to mature rapidly and
produce sophisticated off-the-shelf surface realizers. A parallel development in the knowledge rep-
resentation community has been the emergence of large-scale knowledge bases that house tens of
thousands of facts encoded in expressive representational languages. Because of the richness of their
representations and the sheer volume of their formally encoded knowledge, these knowledge bases
offer the promise of significantly improving the quality of natural language generation. However,
the representational complexity, scale, and task-independence of these knowledge bases pose great
challenges to natural language generators.

We have designed, implemented, and empirically evaluated FARE, a functional realization sys-
tem that exploits message specifications drawn from large-scale knowledge bases to create functional
descriptions, which are expressions that encode both functional information (case assignment) and
structural information (phrasal constituent embeddings). Given a message specification, FARE ex-
ploits lexical and grammatical annotations on knowledge base objects to construct functional de-
scriptions, which are then converted to text by a surface generator. Two empirical studies—one with
an explanation generator and one with a qualitative model builder—suggest that FARE is robust,

efficient, expressive, and appropriate for a broad range of applications.

!Support for this research is provided by a grant from the National Science Foundation (IRI-9120310), a contract from
the Air Force Office of Scientific Research (F49620-93-1-0239), and donations from the Digital Equipment Corporation.

This work was conducted at the University of Texas at Austin.

1 Introduction

In recent years, the field of natural language generation has begun to mature very rapidly. In addition
to encouraging results in the form of specific theories and mechanisms that address particular gen-
eration phenomena, the field has witnessed the appearance of very sophisticated off-the-shelf surface
realization systems [14, 4]. A parallel development in the knowledge representation community has
been the emergence of large-scale knowledge bases (LSKBs) that house tens of thousands of facts en-
coded in expressive representational languages [20, 10]. Because of the richness of their representations
and the sheer volume of their formally encoded knowledge, LSKBs offer the promise of significantly
improving the quality of natural language generation. However, the representational complexity, scale,
and task-independence of LSKBs pose great challenges to natural language generators.

The objective of our research is to develop techniques for expressive, robust natural language
generation that can take advantage of these parallel developments in surface realization and large-
scale knowledge base construction. To this end, we have designed, implemented, and empirically
evaluated FARE,? a functional realization system that exploits message specifications drawn from large-
scale knowledge bases to create functional descriptions [4, 5], which are expressions that encode both
functional information (case assignment) and structural information (phrasal constituent embeddings).
Given a message specification, FARE exploits lexical and grammatical annotations on knowledge base
objects to construct functional descriptions, which are then converted to text by the Fur surface
generator [4, 5].

We have conducted these investigations in the “laboratory” provided by the Biology Knowledge
Base Project. The result of a seven year effort, the Biology Knowledge Base [20] is an immense,
task-independent representation of more than 180,000 facts about botanical anatomy and physiology.
(Its deductive closure is of course significantly larger.) To study both the robustness and range of
applicability of our approach, FARE was evaluated in the context of two very different, knowledge-
based systems, both of which extract structures from the Biology Knowledge Base: an explanation

generator, KNIGHT [12, 13, 11], and a qualitative model constructor TRIPEL [21].

2 Functional Realization

Classically, natural language generation has been decomposed into two subtasks: planning, determin-
ing the content and organization of a text, and realization, translating the content to natural language.
Although work has also been done on integrating the tasks so that decisions made at realization time
can affect planning decisions [3, 1, 8], the two-task “pipeline” model has typically been adopted by

work in multi-sentential natural language generation e.g., [15, 14, 16, 17, 18]. Realization itself can be

?Functional Assigner of Role Embeddings.

decomposed into two subtasks: functional realization, constructing functional descriptions from mes-
sage specifications supplied by a planner; and surface generation, translating functional descriptions to
text. Qur work focuses on the design and implementation of functional realizers, which translate mes-
sage specifications into functional descriptions that encode the appropriate semantic information (case
assignments) and structural information (phrasal constituent embeddings). Syntactically, a functional
description is a set of attribute and value pairs (a v) (collectively called a feature set), where a is an
attribute (a feature) and v is either an atomic value or a nested feature set.

To illustrate, Figure 1 depicts a sample functional description. The first line, (cat clause),
indicates that what follows will be some type of verbal phrase, in this case a sentence. The second line
contains the keyword proc, which denotes that everything in its scope will describe the structure of the
entire verbal phrase. The next structure comes under the heading partic; this is where the thematic
roles of the clause are specified. In this instance, one thematic role exists in the main sentence, the
agent (or subject), which is further defined by its lexical entry and a modifying prepositional phrase
indicated by the keyword qualifier. The structure beginning with circum creates the subordinate
infinitival purpose clause. It has two thematic roles, subject and object. The subject has a pointer to
identify itself with the subject of the main clause while the object contains a typical noun phrase. The
feature set for the circum clause indicates the wide range of possibilities for placement of the clause
as well as for introducing additional phrasal substructures into the purpose clause. Our functional
realizer takes full advantage of all of these features which are provided at the surface level by FUF and
its accompanying grammar. Functional descriptions such as this one are produced by the functional
realizer and passed to a surface generator for realization as text.

A functional realizer must create a mapping between the content units in a message specification
and the constituents and semantic roles in functional descriptions. To properly realize the frames and

relations in a message specification, a functional realizer must provide five central functionalities:

1. Assign case roles to content units: To achieve semantic equivalence, a functional realizer must en-
sure that the case roles in the message specification precisely match the case roles of the functional
description being created. For example, the ancestor-cell slot in the message specification shown
in Figure 2 should be mapped to the subject (functionally, the agent), and the descendant-cells
slot should be mapped to the object of the infinitive (functionally, the affected).

2. Organize content units into embedded phrase structures: Content units may be complex; fre-
quently they are modified by other relations and their values, but they are all bound together
to represent component parts of a whole. The functional realizer guarantees that these compo-

nents are properly packaged into a single unit. For example, the triple (Megaspore-Mother-Cell

?Functional descriptions may also employ syntactic sugar for purposes of legibility.

((cat clause)

(proc ((type material) (lex

¢‘reproduce’’)))

(partic ((agent ((cat common)

(lex ‘‘spore’?)
(qualifier ((cat pp)
(prep === ‘‘from’’)
(np ((cat common)
(lex ‘‘cell?’?)
(classifier ((cat noun-compound)
(classifier === ‘‘megaspore’’)
(head === ‘‘mother’’)))
(qualifier ((cat pp)
(prep === ‘‘in’’)
(np ((cat common)
(lex ‘‘sporangium’’)

2)333)))0)))

(circum ((purpose ((cat clause) (position end)

(keep-for no) (keep-in-order no)

(proc ((type material) (lex ‘‘form’’)))

(partic ((agent ((semantics {partic agent semantics})))

(affected ((cat common)
(lex ‘‘gamete’’) (definite no)
(classifier === ‘‘plant’’)
(describer === ‘‘haploid’’)
(cardinal ((value 4) (digit no))))
IRDIIDY]

(time-relater === ‘‘during male gametophyte generation’’))

Figure 1: A Functional Description

contained-in Sporangium) in Figure 2 must become an indivisible unit for the duration of this
message specification. Indivisibility is important because without it, noun phrases which are
modified by sub-frames could be changed. If the above triple were removed, then the ancestor-
cell would incorrectly refer to any spore that originated from any megaspore mother cell, rather

than to only spores that came from megaspore mother cells that were within sporangia.

. Provide local semantic information: The functional realizer is responsible for checking for se-
mantic conflicts between information retrieved from the lexicon and local semantic information
which is specific to each type of message specification, and for resolving those conflicts. For
example, when constructing a functional description for a message specification that should be
realized as a creative sentence, as in Figure 2, a functional realizer must know that objects of an
infinitival phrase should be indefinite, even though the default in the lexicon for the value of the

descendant-cells slot is definite.

Specification-493

specification-type: Black—Box—Process—Description
viewpoint-of: Male-Gametophyte-Generation
reference—-concept: Reproduction

include-during—clause?: True

descendant—cells: Plant-Gamete

cell-type: Haploid

number—of-units: 4

ancestor—cell: Spore

source:| Megaspore—Mother—Cell

contained—in: Sporangium

Figure 2: A Sample Message Specification

4. Control the inclusion or exclusion of selected features: Message specifications frequently contain
meta-level information in the form of boolean variables which indicate whether or not to include
supplementary sentence elements. In addition, a functional realizer must be able to compare
elements of a sentence to eliminate potential redundancies. For example, the Include-During-
Clause? relation specifies that the prefixed “During male gametophyte generation” phrase should

be included as long as there are no lexical redundancies between it and the main verb “reproduce.”

5. Abort generation of sentences with defective message specifications: When information on certain
topics in a large-scale knowledge base is sparse, the message specifications will also be sparse.
The functional realizer is responsible for ensuring that each message specification’s required case
roles exist. For example, if the ancestor-cell or descendant-cells slots in Figure 2 were empty,
it would not be possible to convey the correct meaning of the specification without producing a

sentence that appears either excessively vague or completely vacuous.

3 A Robust Functional Realization System

We have designed and implemented a functional realization system, FARE?* (Figure 3), which provides
the five key functionalities discussed above. FARE is given a message specification produced by a
text planner. We have employed two text planners: an explanation generator, KNIGHT [12, 13, 11],
and a qualitative model constructor TRIPEL [21] that has been “linguistically augmented.” Both

KNIGHT and TRIPEL employ the Biology Knowledge Base [20]. This is a large-scale knowledge base

*FARE’s implementation consists of approximately 5,000 lines of Lucid Common Lisp.

Formative Realizer (FARE)
Rhetorical M essage
———————3| Text Planner — >| i |<—| FD Skeleton Librar
Coals Speciication IFD Skeleton Retriever y
(KNIGHT, TRIPEL) +
_| FD Skeleton Processor |
A A A
_| Lexicon
Noun Phrase Gener ator
A
Text Functional
- GSurfacte < Semantic Transformation
enerator Descriptions Library
(FUF)

Figure 3: An Architecture for Functional Realization

whose hierarchy encodes information about biological objects (representing botanical anatomy) and
biological processes (representing botanical physiology and development). This knowledge base is an
immense structure that contains more than 180,000 facts and is one of the largest in existence.
Given a message specification, FARE uses its knowledge of case mappings, syntax, and lexical
information to construct a functional description. FARE then passes the functional description to Fur,
a unification-based surface generator [4, 5]. FUF is accompanied by an extensive, portable English
grammar, SURGE,” which Elhadad describes as “the result of five years of intensive experimentation
in grammar writing.” FUF’s grammar borrows the notions of feature structures and unification from
functional unification grammars [9]. It also incorporates the notion of systems from systemic grammars
[7]. FUF frees a functional realizer from lower-level issues such as positioning and morphological
manipulation. After discussing FARE’s principal knowledge sources, we describe the algorithms that

guide its operation.

3.1 Knowledge Sources

FArRE employs three principle knowledge sources: a lexicon, a library of FD-Skeletons, and a library
of semantic transformations. We discuss each of these in turn. To provide immediate access to lexical
information, FARE employs a distributed lexicon: each concept contains all of the lexical information
the concept requires for realization. Each concept in the lexicon may include several lexical features.

All lexical entries include the lexical type of the concept, which provides the key to interpreting all of

®SURGE is the largest “generation” grammar in existence.

((cat clause)
(proc ((type <VERB-TYPE>)
(verb <VERB-STRING>)))
(partic ((agent <TRANSPORTER-FD>)
(affected <TRANSPORTED-ENTITIES-FD>)
(location ((cat 1list)

(distinct (<SOURCE-FD>
<CONDUIT-FD>
<DESTINATION-FD>))))))

(time-relater ¢‘during <PROCESS-LEXEME>’’))

Figure 4: The Template of an FD-Skeleton for Transportation

the lexical information present on the concept. It can contain either a specific grammatical constituent,
e.g., NPs, VPs, PPs, AdjPs, etc., or a subclass of constituents, such as relative clauses and possessive
phrases. Many different types of concepts use lex-FD feature, which contains a functional description
that expresses the given concept.

Concepts that are nouns may have a noun feature, which indicates the concept’s lexeme. “Single
word” noun concepts, e.g., “embryo” or “stem,” have a default case, and are thus optimized and
separated from the more complex nouns that can be described by lex-FD. The default case can be
modified to alter features such as definiteness and countability. The mass-or-count? feature stores
such countability information to override the default value count. Adjectives and adverbs have their
own features as well.6 To create exceptions in the lexical ontology, the lexical access methods exploit
inheritance mechanisms to find the most specific verb available, e.g, “elongate” instead of “grow.”

The second knowledge source used by the functional realizer is a library of FD-Skeletons. An FD-
Skeleton is a template that encodes the deep structure represented by a functional description. Not
only do the values that fill the variables in FD-Skeletons have to pass semantic tests, but sometimes
entire feature sets of the functional description are conditional as well. Some FD-Skeletons encode
the case structure for processes. For example, we have developed FD-Skeletons for 20 processes
that play a central role in biology, e.g., assimilation, development, reproduction, and transportation.
Figure 4 shows the template of the F'D-Skeleton for producing functional descriptions of transportation
processes.” This FD-Skeleton can be used to construct a sentence such as, “During pollen grain

transfer, a pollen grain is transferred from the anther to the stigma.”

5Adverbs are typically encountered as slot annotations in message specifications.

"Note that the template is merely one of two components of FD-Skeletons; Skeletons also include semantic tests for

inclusion and modification of nested functional descriptions.

Following in the NLG “revision” tradition [24, 15, 22, 23, 6, 12], the third knowledge source
used by the functional realizer is a library of semantic transformations. For example, when given
the triples (Water amount 4) and (H+ amount 3), without access to semantic transformations, the
system would return the functional descriptions representing the strings “4 portions of water” and
“4 portions of hydrogen ion.” The job of the semantic transformations is first to detect this sort
of problem and second to correct it by transforming functional descriptions. In this example, the
system must determine that the amount relation functions differently for mass and count nouns, and

appropriately return “4 hydrogen ions” in the latter case.

3.2 FD-Skeleton Retrieval and Processing

The FD-Skeleton Retriever obtains the appropriate FD-Skeleton by indexing into its library. If the
topic of the specification is a process, the FD-Skeleton Retriever exploits the taxonomy of the knowl-
edge base to locate the most specific case structure that can be used. Otherwise, the retrieval process
requires no inference because each specification type points to a unique FD-Skeleton. For example, in
Figure 2 the values of the specification-type and reference-concept relations provide the needed indices
into the FD-Skeleton Library.

Next, the FD-Skeleton Processor determines if each of the essential slots are present; if any of
these tests fail, it will note the deficiency and abort. If the message is well-formed, the F'D-Skeleton
Processor uses the FD-Skeleton as a template for forming a functional description. It instantiates
the variables in the F'D-Skeleton, each of which is associated with a particular attribute name that
appears in the message specification. For each variable in the FD-Skeleton, the FD-Skeleton Processor
obtains the name of an attribute (or a group of similar attributes) on the message specification. For
example, the FD-Skeleton that is used to realize a “structural” message specification exploits the
relation hierarchy in the knowledge base to obtain all “part” attributes in the message specification,
e.g., parts, composed of, contains, etc.

The FD-Skeleton Processor retrieves the values that appear on the selected attributes of the
message specification. These values are then used to instantiate variables in the FD-Skeleton. For
example, in Figure 2 the descendant-cells and ancestor-cell relations are chosen, and their values are
computed by the Noun Phrase Generator and inserted into the template. In addition, some relations
that appear in a message specification, e.g., include-during-clause?, are directives to the FD-Skeleton
Processor instead of attributes. These directives indicate to the F'D-Skeleton Processor that it should
include (or exclude) particular subordinate clauses that the text planner has deemed necessary (or
burdensome).

Next, the FD-Skeleton Processor invokes the Noun Phrase Generator (described below) to con-

struct a functional description representing the noun phrase that expresses those values. The FD-

Skeleton Processor then binds the resulting noun phrase functional descriptions to the variable and
pushes this pair onto the binding list. Finally, it splices all of the new noun phrases it has con-
structed into the FD-Skeleton by substituting the appropriate noun-phrase functional descriptions
for each variable. As it instantiates the variables in the evolving functional description, it checks for
expressions that would produce semantically correct but “lexically redundant” sentences. This check

prevents the generation of sentences such as, “During cell formation, a cell forms.”

3.3 Noun Phrase Generation

The Noun Phrase Generator (Figure 5) is given a list of concepts, which are the values that appear
on the attributes of a message specification. It is also given a context, which initially is null. If the
Noun Phrase Generator is given more than one concept to translate into a noun phrase, it recursively
invokes itself on each of the concepts. This will produce a conjoined list of functional descriptions,
each of which represents a noun phrase for one of the concepts.

Next, the Noun Phrase Generator obtains the type of functional descriptions that comprise the
group. It then constructs an “enclosing” functional description based on the type, and it embeds each
of the functional descriptions resulting from the recursive invocations in the “enclosing” functional
description and finally returns this entire expression. If it is invoked with a single concept—this is
the “base” case—it first obtains the lexical information associated with the concept. For example, in
Figure 2, the simple concepts Plant-Gamete and Spore are such base cases.

Its next task is to determine how this general lexical information should be modified by additional
information known about the concept, i.e., it must augment the basic lexical information with lexical
information about the concept’s attributes. To do so, it obtains four types of attributes that may
appear on the concept: describer attributes, e.g., color; cardinal attributes, e.g., number-of-units;
relative clause attributes, e.g., covered-by; and partitive attributes, e.g., subregions. A given concept
may be modified by all or none of these types of attributes. For example, in Figure 2, Plant-Gamete and
Spore are modified in this manner by the attributes which appear below them. Cell-type is a describer
attribute for Plant-Gamete while amount is a cardinal attribute. Additionally, since the subframe
beginning at Megaspore-Mother-Cell is itself a complete subframe, the Noun Phrase Generator calls
itself recursively and uses the entire resulting functional description as the value for the source relation
above it.

For each type that the Noun Phrase Generator encounters, it constructs a functional description
of that group. Fach of these specialized construction functions may recursively invoke the algorithm
and augment the existing context with information about the current phrase type. For example, the
Noun Phrase Generator may augment a recursive call with the “number” of the enclosing noun phrase.

In this case, the augmentation permits the system to propagate number information to substructures

MAKE-NOUN-PHRASE (Concept-List, Context)

if length (Concept-List) > 1 then
Functional-Description-List «— ()
for each Concept in Concept-List do
New-Noun-Phrase — make-noun-phrase ((Concept))
Functional-Description- List
— enqueue (New-Noun-Phrase,
Functional-Deseription-List)
F D-Group-Type — get-FD-group-type (Functional-Descriptions)
Result-F D — make-complex-noun-phrase (Functional-Deseription-List,
F D-Group-Type)
return (Result-F D)
else
Concept — first (Concept-List)
Functional-Deseription — compute-lex-information (Concept, Context)
Concept- Attributes — get-concept-attributes (Concept)
Describer- Attributes — get-describer-attributes (Concept- Attributes)
Cardinal-Attributes — get-cardinal-attributes (Concept- Attributes)
Rel-Clause- Attributes «— get-rel-clause-attributes (Concept-Attributes)
Partitive- Attributes — get-partitive-attributes (Concept- Attributes)
Describer-F D — make-describer-FD (Concept, Describer- Attributes,
Context)
Cardinal-F'D — make-cardinal-FD (Concept, Cardinal-Attributes,
Context)
Relative-Clause-F'D — make-rel-clause-FD (Concept,
Rel-Clause-Attributes,
Context)
Partitive-F D — make-partitive-FD (Concept, Partitive- Attributes,
Context)
Result-F D — merge-FDs (Functional-Description,
Describer-F D, Cardinal-F D,
Relative-Clause-F D, Partitive-F D)
return (Result-F D)

Figure 5: The MAKE-NOUN-PHRASE Algorithm

such as relative clauses, whose verb endings are influenced by the number feature of the enclosing
noun phrase. Finally, the Noun Phrase Generator merges the resulting functional descriptions into
the original lexical information (also a functional description) and returns this expression to the FD-
Skeleton Processor. This functional description expresses as a noun phrase the concept(s) that the
FD-Skeleton Processor encountered in its traversal of the message specification.

In the absence of semantic transformations, the result of this entire process in our example from
Figure 2 would be a functional description that would produce the sentence, “During male gameto-
phyte generation, the spore, which originates in the megaspore mother cell, which is contained in the
sporangium, reproduces to form 4 plant gametes.” However, the system finds two applicable trans-
formations, which are triggered when the system encounters two adjacent relative clauses: the first
transformation collapses the relative clause “which originates in” to the preposition “from”; the second
transformation collapses the relative clause “which is contained in” to the preposition “in.” The final
resulting functional description is shown in Figure 1. FARE passes this to FUF, which realizes it as,
“During male gametophyte generation, the spore from the megaspore mother cell in the sporangium

reproduces to form four haploid plant gametes.”

4 Evaluation

Because the conclusions of empirical studies should be considerably less equivocal than those derived
from “proof-of-concept” systems, we have taken an empirical approach to evaluation. With three
significant exceptions ([8], [2], and [19]), the field of natural language generation has not witnessed the
development of an “empiricist evaluation” school. However, it is clear that empirical evaluations can
yield very informative data. To this end, we conducted a formal evaluation of FARE in conjunction

with an explanation generator and an informal evaluation in conjunction with a qualitative model

builder.

4.1 Robustness, Efficiency, and Expressiveness

First, we evaluated FARE with KNIGHT [12, 13, 11], a robust explanation generator that constructs
explanations about scientific phenomena. It extracts structures from a large-scale knowledge base and
organizes them into hierarchical discourse plans. Working in conjunction, KNIGHT, FARE, and FUF
have produced more than a thousand different sentences. On average FARE requires approximately
1-2 seconds on a DEC Alpha to produce a functional description.

Our formal study employed two panels of domain experts. Experts on the first panel served as
“writers,” i.e., they produced explanations in response to questions. Experts on the second panel

served as “judges,” i.e., they analyzed different dimensions of explanations and assigned grades. It

10

Generator | Overall Content | Organization | Writing | Correctness

SYSTEM 2.37+0.13 || 2.65+0.13 | 2.45+0.16 2.40+0.13 | 3.07+0.15

Human 2.8540.15 || 2.95+0.16 | 3.07+0.16 2.93+0.16 | 3.16+0.15

Table 1: Comprehensive Analysis

is important to note that none of the judges were informed about the purpose of the study, and none
were aware that they were judging computer-generated explanations. Judges were asked to rate the
explanations on several dimensions, including overall quality and writing style. To provide judges with
a familiar rating scale, they were asked to assign letters grades (A, B, C, D, or I') to each dimension
of the explanation. We assigned explanations to judges using an allocation policy that obeyed the
following four constraints: each judge received explanations that were approximately evenly divided
between objects and processes; each judge received explanations that were approximately evenly di-
vided between those that were produced by KNIGHT and those that were produced by biologists; no
judge received two explanations of the same concept; and the explanations written by each writer were
not evaluated by at least two judges.

By the end of the study, we had amassed a large volume of data. To analyze it, we converted
each of the “grades” to their traditional numerical counterparts, i.e., A=4, B=3, C=2, D=1, and
F=0. Next, we computed means and standard errors for both KNIGHT’s and the biologists’ grades.
We calculated these values for the overall quality and coherence rating, as well as for each of the
subscores of content, organization, writing style, and correctness. On the overall rating and on each
of the subscores, the system scored within approximately “half a grade” of the biologists (Table 1).
(In the tables, + denotes the standard error, i.e., the standard deviation of the mean.) Given these
results, we decided to investigate the differences between the KNIGHT-FARE grades and the biologists’
grades. When we normalized the grades by defining an “A” to be the mean of the biologists’ grades,
the system earned approximately a B-Bt. The results demonstrate that the quality of FARE’s text

has begun to approach that of humans.

4.2 Range of Applicability

A second study provides evidence that FARE has a broad range of applicability. To investigate FARE’s
ability to realize message specifications that were generated for a significantly different kind of appli-
cation, we obtained a qualitative model constructor, TRIPEL [21]. In collaboration with the designer

of TRIPEL, we modified it to produce text planning commands in addition to its simulation data.

11

Next, we extended FARE’s library of Functional Description Skeletons to address the new specification
types. FARE used message specifications produced by the augmented qualitative model constructor
to generate functional descriptions for sentences such as, “The rate of ABA synthesis in the plant’s
mesophyll cells is influenced by one thing: it is negatively affected by the turgor pressure in the plant’s
mesophyll cells.” Within three weeks, we were able to extend FARE to produce completely correct
functional descriptions for this new application: the text it generated was favorably evaluated by both

the domain expert and the designer of the qualitative model building system.

5 Conclusion and Future Work

We have designed, implemented, and evaluated FARE, a robust functional realization system. By
exploiting an expressive lexicon that is distributed throughout the knowledge base, as well as libraries
of functional description skeletons and semantic transformations, FARE uses message specifications
drawn from a large-scale knowledge base to create functional descriptions. The functional descriptions
are then realized in text by FUF, a sophisticated surface generator. FARE provides five key function-
alities: it assigns case roles to content units, organizes content units into embedded phrase structures,
provides local semantic information, controls the inclusion (or exclusion) of selected features, and
aborts generation when it encounters defective message specifications. Two empirical studies suggest
that FARE is robust, efficient, capable of producing quality text, and appropriate for a broad range of
applications.

Encouraged by the experimental results we have obtained, we are continuing to enhance FARE’s
capabilities. On a theoretical front, we are considering whether it may be possible to cast functional
realization as a unification problem.® If we are successful in this venture, then FARE can be more cleanly
reimplemented within a second FUF image. On a practical front, it has become clear that we must
semi-automate the creation and maintenance of FARE’s realization libraries and lexical information.
Work is currently under way to create integrated tools that will allow knowledge engineers with
minimal linguistic expertise to create lexicon entries and updates; another tool is planned that will
automatically update the components of FARE itself. Both of these tools will be implemented with
a GUI and will guide the knowledge engineer by continuously displaying acceptable linguistic choices

and incrementally realizing the accumulating structure at each decision point.

Acknowledgements

We would like to thank: Bruce Porter for leading the Biology Knowledge Base project and for providing
comments on earlier drafts of this paper; Kathy Mitchell, Rich Jones, and Teresa Chatkofl for their

#Thanks to Michael Elhadad for suggesting this approach.

12

work on FARE; Michael Elhadad, for developing and generously assisting us with FUF; Art Souther,
our principle domain expert; Erik Eilerts, for building the knowledge base editing tools; Peter Clark,
for assistance with the evaluation; Jefl Rickel, the designer of TRIPEL; and the other members of the

Biology Knowledge Base Project, Liane Acker, Brad Blumenthal, Rich Mallory, and Ken Murray.

References

[1] D. Appelt. Planning english referring expressions. Artificial Intelligence, 26:1-33, 1985.

[2] A. Cawsey. Fzplanation and Interaction: The Computer Generation of Explanatory Dialogues.
MIT Press, 1992.

[3] L. Danlos. Conceptual and linguistic decisions in generation. In Tenth International Conference

on Computational Linguistics, pages 501-504, Stanford University, July 1984.

[4] M. Elhadad. FUF: The universal unifier user manual version 5.0. Technical Report CUCS-038-91,

Department of Computer Science, Columbia University, 1991.

[5] M. Elhadad. Using Argumentation to Control Lexical Choice: A Functional Unification Imple-
mentation. PhD thesis, Columbia University, 1992.

[6] R. P. Gabriel. Deliberate writing. In D. D. McDonald and L. Bolc, editors, Natural Language
Generation Systems, pages 1-46. Springer-Verlag, New York, 1988.

[7] M. Halliday. System and Function in Language. Oxford University Press, Oxford, 1976.
[8] E. Hovy. Pragmatics and natural language generation. Artificial Intelligence, 43:153-197, 1990.
[9] M. Kay. Functional grammar. In Proceedings of the Berkeley Linguistic Society, 1979.

[10] D. Lenat and R. Guha. Building Large Knowledge Based Systems. Addison-Wesley, Reading,
Massachusetts, 1990.

[11] J. Lester. Generating Natural Language Fxplanations from Large-Scale Knowledge Bases. PhD
thesis, The University of Texas at Austin, Austin, Texas, 1994.

[12] J. Lester and B. Porter. A revision-based model of instructional multi-paragraph discourse pro-
duction. In Proceedings of the Thirteenth Cognitive Science Society Conference, pages 796-800,
1991.

[13] J. Lester and B. Porter. A student-sensitive discourse generator for intelligent tutoring systems.
In Proceedings of the International Conference on the Learning Sciences, pages 298-304, August

1991.

13

[14] W. Mann. An overview of the Penman text generation system. In Proceedings of the National

Conference on Artificial Intelligence, pages 261-265, 1983.

[15] W. Mann and J. Moore. Computer generation of multiparagraph english text. American Journal

of Computational Linguistics, 7(1):17-29, 1981.

[16] D. McDonald. Description directed control: Its implications for natural language generation.

Computers and Mathematics, 9(1):111-130, 1983.

[17] K. McKeown. Text Generation: Using Discourse Strategies and Focus Constraints to Generate

Natural Language Text. Cambridge University Press, 1985.

[18] M. Meteer. The Generation Gap: The Problem of Expressibility in Text Planning. PhD thesis,
University of Massachusetts, February 1990.

[19] V. Mittal. Generating Natural Language Descriptions with Integrated Text and Examples. PhD
thesis, University of Southern California, September 1993.

[20] B. Porter, J. Lester, K. Murray, K. Pittman, A. Souther, L. Acker, and T. Jones. Al research in
the context of a multifunctional knowledge base: The botany knowledge base project. Technical

Report Al Laboratory AIS8-88, University of Texas at Austin, Austin, Texas, 1988.

[21] J. Rickel and B. Porter. Automated modeling for answering prediction questions: Selecting the
time scale and system boundary. In Proceedings of the Twelfth National Conference on Artificial

Intelligence, pages 1191-1198, 1994.

[22] M. M. Vaughan and D. D. McDonald. A model of revision in natural language generation. In
Proceedings of the 24th Annual Meeting, pages 90-96, Columbia University, 1986. Association for

Computational Linguistics.

[23] W.-K. C. Wong and R. F. Simmons. A blackboard model of text production with revision.
In Proceedings of the AAAI Workshop on Text Planning and Realization, St. Paul, Minnesota,
August 1988.

[24] M. Yazdani. Reviewing as a component of the text generation process. In G. Kempen, editor,
Natural Language Generation, pages 183-190. Martinus Nijhoff, Dordrecht, The Netherlands,
1987.

14

