
Robust Natural Language Generationfrom Large-Scale Knowledge Bases1Charles B. Callaway James C. Lester(theorist@cs.utexas.edu) (lester@adm.csc.ncsu.edu)Department of Computer Sciences Department of Computer ScienceThe University of Texas at Austin North Carolina State UniversityAustin, TX 78712-1188 Raleigh, NC 27695-8206Content areas: Natural Language Generation, Large-Scale Knowledge BasesAbstractIn recent years, the natural language generation community has begun to mature rapidly andproduce sophisticated o�-the-shelf surface realizers. A parallel development in the knowledge rep-resentation community has been the emergence of large-scale knowledge bases that house tens ofthousands of facts encoded in expressive representational languages. Because of the richness of theirrepresentations and the sheer volume of their formally encoded knowledge, these knowledge baseso�er the promise of signi�cantly improving the quality of natural language generation. However,the representational complexity, scale, and task-independence of these knowledge bases pose greatchallenges to natural language generators.We have designed, implemented, and empirically evaluated Fare, a functional realization sys-tem that exploits message speci�cations drawn from large-scale knowledge bases to create functionaldescriptions, which are expressions that encode both functional information (case assignment) andstructural information (phrasal constituent embeddings). Given a message speci�cation, Fare ex-ploits lexical and grammatical annotations on knowledge base objects to construct functional de-scriptions, which are then converted to text by a surface generator. Two empirical studies|one withan explanation generator and one with a qualitative model builder|suggest that Fare is robust,e�cient, expressive, and appropriate for a broad range of applications.1Support for this research is provided by a grant from the National Science Foundation (IRI-9120310), a contract fromthe Air Force O�ce of Scienti�c Research (F49620-93-1-0239), and donations from the Digital Equipment Corporation.This work was conducted at the University of Texas at Austin.

1 IntroductionIn recent years, the �eld of natural language generation has begun to mature very rapidly. In additionto encouraging results in the form of speci�c theories and mechanisms that address particular gen-eration phenomena, the �eld has witnessed the appearance of very sophisticated o�-the-shelf surfacerealization systems [14, 4]. A parallel development in the knowledge representation community hasbeen the emergence of large-scale knowledge bases (LSKBs) that house tens of thousands of facts en-coded in expressive representational languages [20, 10]. Because of the richness of their representationsand the sheer volume of their formally encoded knowledge, LSKBs o�er the promise of signi�cantlyimproving the quality of natural language generation. However, the representational complexity, scale,and task-independence of LSKBs pose great challenges to natural language generators.The objective of our research is to develop techniques for expressive, robust natural languagegeneration that can take advantage of these parallel developments in surface realization and large-scale knowledge base construction. To this end, we have designed, implemented, and empiricallyevaluated Fare,2 a functional realization system that exploits message speci�cations drawn from large-scale knowledge bases to create functional descriptions [4, 5], which are expressions that encode bothfunctional information (case assignment) and structural information (phrasal constituent embeddings).Given a message speci�cation, Fare exploits lexical and grammatical annotations on knowledge baseobjects to construct functional descriptions, which are then converted to text by the Fuf surfacegenerator [4, 5].We have conducted these investigations in the \laboratory" provided by the Biology KnowledgeBase Project. The result of a seven year e�ort, the Biology Knowledge Base [20] is an immense,task-independent representation of more than 180,000 facts about botanical anatomy and physiology.(Its deductive closure is of course signi�cantly larger.) To study both the robustness and range ofapplicability of our approach, Fare was evaluated in the context of two very di�erent, knowledge-based systems, both of which extract structures from the Biology Knowledge Base: an explanationgenerator, Knight [12, 13, 11], and a qualitative model constructor Tripel [21].2 Functional RealizationClassically, natural language generation has been decomposed into two subtasks: planning, determin-ing the content and organization of a text, and realization, translating the content to natural language.Although work has also been done on integrating the tasks so that decisions made at realization timecan a�ect planning decisions [3, 1, 8], the two-task \pipeline" model has typically been adopted bywork in multi-sentential natural language generation e.g., [15, 14, 16, 17, 18]. Realization itself can be2Functional Assigner of Role Embeddings. 1

decomposed into two subtasks: functional realization, constructing functional descriptions from mes-sage speci�cations supplied by a planner; and surface generation, translating functional descriptions totext. Our work focuses on the design and implementation of functional realizers, which translate mes-sage speci�cations into functional descriptions that encode the appropriate semantic information (caseassignments) and structural information (phrasal constituent embeddings). Syntactically, a functionaldescription is a set of attribute and value pairs (a v) (collectively called a feature set), where a is anattribute (a feature) and v is either an atomic value or a nested feature set.3To illustrate, Figure 1 depicts a sample functional description. The �rst line, (cat clause),indicates that what follows will be some type of verbal phrase, in this case a sentence. The second linecontains the keyword proc, which denotes that everything in its scope will describe the structure of theentire verbal phrase. The next structure comes under the heading partic; this is where the thematicroles of the clause are speci�ed. In this instance, one thematic role exists in the main sentence, theagent (or subject), which is further de�ned by its lexical entry and a modifying prepositional phraseindicated by the keyword qualifier. The structure beginning with circum creates the subordinatein�nitival purpose clause. It has two thematic roles, subject and object. The subject has a pointer toidentify itself with the subject of the main clause while the object contains a typical noun phrase. Thefeature set for the circum clause indicates the wide range of possibilities for placement of the clauseas well as for introducing additional phrasal substructures into the purpose clause. Our functionalrealizer takes full advantage of all of these features which are provided at the surface level by Fuf andits accompanying grammar. Functional descriptions such as this one are produced by the functionalrealizer and passed to a surface generator for realization as text.A functional realizer must create a mapping between the content units in a message speci�cationand the constituents and semantic roles in functional descriptions. To properly realize the frames andrelations in a message speci�cation, a functional realizer must provide �ve central functionalities:1. Assign case roles to content units: To achieve semantic equivalence, a functional realizer must en-sure that the case roles in the message speci�cation precisely match the case roles of the functionaldescription being created. For example, the ancestor-cell slot in the message speci�cation shownin Figure 2 should be mapped to the subject (functionally, the agent), and the descendant-cellsslot should be mapped to the object of the in�nitive (functionally, the a�ected).2. Organize content units into embedded phrase structures: Content units may be complex; fre-quently they are modi�ed by other relations and their values, but they are all bound togetherto represent component parts of a whole. The functional realizer guarantees that these compo-nents are properly packaged into a single unit. For example, the triple (Megaspore-Mother-Cell3Functional descriptions may also employ syntactic sugar for purposes of legibility.2

((cat clause)(proc ((type material) (lex ``reproduce'')))(partic ((agent ((cat common)(lex ``spore'')(qualifier ((cat pp)(prep === ``from'')(np ((cat common)(lex ``cell'')(classifier ((cat noun-compound)(classifier === ``megaspore'')(head === ``mother'')))(qualifier ((cat pp)(prep === ``in'')(np ((cat common)(lex ``sporangium'')))))))))))))(circum ((purpose ((cat clause) (position end)(keep-for no) (keep-in-order no)(proc ((type material) (lex ``form'')))(partic ((agent ((semantics {partic agent semantics})))(affected ((cat common)(lex ``gamete'') (definite no)(classifier === ``plant'')(describer === ``haploid'')(cardinal ((value 4) (digit no)))))))))))(time-relater === ``during male gametophyte generation''))Figure 1: A Functional Descriptioncontained-in Sporangium) in Figure 2 must become an indivisible unit for the duration of thismessage speci�cation. Indivisibility is important because without it, noun phrases which aremodi�ed by sub-frames could be changed. If the above triple were removed, then the ancestor-cell would incorrectly refer to any spore that originated from any megaspore mother cell, ratherthan to only spores that came from megaspore mother cells that were within sporangia.3. Provide local semantic information: The functional realizer is responsible for checking for se-mantic con
icts between information retrieved from the lexicon and local semantic informationwhich is speci�c to each type of message speci�cation, and for resolving those con
icts. Forexample, when constructing a functional description for a message speci�cation that should berealized as a creative sentence, as in Figure 2, a functional realizer must know that objects of anin�nitival phrase should be inde�nite, even though the default in the lexicon for the value of thedescendant-cells slot is de�nite. 3

Specification−493

specification−type: Black−Box−Process−Description

viewpoint−of: Male−Gametophyte−Generation

reference−concept: Reproduction

include−during−clause?: True

cell−type: Haploid

number−of−units: 4

contained−in: Sporangium

descendant−cells: Plant−Gamete

ancestor−cell: Spore

source: Megaspore−Mother−CellFigure 2: A Sample Message Speci�cation4. Control the inclusion or exclusion of selected features: Message speci�cations frequently containmeta-level information in the form of boolean variables which indicate whether or not to includesupplementary sentence elements. In addition, a functional realizer must be able to compareelements of a sentence to eliminate potential redundancies. For example, the Include-During-Clause? relation speci�es that the pre�xed \During male gametophyte generation" phrase shouldbe included as long as there are no lexical redundancies between it and the main verb \reproduce."5. Abort generation of sentences with defective message speci�cations: When information on certaintopics in a large-scale knowledge base is sparse, the message speci�cations will also be sparse.The functional realizer is responsible for ensuring that each message speci�cation's required caseroles exist. For example, if the ancestor-cell or descendant-cells slots in Figure 2 were empty,it would not be possible to convey the correct meaning of the speci�cation without producing asentence that appears either excessively vague or completely vacuous.3 A Robust Functional Realization SystemWe have designed and implemented a functional realization system, Fare4 (Figure 3), which providesthe �ve key functionalities discussed above. Fare is given a message speci�cation produced by atext planner. We have employed two text planners: an explanation generator, Knight [12, 13, 11],and a qualitative model constructor Tripel [21] that has been \linguistically augmented." BothKnight and Tripel employ the Biology Knowledge Base [20]. This is a large-scale knowledge base4Fare's implementation consists of approximately 5,000 lines of Lucid Common Lisp.4

Text Planner
Message

Specification
FD Skeleton Retriever

FD Skeleton Processor

FD Skeleton Library

Lexicon

Noun Phrase Generator

Functional

Descriptions

Rhetorical
Goals

Text

(FUF)

Formative Realizer (FARE)

 Surface
Generator

Semantic Transformation
 Library

(KNIGHT, TRIPEL)

Figure 3: An Architecture for Functional Realizationwhose hierarchy encodes information about biological objects (representing botanical anatomy) andbiological processes (representing botanical physiology and development). This knowledge base is animmense structure that contains more than 180,000 facts and is one of the largest in existence.Given a message speci�cation, Fare uses its knowledge of case mappings, syntax, and lexicalinformation to construct a functional description. Fare then passes the functional description to Fuf,a uni�cation-based surface generator [4, 5]. Fuf is accompanied by an extensive, portable Englishgrammar, Surge,5 which Elhadad describes as \the result of �ve years of intensive experimentationin grammar writing." Fuf's grammar borrows the notions of feature structures and uni�cation fromfunctional uni�cation grammars [9]. It also incorporates the notion of systems from systemic grammars[7]. Fuf frees a functional realizer from lower-level issues such as positioning and morphologicalmanipulation. After discussing Fare's principal knowledge sources, we describe the algorithms thatguide its operation.3.1 Knowledge SourcesFare employs three principle knowledge sources: a lexicon, a library of FD-Skeletons, and a libraryof semantic transformations. We discuss each of these in turn. To provide immediate access to lexicalinformation, Fare employs a distributed lexicon: each concept contains all of the lexical informationthe concept requires for realization. Each concept in the lexicon may include several lexical features.All lexical entries include the lexical type of the concept, which provides the key to interpreting all of5Surge is the largest \generation" grammar in existence.5

((cat clause)(proc ((type <VERB-TYPE>)(verb <VERB-STRING>)))(partic ((agent <TRANSPORTER-FD>)(affected <TRANSPORTED-ENTITIES-FD>)(location ((cat list)(distinct (<SOURCE-FD><CONDUIT-FD><DESTINATION-FD>))))))(time-relater ``during <PROCESS-LEXEME>''))Figure 4: The Template of an FD-Skeleton for Transportationthe lexical information present on the concept. It can contain either a speci�c grammatical constituent,e.g., NPs, VPs, PPs, AdjPs, etc., or a subclass of constituents, such as relative clauses and possessivephrases. Many di�erent types of concepts use lex-FD feature, which contains a functional descriptionthat expresses the given concept.Concepts that are nouns may have a noun feature, which indicates the concept's lexeme. \Singleword" noun concepts, e.g., \embryo" or \stem," have a default case, and are thus optimized andseparated from the more complex nouns that can be described by lex-FD. The default case can bemodi�ed to alter features such as de�niteness and countability. The mass-or-count? feature storessuch countability information to override the default value count. Adjectives and adverbs have theirown features as well.6 To create exceptions in the lexical ontology, the lexical access methods exploitinheritance mechanisms to �nd the most speci�c verb available, e.g, \elongate" instead of \grow."The second knowledge source used by the functional realizer is a library of FD-Skeletons. An FD-Skeleton is a template that encodes the deep structure represented by a functional description. Notonly do the values that �ll the variables in FD-Skeletons have to pass semantic tests, but sometimesentire feature sets of the functional description are conditional as well. Some FD-Skeletons encodethe case structure for processes. For example, we have developed FD-Skeletons for 20 processesthat play a central role in biology, e.g., assimilation, development, reproduction, and transportation.Figure 4 shows the template of the FD-Skeleton for producing functional descriptions of transportationprocesses.7 This FD-Skeleton can be used to construct a sentence such as, \During pollen graintransfer, a pollen grain is transferred from the anther to the stigma."6Adverbs are typically encountered as slot annotations in message speci�cations.7Note that the template is merely one of two components of FD-Skeletons; Skeletons also include semantic tests forinclusion and modi�cation of nested functional descriptions.6

Following in the NLG \revision" tradition [24, 15, 22, 23, 6, 12], the third knowledge sourceused by the functional realizer is a library of semantic transformations. For example, when giventhe triples (Water amount 4) and (H+ amount 3), without access to semantic transformations, thesystem would return the functional descriptions representing the strings \4 portions of water" and\4 portions of hydrogen ion." The job of the semantic transformations is �rst to detect this sortof problem and second to correct it by transforming functional descriptions. In this example, thesystem must determine that the amount relation functions di�erently for mass and count nouns, andappropriately return \4 hydrogen ions" in the latter case.3.2 FD-Skeleton Retrieval and ProcessingThe FD-Skeleton Retriever obtains the appropriate FD-Skeleton by indexing into its library. If thetopic of the speci�cation is a process, the FD-Skeleton Retriever exploits the taxonomy of the knowl-edge base to locate the most speci�c case structure that can be used. Otherwise, the retrieval processrequires no inference because each speci�cation type points to a unique FD-Skeleton. For example, inFigure 2 the values of the speci�cation-type and reference-concept relations provide the needed indicesinto the FD-Skeleton Library.Next, the FD-Skeleton Processor determines if each of the essential slots are present; if any ofthese tests fail, it will note the de�ciency and abort. If the message is well-formed, the FD-SkeletonProcessor uses the FD-Skeleton as a template for forming a functional description. It instantiatesthe variables in the FD-Skeleton, each of which is associated with a particular attribute name thatappears in the message speci�cation. For each variable in the FD-Skeleton, the FD-Skeleton Processorobtains the name of an attribute (or a group of similar attributes) on the message speci�cation. Forexample, the FD-Skeleton that is used to realize a \structural" message speci�cation exploits therelation hierarchy in the knowledge base to obtain all \part" attributes in the message speci�cation,e.g., parts, composed of, contains, etc.The FD-Skeleton Processor retrieves the values that appear on the selected attributes of themessage speci�cation. These values are then used to instantiate variables in the FD-Skeleton. Forexample, in Figure 2 the descendant-cells and ancestor-cell relations are chosen, and their values arecomputed by the Noun Phrase Generator and inserted into the template. In addition, some relationsthat appear in a message speci�cation, e.g., include-during-clause?, are directives to the FD-SkeletonProcessor instead of attributes. These directives indicate to the FD-Skeleton Processor that it shouldinclude (or exclude) particular subordinate clauses that the text planner has deemed necessary (orburdensome).Next, the FD-Skeleton Processor invokes the Noun Phrase Generator (described below) to con-struct a functional description representing the noun phrase that expresses those values. The FD-7

Skeleton Processor then binds the resulting noun phrase functional descriptions to the variable andpushes this pair onto the binding list. Finally, it splices all of the new noun phrases it has con-structed into the FD-Skeleton by substituting the appropriate noun-phrase functional descriptionsfor each variable. As it instantiates the variables in the evolving functional description, it checks forexpressions that would produce semantically correct but \lexically redundant" sentences. This checkprevents the generation of sentences such as, \During cell formation, a cell forms."3.3 Noun Phrase GenerationThe Noun Phrase Generator (Figure 5) is given a list of concepts, which are the values that appearon the attributes of a message speci�cation. It is also given a context, which initially is null. If theNoun Phrase Generator is given more than one concept to translate into a noun phrase, it recursivelyinvokes itself on each of the concepts. This will produce a conjoined list of functional descriptions,each of which represents a noun phrase for one of the concepts.Next, the Noun Phrase Generator obtains the type of functional descriptions that comprise thegroup. It then constructs an \enclosing" functional description based on the type, and it embeds eachof the functional descriptions resulting from the recursive invocations in the \enclosing" functionaldescription and �nally returns this entire expression. If it is invoked with a single concept|this isthe \base" case|it �rst obtains the lexical information associated with the concept. For example, inFigure 2, the simple concepts Plant-Gamete and Spore are such base cases.Its next task is to determine how this general lexical information should be modi�ed by additionalinformation known about the concept, i.e., it must augment the basic lexical information with lexicalinformation about the concept's attributes. To do so, it obtains four types of attributes that mayappear on the concept: describer attributes, e.g., color; cardinal attributes, e.g., number-of-units;relative clause attributes, e.g., covered-by; and partitive attributes, e.g., subregions. A given conceptmay be modi�ed by all or none of these types of attributes. For example, in Figure 2, Plant-Gamete andSpore are modi�ed in this manner by the attributes which appear below them. Cell-type is a describerattribute for Plant-Gamete while amount is a cardinal attribute. Additionally, since the subframebeginning at Megaspore-Mother-Cell is itself a complete subframe, the Noun Phrase Generator callsitself recursively and uses the entire resulting functional description as the value for the source relationabove it.For each type that the Noun Phrase Generator encounters, it constructs a functional descriptionof that group. Each of these specialized construction functions may recursively invoke the algorithmand augment the existing context with information about the current phrase type. For example, theNoun Phrase Generator may augment a recursive call with the \number" of the enclosing noun phrase.In this case, the augmentation permits the system to propagate number information to substructures8

Make-Noun-Phrase (Concept-List, Context)if length (Concept-List) > 1 thenFunctional-Description-List ;for each Concept in Concept-List doNew-Noun-Phrase make-noun-phrase ((Concept))Functional-Description-List enqueue (New-Noun-Phrase,Functional-Description-List)FD-Group-Type get-FD-group-type (Functional-Descriptions)Result-FD make-complex-noun-phrase (Functional-Description-List,FD-Group-Type)return (Result-FD)else Concept �rst (Concept-List)Functional-Description compute-lex-information (Concept, Context)Concept-Attributes get-concept-attributes (Concept)Describer-Attributes get-describer-attributes (Concept-Attributes)Cardinal-Attributes get-cardinal-attributes (Concept-Attributes)Rel-Clause-Attributes get-rel-clause-attributes (Concept-Attributes)Partitive-Attributes get-partitive-attributes (Concept-Attributes)Describer-FD make-describer-FD (Concept, Describer-Attributes,Context)Cardinal-FD make-cardinal-FD (Concept, Cardinal-Attributes,Context)Relative-Clause-FD make-rel-clause-FD (Concept,Rel-Clause-Attributes,Context)Partitive-FD make-partitive-FD (Concept, Partitive-Attributes,Context)Result-FD merge-FDs (Functional-Description,Describer-FD, Cardinal-FD,Relative-Clause-FD, Partitive-FD)return (Result-FD) Figure 5: The Make-Noun-Phrase Algorithm9

such as relative clauses, whose verb endings are in
uenced by the number feature of the enclosingnoun phrase. Finally, the Noun Phrase Generator merges the resulting functional descriptions intothe original lexical information (also a functional description) and returns this expression to the FD-Skeleton Processor. This functional description expresses as a noun phrase the concept(s) that theFD-Skeleton Processor encountered in its traversal of the message speci�cation.In the absence of semantic transformations, the result of this entire process in our example fromFigure 2 would be a functional description that would produce the sentence, \During male gameto-phyte generation, the spore, which originates in the megaspore mother cell, which is contained in thesporangium, reproduces to form 4 plant gametes." However, the system �nds two applicable trans-formations, which are triggered when the system encounters two adjacent relative clauses: the �rsttransformation collapses the relative clause \which originates in" to the preposition \from"; the secondtransformation collapses the relative clause \which is contained in" to the preposition \in." The �nalresulting functional description is shown in Figure 1. Fare passes this to Fuf, which realizes it as,\During male gametophyte generation, the spore from the megaspore mother cell in the sporangiumreproduces to form four haploid plant gametes."4 EvaluationBecause the conclusions of empirical studies should be considerably less equivocal than those derivedfrom \proof-of-concept" systems, we have taken an empirical approach to evaluation. With threesigni�cant exceptions ([8], [2], and [19]), the �eld of natural language generation has not witnessed thedevelopment of an \empiricist evaluation" school. However, it is clear that empirical evaluations canyield very informative data. To this end, we conducted a formal evaluation of Fare in conjunctionwith an explanation generator and an informal evaluation in conjunction with a qualitative modelbuilder.4.1 Robustness, E�ciency, and ExpressivenessFirst, we evaluated Fare with Knight [12, 13, 11], a robust explanation generator that constructsexplanations about scienti�c phenomena. It extracts structures from a large-scale knowledge base andorganizes them into hierarchical discourse plans. Working in conjunction, Knight, Fare, and Fufhave produced more than a thousand di�erent sentences. On average Fare requires approximately1{2 seconds on a DEC Alpha to produce a functional description.Our formal study employed two panels of domain experts. Experts on the �rst panel served as\writers," i.e., they produced explanations in response to questions. Experts on the second panelserved as \judges," i.e., they analyzed di�erent dimensions of explanations and assigned grades. It10

Generator Overall Content Organization Writing CorrectnessSystem 2.37�0:13 2.65�0:13 2.45�0:16 2.40�0:13 3.07�0:15Human 2.85�0:15 2.95�0:16 3.07�0:16 2.93�0:16 3.16�0:15Table 1: Comprehensive Analysisis important to note that none of the judges were informed about the purpose of the study, and nonewere aware that they were judging computer-generated explanations. Judges were asked to rate theexplanations on several dimensions, including overall quality and writing style. To provide judges witha familiar rating scale, they were asked to assign letters grades (A, B, C, D, or F) to each dimensionof the explanation. We assigned explanations to judges using an allocation policy that obeyed thefollowing four constraints: each judge received explanations that were approximately evenly dividedbetween objects and processes; each judge received explanations that were approximately evenly di-vided between those that were produced by Knight and those that were produced by biologists; nojudge received two explanations of the same concept; and the explanations written by each writer werenot evaluated by at least two judges.By the end of the study, we had amassed a large volume of data. To analyze it, we convertedeach of the \grades" to their traditional numerical counterparts, i.e., A=4, B=3, C=2, D=1, andF=0. Next, we computed means and standard errors for both Knight's and the biologists' grades.We calculated these values for the overall quality and coherence rating, as well as for each of thesubscores of content, organization, writing style, and correctness. On the overall rating and on eachof the subscores, the system scored within approximately \half a grade" of the biologists (Table 1).(In the tables, � denotes the standard error, i.e., the standard deviation of the mean.) Given theseresults, we decided to investigate the di�erences between the Knight-Fare grades and the biologists'grades. When we normalized the grades by de�ning an \A" to be the mean of the biologists' grades,the system earned approximately a B{B+. The results demonstrate that the quality of Fare's texthas begun to approach that of humans.4.2 Range of ApplicabilityA second study provides evidence that Fare has a broad range of applicability. To investigate Fare'sability to realize message speci�cations that were generated for a signi�cantly di�erent kind of appli-cation, we obtained a qualitative model constructor, Tripel [21]. In collaboration with the designerof Tripel, we modi�ed it to produce text planning commands in addition to its simulation data.11

Next, we extended Fare's library of Functional Description Skeletons to address the new speci�cationtypes. Fare used message speci�cations produced by the augmented qualitative model constructorto generate functional descriptions for sentences such as, \The rate of ABA synthesis in the plant'smesophyll cells is in
uenced by one thing: it is negatively a�ected by the turgor pressure in the plant'smesophyll cells." Within three weeks, we were able to extend Fare to produce completely correctfunctional descriptions for this new application: the text it generated was favorably evaluated by boththe domain expert and the designer of the qualitative model building system.5 Conclusion and Future WorkWe have designed, implemented, and evaluated Fare, a robust functional realization system. Byexploiting an expressive lexicon that is distributed throughout the knowledge base, as well as librariesof functional description skeletons and semantic transformations, Fare uses message speci�cationsdrawn from a large-scale knowledge base to create functional descriptions. The functional descriptionsare then realized in text by Fuf, a sophisticated surface generator. Fare provides �ve key function-alities: it assigns case roles to content units, organizes content units into embedded phrase structures,provides local semantic information, controls the inclusion (or exclusion) of selected features, andaborts generation when it encounters defective message speci�cations. Two empirical studies suggestthat Fare is robust, e�cient, capable of producing quality text, and appropriate for a broad range ofapplications.Encouraged by the experimental results we have obtained, we are continuing to enhance Fare'scapabilities. On a theoretical front, we are considering whether it may be possible to cast functionalrealization as a uni�cation problem.8 If we are successful in this venture, then Fare can be more cleanlyreimplemented within a second Fuf image. On a practical front, it has become clear that we mustsemi-automate the creation and maintenance of Fare's realization libraries and lexical information.Work is currently under way to create integrated tools that will allow knowledge engineers withminimal linguistic expertise to create lexicon entries and updates; another tool is planned that willautomatically update the components of Fare itself. Both of these tools will be implemented witha GUI and will guide the knowledge engineer by continuously displaying acceptable linguistic choicesand incrementally realizing the accumulating structure at each decision point.AcknowledgementsWe would like to thank: Bruce Porter for leading the Biology Knowledge Base project and for providingcomments on earlier drafts of this paper; Kathy Mitchell, Rich Jones, and Teresa Chatko� for their8Thanks to Michael Elhadad for suggesting this approach.12

work on Fare; Michael Elhadad, for developing and generously assisting us with Fuf; Art Souther,our principle domain expert; Erik Eilerts, for building the knowledge base editing tools; Peter Clark,for assistance with the evaluation; Je� Rickel, the designer of Tripel; and the other members of theBiology Knowledge Base Project, Liane Acker, Brad Blumenthal, Rich Mallory, and Ken Murray.References[1] D. Appelt. Planning english referring expressions. Arti�cial Intelligence, 26:1{33, 1985.[2] A. Cawsey. Explanation and Interaction: The Computer Generation of Explanatory Dialogues.MIT Press, 1992.[3] L. Danlos. Conceptual and linguistic decisions in generation. In Tenth International Conferenceon Computational Linguistics, pages 501{504, Stanford University, July 1984.[4] M. Elhadad. FUF: The universal uni�er user manual version 5.0. Technical Report CUCS-038-91,Department of Computer Science, Columbia University, 1991.[5] M. Elhadad. Using Argumentation to Control Lexical Choice: A Functional Uni�cation Imple-mentation. PhD thesis, Columbia University, 1992.[6] R. P. Gabriel. Deliberate writing. In D. D. McDonald and L. Bolc, editors, Natural LanguageGeneration Systems, pages 1{46. Springer-Verlag, New York, 1988.[7] M. Halliday. System and Function in Language. Oxford University Press, Oxford, 1976.[8] E. Hovy. Pragmatics and natural language generation. Arti�cial Intelligence, 43:153{197, 1990.[9] M. Kay. Functional grammar. In Proceedings of the Berkeley Linguistic Society, 1979.[10] D. Lenat and R. Guha. Building Large Knowledge Based Systems. Addison-Wesley, Reading,Massachusetts, 1990.[11] J. Lester. Generating Natural Language Explanations from Large-Scale Knowledge Bases. PhDthesis, The University of Texas at Austin, Austin, Texas, 1994.[12] J. Lester and B. Porter. A revision-based model of instructional multi-paragraph discourse pro-duction. In Proceedings of the Thirteenth Cognitive Science Society Conference, pages 796{800,1991.[13] J. Lester and B. Porter. A student-sensitive discourse generator for intelligent tutoring systems.In Proceedings of the International Conference on the Learning Sciences, pages 298{304, August1991. 13

[14] W. Mann. An overview of the Penman text generation system. In Proceedings of the NationalConference on Arti�cial Intelligence, pages 261{265, 1983.[15] W. Mann and J. Moore. Computer generation of multiparagraph english text. American Journalof Computational Linguistics, 7(1):17{29, 1981.[16] D. McDonald. Description directed control: Its implications for natural language generation.Computers and Mathematics, 9(1):111{130, 1983.[17] K. McKeown. Text Generation: Using Discourse Strategies and Focus Constraints to GenerateNatural Language Text. Cambridge University Press, 1985.[18] M. Meteer. The Generation Gap: The Problem of Expressibility in Text Planning. PhD thesis,University of Massachusetts, February 1990.[19] V. Mittal. Generating Natural Language Descriptions with Integrated Text and Examples. PhDthesis, University of Southern California, September 1993.[20] B. Porter, J. Lester, K. Murray, K. Pittman, A. Souther, L. Acker, and T. Jones. AI research inthe context of a multifunctional knowledge base: The botany knowledge base project. TechnicalReport AI Laboratory AI88-88, University of Texas at Austin, Austin, Texas, 1988.[21] J. Rickel and B. Porter. Automated modeling for answering prediction questions: Selecting thetime scale and system boundary. In Proceedings of the Twelfth National Conference on Arti�cialIntelligence, pages 1191{1198, 1994.[22] M. M. Vaughan and D. D. McDonald. A model of revision in natural language generation. InProceedings of the 24th Annual Meeting, pages 90{96, Columbia University, 1986. Association forComputational Linguistics.[23] W.-K. C. Wong and R. F. Simmons. A blackboard model of text production with revision.In Proceedings of the AAAI Workshop on Text Planning and Realization, St. Paul, Minnesota,August 1988.[24] M. Yazdani. Reviewing as a component of the text generation process. In G. Kempen, editor,Natural Language Generation, pages 183{190. Martinus Nijho�, Dordrecht, The Netherlands,1987. 14

