Structured Concurrent Programming

William Cook
Jayadev Misra
David Kitchin
John Thywissen
Arthur Peters

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

The 10th International Symposium on Formal Aspects of Carepbd
Software
Jiangxi Normal University, Nanchang, China.
October 28 - 30, 2013

1



Structured Concurrent Programming

e Structured Sequential Programmirigjjkstra circa 1968
Component Integration in a sequential world.

e Structured Concurrent Programming
Component Integration in a concurrent world.



Traditional approaches to handling Concurrency

e Adding concurrency to serial languages:

e Threads with mutual exclusion using semaphore.

e Transaction.

e Process Networks.



Orc

e Orc addresseBesign as a component integration system.

Components:

from many vendors

for many platforms

written in many languages

may run concurrently and in real-time



Evolution of Orc

e Web-service Integration
e Component Integration

e Structured Concurrent Programming



Web-service Integration: Internet Scripting

Contact two airlines simultaneously for price quotes.

Buy a ticket if the quote is at most $300.

Buy the cheapest ticket if both quotes are above $300.
Buy a ticket if the other airline does not give a timely quote.

Notify client if neither airline provides a timely quote.



Enhanced Goal: Component Integration

Components could be:
e Web services
e Library modules
e Custom Applications, including real time

Components could be for:

¢ Functional Transformation
¢ Data Object Creation
e Real-time Computation



Component Integration; contd.

Combineanykind of component, not just web services
Small components: add two numbers, print a file ...
Large components: Linux, MSword, email server, file server .
Time-based components: for real-time computation
Actuators, sensors, humans as components

Fast and Slow components

Short-lived and Long-lived components

Written in any language for any platform



Concurrency

Component integration: typically sequential using olgect
Concurrency is ubiquitous

Magnitude higher in complexity than sequential programgmin
No generally accepted method to tame complexity

May affect security



Orc: Structured Concurrent Programming

A combinatorcombines two components to get a component
Combinators may be applied recursively

Results in hierarchical/modular program construction
Combinators may orchestrate components concurrently

Orc is just about 4 combinators

10



Power of Orc

Solve all known synchronization, communication problems
Code objects, active objects

Solve all known forms of real-time and periodic computaions
Solve a limited kind of transactions

and, all combinations of the above

11



Some Typical Applications

e Adaptive Workflow(Business process management):

Workflow lasting over months or years
Security, Failure, Long-lived Data

e Extended 911
Using humans as components
Components join and leave
Real-time response

¢ Network simulation
Experiments with differing traffic and failure modes
Animation

12



Some Typical Applications, contd.

Grid Computations
Music Composition
Traffic simulation
Computation Animation

Robotics

13



Some Typical Applications, contd.

Map-Reducausing a server farm
Thread managemeirt an operating system
MashupgInternet Scripting).

Concurrent Programmingn Android.

14



Some Very Large Applications

e Logistics
¢ Managing Olympic Games

e Smart City

15



Current Status
Strong Theoretical Basis

An elegant programming language
¢ as good as functional on functional problems
e can work with mutable store, real-time dependent companent
non-determinacy
e concurrency
e hierarchical, modular, recursive

Robust Implementation

e Run program through a Web browser or locally
e \Web site:orc.csres.utexas.edu
e Several papers, Ph.D. thesis

Several Chapters of a book

16



Concurrent orchestration in Haskell

John Launchbury and Trevor Elliott
Proceedings of the third ACM Haskell symposium on Haskell

17



Orc Calculus

e Site Basic service or component.
e Concurrencycombinatordor integrating sites.
e Calculus includes nothing other than the combinators.

No notion of data type, thread, process, channel, synchation,
parallelism - - -

New concepts are programmed using new sites.

18



Examples of Sites
+ - x&& || =..

Printin , Random Prompt , Email

Mutable Ref, Semaphore, Channel, ...

Timer

External ServicesGoogle Search, MySpace, CNN, ...

Any Java Class instance, Any Orc Program

Factory sites; Sites that create sit8&emaphore, Channel ...

Humans

10



Sites

e A site is called like a procedure with parameters.
e Site returns any number of values.

e The value igublished

20



Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

21



Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

dof andgin parallel fl g Symmetric composition

21



Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

dof andgin parallel fl g Symmetric composition
for all xfromf dog f >x> g Sequential composition

21



Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

dof andgin parallel fl g Symmetric composition
for all xfromf dog f >x> g Sequential composition
for somexfromgdof f <x<g Pruning

21



Structure of Orc Expression

e Simple just a site call, CNN(d)
Publishes the value returned by the site.

e Compositionof two Orc expressions:

dof andgin parallel

for all xfromf dog

for somexfromgdof

if f halts without publishing dg

flg
f>x>g
f<x<g

f; g

Symmetric composition
Sequential composition
Pruning

Otherwise

21



Symmetric compositionf | g

e Evaluatef and g independently.
e Publish all values from both.

¢ No direct communication or interaction betweérand g.
They can communicate only through sites.

Example CNN(d) | BBC(d)

Callsboth CNNand BBCsimultaneously.
Publishes values returned by both site8, (L or 2 values)

29



Sequential compositionf >x> g
For all values published by do g.
Publish only the values frong.

e CNN(d) >x> Email(addressx)

e Call CNN(d).

e Bind result (if any) tox.

e Call Email(addressx).

e Publish the value, if any, returned dymail.

e (CNN(d) | BBC(d)) >x> Email(addressx)

e May call Emailtwice.
e Publishes up to two values frolmail.

Notation f >gfor f >x>g, if xisunused ing.

Right Associative f >x>g >y>h is f >x> (g >y>h)

i)



Schematic of Sequential composition

X0 x1 X2

9(x0) g(x1) 9(x2)

Figure:Schematic off >x> g

24



Pruning: f <x<g

For some value published by do f.

e Evaluatef and gin parallel.

¢ Site calls that need are suspended.
Consider (M() | N(x)) <x<g

e When greturns a (first) value:

¢ Bind the value tox.
e Kill g.
e Resume suspended calls.

e Values published byf are the values off <x< g).

Notation f «gfor f <x<g, if xisunused inf.

Left Associative f <x< g <y<h is (f <x<g) <y<h

25



Example of Pruning

Email(addressx) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

26



Multiple Pruning happens concurrently

addx,y) <x<f <y<g is (addxy) <x<f) <y<g
(add(x,y) <x< f)is computed concurrently witly

(add(x,y), f and g computed concurrently.

27



Otherwise:f ; g

Do f. If f haltswithout publishing then day.

e An expression halts if

e its execution can take no more steps, and
o all called sites have either responded, or will never redpon

¢ A site call may respond with a value, indicate that it will eevespond
(helpful), or do neither.

o All library sites in Orc are helpful.

28



Examples off ; g
e 12 publishes1
e (CNN(d) | BBC(d)) >x> Email(addressx) ; Retry)

If the sites areneverhelpful, this is equivalent to

(CNN(d) | BBC(d)) >x> Email(addressx)

e 5/0; “Exception leads to Hdlt ~ publishes

“Exception leads to Halt

29



Orc program

e Orc program has

e agoalexpression,
¢ a set of definitions.

e The goal expression is executed. Its execution

o callssites
e publishessalues

20



Some Fundamental Sites

Ift(b), Iff (b): booleanb,
Returns asignalif bis true/false; remainsilentotherwise.
Site is helpful: indicates when it will never respond.

Rwalit(t): integer t, t > 0, returns a signat time units later.

stop: never responds. Same #$(false) or Iff (true).

signal: returns a signal immediately.
Same aslft(true) or Iff (false).

21



Use of Fundamental Sites

e Print all publications ofh. When h halts, publish "done".

h >x> Printin(x) > stop ; "doné

e Timeout:
Call site M.
Publish its response if it arrives within 10 time units.
Otherwise publish 0.

X <x< (M() | Rwait(10) > 0)

292



Interrupt f

e Evaluation of f can not be directly interrupted.

¢ Introduce two sites:

e Interruptset to interrupt f
¢ Interruptget responds only aftetnterruptsethas been called.

¢ Interruptsetis similar to releaseon a semaphore;
Interruptgetis similar to acquireon a semaphore.

¢ Instead off, evaluate

z <z< (f | Interrupt.get())

22



Site Definition

def MailOncega) =
Emailla,m) <m< (CNN(d) | BBC(d))

def MailLoop(a,t) =
MailOncega) > Rwaitt) > MailLoop(a,t)

def metronomé) = signal| (Rwait(1) > metronome))

e Expression is called like a procedure.

It may publish many valuesMailLoop does not publish.

24



Example of a Definition: Metronome

Publish a signal every unit.

def metronomé) = signal | ( Rwait(1l) > metronomg))
N——

S R

25



Unending string of Random digits

metronomé) > Randon(10) — one every unit

def rand_seddd) = — at a specified rate
Randon(10) | Rwait/dd) > rand_seddd)

26



Example of Site call

e Site Query() returns a value (different ones at different times).

e Site Acceptx) returns xif xis an acceptable value;
it is silent otherwise.

e Call Queryevery second forever and publish all its acceptable values

metronome) > Query) >x> Accepfx)

27



Concurrent Site call

e Sites are often called concurrently.
e Each call starts a new instance of site execution.

¢ If a site accesses shared data, concurrent invocationsnteafeire.

Example Publish each of "tick" and "tock" once per second,
"tock" after an initial half-second delay.

metronome) > "tick”
| Rwait500) > metronomg¢) > "tock’

28



Logical Connectives; 2-valued Logic

And: Publish a signal if both sites do.
Or:  Publish a signal if either site does.

M() > N() —“and”
b <b< (M() |N()) —*“or"
M() 5 N() — “or” with helpful M

(M() > true ; false >b> Iff (b) — “not” with helpful M

20



Parallel or

Expressionsf and g return single booleans. Compute therallel or

val x= f
val y= g

Ift(x) > true | Ift(y) > true | (x||y)

40



Parallel or; contd.

Compute theparallel orand return just one value:

val x= f

val y= g

val z= Ift(x) > true | Ift(y) > true | (x||y)
z

But this continues execution aj if f first returns true.

val z=
val x= f
valy= g

Ift(X) > true | Ift(y) > true | (x||y)
z

a1



Airline quotes: Application of Parallel or
e Contact airlinesA and B.

e Return any quote if it is below $300 as soon as it is available,
otherwise return the minimum quote.

o thresholdx) returns x if x < 300 silent otherwise.
Min(x,y) returns the minimum ofk and y.

val z=
val x = A()
val y= B()

thresholdx) | thresholdy) | Min(x,y)
z

492



Choice: Execute eithef or g

if (true | false) then f else g

43



Simple definitions usingRandon()

e Return a random boolean.
def rbool() = (Randonf2) = 0)

e Return a random real number between 0 and 1.
def frandon{) = Randoni1001),/10000

e Return true with probability p, falsewith (1 — p)
def biasedBodlp) = (Randon1000 <: p x 1000

44



Timeout

Publish M’s response if it arrives before timg
Otherwise, publisho.

z <z< (M() | (Rwait(t) > 0)), or

val z= M() | (Rwait(t) > 0)
z

45



Fork-join parallelism

Call sitesM and N in parallel.
Return their values as a tuple after both respond.

((uv)
<u< M())
<v< N()

or,

(M(),N()

46



Simple Parallel Auction

o A list of bidders in a sealed-bid, single-round auction.
e b.ask)) requests a bid from bidde.
o Ask for bids from all bidders, then publish the highest bid.

def auction[]) = 0
def auction(b : bs) = maxb.ask)), auctionbs))

Notes:
¢ All bidders are called simultaneously.
¢ If some bidder fails, then the auction will never complete.

A7



Parallel Auction with Timeout

e Take a bid to be 0 if no response is received from the bidddrinvg
seconds.

def auction[]) = 0

def auctionb : bs) =
max(
b.ask) | (Rwait8000 > 0),
auction(bs)

)

48



Identities of |, >, < and ;

(Zeroand |) f|stop=f»f
(Commutativity of |) f|g=g|f
(Associativity of |) (flg) |h=f|(g|h)
(Left zero of ) stop > f = stop
(Associativity of ) if his x-free
(f >x>g) >y>h=f >x> (g >y>h)

(Right zero of «) f «stop =1
(generalization of right zero)

f «g=f «(stop <g) =f|(stop «Q)
(relation between « and <x<)

f <g=f <x<g, Iif x¢ fregf).
(commutativity) (f <x<g) <y<h=(f <y<h) <x<g

if x¢ free(h), y ¢ free(g), and x, y are distinct.

(associativity of ;) (fs9 ;h=f;(g;h)

49



Distributivity Identities

( | over >x>; left distributivity)
(flg) >x>h=f >x>h|g >x>h

(| over <x<) (flg) <x<h=(f <x<h)|g, if x¢fregQ).

( >y> over <x<) (f >y>0) <x<h=(f <x<h) >y>g¢g
if x ¢ free(g), and x and y are distinct.

( <x< over otherwise)(f <x<g);h=(f;h) <x<g,if x¢ free(h).

50



Identities that don’t hold

(Idempotence of | ) flf=f
(Right zero of ) f > stop = stop

(Left Distributivity of > over |)
f>(@lh=f>9]|(f >h)

51



Orc Language

Data TypesNumber, Boolean, String, with Java operators
Conditional Expressianif E then F else G

Data structuresTuple, List, Record

Pattern Matching; Clausal Definition

Closure

Orc combinators everywhere

Class for active objects

52



Data types

e Number: 5, —1, 271828 —2.71e—5

e Boolean: true, false

e String:"orc", "ceci n'est pas une |"

1+2

0.4=2.0/5
3-5:>5-3

true && (false|| true)
3/0

“Try" + "Orc"

evaluates to 3
evaluates totrue
evaluates tofalse
evaluates totrue

is silent

evaluates to"TryOrc"

[~5¢]



Variable Binding; Silent expression

val x=1+2
val y= X+ X
val z= x/0-- expression is silent

val u= if (0 <:5) thenO elsez

54



3/0 halts.

Exceptions

1%



Conditional Expression

if true then "blue" else "green" — is"blue"
if “fish" then "yes" else "no" — issilent
if false then 445 else A4+true — issilent

if true then 0/5 else 5/0 — is0



Tuples

1+2,7) is (3,7)
("true" + "false",true || false true && falsg is ("truefalse", true, false)

(212, 2/1, 2/0) is silent

57



Lists

1,2+ 3 is [1,5]
[true && true] is [true]
[] is the empty list
[5,5+true,5] is silent

List Constructor is a colon

3:[5,7] = [3,5,7]
3] =0



Translating Programs to Orc Calculus

All programs are translated to Orc calculus.
1+ 2 becomesadd(1, 2)

All arithmetic and logical operators, tuples, lists are sialls.
if-then-else is translated with calls tdt, Iff sites.

1+ (2+ 3) should becomeadd(1, add(2, 3))
But this is not legal OrcSite calls can not be nested.

What is the meaning of1 | 2) + (2| 3)?

59



Orc Combinators everywhere

Parameters in site calls could be Orc expressions

(1+2)|(2+3)

112+ (213

60



Implicit Concurrency

e An experimentosses two dice.
Experiment is a success if and only if sum of the two dice thréw7.

e expn) runs n experiments and reports the number of successes.
def tosg) = Randon(6) + 1
-- tossreturns a random number between 1 and 6
def exg0) = 0

def expgn) = expgn—1)
+ (if tosg) + tosg) = 7 then 1 else 0)

61



Translation of the dice throw program

def tosg) = add(x,1) <x< Randon(6)
def expgn) =
(Ift(b) >0
| 1ff (b) >
(add(x,y)
<x< (‘expgm) <m< sul(n,1))
<y< (Ift(bb) > 1| Iff (bb) >0)
<bb< equalgp, 7)
<p< add(q,r)
<Q< tosg)
<r< tosg)

)
) <b< equalgn,0)

Note: 2n parallel calls totosy).
62



Deflation

e Given expressiorC(..., e, ..), single value expected &

e translate toC(...,x,..) <x< ewhere xis fresh

e val z=g¢
f becomes
f <z<g

¢ applicable hierarchically.

(1]2) * (10/100) is
(Timegx,y) <x< (1]2)) <y< (10] 100), or
Timegx,y) <x< (1|2) <y< (10| 100
Implication
Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have beetuated.
B3



Barrier Synchronization irM() »f | N() >g

e Require: f and g start only afteboth M and N complete.

e Rendezvous of CSP or CCS;
M and N are complementary actions.

(M(,NQ) > (f [9)

/A4



Priority

e Publish N’s response asap, but no earlier than 1 unit from now.

Apply fork-join betweenRwait(1) and N.
val (u,_) = (N(),Rwait(1))

e Call M, N together.
If M responds within one unit, publish its response.
Else, publish the first response.

val x= M() |u

65



Pattern Matching in val

(x,y) = (2+3,2*3) binds xto5andyto6

[a,b] =["one", "two"] binds ato "one", b to "two"

((a,b),c) = ((1, true), [2, false]) binds ato 1, btotrue, and c to [2, false]
x._._)=(1,(2,2),[3,3,3]) binds xto1l

[Lx].Ly1 = [12,31.[2,4]] binds xto3andyto4

A6



Pattern Matching in Site Definition parameters

A site adds two pairs componentwise;
publishes the resulting pair.

def pairsum(a, b) =
a>(xy)> b >X,y)> (x+x,y+Y)

or, even better,

def pairsum((x,y), (¥X,y)) = (Xx+X,y+Y)

67



Pattern Matching, clausal definition

def sum[]) = 0
def sum(x: xs) = X+ sumxs)

Clauses are evaluated in order from top to bottom.

A8



Tree Reconstruction

1. Given a non-empty sequence of natural numbers.

2. Does the sequence represent the depths of terminal nodéénarg tree,
from left to right? Then it issalid.

Example: [1,3,3,2] is valid, [1,3,2,2] is not.

Output the tree structutre if the sequence is valid;
Output NonTre€) otherwise.

69



Theorem

e [0] is valid.
e [I] +x +x ++[r], where[l] ++ xhas no duplicates, is valid iff
[

] + (x—1) ++ [r] is valid.

70



Tree Reconstruction; Contd.

typeTree= Nodd Tree Tree) | Leaf() | NonTreg)

def tc(_,[]) = NonTreg)
def tc([], [(v,t)]) = if (v=0) then t else NonTreg)
def tc([], Vv : right) = tc([v], right)
def tc((u,t) : left, (v,t') : right) =
if u= vthen tc(left, (v — 1,Nod€t,t')) : right)
else tc((v,t') : (u,t) : left, right)

Typical test: tc([], [(3, Leaf()), (3, Leaf()), (2, Leaf()), (2, Leaf())])

71



Tree Reconstruction; contd.
Simplify input preparation:
te([], [(3, Leaf()), (3, Leaf()), (2, Leaf()), (2, Leaf())]) replaced by
checktre€[3, 3,2, 2])

def mklist([]) = []
def mklist(x : xs) = (x, Leaf()) : mklist(xs)
def checktreéxs) = tc(]], mklist(xs))

checktre€[3, 3,2, 2])
— NonTre¢)

checktre€[1, 3,3, 2])
— Nod€Leaf(), NodgNodeLeaf(), Leaf()), Leaf()))

checktre€[3,3,2,2,2))
— Nod€NodgNod€Leaf(), Leaf()), Leaf()), Nodg Leaf(), Leaf()))

72



Example: Fibonacci numbers

def H(0)
def H(n)

1)

()
Hin—1) >(Xy)> (,X+Y)

def Fib(n) = H(n) >(x,_)> X

{- Goal expression -}
Fib(5)

73



Clausal Definition, Pattern Matching
Example: Defining graph connectivity

2 0 1

4V 3 >

An Undirected Graph
def conn(i) =

def conn(0) = [1,2,3,4] i >0> [1,2,3,4]
def conn1l) = [0, 5] [i>1>]0 5] 7
def conn2) = [0,4] li>2> [07 4]
def conn(3) = [0, 5] |i>3> [0’ 5]
def conn(4) = [0, 2] | >4> [07 2]
def conn5) = [1,3] |i >5> [1: 3

74



Sites

e Sites are first-class values.
A site may be a parameter in site call.
A site may return a site as a value.

M() >(xy)>x(y) -- XYy are sites

e Sites may have methods.
Channe{) >ch> ch.put(3)

e Translation of method calth.put(3):

ch(“put’) >x> x(3)

75



Closure: Sites as values

val minmax= (min, max)

_def apph2((f,g), (x,y)) = (F(xy),9(xY))

apply2(minmax (2,1)) publishes (1, 2)

def pmat. []) = [
def pmagf,x: xs) = f(x) : pmagf, xs)

pmaglambddi) =i *i,[2,3,5]) publishes [4, 9, 25]

_def repeatf) = f() > repeatf)
def pr() = Printin(3)

repeatpr) prints 3 forever.

76



val, tuple, closure

def circle() =
val pi= 3.1416
def perim(r) = 2« pix*r
def arear) = pix*r «x2 #

(perim area)

77



Some Factory Sites

Ref(n) Mutable reference with initial value
Cell() Write-once reference

Array(n) Array of sizen of Refs

Table(n,f) Array of sizen of immutable values of
Semaphore(n) Semaphore with initial value
Channel() Unbounded (asynchronous) channel

Ref(3) >r> r.write(5) > r.read(), or Ref(3) >r>r:=5 > r?
Cell() >r> (r.write(5) | r.read()), or Cell() >r>r:=5]r?
Array(3) >a> a(0) := true > a(1)?

Semaphorgl) >s> sacquirg) > Printin(0) > sreleasg)

Channe{) >ch> (ch.get() | ch.put(3) > stop)

78



Simple Swap

Convention:

ar is a.read()
b:=x is b.write(x)

Take two references as arguments,
Exchange their values, and return a signal.
def swagi,j) = (i7,j7) >(x,y)> (i :=Y, j := X) > signal

Note: aand b could be identical Refs.

79



Update linked list

Given is a one-way linked list.
Its first item is calledirst.
Now add valuev as the first item.

Ref() >r>
r:= (v,first) >
first:=r

or,

Ref((v, first)) >r>
first:=r

80



Binary Search Tree; using Ref()

def searclikey) = return true or false
searchstartkey) >(_,_,q)> (g # null)

def insertkey) = true if value was inserted, false if it was there
searchstartkey) >(p,d,q)>
if g=null
thenRef() >r>
r:= (keynull,null)---
else- -

81



Array Permutation

o Randomly permute the elements of an array in place.

e randomizéi) permutes the first elements of arrya and publishes a
signal.

def permutga) =
def randomiz€0) = signal
def randomizéi) = Randongi) >j>
swapa(i — 1), a(j)) >
randomizéi — 1)

randomizéa.length())

2



Example: Return Array of O-valued Semaphores

def semArrayn) =
val a= Array(n)
def populat€0) = signal
def populatéi) = a(i — 1) := Semaphor@®) > populatdi — 1)

populatén) > a

Usage: semArray5) >a> a(l)?.releas¢)

83



Library site: Table

Tablgn,f), wheren > 0and f a site closure.
Creates siteg, where g(i) = f(i), 0 <i<n.
An array of site values pre-computed and reused.

All values of g are computed at instantiation.

Allows creating arrays of structures.

Site f may be supplied astambddi) = h(i)

Examples:
e val g= Tablg5,lambdd_) = Channel) )
e val h= Tablg5,lambddi) = 2 1)
e val s= Tablg5,lambdd_) = Semaphor®) )

4



Definition Mechanism: Class

e Encapsulate data and objects with methods

e Create new sites; Extend behaviors of existing sites

¢ Allow concurrent method invocation on objects (monitors)
e Create active objects with time-based behavior

Classes can be translated to Orc calculus using a speeial sit

a5



Object Creation: Stack

Define stack with methodsushandpop.
Parametem gives the maximum stack size.

Store the stack elements in arrajore
current stack length iren.

pushon a full stack opopfrom an empty stack halts with no effect.

6



Stack definition

def class Stacln) =

val store= Tablgn,lambdd_) = Ref())
val len= Ref(0)

def pushx) =
Ift(len? <: n) > storeglen?) :=Xx > len:=len? +1
def pop() =
Ift(len? :> 0) > len:=len? — 1 > storglen?)?
{- class Goal -} stop
----------- Test

val st= StacK5)
stpush3) > stpush5) > stpop() > stpop()

7



Special case: only one class instance

val (pushpop) = Stack5) >r> (r.pushr.pop)

——————————— Test
push(3) >> push5) > pop() > pop()

a8



Class Syntax

e Class definition

o Like site definition
e May include parameters

e Clausal definitions allowed.

¢ All definitions within a class are exported.

Such definitions are accessed as dot methods.

89



Class Semantics: Class is a site with methods

¢ A class call creates and publishes a site.

¢ All the rules for site definition apply except:
e Publications of class goal expression are ignored,
e Each method (site) publishes at most once,
e Class calls are strict (site calls are non-strict),
e Class method calls areotterminated prematurely by prune (follows the
rule for sites).

e Methods may be invoked concurrently, as in sites.

90



Special attention to concurrent invocation

stpush(3) > stpop() > Rwait(1000 > stpop()
| stpush4) > stop

¢ |f method executions were atomic there would be some output.

e This program sometimes produces no output.
Method executions may overlap and interfere.

01



Example: Matrix (with upper and lower indices)

def class Matrix (row, row'), (col, col’)) =
val mat= Array((row — row + 1) x (col — col + 1))
def acces§,j) = mat((i — row) % (col — col+ 1) +j)
stop

----------------- Test
val A= Matrix((—2,0),(—1,3)).access

A(-1,2) =5 A(-1,2) :=3 > A(—1,2)?

Q2



A Matrix of Classes

def class CMatriX(row, row'), (col, col’), cap) =
val mat= Tablg(row — row + 1) x (col — col + 1), cap)
def acces§,j) = mat((i — row) % (col — col+ 1) +j)
stop

----------------- Test; A matrix of Channels
val A= CMatrix((—2,0), (—1,3),lambdg_) = Channe{)).access

A(—1,2).put(3) > A(—1,2).get)

[e}e]



Create a new site: Cell using Semaphore and Ref

def class Cel() =

val s= Semaphorél)
val r = Ref()

def write(v) = s.acquirg) > r:=v
def read() = r? --  r? blocks until r has been written

stop

Q4



New Site: Bounded Channel

e Bounded channel of siza may block for putand get
e Use semaphorg = number of empty positions.

e Use Channelto hold data items.

Q5



Bounded Channel; contd.

def class BChannéh) =
val b= Channe()
val p= Semaphor@)
def put(x) = p.acquirg)) > b.put(x)
def get() = b.get) >x> p.releas¢) > x

stop

o6



Extend functionality of a site: add length method to Chan

def class Channé{) =
val ch= Channe{)
val chlen= Countef0)

def put(x) = ch.put(x) > chleninc()

def get() = ch.get() >x> chlendeq) > x
def len() = chlenvalug))

stop

_________________ Test
val c= Channel()

C.put(1000 > c.put(2000 > Printin(c.len()) >
c.get) > Printin(c.len()) > stop

Q7



Memoization

For site f (with no arguments) cache its value after the first call.

res stores the cached value.

S semaphore value is O if the site value has been cached.

val res= Cell()

val s= Semaphorgl)

def memq) =
val z= res? | sacquirg) > res:=f() > stop
z

Note Concurrent calls handled correctly.

o8



Memoize an argument site using Class

def class Mem{f) =
val res= Cell()
val s= Semaphorél)

def memq@) =
val z= res? | sacquirg) > res:=f() > stop
z

stop
— Usage

val prandom= Memdlambdg) = Randon(20)).memo
prandont) | prandont) | prandont)

Q9



Concurrent access: Client-Server interaction

Asynchronous protocol for client-server interaction.

At most one client interacts at a time with the server.
Client requests service and supplies input data.
Server reads data, computes and writes out the result.

Client receives result.



Client-Server interaction API

e req(X):
Performed by the client to send data to the server.
Client receives a response when the operation completes.
The operation may remain blocked forever.

e read():
For the server to remove the data sent by the client.
The operation is blocked if there is no outstanding request.

o write(v):
Server returnsy as the response to the client.
Operation is non-blocking.



Client-Server interaction; Program

def class csf) =
val sem= Semaphorgl)
val (u,v) = (Channe(), Channe())

-- semensures that only one client interacts at a time
-- client data stored iru, server response in

def req(x) = semacquirg) >
u.put(x) > v.get) >y>
semreleasé) > y

def read() = u.get)

def write(x) = v.put(x)

stop



Examples

e Combinatorial
e Mutable store manipulation

¢ Synchronization, Communication



Some Algorithms

Enumeration and Backtracking

Using Closures

List Fold, Map-reduce

Parsing using Recursive Descent

Exception Handling

Process Network

Quicksort

Graph Algorithms: Depth-first search, Shortest Path



List map

def parmag_,[]) = ]

def parmagf,x: xs) = f(x) : parmagf, xs)



List map (Contd.)

def seqmap_, []) = ]

def segqmaypf,x : xs) = f(x) >y> (y:segmaff,xs))



Infinite Set Enumeration

Enumerate all finite binary strings.
A binary string is a list of 0,1.

def bin() =

]

| bin() >xs> (0:xs|1:x9

Note: Unguarded recursion.



Subset Sum

Given integern and list of integersxs

parsuntn, xs) publishes all sublists oksthat sum ton.
parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]
parsum(5,[1,2,1]) is silent

def parsum{O,[]) = []
def parsunin,[]) = stop
def parsumn,x : xs) =

parsuntn — x,Xs) >ys> X:ys
| parsungn, xs)



Subset Sum (Contd.), Backtracking
Given integern and list of integersxs
seqgsunn, xs) publishes théirst sublist of xsthat sums ton.

“First” is smallest by index lexicographically.
segsum(5,[1,2,1,2]) = [1,2,2]

seqsum(5,[1,2,1]) is silent
def seqsurt0, []) = []
def seqgsurtn, []) = stop
def seqsunn,x : xs) =

X : seqsurn — X, Xs)
; seqgsunn, xs)



Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xsthat sums ton.

Run the searches concurrently.
def parseqsurtO, []) = []
def parseqgsurfn,[]) = stop

def parseqsurtn,x : xs) =
(P30
<p< X : parseqgsurfn — X, Xs)
<Q< parseqsurtn, xs)

Note: Neither search in the last clause may succeed.



Mutual Recursion: Finite state transducer

Convert an input string:
e Remove all white spaces in the beginning.

¢ Reduce all other blocks of white spaces (consecutive whaees) to a
single white space.

---Mary---had-a--little--lamb-
becomes (where denotes a white space)

Mary-had-a-little-lamb-



A finite State Transducer

A deterministicFinite State Machine. No concurrency.

n/n

Figure:n is a symbol other than white space



A Program

Figure:n is a symbol other than white space

def first([]) = []
def first(” 7 : xs) = first(xs)
def first(x : xs) = x: nexixs)

def next[]) = []
def next(” ” : xg) = 7 7 : first(xs)
def nexix: xs) = X: nexy{xs)



Non-deterministic search: String Matching

e Given a pattern stringp and a text stringt, determine ifp occurs int
(as a contiguous substring).

e Run two searches simultaneously:
Is p a prefix of t?
Is pin the string excluding the first symbol df

e Terminate the search if either is a success.



Helper Sites

e parallelOr: to terminate the search asap.

o prefixxs ys) returns true if and only ifxsis a prefix of ys
(strings are given as lists of symbols).

def parallelOr(y, z) =
val r = Ift(y) > true | Ift(z) > true | y||z
r

def prefix[],ys) = true
def prefixxs []) = false
def prefixXx:xsy:ys) = (X=y) && prefixxs ys)



String Matching Program

e stringmatclixs ys) returns true if and only ifxsis a contiguous
substring ofys
(strings are given as lists of symbols).

def stringmatchi[],ys) = true
def stringmatclixs []) = false

def stringmatclixsy :ys) =
parallelOr
(stringmatctixs ys),
prefiXxsy : ys)
)



Using Closure

A UNITY Program
x,y=0,0
X<y—X:=Xx+1
ly:=y+1
e Program has: variable declarations
a set of functions

e Variables are initialized as given.

e Program is run by: choosing a function arbitrarily,
choosing functions fairly.



Corresponding Orc program

val (x,y) = (Ref(0), Ref(0))

def f1() = Ift(x? <:y?) > x:=x?+1
def f2() = y:=y?+1

Run the program by:
e choosing a function arbitrarily,
e choosing functions fairly.



Scheduling the UNITY Program

def unity(fs) =
val arlen= lengthfs)
val fnarray = Array(arlen)

{- populaté) transfers from listfsto array fnarray -}
def populaté_, []) = signal
def populaté€i,g : gs) = fnarray(i) := g > populatéi + 1, gs)

{- Execute a random statement and loop.
Randomness guarantees fairness.
def exeg¢) = random(arlen) >j> fnarray(j)?() > exeq)

{- Initiate the work-}
populaté0, fs) > exeg)



Running the example program

val (xy) = (Ref(0), Ref(0))

def f1() = Ift(x? <:y?) > x:=x?+1

def £2()

unity([f1,f2])

y=y’+1



Fold on a non-empty list

fold with binary f: fold(+, [Xo,X1,---]) =Xo +X¢ - - -

def fold( [x]) = x

def fold(f,x : xs) = f(x,fold(xs))



Associative fold on a non-empty list

def afold(f, [x]) = x
def afold(f, xs) =

def pairfold([]) = []
def pairfold([x]) = [X]
def pairfold(x : y: xs) = f(x,y) : pairfold(xs)

afold(f, pairfold(xs))

map and associative foldnap afold



Associative commutative fold over a channel

A channel has two methodgutand get

chFold(c, n),n > 0, folds the firstnitems of channelc and publishes.
def chFold(c,1) = c.get)
def chFold(c,n) = f(chFold(c,n/2),chFold(c,n — n/2))

Does not combine values computed in different halves, evemnthey are
available quickly.



Associative commutative fold over a channel; contd.

def coml0) = stop
def comi1l) = f(c.get(),c.get()) >x> c.put(x) > stop
def comllk) = comkl) | comhkk — 1)

comin — 1)

e comlk) combinesk + 1 values from the channel and puts the result
back in the channel. Does not publish.

e If number of items,n, in the channel is strictly more thak, comidk)
terminates.

e So, comkn — 1) combinesn values from the channel and puts the rest
back in the channel, and halts.



map-reduce

Given is a list of tasks.

A processor from a processor pool is assigned to proces&.a tas
Each task may be processed independently, yielding a result

If a processor does not respond within tirfig a new processor is
assigned to the task.

After all the results have been computed, the results areeztby
calling reduce



Implementation

processlisprocesses a list of tasks concurrently.
processt) processes a single tagk
processt) publishes a resultprocesslista list of results.

Site procesdirst acquires a processor.

It assigns the task to the processor.

If the processor responds within timE, it publishes the result.
Else, it repeats these steps.

proces$t) may never complete if the processors keep failing.

The list of published results are reduced by siéeluce



map-reduce

def processlist[]) = []
def processlistt : ts) = processt) : processlists)

def processt) =
val processor= Processorpod)
val (result b) = (processoft),true) | (Rwait(T), false)
if bthen resultelse processt)

processlisttaskg >x> reducéx)



Parsing using Recursive Descent

Consider the grammar:

expr = term| term+ expr

term factor | factor x term

factor ::= literal | (expr)

literal ::= 3|5



Parsing strategy
For each non-terminal, sagxpr, define expr(xs):
publish all suffixes ofxssuch that the prefix is @&xpr.

def isexpr(xs) = expr(xs) >[]> true ; false

To avoid multiple publications (in ambiguous grammars),

def isexpr(xs) =
val res= expr(xs) >[]> true ; false
res

———————————— Test

isexpr
([77(77’77(77’77377’77 *77’77377’77)77’77)77’77 _'_77’77(77’77377’77 _1_77’77377’77)77])
— ((3*3))+(3+3)

o true



Site for each non-terminal

Given: expr = term|term-+ expr
Rewrite: expr term(e | + expr)

def expr(xs)
def term(xs)

term(xs) >ys> (ys|ys >"+" :zs> exprnz9)

factor(xs) >ys> (ys|ys >"*" :zs> term(z9)

def factor(xs) literal (xs)

| xs >"(" :ys>exprys) >")" :zs>1zs

def literal(n : xs)
def literal([])

n >"3" >xs|n >"5" >xs
stop



Quicksort

In situ permutation of an array.

Array segments are simultaneously sorted.
Partition of an array segment proceed from left and righusiameously.
Combine Concurrency, Recursion, and Mutable Data Strestur

Traditional approaches

e Pure functional programs do not admit in-situ permutation.
e Imperative programs do not highlight concurrency.
e Typical concurrency constructs do not combine well withrurson.



Program Structure

array ato be sorted.

A segment is given by a pair of indicegs, v). Elements in the segment
are: a(u)..a(v— 1). Segment length iy — uif v>u.

segmentsoftl, v) sorts a segment in place and publishes a signal.

To sort the whole arraysegmentso(0, a.length?)



Program Structure; Contd.

e part(p, s, t) partitions segments, t) with elementp. Publishesm
where:

left subsegment: a(i) < pforall i, s<i<m,and
right subsegment: a(i) > p, forall i, m<i <t.

e Assumea(s)? < p, so the left subsegment is non-empty.

def swagi,j) = (i7,j7) >(x,y)> (i:=Yy, j := X) > signal
def quicksorfa) =
def segmentsofu,v) =
if v—u> 1then
part(a(u)?,u,v) >m>
swaga(u),a(m)) >
(segmentsoft, m), segmentsofm + 1, v)) > signal
else signal
segmentso(0, a.lengtf)



Partition segmen(s, t) with elementp, given a(s) < p

e Ir(i) publishes the index of the leftmost item in the segment thekeds
p; publishest if no such item.

e r1l(i) publishes the index of the rightmost item that is less thaegoal
to p. Since a(s) < p, item exists.

def Ir(i) = Ift(i <:t) > Ift(a(i)? <p) > Ir(i+1); i
def rl(i) = Ift(a(i)?:>p) > rl(i—1); i
Goal Expression opart(p, s, t):

(Ir(s+1),r(t—1)) >(s,t')>
(if (8 < t')then swaga(s),a(t’)) > part(p,s,t)
elset’)



Putting the Pieces together: Quicksort

def swagi,j) = (i7,j?) >(x,y)> (i :=Y, j := X) > signal
def quicksorta) =
def segmentsof(tl,v) =
def part(p,s,t) =
def Ir(i) = Ift(i <t) >Ift(a(i)?
def rl(i) = Ift(a(i)? :> p) >rl(i

(Ir(s+1),r(t—1)) >(s,t')>
(if (s < t')then swaga(s),a(t’)) > part(p,s,t’)
elset’) #

<p) sIri+1);i
—1); #

if v—u> 1then
part(a(u)?,u,v) >m>
swaga(u),a(m)) >
(segmentsoft, m), segmentsofm + 1, v)) > signal
else signal
segmentso(0, a.lengti)



Remarks and Proof outline

Concurrency without locks
sort(m, n) sorts the segment; does not touch items outside the segme
Then, sort(s,m — 1) and sort(m -+ 1,t) are non-interfering.

part(p, s,t) does not modify any value outside this segment. May rea
values.



Depth-first search of undirected graph
Recursion over Mutable Structure

N: Number of nodes in the graph.
conn conn(i) the list of neighbors of

parent Mutable array of lengthN
parenii) = v, v > 0, meansv is the parent node of
parenii) < 0 means parent of is yet to be determined

Once i has a parent, it continues to have that parent.

dfs(i, xs): starts a depth-first search from all nodesxsin order,
i has a parent (of = N),
xs C conni),
All nodes in conn(i) — xshave parents already.



Depth-first search

val N= 6 -- N is the number of nodes in the graph
val parent= TablgN,lambdg_) = Ref(—1) )

def dfy_,[]) = signal
def dfg(i,x : xs) =
if (parentx)? > 0) then dfg(i, xs)
[

else parentx) :=i > dfgx,connx)) > dfgi, xs)

dfs(N, [0]) -- depth-first search from node 0



Sequential Breadth-First Traversal of a Graph

N nodes in a graph,
root a specified node,
sucgXx) is the list of successors of,

Publish theparentof each node in Breadth-First Traversal.

def bfs(N, root, sucg =
val parent= TablgN,lambdg_) = Cell())

— bfs is bfson a list of nodes
def bfs([]) = signal
def bfs(x: xs) = bfs(appendxs, expandx)))

paren{root) := N > bfs([root]) > parent



Site expand

def expandx) =

— expand(x,ys), yssuccessors ok yet to be scanned

def expand(_,[]) = []
def expand(x,z: z9 =
(pareniz) :=x > z: expand(x,z9) ; expand(x,z9

expand(x, sucgx))

140



Sequential Breadth-First Traversal: Complete Prograr

def bfg(N, root, sucg =
val parent= TablgN,lambdg_) = Cell())

def expandx) =
def expand(_,[]) = []
def expand(x,z: z9 =
(pareni(z) := x >z: expand(x,z9)) ; expand(x, z9
expand(x, sucgx)) — Goal of expand

def bfs([]) = signal
def bfs(x: xs) = bfs(appendxs expandx)))

parenfroot) := N > bfs([root]) > parent

141



Concurrent Breadth-First Traversal

def bfg(N, root, sucg =
val parent= TablgN,lambdg_) = Cell())

def expandx) =
if sucgx) =[] then[]
else map afold

(
lambddy) = parenty) :=x >y ; [],
append
sucgx)

)

def bfs([]) = signal
def bfs(xs) = bfs(map afold(expandappendxs))

paren{root) := N > bfs([root]) > parent

1472



Memoization

Memoize calls tof ().

val done= Cell()
val res= Cell()

def memof) =
res! < (done:= signal > res:=f())

143



Memoization of Fibonacci

val N= 100

val done= TablgN + 1,lambdg_) = Cell())
val res= TablgN + 1,lambdg_) = Cell())

def mfib(0) = O

def mfib(1l) = 1

def mfil(i) =
reqi)? <«

(dondi) := signal > req(i) := mfib(i — 1) + mfib(i — 2))

Note: Concurrent calls tonfil(i), for eachi.

144



Exception Handling

Client calls siteserver to request service.
The server “may” request authentication information.

def requestx) =
val exc= Channe() -- returns a channel site

servelX, exg
| excget() >r> excput(auth(r)) > stop

145



Synchronization, Communication

Semaphore(n) Semaphore with initial value
BoundedChannel(n) bounded (asynchronous) channel of size
Counter() Methodsinc() ,dec() andonZero()

Semaphorgl) >s> sacquirg) > r :=5 > sreleas€)
BoundedChannél) >ch> (ch.put(5) | ch.put(3))

Countef) >ctr> (ctr.inc() > ctr.onZerq) | Rwait10) > ctr.deq))

146



Rendezvous

def class zeroChanngl =
val s= Semaphorg®)
val w= BoundedChannél)

def put(x) = s.acquirg) > w.put(x)

def get)) = sreleas¢) > w.get)
stop

147



Pure Rendezvous

def class pairSyng =
val s= Semaphorg®)
val t = Semaphorg®)

def put() = s.acquirg) > t.release)

def get) = sreleas¢) > t.acquirg))
stop

148



n-party Rendezvous

n parties participate in a rendezvous.
Each party (optionally) contributes some data.

After all parties have contributed:
a given function is applied to transform input list to outpst,
then i receives thei" item of output list, and proceeds.

Access Protocol:
i calls go(i, x) with i and datax.
Receives its result as the response of the call.

149



Examples of Data Transformations

n = 2: first input data item becomes the second output item.

The classical sender-receiver paradigm.

n = 2: input data items are swapped.
Data exchange;

can simulate the classical sender-receiver.

Arbitrary n: every output item is the first input data item.
Broadcast paradigm.

Arbitrary n: secret sharing.

Arbitrary n: i output is the rank of theé™ input.



Implementation Strategy

e Tablesin and outhold the inputs and outputs. Each table entry is
BoundedChannél).

e go(i,x) storesxin in(i) if it is empty.
Then waits to receive result froraut(i).

e managereceives alln inputs, applies the given function and stores th
results in out



n-party Rendezvous Program

def class Rendezvo(isf) =
val in = Tablgn, lambdg_) = BoundedChannél) )
val out= Tablgn, lambdg_) = BoundedChannél) )

def go(i,x) = in(i).put(x) > out(i).get()

def collect0) = []
def collect(i) = in(n—1i).get) : collecti — 1)

def distributg_, 0) = signal
def distributgv : vl;i) = out(n —i).put(v) > distributgvl,i — 1)

def manage() =
collect([],n) >vlI> distributgf(vl), n) > managef)

managef)



Test

def rotate([a, b, c]) = [b,c,a

val rg3 = Rendezvoys, rotate).go

rg3(0,0) >x> ("0 gets" +x)
|rg3(1,1) >x>("lgets"+x)
|[rg3(2,4) >x> ("2gets" +X)
[rg3(2,2) >x> ("2gets" +Xx)
—————————— Output
Ogets1
1lgets4



Phase Synchronization

¢ A set of threads execute a sequenceloises

e Required: a thread may start a phase only if all threads haighéd the
previous phase.

¢ Athread callsnextphasg after each phase, and waits to receive a
signalto execute its next phase.

Typical Usage:

def class phaseSyfg) = ---
val barrier = phaseSyn@).nextphase

—————————— Test

Printin(0.1) > barrier() > Printin(0.2) > barrier() > Printin(0.3)
| Printin(1.1) > barrier() > Printin(1.2) > barrier() > stop
| Printin(2.1) > barrier() > stop



Implementation Strategy

e Employ two semaphoresnsem outseminitial values O.

e Each call tonextphasg incrementsinsemand attempts to acquire
outsem

e A manager attempts to acquiiesem ntimes, then releasesutsem n
times, then repeats these steps.



Program: Phase Synchronization

def class phaseSyfg) =
val (insemoutsem = (Semaphor@®), Semaphor@®))

def nextphasg = insemreleas¢) > outsemacquirg))

def repeat_,0) = signal
def repeatf,i) = f() >repeati — 1,f)

def manage() =
repeatinsemacquire n) >
repeatoutsenreleasen) >
managef)

managef)



Readers-Writers

e Readers and Writers need access to a shared file.
¢ Any number of readers may read the file simultaneously.

e A writer needs exclusive access, from readers and writers.



Readers-Writers API

Readers callstart(true), Writers start(false) to gain access.
The system (class) returns a signal to grant access.
Both readers and writers cafind) on completion of access.

start(- - - ) is blocking, end’) non-blocking.



Implementation Strategy

e Each call tostartis queued with the id of the caller.

e A manageroops forever, maintaining the invariant:
There is no active writer (no writer has been granted access)
Number of active readers str.valug where ctr is a counter.

e On each iterationmanagerpicks the next queue entry.
If a reader: grant access and incremefrt
If a writer:
wait until all readers completectr’s value = 0),
grant access to writer,
wait until the writer completes.



Implementation Strategy; Callback

e The id assigned to a caller is a new semaphore.
e Arequestis(b,s): bboolean,ssemaphore.

b = true for reader, b = falsefor writer,

each caller waits ors.acquireg()

e The manager grants a request by executinglease)



Reader-Writer; Call API

val req= Channe()
val na= Countex)

def startread) =
val s= Semaphor®)
req.put((true, s)) > s.acquirg)

def startwrite() =
val s= Semaphorg®)
req.put((false s)) > s.acquirg)

def endread) = nadeq)
def endwritd) = na.deq)



Reader-Writer; Main Loop

def managef) = grant(req.get)) > managef)
def grant((true,s)) = nainc() > sreleas¢) — Reader

def grant((falses)) = — Writer
naonZerd) > nainc() > sreleasé) > naonZerq)



Note on Callback

e Letrequest queue entry b, f), where f is a site.
e Manager execute$() for callback.

e For Readers-Writersf is s.releasé)



Callback using one semaphore each for Readers and Wi

def class readerWrite2() =
val req= Channe()
val na= Countex)
val (r,w) = (Semaphor@), Semaphorg®))

def startread) = req.put(true) > r.acquirg)
def startwrite() = reqput(false > w.acquirg))

def endread) = naded)
def endwritd) = nadeq)

def grant(true) = nainc() > r.releas¢) — Reader

def grant(false) = — Writer
naonZerq) > nainc() > w.releas¢) > naonZerq)

def managef) = grant(req.get))) > managef)

managef)



Reader-Writer; dispense with the queue

The queue now holds a sequence of booleans,
true for each reader, false for each writer.

Dispense with the queue.

Introduce a class that hgsut, getmethods.
It internally maintains Ref variablesir and nw.
nr is the number of readersyw writers.

Simulate fairness, as in removing from the channel.
If nr? > 0, nr?is eventually decremented.
If nw? > 0, nw? is eventually decremented.

Use coin toss to simulate fairness.



Process Networks

A process network consists of: processes and channels.

The processes run autonomously, and
communicate via the channels.

A network is a process; thus hierarchical structure.
A network may be defined recursively.

A channel may have intricate communication protocol.

Network structure may be dynamic, by adding/deleting
processes/channels during its execution.



Channels

e For channelc, treat c.putand c.getas site calls.
e In our examplesc.getis blocking andc.putis non-blocking.
e We consider only FIFO channels.

Other kinds of channels can be programmed as sites.
We show rendezvous-based communication later.



Typical Iterative Process

Forever Read x from channelc, compute withx, output result one:

def p(c,e) = c.get) >x> Computéx) >y> eputly) > p(c,e)

——  Compute

p(c.e)

Figure:lterative Process



Composing Processes into a Network

Process (network) to read from bothand d and write one:

def net(c,d,e) = p(c,e) | p(d,e)

¢ p(c.e)
e
_d | p(d,e)

net(c,d,e)

Figure:Network of Iterative Processes



Workload Balancing
Read fromc, assign work randomly to one of the processes.

def bal(c,c’,d") =

def workbalc,e) =

——| bal

c.get) >x>randon(2) >t>
(if t = 0then c’.put(x) else d’.put(x)) >
bal(c,c/,d")

val ¢ = Channe{)
val d = Channel)
bal(c,c’,d') | net(c’,d’, e)

p(c’e)

p(d’.e)

workBal(c,e)



Deterministic Load Balancing

e Retain input order in the output.

e distr alternatively copies inputto’ andc” .
coll alternatively copies fromd’ andd” to output.

\J

p(c’.d)

—C | distr coll 9~

'

p(c”,d”)




Deterministic Load Balancing

def detbalin, out) =
def distributor(c,c’,c”) =
c.get)) >x> ¢ .put(x) >
c.get)) >y> c’.putly) >
distributor(c, ¢/, c”)

def collector(d’,d”,d) =
d.get)) >x> d.put(x) >
d”.get) >y> d.put(y) >
collector(d’, d”, d)

val (in’,in”) = (Channe{), Channe())
val (out,out’) = (Channe(), Channe{))

distributor(in, in’, in”) | collector(out , out’, out)
| p(in’, out) | p(in”, out”)



Deterministic Load Balancing witt2" servers
Construct the network recursively.

_c | pcd | d_

recBal(0,c,d)

recBal(n-1,c’,d")

——— distr coll——~

recBal(n-1,c”,d”)

recBal(n,c,d)



Recursive Load Balancing Network

def recbal0,in, out) = P(in, out)

def recbaln,in,out) =
def distributor(c,c’,c”) = ---

def collector(d’,d”,d) = ---

val (in’;in”) = (Channe{), Channe())
val (out,out’) = (Channe(), Channe{))

distributor(in, in’, in”) | collector(out, out’, out)
| recbaln — 1,in’, out) | recbaln — 1,in” out”)



An lterative Process: Transducer

Compute f(x) for each x in channelin and output toout, in order.

def transduce(in, out, fn) =
in.get) >x> output(fn(x)) > transducefin, out fn)



Pipeline network

Apply function f to each input:f(x) = h(g(x)), for somegand h.

def pipeg(in,out g,h) =
val ¢ = Channe{)
transducefin, c,g) | transducefc, out, h)

In C h out




Recursive Pipeline network
Consider computing factorial of each input.

fac(x) — 1 if x=0
| xxfacx—1) if x>0

Supposex < N, for some givenN.

Fac (N-1)

in out

out

front

Fac_(N)



Outline of a program

def fac(N,in,out) =

val (in’,out) = (Channe{), Channe())

front(in, out in’, out) | fac(N — 1,in’, out)

Fac_(N-1)

in

out’

front

out

Fac (N)



Implementation ofFac,

e receive inputx, x=10
e output 1

e loop.

def fac(0,in,out) =
in.get)) > output(1) > fac(0,in, out)



Implementation offront
front has two subprocessegadandwrite, doing forever:
e readreceives inputx from in.

e If x=0, outputxon b.
e If x> 0, outputxon b, sendx— 1on in’.

e Write receives inputx from b:
e If x=0, output 1.
e If x> 0, receiveyfrom out, sendx x yon out

Fac (N-1)

1

in out’
In read b write out

=




Code of front

Fac_(N-1)

out
out

in

read write

def front() =
val b= Channe()
def read() = in.get)) >x> b.put(x) >
if x:> 0then in’.put(x — 1) else signal > read()

def write() = b.get() >x>

if x= 0then output(1)
else (out.get) >y> output(x*y)) > write()

read() | write()



Program forfac

def fac(0,in, out) =
in.get)) > output(1) > fac(0,in, out)

def fac(N,in,out) =
val (in’,out) = (Channe{), Channe())

def front() = ---

front() | fac(N — 1,in’, out)



Combining Server Farm and Pipeline

Fac_(N-1

o Tt

front

Fac_(N)

— distr coll —

Fac_(N-1

front

Fac (N)



Exercise: Combining Server Farm and Pipeline

A dataset is a list of positive numbers.
The datasets are available on input chaninel
Each list length is no more thaN, for some givenN.

Required: compute mean and variance of each dataset.
Output the results (as pairs) in order on chanaet

First, divide the processing among abouiN servers.

Next, structure each server as a recursive pipeline.



Recursive Equations for Mean and Variance

e Use the equations:

sum([]) =

sSum(X : Xs) = X+ sumxs)

length([]) = 0,
length(x : xs) = 1 + length(xs)

mearixs) = sunixs)/length(xs)

var([]) =
var(xs) = mean{map(squarexs)) — meargxs) #«2

e Hint: For each list, compute the sum, sum of squares, andHdnga
recursive pipeline.
Apply a function to compute mean and variance from these data

185



Packet Reassembly Using Sequence Numbers

——» Reassemble

out

Figure:Packet Reassembler

o Packet with sequence numbgis at position p; in the input channel.

e Given: |i — pi| < k, for some positive integek.

e Thenp <i+k<pioxk- Letd=2xk



Packet Reassembly Program

def reassemblfread write,d) = — d must be positive
val ch= Tablgd,lambdg_) = Channe{))

def input() = read() >(n,v)> ch(n%d).put(v) > input()
def output(i) = ch(i).get() >v> write(v) >> outpu{((i + 1)%d)

input() | output0) — Goal expression



An Example Program: Broadcast

e Digital radio station has a list of subscribed listeners

e Broadcasts a message on dedicated channels to each one
¢ New listeners can be added

def class Broadcagsource =
val listeners= Ref([])

def addListenefch) =
listeners >fs> listeners:= ch: fs

{- The ongoing computation of a broadcast -}
rep(sourcg >item> eacHlisteners) >sink> sink put(item)



A time-based class; Stopwatch

¢ A stopwatch allows the following operations:
start(): (re)starts and publishes a signal
halt(): stops and publishes current value

e Other operationsreset) and isrunning).



Implementation Strategy

e Each instance of the stopwatch creates a new clock, statitige O.

e Maintains two Ref variables:
laststart clock value when the last start() was executed,
timeshown stopwatch value when the last halt() was executed.

e Initially, both variable values are O.



Stopwatch Program

def class Stopwatdh =
val clk = Rclock)
val (timeshownlaststar) = (Ref(0), Ref(0))

def start() = laststart:= clk.timg()
def halt() =

timeshown= timeshowf + (clk.timg() — laststar?’) >
timeshowi

{- The ongoing computation of stopwatch gtop



Stopwatch: lllegal starts and halts

start() on a running watch has no effect. Publishes signal.
halt() on a stopped watch has no effect. Publishes last value.
isrunning) publishes true if and only if the stopwatch is running.

Use a Ref variable to record if the stopwatch is running.



Stopwatch: lllegal starts and halts

def class Stopwatdh =

val clk = Clock()

val (timeshownlaststar) = (Ref(0), Ref(0))
val running= Ref(false)

def start() = if running? thensignal
else(running := true > laststart:= clk())

def halt() =
if running’ then
(timeshowf + (clk() — laststart’) >v>
timeshown= v > running:= false > v)
elsetimeshowf

def isrunning) = running?
stop



Application: Measure running time of a site

def class profilgf) =
val sw= Stopwatck)

def runningtimé) = swstart() > f() > swhalt()
stop

-- Usage
def burntimg) = Rwait(100)

profile(burntime.runningtime)



Response Time Game

Show a random digity, for 3 secs.
Then print an unending sequence of random digits.
The user presses a key when he thinks he sees

Output (true, response timg or (false _) if v has not appeared.
Then end the game.



Response Game: Program

val sw= Stopwatck)
val (id,dd) = (300Q 100) — initial delay, digit delay

def rand_seq) = — Publish a random sequence of digits
Randong10) | Rwaitdd) > rand_seq)
def gamd) =

val v= Randon(10) — vis the seed for one game

val (b,w) =
Rwait(id) > swreset) > rand_sed) >x> Printin(x) >
Ift(Xx = v) > swstart() > stop

| Promp{ "Press ENTER for SEED '#) >
swisrunning) >b> swpausé) >w> (b, w)

if bthen— Goal expression ofjame)
( "Your response time =" w + " milliseconds.")
else ( "You jumped the gun.

game)



Single alarm clock

Let salarmbe a single alarm clock.

e At any time at most one alarm can be set.
A new alarm may be set after a previous alarm expires or isadiaoc

e salarmsef(t) returns a signal after timéunless cancelled.
The call blocks if alarm is already set or subsequently déette

e salarmcance() cancels the alarm and returns signal.
Just returns a signal if no alarm has been set.
This call is non-blocking.



Implementation Strategy for single alarm clock

¢ Ref variable asetshows if the alarm has been set.
e Semaphorecancelledis used to signal cancellation.

e Consider a scenario:
An alarm is set for 100ms and cancelled at 50ms.
Later, another alarm is set at 80ms to go off 40 ms later.
The first alarm should not ring at 100ms
(the thread must be pruned).



Implementation of Single alarm clock

def class Alarnt) =
val aset= Ref(false
val cancelled= Semaphor®)

def cance() = if (aset’) thencancelledreleasé¢) elsesignal
def seft) =
Iff (aset’) > aset:= true >

(val b= Rwait(t) > true | cancelledacquirg) > false
b > aset:= false > Ift(b)
)

stop



Clock with Multiple Alarm Setting

Set an alarm with an id for a given time.
Cancel an alarm (by its id) that has been set.
A set alarm returns a signal unless it gets cancelled.

An id can be reused.



Multiple Alarm Setting API

Let malarmbe a multi-alarm clock in whichn alarms may be
simultaneously set.

malarmsef(i, t) returns a signal after timé unless cancelled.
The call blocks if alarm is already set or later cancelled.

malarmcance(i) cancels the alarm with id and returns signal.
Just return a signal if no such id has been set.
This call is non-blocking.

A new alarm with some id can be set after the previous alartn thi
same id expires.



Implementation of Multi-alarm clock

def class Multialarnin) =
val alarmlist= Tablen, lambdg_) = Alarm())

def sefi,t) = alarmlist(i).se{t)
def cance(i) = alarmlist(i).cance()

stop



Testing Multialarm

val m= Multialarm(5)

m.se{1,500) > "first alarm”
| msef2,100) > "second alarm"
| Rwait(400) > m.cance(l) > "first cancelled"
| mcance(3) > "No third alarm has been set"

---------- Output

"No third alarm has been set"
"second alarm"

"first cancelled"



Using Web services: Spellcheck a list of words

include” netinc”
def spellCheck{]) = stop
def spellCheckword : wordsg) =
GoogleSpellUnofficiaivord) >sugg> (word, sugg
| spellCheckwords)

spellCheck[”plesé, ”thereeé&, ” Antiqu’])



Simulation as Concurrent Programming

¢ A simulation description is a real-time concurrent program
e The concurrent program includes physical entities and thigractions.

e The concurrent program specifies time intervals for theviiets.



Shortest Path Algorithm with Lights and Mirrors

Source node sends rays of light to each neighbor.
Edge weight is the time for the ray to traverse the edge.

When a node receives its first ray, sends rays to all neighbors
Ignores subsequent rays.

Shortest path length time for sink to receive its first ray.
Shortest path length to node=time for i to receive its first ray.



Graph structure inSucg)

Figure:Graph Structure

Sucdu) publishes(x,2), (y,1), (z5).



Algorithm

def evalu,t) = record valuet for u >
for every successov with d = length of (u,v) :
wait for d time units >
evalv,t 4 d)

Goal: evalsourceO) |
read the value recorded for th@nk

Record path lengths for nodein FIFO channelu.



Algorithm(contd.)

def evalu,t) = record valuet for u >

for every successov with d = length of (u,v) :

wait for d time units >
evalv,t + d)

Goal: evalsourceO) |
read the value recorded for th@nk

A cell for each node where the shortest path length is stored.
def evalu,t) = u:=t>
Sucgu) >(v,d)>
Rwait(d) >
evalv,t + d)

{- Goal:} evalsource0) | sink?



Algorithm(contd.)

def evalu,t) = u:=t >
Sucgu) >(v,d)>
Rwait(d) >
evalv,t + d)

{- Goal:} evalsource0) | sink’

Any call to evalu, t): Length of a path from source ta is t.
First call to evalu, t): Length of the shortest path from sourceuas t.
evaldoes not publish.



Drawbacks of this algorithm

e Running time proportional to shortest path length.

e Executions of Suc¢ putand getshould take no time.



Methods:

Vwait(t)
Vtimg)

Virtual Timer

Returns a signal aftet virtual time units.
Returns the current value of the virtual timer.



Virtual timer Properties

Virtual timer value is monotonic.
Vwait(t) consumes exactly units of virtual time.
A step is started as soon as possible in virtual time.

Virtual timer is advanced only if there can be no other attivi



Implementing virtual timer

Data structures

e n: current value ofVtimg), initially n= 0.
e (: queue of calls tovwait() whose responses are pending.

At run time

e Acallto Vtimg) immediately responds withm.
e Acall to Vwait(t) is assigned rank + t and queued.

e Progresslf the program is stuck, then:

remove the item with the lowest rankfrom q,
setn:=r,
respond with a signal to the corresponding calMwait().



Examples

Rwait(10) | Ltimer(2)
Should logical timer be advanced with passage of real time?

Rwait(10) > c.put(5) | Ltimer(2)
Does Rwait(10) > c.put(5) consume logical time?

c.get)) | Ltimer(2) > c.put(5)
What are the values oftimer.time() before and afterc.get()?

stop| Ltimer(2)
Can the logical timer be advanced?

Googld) | Ltimer(2)
Advance logical timer while waiting foiGoogl€) to respond?
What if Googl€) never responds?



Simulation: Bank

Bank with two tellers and one queue for customers.
Customers generated bysmurceprocess.
When free, a teller serves the first customer in the queue.
Service times vary for customers.
Determine

e Average wait time for a customer.

e Queue length distribution.
e Average idle time for a teller.



Structure of bounded simulation

Run the simulation forsimtime
Below, Bank() never publishes .

val z= Bank)) | Vwait(simtime

z > Statg)



def Bank()
def Customer§)

def Teller()

def enter(c)
def next)

Description of Bank

(Customers) | Teller() | Teller()) > stop
Sourcg) >c> enter(c)

nexi() >c>

Vwait(c.ServTimé >

Teller()

g.put(c)
q.get)



Fast Food Restaurant

Restaurant with one cashier, two cooking stations and oaaeajfor
customers.

Customers generated bysourceprocess.

When free, cashier serves the first customer in the queue.
Cashier service times vary for customers.

Cashier places the order in another queue for the cookirtigrsta
Each order has 3 parts: main entree, side dish, drink

A cooking station processes parts of an order in parallel.



Goal Expression for Restaurant Simulation

val z= Restaurant) | Vwait(simtime

z > Statg)



def Restauran()
def Customer§)

def Cashiex)

def CooK))

def enter(c)
def next)

Description of Restaurant
(Customerg) | Cashief) | Cook) | Cook)) > stop

Sourcé) >c> enter(c)

nexy() >c>
Vwait(c.ringupTimg >
ordersput(c.order) >
Cashie()

= ordersget() >order>
(
prepTiméorder.entreg >t> Vwait(t),
prepTiméorder.side) >t> Vwait(t),
prepTiméorder.drink) >t> Vwait(t)
) > Cook)

g.put(c)
q.get()



Collecting Statistics: waiting time

Change
def enter(c) = g.put(c)
def next) = g.get)
to
def enter(c) = Vtimg)) >s> g.put(c, s)
def next) = g.get) >(c,t)>

Vtimg) >s>
reportWai(s — t) >
c



Histogram: Queue length

CreateN -+ 1 stopwatchessw{0..N], at the beginning of simulation.

Final value of sw{i|, 0 <i < N, is the duration for which the queue
length has beer.

swWN] is the duration for which the queue length is at lebist

On adding an item to queue of length0 < i < N, do
swii].stop| swii + 1].start

After removing an item if the queue lengthis 0 <i < N, do
swii].start | swii + 1].stop



Simulation Layering

A simulation is written a set of layers.

Lowest layer represents the abstraction of the physicésys

Next layer may collect statistics, by monitoring the layeld it.
Further layers may produce reports and animations fromtétistics.



