
Robust Natural Language Generationfrom Large-Scale Knowledge Bases1Charles B. Callaway James C. Lester(theorist@cs.utexas.edu) (lester@adm.csc.ncsu.edu)Department of Computer Sciences Department of Computer ScienceThe University of Texas at Austin North Carolina State UniversityAustin, TX 78712-1188 Raleigh, NC 27695-8206AbstractWe have begun to see the emergence of large-scale knowledge bases that house tens of thousandsof facts encoded in expressive representational languages. The richness of these representations o�erthe promise of signi�cantly improving the quality of natural language generation, but their repre-sentational complexity, scale, and task-independence pose great challenges to generators. We havedesigned, implemented, and empirically evaluated Fare, a functional realization system that exploitsmessage speci�cations drawn from large-scale knowledge bases to create functional descriptions, whichare expressions that encode both functional information (case assignment) and structural information(phrasal constituent embeddings). Given a message speci�cation, Fare exploits lexical and gram-matical annotations on knowledge base objects to construct functional descriptions, which are thenconverted to text by a surface generator. Two empirical studies|one with an explanation genera-tor and one with a qualitative model builder|suggest that Fare is robust, e�cient, expressive, andappropriate for a broad range of applications.1 IntroductionIn recent years, the �eld of natural language generation has begun to mature very rapidly. In addition toencouraging results in the form of speci�c theories and mechanisms that address particular generationphenomena, the �eld has witnessed the appearance of sophisticated, generic surface realization systems[12, 2]. A parallel development in the knowledge representation community has been the emergenceof large-scale knowledge bases (LSKBs) that house tens of thousands of facts encoded in expressiverepresentational languages [14, 8]. Because of the richness of their representations and the sheer volumeof their formally encoded knowledge, LSKBs o�er the promise of signi�cantly improving the quality of1Support for this research is provided by a grant from the National Science Foundation (IRI-9120310), a contract fromthe Air Force O�ce of Scienti�c Research (F49620-93-1-0239), and donations from the Digital Equipment Corporation.This research was conducted at the University of Texas at Austin.

natural language generation. However, the representational complexity, scale, and task-independenceof LSKBs pose great challenges to natural language generators.The objective of our research is to develop techniques for expressive, robust natural language gen-eration that can take advantage of these developments in surface realization and large-scale knowledgebase construction. To this end, we have designed, implemented, and empirically evaluated Fare,2a functional realization system that exploits message speci�cations drawn from large-scale knowledgebases to create functional descriptions [2, 3], which are expressions that encode both functional informa-tion (case assignments) and structural information (phrasal constituent embeddings). Given a messagespeci�cation, Fare constructs functional descriptions, which are then converted to text by the Fufsurface generator [2, 3]. We have conducted these investigations in the \laboratory" provided by theBiology Knowledge Base Project. The result of a seven year e�ort, the Biology Knowledge Base [14] isan immense, task-independent representation of more than 180,000 facts about botanical anatomy andphysiology. To study Fare's robustness and range of applicability, it was evaluated with two very dif-ferent text planners: an explanation generator, Knight [10, 11, 9], and a qualitative model constructorTripel [15], which was augmented to produce text plans.2 Functional RealizationClassically, natural language generation has been decomposed into two subtasks: planning, determiningthe content and organization of a text, and realization, translating the content to natural language. Re-alization can be decomposed into two subtasks: functional realization, constructing functional descrip-tions from message speci�cations supplied by a planner; and surface generation, translating functionaldescriptions to text. Our work focuses on the design and implementation of functional realizers, whichtranslate message speci�cations into functional descriptions that encode case assignments and phrasalconstituent embeddings.Figure 1 depicts a sample functional description (FD). The �rst line, (cat clause), indicates thatwhat follows will be some type of verbal phrase. The second line contains the keyword proc, whichdenotes that everything in its scope will describe the structure of the verbal phrase. The next structurecomes under the heading partic; this is where the thematic roles of the clause are speci�ed. In thisinstance, one thematic role exists in the main sentence, the agent, which is further de�ned by itslexical entry and a modifying prepositional phrase indicated by the keyword qualifier. The structurebeginning with circum describes a subordinate in�nitival purpose clause.A functional realizer must create a mapping between the content units in a message speci�cationand the constituents and semantic roles in functional descriptions. To properly realize the frames and2Functional Assigner of Role Embeddings.

((cat clause)(proc ((type material) (lex ``reproduce'')))(partic ((agent ((cat common) (lex ``spore'')(qualifier ((cat pp) (prep === ``from'')(np ((cat common)(lex ``cell'')(classifier ((cat noun-compound)(classifier === ``megaspore'')(head === ``mother'')))(qualifier ((cat pp) (prep === ``in'')(np ((cat common)(lex ``sporangium'')))))))))))))(circum ((purpose ((cat clause) (position end) (keep-for no) (keep-in-order no)(proc ((type material) (lex ``form'')))(partic ((agent ((semantics {partic agent semantics})))(affected ((cat common) (lex ``gamete'') (definite no)(classifier === ``plant'') (describer === ``haploid'')(cardinal ((value 4) (digit no)))))))))))(time-relater === ``during male gametophyte generation''))Figure 1: A Functional Descriptionrelations in a message speci�cation, a functional realizer must provide �ve central functionalities:1. Assign case roles to content units: To achieve semantic equivalence, a functional realizer mustensure that relations in the message speci�cation are precisely mapped to case roles in an FD, e.g.,ancestor-cell in Figure 2 should be mapped to agent.2. Organize content units into embedded phrase structures: A functional realizer must guarantee thatcomplex content units are are properly packaged in FDs. For example, (Megaspore-Mother-Cellcontained-in Sporangium) in Figure 2 should become an indivisible syntactic unit.3. Provide local semantic information: A functional realizer is responsible for detecting and resolvingsemantic con
icts between lexical information and local semantic information on a message speci-�cation, e.g., when constructing an FD for a creative sentence, such as Figure 2 calls for, it mustknow that in�nitival objects should be inde�nite rather than the default value of de�nite.4. Control the inclusion of selected features: Message speci�cations frequently contain meta-levelinformation, e.g., Include-During-Clause? speci�es that a time-relater should be included if thereare no lexical redundancies between it and the head verb.5. Abort generation of sentences with defective message speci�cations: A functional realizer is respon-sible for detecting missing case roles required for proper realization.

Specification−493

specification−type: Black−Box−Process−Description

viewpoint−of: Male−Gametophyte−Generation

reference−concept: Reproduction

include−during−clause?: True

cell−type: Haploid

number−of−units: 4

contained−in: Sporangium

descendant−cells: Plant−Gamete

ancestor−cell: Spore

source: Megaspore−Mother−CellFigure 2: A Sample Message Speci�cation3 A Robust Functional Realization SystemWe have designed and implemented a functional realization system, Fare3 (Figure 3), which providesthe �ve key functionalities discussed above. Given a message speci�cation produced by a text planner,Fare uses its knowledge of case mappings, syntax, and lexical information to construct an FD, whichit passes to Fuf, a uni�cation-based surface generator [2, 3].4 Fare was developed with text plannersthat employ the Biology Knowledge Base [14], which contains more than 180,000 facts about botanicalanatomy and physiology. We have employed two text planners: an explanation generator, Knight[10, 11, 9], and a qualitative model constructor Tripel [15] that has been \linguistically augmented."3.1 Knowledge SourcesFare employs three principle knowledge sources: a lexicon, a library of FD-Skeletons, and a libraryof semantic transformations. Each concept in the lexicon may include several lexical features, andall lexical entries include the lexical type of the concept, which indicates either a speci�c grammaticalconstituent, e.g., NP, or a subclass of constituents, such as relative clauses. In addition to lexemes andtype information, the lexicon provides features such asmass-or-count? to store countability informationthat overrides default values. To create exceptions in the lexical ontology, the lexical access methodsexploit inheritance mechanisms to �nd the most speci�c verb available, e.g, \elongate" instead of \grow."3Fare's implementation consists of approximately 5,000 lines of Lucid Common Lisp.4Fuf is accompanied by an extensive, portable English grammar, Surge (the largest \generation" grammar in exis-tence), described by Elhadad as \the result of �ve years of intensive experimentation in grammar writing." Surge borrowsthe notions of feature structures and uni�cation from functional uni�cation grammars [7] and systems from systemicgrammars [5].

Text Planner
Message

Specification
FD Skeleton Retriever

FD Skeleton Processor

FD Skeleton Library

Lexicon

Noun Phrase Generator

Functional

Descriptions

Rhetorical
Goals

Text

(FUF)

Formative Realizer (FARE)

 Surface
Generator

Semantic Transformation
 Library

(KNIGHT, TRIPEL)

Figure 3: An Architecture for Functional RealizationThe second knowledge source used by the functional realizer is a library of FD-Skeletons. An FD-Skeleton consists of (1) a collection of semantic tests for inclusion and modi�cation of nested FDs, and(2) a template that encodes the deep structure represented by an FD. Among the more important ofvarious types of FD-Skeletons are those for describing processes. Currently we have developed FD-Skeletons for over 20 processes that play a central role in biology, e.g., assimilation, development, andreproduction. Figure 4 shows the template of the FD-Skeleton for producing functional descriptions oftransportation processes.5Following in the NLG \revision" tradition [16, 17, 4, 10], The third knowledge source used by thefunctional realizer is a library of semantic transformations. For example, when given the triples (Wateramount 4) and (H+ amount 3), without access to semantic transformations, the system would returnthe FDs representing the strings \4 portions of water" and \3 portions of hydrogen ion." Semantictransformations detect and correct problems of this sort. In this example, they determine that amountbehaves di�erently for mass and count nouns, and they appropriately return \3 hydrogen ions" in thelatter case.3.2 FD-Skeleton Retrieval and ProcessingThe FD-Skeleton Retriever obtains the appropriate FD-Skeleton by indexing into its library. If the topicof the speci�cation is a process, the FD-Skeleton Retriever exploits the taxonomy of the knowledge baseto locate the most speci�c case structure that can be used. Otherwise, the retrieval process requires5Note that the template is merely one of two components of FD-Skeletons; Skeletons also include semantic tests forinclusion and modi�cation of nested functional descriptions.

((cat clause)(proc ((type <VERB-TYPE>)(verb <VERB-STRING>)))(partic ((agent <TRANSPORTER-FD>)(affected <TRANSPORTED-ENTITIES-FD>)(location ((cat list)(distinct (<SOURCE-FD><CONDUIT-FD><DESTINATION-FD>))))))(time-relater ``during <PROCESS-LEXEME>''))Figure 4: The Template of an FD-Skeleton for Transportationno inference because each speci�cation type points to a unique FD-Skeleton. Next, the FD-SkeletonProcessor determines if each of the essential slots are present; if any of these tests fail, it will notethe de�ciency and abort. If the message is well-formed, the FD-Skeleton Processor uses the FD-Skeleton as a template for forming an FD. It instantiates the variables in the FD-Skeleton, each ofwhich is associated with a particular attribute that appears in the message speci�cation. For eachvariable in the FD-Skeleton, the FD-Skeleton Processor obtains the name of an attribute (or a group ofsimilar attributes) on the message speci�cation. For example, the FD-Skeleton that is used to realize a\structural" message speci�cation obtains all \part" attributes in the message speci�cation, e.g., partsand composed-of.The FD-Skeleton Processor then retrieves the values that appear on the selected attributes of themessage speci�cation. These values are used to instantiate variables in the FD-Skeleton. For example,in Figure 2, the descendant-cells and ancestor-cell relations are chosen, and their values are computedby the Noun Phrase Generator and inserted into the template. Next, the Noun Phrase Generator(described below) is invoked to construct an FD representing the noun phrase expressing those values.Finally, the FD-Skeleton Processor splices all of the new noun-phrase FDs into the FD-Skeleton.3.3 Noun Phrase GenerationThe Noun Phrase Generator (Figure 5) is given a list of concepts, which are the values of the attributesof a message speci�cation. If the Noun Phrase Generator is given more than one concept, it recursivelyinvokes itself on each of the concepts, thereby producing a conjoined list of FDs, each of which representsa noun phrase for one of the concepts. Next, it obtains the type of FDs that comprise the group. Itthen constructs an \enclosing" FD based on the type, and it embeds each of the FDs resulting from therecursive invocations in the \enclosing" FD and �nally returns this entire expression. If it is invoked

Make-Noun-Phrase (Concept-List, Context)if length (Concept-List) > 1 thenFunctional-Description-List ;for each Concept in Concept-List doNew-Noun-Phrase make-noun-phrase ((Concept))Functional-Description-List enqueue (New-Noun-Phrase, Functional-Description-List)FD-Group-Type get-FD-group-type (Functional-Descriptions)Result-FD make-complex-noun-phrase (Functional-Description-List,FD-Group-Type)return (Result-FD)else Concept �rst (Concept-List)Functional-Description compute-lex-information (Concept, Context)Concept-Attributes get-concept-attributes (Concept)Describer-Attributes get-describer-attributes (Concept-Attributes)Cardinal-Attributes get-cardinal-attributes (Concept-Attributes)Rel-Clause-Attributes get-rel-clause-attributes (Concept-Attributes)Partitive-Attributes get-partitive-attributes (Concept-Attributes)Describer-FD make-describer-FD (Concept, Describer-Attributes, Context)Cardinal-FD make-cardinal-FD (Concept, Cardinal-Attributes, Context)Relative-Clause-FD make-rel-clause-FD (Concept, Rel-Clause-Attributes, Context)Partitive-FD make-partitive-FD (Concept, Partitive-Attributes, Context)Result-FD merge-FDs (Functional-Description, Describer-FD,Cardinal-FD, Relative-Clause-FD, Partitive-FD)return (Result-FD) Figure 5: The Make-Noun-Phrase Algorithmwith a single concept, it �rst obtains the lexical information associated with the concept.Its next task is to augment the basic lexical information with lexical information about the concept'sattributes. To do so, it obtains four types of attributes that may appear on the concept: describerattributes, e.g., color; cardinal attributes, e.g., number-of-units; relative clause attributes, e.g., covered-by; and partitive attributes, e.g., subregions. For example, in Figure 2, cell-type is a describer attributefor Plant-Gamete while amount is a cardinal attribute. For each type that the Noun Phrase Generatorencounters, it constructs an FD of that group. Each of these specialized construction functions mayrecursively invoke the algorithm and augment the existing context with information about the currentphrase type. For example, the Noun Phrase Generator may augment a recursive call with the \number"of the enclosing noun phrase. In this case, the augmentation permits the system to propagate numberinformation to substructures such as relative clauses, whose verb endings are in
uenced by the numberfeature of the enclosing noun phrase. Finally, the Noun Phrase Generator merges the resulting FDs intothe original lexical information (also an FD) and returns this expression to the FD-Skeleton Processor.

The �nal resulting FD for the message speci�cation depicted in Figure 2 is shown in Figure 1. Farepasses this to Fuf, which realizes it as, \During male gametophyte generation, the spore from themegaspore mother cell in the sporangium reproduces to form four haploid plant gametes."4 EvaluationBecause the conclusions of empirical studies should be considerably less equivocal than those derivedfrom \proof-of-concept" systems, we have taken an empirical approach to evaluation.6 To this end, weconducted a formal evaluation of Fare in conjunction with an explanation generator and an informalevaluation in conjunction with a qualitative model builder. First, we evaluated Fare with Knight [10,11, 9], a robust explanation generator that constructs explanations about scienti�c phenomena. Workingin conjunction, Knight, Fare, and Fuf have produced more than a thousand di�erent sentences,7including the following: \During egg fertilization, an angiosperm sperm cell fertilizes a plant egg cellto form a zygote."; \Embryo sac development is a step of embryo sac formation, which is a step ofreproduction."; \Sporogenesis occurs immediately before gametophyte generation."; \The root systemis part of the plant and is connected to the mainstem."; \The subregions of the root system include themeristem, which is where root system growth occurs."; and, \During sperm cell transport, 2 angiospermsperm cells are transported from the pollen tube to the embryo sac."Our formal study employed two panels of domain experts. Experts on the �rst panel served as \writ-ers," i.e., they produced explanations in response to questions. Experts on the second panel served as\judges," i.e., they analyzed di�erent dimensions of explanations and assigned grades. None of the judgeswere informed about the purpose of the study, and none were aware that they were judging computer-generated explanations. Judges were asked to rate the explanations on several dimensions, includingoverall quality and writing style. Using an A{F (4{0) scale, the system scored within approximately\half a grade" of the biologists (Table 1).8A second study provides evidence that Fare has a broad range of applicability. To investigateFare's ability to realize message speci�cations for a signi�cantly di�erent kind of task, we augmenteda qualitative model constructor, Tripel [15], with text planning commands. Fare used messagespeci�cations produced by the augmented qualitative model constructor to generate FDs for sentencessuch as, \The rate of ABA synthesis in the plant's mesophyll cells is in
uenced by one thing: it isnegatively a�ected by the turgor pressure in the plant's mesophyll cells." Within three weeks, we wereable to extend Fare to produce completely correct FDs for this new application: the text it generated6With three signi�cant exceptions ([6], [1], and [13]), the �eld of natural language generation has not witnessed thedevelopment of an \empiricist evaluation" school.7On average, Fare requires 1{2 seconds on a DEC Alpha to produce an FD.8In the tables, � denotes the standard error, i.e., the standard deviation of the mean.

Generator Overall Content Organization Writing CorrectnessSystem 2.37�0:13 2.65�0:13 2.45�0:16 2.40�0:13 3.07�0:15Human 2.85�0:15 2.95�0:16 3.07�0:16 2.93�0:16 3.16�0:15Table 1: Comprehensive Analysiswas favorably evaluated by both the domain expert and the designer of the qualitative modeling system.5 ConclusionWe have designed, implemented, and evaluated Fare, a robust functional realization system. Byexploiting an expressive lexicon, as well as libraries of functional description skeletons and semantictransformations, Fare uses message speci�cations drawn from a large-scale knowledge base to createfunctional descriptions, which are then realized in text by a sophisticated surface generator, Fuf. Fareprovides �ve key functionalities: it assigns case roles to content units, organizes content units intoembedded phrase structures, provides local semantic information, controls the inclusion of selectedfeatures, and detects defective message speci�cations. Two empirical studies suggest that Fare isrobust, e�cient, capable of producing quality text, and appropriate for a broad range of text planners.9References[1] A. Cawsey. Explanation and Interaction: The Computer Generation of Explanatory Dialogues.MIT Press, 1992.[2] M. Elhadad. FUF: The universal uni�er user manual version 5.0. Technical Report CUCS-038-91,Department of Computer Science, Columbia University, 1991.[3] M. Elhadad. Using Argumentation to Control Lexical Choice: A Functional Uni�cation Implemen-tation. PhD thesis, Columbia University, 1992.[4] R. P. Gabriel. Deliberate writing. In D. D. McDonald and L. Bolc, editors, Natural LanguageGeneration Systems, pages 1{46. Springer-Verlag, New York, 1988.9We would like to thank: Bruce Porter for leading the Biology Knowledge Base project and for providing comments onearlier drafts of this paper; Michael Elhadad, for developing and generously assisting us with Fuf; Kathy Mitchell, RichJones, and Teresa Chatko� for their work on Fare; Art Souther, our principle domain expert; Erik Eilerts, for building theknowledge base editing tools; Peter Clark, for assistance with the evaluation; Je� Rickel, the designer of Tripel; and theother members of the Biology Knowledge Base Project, Liane Acker, Brad Blumenthal, Rich Mallory, and Ken Murray.

[5] M. Halliday. System and Function in Language. Oxford University Press, Oxford, 1976.[6] E. Hovy. Pragmatics and natural language generation. Arti�cial Intelligence, 43:153{197, 1990.[7] M. Kay. Functional grammar. In Proceedings of the Berkeley Linguistic Society, 1979.[8] D. Lenat and R. Guha. Building Large Knowledge Based Systems. Addison-Wesley, Reading,Massachusetts, 1990.[9] J. Lester. Generating Natural Language Explanations from Large-Scale Knowledge Bases. PhDthesis, The University of Texas at Austin, Austin, Texas, 1994.[10] J. Lester and B. Porter. A revision-based model of instructional multi-paragraph discourse pro-duction. In Proceedings of the Thirteenth Cognitive Science Society Conference, pages 796{800,1991.[11] J. Lester and B. Porter. A student-sensitive discourse generator for intelligent tutoring systems.In Proceedings of the International Conference on the Learning Sciences, pages 298{304, August1991.[12] W. Mann. An overview of the Penman text generation system. In Proceedings of the NationalConference on Arti�cial Intelligence, pages 261{265, 1983.[13] V. Mittal. Generating Natural Language Descriptions with Integrated Text and Examples. PhDthesis, University of Southern California, September 1993.[14] B. Porter, J. Lester, K. Murray, K. Pittman, A. Souther, L. Acker, and T. Jones. AI research inthe context of a multifunctional knowledge base: The botany knowledge base project. TechnicalReport AI Laboratory AI88-88, University of Texas at Austin, Austin, Texas, 1988.[15] J. Rickel and B. Porter. Automated modeling for answering prediction questions: Selecting thetime scale and system boundary. In Proceedings of the Twelfth National Conference on Arti�cialIntelligence, pages 1191{1198, 1994.[16] M. M. Vaughan and D. D. McDonald. A model of revision in natural language generation. InProceedings of the 24th Annual Meeting, pages 90{96, Columbia University, 1986. Association forComputational Linguistics.[17] W.-K. C. Wong and R. F. Simmons. A blackboard model of text production with revision. InProceedings of the AAAI Workshop on Text Planning and Realization, St. Paul, Minnesota, August1988.

