
Processing Boolean Equalities and Inequalities

Jayadev Misra∗

October 24, 2011

1 Introduction

We are given a set of boolean variables, and a set of equalities of the form x ≡ y

and inequalities of the form x 6≡ y, over these variables. We call each equality
and inequality a fact. A query is of the form x ≡ y?. Based on the given facts,
an outcome of a query is “true” (that is, x ≡ y), “false” (that is, x 6≡ y), and
“⊥” (that is, no relationship between x and y can be deduced from the given
facts). An inconsistency arises if both x ≡ y and x 6≡ y can be deduced from the
given facts for some pair of variables x and y; inconsistency should be reported.

We propose an offline and an online algorithm to process facts and answer
queries. In the offline version, queries are posed only after all facts have been
presented. In the online version, the facts and queries are intermingled; answer
to each query is based on the facts presented so far. The offline version processes
each fact in constant time; then, after all the facts have been processed, it builds
a data structure in time linear in the number of variables, and then answers each
query in constant time. The online version is based on a modification of the well-
known union-find algorithm (see chapter 21 on “Data Structures and Disjoint
Sets” in [1]), and has the same time bounds as that algorithm.

The complexity of this problem is no less than processing equivalence re-
lations over arbitrary domains, not just booleans1. To see this, consider the
special case where all facts are equalities. We claim that this problem is equiv-
alent to the equivalence problem in which the variables are not restricted to
be boolean. For any instance of the general equivalence problem, construct the
corresponding boolean equivalence problem (where all facts are now equalities).
A derivation of x0 ≡ xn in either domain is a sequence x0 ≡ x1, x1 ≡ x2, · · ·,
xn−1 ≡ xn, where each xi ≡ xi+1 is a fact or xi+1 ≡ xi is a fact. Answer to
a query is based on a derivation. It is easy to see that a derivation exists in
one domain iff it exists in the other domain. Therefore, restricting values to
be boolean is no less general. The problem we study adds the complication of
inequalities.

∗This work is partially supported by National Science Foundation grant CCF-0811536.
1Observation due to Greg Plaxton.

1



The problem is easily solved by coding the facts and queries in a reasoning
language, such as CCalc[4], and then applying a SAT solver. These are powerful
tools that can process far more general facts and queries. Frühwirth [3] contains
important generalizations of the classical union-find algorithm that are appli-
cable to arbitrary relations; his work can be applied to the problem considered
here. Ours is a much simpler solution for this specific problem.

2 Basic Results

Both offline and online algorithms exploit the following results about boolean
equalities and inequalities. Define x ∼ y to mean that either x ≡ y or x 6≡ y.

Proposition 1 Relation ∼ is an equivalence relation.

Proof: (Reflexivity) For any x, x ∼ x follows from x ≡ x. (Symmetry) Follows
from the symmetry of both ≡ and 6≡. (Transitivity) Given x ∼ y and y ∼ z, if
both facts are equalities or both inequalities, then x ≡ z; hence, x ∼ z. If one
of the facts is an equality and the other inequality, then x 6≡ z; hence, x ∼ z. 2

We exploit Proposition 1 to encode the facts in a graph such that x ∼ y iff x

and y belong to the same connected component. And, we label each edge (x, y)
with the value of x ≡ y. Proposition 3, below, shows that the value of (x ≡ y),
for any two nodes x and y in a component of the graph, can be computed by
applying ≡ to the edge labels along a path between these nodes.

Proposition 2 The ≡ relation has the following properties.

Commutativity: x ≡ y = y ≡ x

Associativity: x ≡ (y ≡ z) = (x ≡ y) ≡ z

Zero: (x ≡ x) ≡ z = z

Proof: These are standard properties of equivalence relations; see Dijkstra and
Scholten [2]. 2

Proposition 3 Consider a graph in which the label of every edge (p, q) is the
value of p ≡ q. For any two nodes x and y in the graph, the value of x ≡ y can
be computed by applying ≡ to the edge labels along any path between x and y.

Proof: Let x = x0, x1, · · · , xn = y be a path connecting x and y.

(x0 ≡ x1) ≡ (x1 ≡ x2) · · · ≡ (xn−1 ≡ xn)
= {Rewrite using commutativity and associativity of ≡}

(x0 ≡ xn) ≡ (x1 ≡ x1) · · · ≡ (xn−1 ≡ xn−1)
= {Drop every (xi ≡ xi) term}

(x0 ≡ xn)
= {x = x0 and xn = y}

(x ≡ y) 2

2



3 Offline Algorithm

Construct an undirected graph where each node corresponds to a variable.
Given a fact x ≡ y or x 6≡ y, introduce edge (x, y) and label it with the value of
x ≡ y, i.e., set (x, y).l := (x ≡ y), where the label of (x, y) is (x, y).l. We may
assume that no fact is of the form x ≡ x (redundant) or x 6≡ x (inconsistent).
Therefore, there is no self-loop in the graph.

Nodes x and y are connected iff x ∼ y, that is, the connected components
of the graph correspond to the equivalence classes under ∼. After all the facts
have been presented, we process the graph to build a data structure that allows
answering each query in constant time.

The given facts are consistent iff there is an assignment of boolean values to
the variables, i.e., nodes of the graph, satisfying the facts. It is sufficient to check
each component of the graph independently for consistency. Pick an arbitrary
node r in a component and assign it an arbitrary boolean value r.l. Then for
each edge (x, y), assign values to x and y such that x.l ≡ ((x, y).l ≡ y.l). If the
variables can be assigned unique values so that this assertion holds for each edge
then the facts are consistent, by definition. If some node x gets two different
assigned values, true and false, then the facts are inconsistent. This is because,
considering the two paths from r to x that caused these assignments, we derive
r.l ≡ true and r.l ≡ false, leading to a contradiction.

For node x, let x.c be the identity of the component to which it belongs.
The answer to the query (x ≡ y)?, given that the facts are consistent, is

{

⊥ if x.c 6= y.c

x.l ≡ y.l otherwise

Efficiency Each fact creates a single labeled edge of the graph, so each fact is
processed in constant time. Identifying the connected components and labelling
the nodes takes linear time, which includes the consistency check. If the facts
are consistent, each query is then answered in constant time.

4 Online Algorithm

The online problem, as described in section 1, intermingles facts and queries.
We will use a variation of the union-find algorithm for this case. Below, we give
a brief description of this algorithm, which is necessary for understanding its
extension to the boolean domain with equalities and inequalities.

4.1 union-find algorithm

The algorithm represents each connected component of the graph by a tree over
the nodes in the component. Each node x has a field x.parent for the identity of
its parent (the parent of a root is nil). The algorithm supports two fundamental
operations: (1) union(r, s), where r and s are the roots of two different trees,

3



merges these two trees, and (2) find(x) returns the root of the tree to which x

belongs.

Implementing find with path compression To implement find(x), start
at x and follow the sequence of parents to the root r of the tree. The following
heuristic speeds up the algorithm. The path from x to r is followed again making
each ancestor y of x, y 6= r, a child of r (a node is its own ancestor). Path
compression doubles the cost of operation find , but it reduces the processing
time for subsequent facts and queries.

Implementing union by rank To implement union(r, s), r.parent is set to
s, or vice versa; the choice is immaterial for the correctness of the algorithm.
Choosing r to be the child if it is the root of a smaller tree (i.e., having fewer
nodes) improves the performance of the algorithm.

The two heuristics can be applied independently. Applying both heuristics
results in a running time that is almost linear in the number of facts and queries.

4.2 Extending the union-find algorithm

As before, we attach a boolean label (x, y).l to every tree edge (x, y); the label
has the value x ≡ y.

Implementing find The operation find(x) returns a pair (r, b) where r is the
root of the tree to which x belongs and b ≡ (x ≡ r). We describe how b is
computed and path compression implemented.

Let x0, x1, · · · , xn be the path from x to r where x0 = x and xn = r. Now
b equals (x ≡ r), which, using Proposition 3, can be computed from the edge
labels along the path from x to r. To implement path compression, each xi

is made a child of r. The edge label of (xi, r) is xi ≡ r, which is computed
iteratively as follows. By the time r has been computed, x0 ≡ r is known. For
i > 0, (xi ≡ r) = ((xi ≡ xi−1) ≡ (xi−1 ≡ r)). The first term is the label of the
edge from xi−1 to its previous parent xi; the second term has been computed
earlier.

Implementing union The union operation has an additional boolean argu-
ment; the effect of executing union(r, s, b), where r and s are roots of different
trees, is to make r the parent of s, or vice versa, and label the edge that is
introduced with b. The rank heuristic is used, as before, to choose which of r

and s becomes the root of the merged tree.

Processing a fact, x ≡ y or x 6≡ y

Let (xr, xb) := find(x) and (yr, yb) := find(y). If xr = yr then the nodes are in
the same tree; i.e., the relationship between x and y is already known. If xb ≡ yb

equals x ≡ y then the new fact is consistent and redundant. If xb ≡ yb does not
equal x ≡ y then the new fact is inconsistent with the known facts. Otherwise,

4



xr 6= yr; we need to merge the trees with root xr and yr and assign the label
xr ≡ yr to the newly introduced edge. Apply union(xr, yr, xb ≡ (x ≡ y) ≡ yb).
To see the validity of the last parameter in the call to union, note that

xb ≡ (x ≡ y) ≡ yb

= {Using commutativity and associativity of ≡}
(xb ≡ x) ≡ (y ≡ yb)

= {xr = (xb ≡ x) and yr = (y ≡ yb)}
xr ≡ yr

Processing a query, x ≡ y?
Let (xr, xb) := find(x) and (yr, yb) := find(y). If xr 6= yr then the nodes are

in different trees; return ⊥. If xr = yr, return xb ≡ yb. This is because,

xb ≡ yb

= {xb = x ≡ xr, yb = y ≡ yr}
(x ≡ xr) ≡ (y ≡ yr)

= {Using commutativity and associativity of ≡}
(x ≡ y) ≡ (xr ≡ yr)

= {xr = yr}
x ≡ y

Acknowledgment The power of the equivalence relation was shown to me by
Edsger W. Dijkstra. The arguments in this note would have been considerably
more complicated had I not freely used the properties of the ≡ operator.

I am thankful to Vladimir Lifschitz and Jonathan Campbell for acquaint-
ing me with their reasoning language Ccalc. Rutger M. Dijkstra and David
Gries have provided extensive editorial comments on an earlier draft. Particu-
lar thanks to Greg Plaxton for many insightful comments.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. McGraw Hill and MIT press, second
edition, 2001.

[2] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Seman-

tics. Texts and Monographs in Computer Science. Springer-Verlag, 1989.

[3] Thom Frühwirth. Quasi-linear-time algorithms by generalisation of union-
find in CHR. In Recent Advances in Constraints — CSCLP ’07: 12th

ERCIM Intl. Workshop on Constraint Solving and Constraint Logic Pro-

gramming, Revised Selected Papers, pages 91–118, November 2008.

[4] The home page for The Causal Calculator, CCalc.
http://www.cs.utexas.edu/users/tag/cc/, 1997.

5


