
Structured Concurrent Programming

William Cook
Jayadev Misra
David Kitchin

John Thywissen
Arthur Peters

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

The 10th International Symposium on Formal Aspects of Component
Software

Jiangxi Normal University, Nanchang, China.
October 28 - 30, 2013

1

Structured Concurrent Programming

• Structured Sequential Programming: Dijkstra circa 1968
Component Integration in a sequential world.

• Structured Concurrent Programming:
Component Integration in a concurrent world.

2

Traditional approaches to handling Concurrency

• Adding concurrency to serial languages:

• Threads with mutual exclusion using semaphore.

• Transaction.

• Process Networks.

3

Orc

• Orc addressesDesign: as a component integration system.

Components:

• from many vendors
• for many platforms
• written in many languages
• may run concurrently and in real-time

4

Evolution of Orc

• Web-service Integration

• Component Integration

• Structured Concurrent Programming

5

Web-service Integration: Internet Scripting

• Contact two airlines simultaneously for price quotes.

• Buy a ticket if the quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy a ticket if the other airline does not give a timely quote.

• Notify client if neither airline provides a timely quote.

-

6

Enhanced Goal: Component Integration

Components could be:

• Web services

• Library modules

• Custom Applications, including real time

Components could be for:

• Functional Transformation

• Data Object Creation

• Real-time Computation

7

Component Integration; contd.

• Combineanykind of component, not just web services

• Small components: add two numbers, print a file ...

• Large components: Linux, MSword, email server, file server ...

• Time-based components: for real-time computation

• Actuators, sensors, humans as components

• Fast and Slow components

• Short-lived and Long-lived components

• Written in any language for any platform

8

Concurrency

• Component integration: typically sequential using objects

• Concurrency is ubiquitous

• Magnitude higher in complexity than sequential programming

• No generally accepted method to tame complexity

• May affect security

9

Orc: Structured Concurrent Programming

• A combinatorcombines two components to get a component

• Combinators may be applied recursively

• Results in hierarchical/modular program construction

• Combinators may orchestrate components concurrently

• Orc is just about 4 combinators

10

Power of Orc

• Solve all known synchronization, communication problems

• Code objects, active objects

• Solve all known forms of real-time and periodic computaions

• Solve a limited kind of transactions

• and, all combinations of the above

11

Some Typical Applications

• Adaptive Workflow(Business process management):
Workflow lasting over months or years
Security, Failure, Long-lived Data

• Extended 911:
Using humans as components
Components join and leave
Real-time response

• Network simulation:
Experiments with differing traffic and failure modes
Animation

12

Some Typical Applications, contd.

• Grid Computations

• Music Composition

• Traffic simulation

• Computation Animation

• Robotics

13

Some Typical Applications, contd.

• Map-Reduceusing a server farm

• Thread managementin an operating system

• Mashups(Internet Scripting).

• Concurrent Programmingon Android.

14

Some Very Large Applications

• Logistics

• Managing Olympic Games

• Smart City

15

Current Status

• Strong Theoretical Basis

• An elegant programming language
• as good as functional on functional problems
• can work with mutable store, real-time dependent components,

non-determinacy
• concurrency
• hierarchical, modular, recursive

• Robust Implementation
• Run program through a Web browser or locally
• Web site:orc.csres.utexas.edu
• Several papers, Ph.D. thesis

• Several Chapters of a book

16

Concurrent orchestration in Haskell

John Launchbury and Trevor Elliott
Proceedings of the third ACM Haskell symposium on Haskell

17

OrcCalculus

• Site: Basic service or component.

• Concurrencycombinatorsfor integrating sites.

• Calculus includes nothing other than the combinators.

No notion of data type, thread, process, channel, synchronization,
parallelism · · ·

New concepts are programmed using new sites.

18

Examples of Sites
• + − ∗ && || = ...

• Println , Random, Prompt , Email ...

• Mutable Ref, Semaphore, Channel, ...

• Timer

• External Services:Google Search, MySpace, CNN, ...

• Any Java Class instance, Any Orc Program

• Factory sites; Sites that create sites: Semaphore , Channel ...

• Humans
...

19

Sites

• A site is called like a procedure with parameters.

• Site returns any number of values.

• The value ispublished.

20

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

21

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

21

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

21

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

21

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f dog f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

21

Symmetric composition:f | g

• Evaluate f and g independently.

• Publish all values from both.

• No direct communication or interaction betweenf and g.
They can communicate only through sites.

Example: CNN(d) | BBC(d)

Callsboth CNNand BBCsimultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)

22

Sequential composition:f >x> g

For all values published byf do g.
Publish only the values fromg.

• CNN(d) >x> Email(address, x)

• Call CNN(d).
• Bind result (if any) tox.
• Call Email(address, x).
• Publish the value, if any, returned byEmail.

• (CNN(d) | BBC(d)) >x> Email(address, x)

• May call Email twice.
• Publishes up to two values fromEmail.

Notation: f ≫ g for f >x> g, if x is unused ing.

Right Associative: f >x> g >y> h is f >x> (g >y> h)

23

Schematic of Sequential composition

Figure:Schematic off >x> g

24

Pruning: f <x< g

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.
Consider(M() | N(x)) <x< g

• When g returns a (first) value:

• Bind the value tox.
• Kill g.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Notation: f ≪ g for f <x< g, if x is unused inf .

Left Associative: f <x< g <y< h is (f <x< g) <y< h

25

Example of Pruning

Email(address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

26

Multiple Pruning happens concurrently

add(x, y) <x< f <y< g is (add(x, y) <x< f) <y< g

(add(x, y) <x< f) is computed concurrently withg

(add(x, y), f and g computed concurrently.

27

Otherwise: f ; g

Do f . If f haltswithout publishing then dog.

• An expression halts if
• its execution can take no more steps, and
• all called sites have either responded, or will never respond.

• A site call may respond with a value, indicate that it will never respond
(helpful), or do neither.

• All library sites in Orc are helpful.

28

Examples off ; g

• 1 ; 2 publishes1

• (CNN(d) | BBC(d)) >x> Email(address, x) ; Retry()

If the sites areneverhelpful, this is equivalent to

(CNN(d) | BBC(d)) >x> Email(address, x)

• 5/0; “Exception leads to Halt” publishes

“Exception leads to Halt”

29

Orc program

• Orc program has
• a goalexpression,
• a set of definitions.

• The goal expression is executed. Its execution

• callssites,
• publishesvalues.

30

Some Fundamental Sites

• Ift(b), Iff (b): booleanb,
Returns asignalif b is true/false; remainssilentotherwise.
Site is helpful: indicates when it will never respond.

• Rwait(t): integer t, t ≥ 0, returns a signalt time units later.

• stop: never responds. Same asIft(false) or Iff (true).

• signal : returns a signal immediately.
Same asIft(true) or Iff (false).

31

Use of Fundamental Sites

• Print all publications ofh. When h halts, publish "done".

h >x> Println(x) ≫ stop ; "done"

• Timeout:
Call site M.
Publish its response if it arrives within 10 time units.
Otherwise publish 0.

x <x< (M() | Rwait(10) ≫ 0)

32

Interrupt f

• Evaluation of f can not be directly interrupted.

• Introduce two sites:
• Interrupt.set: to interrupt f
• Interrupt.get: responds only afterInterrupt.sethas been called.

• Interrupt.setis similar to releaseon a semaphore;
Interrupt.get is similar to acquireon a semaphore.

• Instead of f , evaluate

z <z< (f | Interrupt.get())

33

Site Definition

def MailOnce(a) =
Email(a, m) <m< (CNN(d) | BBC(d))

def MailLoop(a, t) =
MailOnce(a) ≫ Rwait(t) ≫ MailLoop(a, t)

def metronome() = signal | (Rwait(1) ≫ metronome())

• Expression is called like a procedure.
It may publish many values.MailLoop does not publish.

34

Example of a Definition: Metronome

Publish a signal every unit.

def metronome() = signal
︸ ︷︷ ︸

S

| (Rwait(1) ≫ metronome()
︸ ︷︷ ︸

R

)

S R

S R

35

Unending string of Random digits

metronome() ≫ Random(10) – one every unit

def rand_seq(dd) = – at a specified rate
Random(10) | Rwait(dd) ≫ rand_seq(dd)

36

Example of Site call

• Site Query() returns a value (different ones at different times).

• Site Accept(x) returns x if x is an acceptable value;
it is silent otherwise.

• Call Queryevery second forever and publish all its acceptable values.

metronome() ≫ Query() >x> Accept(x)

37

Concurrent Site call

• Sites are often called concurrently.

• Each call starts a new instance of site execution.

• If a site accesses shared data, concurrent invocations may interfere.

Example: Publish each of "tick" and "tock" once per second,
"tock" after an initial half-second delay.

metronome() ≫ ”tick”
| Rwait(500) ≫ metronome() ≫ ”tock”

38

Logical Connectives; 2-valued Logic

And: Publish a signal if both sites do.
Or: Publish a signal if either site does.

M() ≫ N() – “and”

b <b< (M() | N()) – “or”

M() ; N() – “or” with helpful M

(M() ≫ true ; false) >b> Iff (b) – “not” with helpful M

39

Parallel or

Expressionsf and g return single booleans. Compute theparallel or.

val x = f
val y = g

Ift(x) ≫ true | Ift(y) ≫ true | (x || y)

40

Parallel or; contd.

Compute theparallel orand return just one value:

val x = f
val y = g
val z= Ift(x) ≫ true | Ift(y) ≫ true | (x || y)

z

But this continues execution ofg if f first returns true.

val z=
val x = f
val y = g

Ift(x) ≫ true | Ift(y) ≫ true | (x || y)
z

41

Airline quotes: Application of Parallel or

• Contact airlinesA and B.

• Return any quote if it is below $300 as soon as it is available,
otherwise return the minimum quote.

• threshold(x) returns x if x < 300; silent otherwise.
Min(x, y) returns the minimum ofx and y.

val z=
val x = A()
val y = B()

threshold(x) | threshold(y) | Min(x, y)
z

42

Choice: Execute eitherf or g

if (true | false) then f else g

43

Simple definitions usingRandom()

• Return a random boolean.

def rbool() = (Random(2) = 0)

• Return a random real number between 0 and 1.

def frandom() = Random(1001)/1000.0

• Return true with probability p, falsewith (1− p)

def biasedBool(p) = (Random(1000) <: p ∗ 1000)

44

Timeout

Publish M’s response if it arrives before timet,
Otherwise, publish0.

z <z< (M() | (Rwait(t) ≫ 0)), or

val z= M() | (Rwait(t) ≫ 0)
z

45

Fork-join parallelism

Call sites M and N in parallel.
Return their values as a tuple after both respond.

((u, v)
<u< M())
<v< N()

or,

(M(), N())

46

Simple Parallel Auction

• A list of bidders in a sealed-bid, single-round auction.

• b.ask() requests a bid from bidderb.

• Ask for bids from all bidders, then publish the highest bid.

def auction([]) = 0
def auction(b : bs) = max(b.ask(), auction(bs))

Notes:

• All bidders are called simultaneously.

• If some bidder fails, then the auction will never complete.

47

Parallel Auction with Timeout

• Take a bid to be 0 if no response is received from the bidder within 8
seconds.

def auction([]) = 0

def auction(b : bs) =
max(

b.ask() | (Rwait(8000) ≫ 0),
auction(bs)

)

48

Identities of | , ≫ , ≪ and ;

(Zero and |) f | stop = f
(Commutativity of |) f | g = g | f
(Associativity of |) (f | g) | h = f | (g | h)
(Left zero of ≫) stop ≫ f = stop
(Associativity of ≫) if h is x-free

(f >x> g) >y> h = f >x> (g >y> h)
(Right zero of ≪) f ≪ stop = f
(generalization of right zero)

f ≪ g = f ≪ (stop ≪ g) = f | (stop ≪ g)
(relation between ≪ and <x<)

f ≪ g = f <x< g, if x 6∈ free(f).
(commutativity) (f <x< g) <y< h = (f <y< h) <x< g

if x 6∈ free(h), y 6∈ free(g), and x, y are distinct.
(associativity of ;) (f ; g) ; h = f ; (g ; h)

49

Distributivity Identities

(| over >x> ; left distributivity)
(f | g) >x> h = f >x> h | g >x> h

(| over <x<) (f | g) <x< h = (f <x< h) | g, if x 6∈ free(g).

(>y> over <x<) (f >y> g) <x< h = (f <x< h) >y> g
if x 6∈ free(g), and x and y are distinct.

(<x< over otherwise)(f <x< g) ; h = (f ; h) <x< g, if x 6∈ free(h).

50

Identities that don’t hold

(Idempotence of |) f | f = f

(Right zero of ≫) f ≫ stop = stop

(Left Distributivity of ≫ over |)
f ≫ (g | h) = (f ≫ g) | (f ≫ h)

51

Orc Language

• Data Types: Number, Boolean, String, with Java operators

• Conditional Expression: if E then F else G

• Data structures: Tuple, List, Record

• Pattern Matching; Clausal Definition

• Closure

• Orc combinators everywhere

• Class for active objects

52

Data types

• Number: 5, − 1, 2.71828, − 2.71e− 5

• Boolean: true, false

• String: "orc", "ceci n’est pas une |"

1 + 2 evaluates to3
0.4 = 2.0/5 evaluates to true
3− 5 :> 5− 3 evaluates to false
true&& (false|| true) evaluates to true
3/0 is silent
"Try" + "Orc" evaluates to"TryOrc"

53

Variable Binding; Silent expression

val x = 1 + 2

val y = x + x

val z= x/0 -- expression is silent

val u = if (0 <: 5) then0 elsez

54

Exceptions

3/0 halts.

55

Conditional Expression

if true then "blue" else "green" — is "blue"

if "fish" then "yes" else "no" — is silent

if false then 4+5 else 4+true — is silent

if true then 0/5 else 5/0 — is 0

56

Tuples

(1 + 2, 7) is (3, 7)

("true" + "false",true || false, true && false) is ("truefalse", true, false)

(2/2, 2/1, 2/0) is silent

57

Lists

[1, 2 + 3] is [1, 5]

[true && true] is [true]

[] is the empty list

[5, 5 + true, 5] is silent

List Constructor is a colon:
3:[5, 7] = [3, 5, 7]
3:[] = [3]

58

Translating Programs to Orc Calculus

• All programs are translated to Orc calculus.

• 1 + 2 becomesadd(1, 2)
All arithmetic and logical operators, tuples, lists are site calls.
if-then-else is translated with calls toIft , Iff sites.

• 1 + (2 + 3) should becomeadd(1, add(2, 3))
But this is not legal Orc!Site calls can not be nested.

• What is the meaning of(1 | 2) + (2 | 3)?

59

Orc Combinators everywhere

Parameters in site calls could be Orc expressions

(1 + 2) | (2 + 3)

(1 | 2) + (2 | 3)

60

Implicit Concurrency

• An experimenttosses two dice.
Experiment is a success if and only if sum of the two dice thrown is 7.

• exp(n) runs n experiments and reports the number of successes.

def toss() = Random(6) + 1
-- tossreturns a random number between 1 and 6

def exp(0) = 0
def exp(n) = exp(n− 1)

+ (if toss() + toss() = 7 then 1 else 0)

61

Translation of the dice throw program

def toss() = add(x, 1) <x< Random(6)
def exp(n) =

(Ift(b) ≫ 0
| Iff (b) ≫

(add(x, y)
<x< (exp(m) <m< sub(n, 1))
<y< (Ift(bb) ≫ 1 | Iff (bb) ≫ 0)

<bb< equals(p, 7)
<p< add(q, r)

<q< toss()
<r< toss()

)

) <b< equals(n, 0)

Note: 2n parallel calls totoss().
62

Deflation

• Given expressionC(..., e, ..), single value expected ate

• translate toC(..., x, ..) <x< ewhere x is fresh

• val z= g
f becomes
f <z< g

• applicable hierarchically.

(1|2) ∗ (10|100) is
(Times(x, y) <x< (1 | 2)) <y< (10 | 100), or
Times(x, y) <x< (1 | 2) <y< (10 | 100)
Implication:
Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have been evaluated.

63

Barrier Synchronization inM() ≫ f | N() ≫g

• Require: f and g start only afterboth M and N complete.

• Rendezvous of CSP or CCS;
M and N are complementary actions.

(M(), N()) ≫ (f | g)

64

Priority

• Publish N’s response asap, but no earlier than 1 unit from now.
Apply fork-join betweenRwait(1) and N.

val (u, _) = (N(), Rwait(1))

• Call M, N together.
If M responds within one unit, publish its response.
Else, publish the first response.

val x = M() | u

65

Pattern Matching in val

(x,y) = (2+3,2*3) binds x to 5 and y to 6

[a,b] = ["one", "two"] binds a to "one", b to "two"

((a,b),c) = ((1, true), [2, false]) binds a to 1, b to true, and c to [2, false]

(x,_,_) = (1,(2,2),[3,3,3]) binds x to 1

[[_,x],[_,y]] = [[1,3],[2,4]] binds x to 3 and y to 4

66

Pattern Matching in Site Definition parameters

A site adds two pairs componentwise;
publishes the resulting pair.

def pairsum(a, b) =
a >(x, y)> b >(x′, y′)> (x + x′, y + y′)

or, even better,

def pairsum((x, y), (x′ , y′)) = (x + x′, y + y′)

67

Pattern Matching, clausal definition

def sum([]) = 0

def sum(x : xs) = x + sum(xs)

Clauses are evaluated in order from top to bottom.

68

Tree Reconstruction

1. Given a non-empty sequence of natural numbers.

2. Does the sequence represent the depths of terminal nodes in abinary tree,
from left to right? Then it isvalid.

Example: [1, 3, 3, 2] is valid, [1, 3, 2, 2] is not.

Output the tree structutre if the sequence is valid;
Output NonTree() otherwise.

69

Theorem

• [0] is valid.

• [l] ++ x ++ x ++ [r], where [l] ++ x has no duplicates, is valid iff

[l] ++ (x− 1) ++ [r] is valid.

70

Tree Reconstruction; Contd.

typeTree= Node(Tree, Tree) | Leaf() | NonTree()

def tc(_, []) = NonTree()

def tc([], [(v, t)]) = if (v = 0) then t else NonTree()

def tc([], v : right) = tc([v], right)

def tc((u, t) : left, (v, t′) : right) =
if u = v then tc(left, (v− 1, Node(t, t′)) : right)
else tc((v, t′) : (u, t) : left, right)

Typical test: tc([], [(3, Leaf()), (3, Leaf()), (2, Leaf()), (2, Leaf())])

71

Tree Reconstruction; contd.
Simplify input preparation:

tc([], [(3, Leaf()), (3, Leaf()), (2, Leaf()), (2, Leaf())]) replaced by

checktree([3, 3, 2, 2])

def mklist([]) = []
def mklist(x : xs) = (x, Leaf()) : mklist(xs)
def checktree(xs) = tc([], mklist(xs))

checktree([3, 3, 2, 2])
– NonTree()

checktree([1, 3, 3, 2])
– Node(Leaf(), Node(Node(Leaf(), Leaf()), Leaf()))

checktree([3, 3, 2, 2, 2])
– Node(Node(Node(Leaf(), Leaf()), Leaf()), Node(Leaf(), Leaf()))

72

Example: Fibonacci numbers

def H(0) = (1, 1)
def H(n) = H(n− 1) >(x, y)> (y, x + y)

def Fib(n) = H(n) >(x, _)> x

{- Goal expression -}
Fib(5)

73

Clausal Definition, Pattern Matching
Example: Defining graph connectivity

0 1

3 5

2

4

An Undirected Graph

def conn(0) = [1, 2, 3, 4]
def conn(1) = [0, 5]
def conn(2) = [0, 4]
def conn(3) = [0, 5]
def conn(4) = [0, 2]
def conn(5) = [1, 3]

def conn(i) =
i >0> [1, 2, 3, 4]

| i >1> [0, 5]
| i >2> [0, 4]
| i >3> [0, 5]
| i >4> [0, 2]
| i >5> [1, 3]

74

Sites

• Sites are first-class values.
A site may be a parameter in site call.
A site may return a site as a value.

M() >(x, y)> x(y) -- x, y are sites

• Sites may have methods.

Channel() >ch> ch.put(3)

• Translation of method callch.put(3):

ch(“put′′) >x> x(3)

75

Closure: Sites as values

val minmax= (min, max)
======================
def apply2((f , g), (x, y)) = (f (x, y), g(x, y))

apply2(minmax, (2, 1)) publishes (1, 2)
======================
def pmap(f , []) = []
def pmap(f , x : xs) = f (x) : pmap(f , xs)

pmap(lambda(i) = i ∗ i, [2, 3, 5]) publishes [4, 9, 25]
======================
def repeat(f) = f () ≫ repeat(f)
def pr() = Println(3)

repeat(pr) prints 3 forever.

76

val, tuple, closure

def circle() =

val pi = 3.1416

def perim(r) = 2 ∗ pi ∗ r

def area(r) = pi ∗ r ∗∗2 #

(perim, area)

77

Some Factory Sites

Ref(n) Mutable reference with initial valuen
Cell() Write-once reference
Array(n) Array of sizen of Refs
Table(n,f) Array of sizen of immutable values off
Semaphore(n) Semaphore with initial valuen
Channel() Unbounded (asynchronous) channel

Ref(3) >r> r.write(5) ≫ r.read(), or Ref(3) >r> r := 5 ≫ r?

Cell() >r> (r.write(5) | r.read()), or Cell() >r> r := 5 | r?

Array(3) >a> a(0) := true ≫ a(1)?

Semaphore(1) >s> s.acquire() ≫ Println(0) ≫ s.release()

Channel() >ch> (ch.get() | ch.put(3) ≫ stop)

78

Simple Swap

Convention:

a? is a.read()
b := x is b.write(x)

Take two references as arguments,
Exchange their values, and return a signal.

def swap(i, j) = (i?, j?) >(x, y)> (i := y, j := x) ≫ signal

Note: a and b could be identical Refs.

79

Update linked list

Given is a one-way linked list.
Its first item is calledfirst.
Now add valuev as the first item.

Ref() >r>
r := (v, first) ≫

first := r

or,

Ref((v, first)) >r>
first := r

80

Binary Search Tree; using Ref()

def search(key) = return true or false
searchstart(key) >(_, _, q)> (q 6= null)

def insert(key) = true if value was inserted, false if it was there
searchstart(key) >(p, d, q)>
if q = null

thenRef() >r>
r := (key, null, null) · · ·

else · · ·

81

Array Permutation

• Randomly permute the elements of an array in place.

• randomize(i) permutes the firsti elements of arrya and publishes a
signal.

def permute(a) =
def randomize(0) = signal
def randomize(i) = Random(i) >j>

swap(a(i − 1), a(j)) ≫

randomize(i − 1)

randomize(a.length())

82

Example: Return Array of 0-valued Semaphores

def semArray(n) =
val a = Array(n)
def populate(0) = signal
def populate(i) = a(i − 1) := Semaphore(0) ≫ populate(i − 1)

populate(n) ≫ a

Usage: semArray(5) >a> a(1)?.release()

83

Library site: Table

• Table(n, f), where n > 0 and f a site closure.
Creates siteg, where g(i) = f (i), 0 ≤ i < n.
An array of site values pre-computed and reused.

• All values of g are computed at instantiation.

• Allows creating arrays of structures.

• Site f may be supplied as:lambda(i) = h(i)

Examples:

• val g = Table(5, lambda(_) = Channel())

• val h = Table(5, lambda(i) = 2 ∗ i)

• val s= Table(5, lambda(_) = Semaphore(0))

84

Definition Mechanism: Class

• Encapsulate data and objects with methods

• Create new sites; Extend behaviors of existing sites

• Allow concurrent method invocation on objects (monitors)

• Create active objects with time-based behavior

Classes can be translated to Orc calculus using a special site.

85

Object Creation: Stack

• Define stack with methodspushandpop.

• Parametern gives the maximum stack size.

• Store the stack elements in arraystore,
current stack length inlen.

• pushon a full stack orpopfrom an empty stack halts with no effect.

86

Stack definition

def class Stack(n) =
val store= Table(n, lambda(_) = Ref())
val len= Ref(0)

def push(x) =
Ift(len? <: n) ≫ store(len?) := x ≫ len := len? + 1

def pop() =
Ift(len? :> 0) ≫ len := len? − 1 ≫ store(len?)?

{- class Goal -} stop

----------- Test
val st = Stack(5)
st.push(3) ≫ st.push(5) ≫ st.pop() ≫ st.pop()

87

Special case: only one class instance

val (push, pop) = Stack(5) >r> (r.push, r.pop)

----------- Test
push(3) ≫ push(5) ≫ pop() ≫ pop()

88

Class Syntax

• Class definition
• Like site definition
• May include parameters

• Clausal definitions allowed.

• All definitions within a class are exported.
Such definitions are accessed as dot methods.

89

Class Semantics: Class is a site with methods

• A class call creates and publishes a site.

• All the rules for site definition apply except:
• Publications of class goal expression are ignored,
• Each method (site) publishes at most once,
• Class calls are strict (site calls are non-strict),
• Class method calls arenot terminated prematurely by prune (follows the

rule for sites).

• Methods may be invoked concurrently, as in sites.

90

Special attention to concurrent invocation

st.push(3) ≫ st.pop() ≫ Rwait(1000) ≫ st.pop()
| st.push(4) ≫ stop

• If method executions were atomic there would be some output.

• This program sometimes produces no output.
Method executions may overlap and interfere.

91

Example: Matrix (with upper and lower indices)

def class Matrix((row, row′), (col, col′)) =

val mat= Array((row′ − row + 1) ∗ (col′ − col + 1))

def access(i, j) = mat((i − row) ∗ (col′ − col + 1) + j)

stop

----------------- Test
val A = Matrix((−2, 0), (−1, 3)).access

A(−1, 2) := 5 ≫ A(−1, 2) := 3 ≫ A(−1, 2)?

92

A Matrix of Classes

def class CMatrix((row, row′), (col, col′), cap) =

val mat= Table((row′ − row + 1) ∗ (col′ − col + 1), cap)

def access(i, j) = mat((i − row) ∗ (col′ − col + 1) + j)

stop

----------------- Test; A matrix of Channels
val A = CMatrix((−2, 0), (−1, 3), lambda(_) = Channel()).access

A(−1, 2).put(3) ≫ A(−1, 2).get()

93

Create a new site: Cell using Semaphore and Ref

def class Cell() =

val s= Semaphore(1)
val r = Ref()

def write(v) = s.acquire() ≫ r := v

def read() = r? -- r? blocks until r has been written

stop

94

New Site: Bounded Channel

• Bounded channel of sizen may block for put and get.

• Use semaphorep = number of empty positions.

• Use Channelto hold data items.

95

Bounded Channel; contd.

def class BChannel(n) =
val b = Channel()
val p = Semaphore(n)

def put(x) = p.acquire() ≫ b.put(x)

def get() = b.get() >x> p.release() ≫ x

stop

96

Extend functionality of a site: add length method to Channel

def class Channel′() =
val ch= Channel()
val chlen= Counter(0)

def put(x) = ch.put(x) ≫ chlen.inc()
def get() = ch.get() >x> chlen.dec() ≫ x
def len() = chlen.value()

stop

----------------- Test
val c = Channel′()

c.put(1000) ≫ c.put(2000) ≫ Println(c.len()) ≫

c.get() ≫ Println(c.len()) ≫ stop

97

Memoization

For site f (with no arguments) cache its value after the first call.

res: stores the cached value.
s: semaphore value is 0 if the site value has been cached.

val res= Cell()
val s= Semaphore(1)
def memo() =

val z= res? | s.acquire() ≫ res := f () ≫ stop
z

Note: Concurrent calls handled correctly.

98

Memoize an argument site using Class

def class Memo(f) =
val res= Cell()
val s= Semaphore(1)

def memo() =
val z= res? | s.acquire() ≫ res := f () ≫ stop

z

stop

— Usage
val prandom= Memo(lambda() = Random(20)).memo
prandom() | prandom() | prandom()

99

Concurrent access: Client-Server interaction

• Asynchronous protocol for client-server interaction.

• At most one client interacts at a time with the server.

• Client requests service and supplies input data.

• Server reads data, computes and writes out the result.

• Client receives result.

100

Client-Server interaction API

• req(x):
Performed by the client to send data to the server.
Client receives a response when the operation completes.
The operation may remain blocked forever.

• read():
For the server to remove the data sent by the client.
The operation is blocked if there is no outstanding request.

• write(v):
Server returnsv as the response to the client.
Operation is non-blocking.

101

Client-Server interaction; Program

def class csi() =

val sem= Semaphore(1)
val (u, v) = (Channel(), Channel())
-- semensures that only one client interacts at a time
-- client data stored inu, server response inv

def req(x) = sem.acquire() ≫

u.put(x) ≫ v.get() >y>
sem.release() ≫ y

def read() = u.get()

def write(x) = v.put(x)

stop

102

Examples

• Combinatorial

• Mutable store manipulation

• Synchronization, Communication

103

Some Algorithms

• Enumeration and Backtracking

• Using Closures

• List Fold, Map-reduce

• Parsing using Recursive Descent

• Exception Handling

• Process Network

• Quicksort

• Graph Algorithms: Depth-first search, Shortest Path

104

List map

def parmap(_, []) = []

def parmap(f , x : xs) = f (x) : parmap(f , xs)

105

List map (Contd.)

def seqmap(_, []) = []

def seqmap(f , x : xs) = f (x) >y> (y : seqmap(f , xs))

106

Infinite Set Enumeration

Enumerate all finite binary strings.
A binary string is a list of 0,1.

def bin() =

[]
| bin() >xs> (0 : xs| 1 : xs)

Note: Unguarded recursion.

107

Subset Sum

Given integern and list of integersxs.

parsum(n, xs) publishes all sublists ofxs that sum ton.

parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]

parsum(5,[1,2,1]) is silent

def parsum(0, []) = []

def parsum(n, []) = stop

def parsum(n, x : xs) =
parsum(n− x, xs) >ys> x : ys

| parsum(n, xs)

108

Subset Sum (Contd.), Backtracking

Given integern and list of integersxs.

seqsum(n, xs) publishes thefirst sublist of xs that sums ton.

“First” is smallest by index lexicographically.
seqsum(5,[1,2,1,2]) = [1,2,2]

seqsum(5,[1,2,1]) is silent

def seqsum(0, []) = []

def seqsum(n, []) = stop

def seqsum(n, x : xs) =
x : seqsum(n− x, xs)

; seqsum(n, xs)

109

Subset Sum (Contd.), Concurrent Backtracking

Publish thefirst sublist of xs that sums ton.

Run the searches concurrently.

def parseqsum(0, []) = []

def parseqsum(n, []) = stop

def parseqsum(n, x : xs) =
(p ; q)

<p< x : parseqsum(n − x, xs)
<q< parseqsum(n, xs)

Note: Neither search in the last clause may succeed.

110

Mutual Recursion: Finite state transducer

Convert an input string:

• Remove all white spaces in the beginning.

• Reduce all other blocks of white spaces (consecutive white spaces) to a
single white space.

---Mary---had-a--little--lamb-

becomes (where- denotes a white space)

Mary-had-a-little-lamb-

111

A finite State Transducer

A deterministicFinite State Machine. No concurrency.

−/

n/n

n/n

−/−

first next

Figure:n is a symbol other than white space

112

A Program

−/

n/n

n/n

−/−

first next

Figure:n is a symbol other than white space

def first([]) = []
def first(” ” : xs) = first(xs)
def first(x : xs) = x : next(xs)

def next([]) = []
def next(” ” : xs) = ” ” : first(xs)
def next(x : xs) = x : next(xs)

113

Non-deterministic search: String Matching

• Given a pattern stringp and a text stringt, determine ifp occurs in t
(as a contiguous substring).

• Run two searches simultaneously:
Is p a prefix of t?
Is p in the string excluding the first symbol oft?

• Terminate the search if either is a success.

114

Helper Sites

• parallelOr: to terminate the search asap.

• prefix(xs, ys) returns true if and only ifxs is a prefix of ys.
(strings are given as lists of symbols).

def parallelOr(y, z) =
val r = Ift(y) ≫ true | Ift(z) ≫ true | y || z
r

def prefix([], ys) = true
def prefix(xs, []) = false
def prefix(x : xs, y : ys) = (x = y) && prefix(xs, ys)

115

String Matching Program

• stringmatch(xs, ys) returns true if and only ifxs is a contiguous
substring ofys.
(strings are given as lists of symbols).

def stringmatch([], ys) = true

def stringmatch(xs, []) = false

def stringmatch(xs, y : ys) =
parallelOr

(stringmatch(xs, ys),
prefix(xs, y : ys)
)

116

Using Closure

A UNITY Program

x, y = 0, 0

x < y→ x := x + 1
| y := y + 1

• Program has: variable declarations
a set of functions

• Variables are initialized as given.

• Program is run by: choosing a function arbitrarily,
choosing functions fairly.

117

Corresponding Orc program

val (x, y) = (Ref(0), Ref(0))

def f 1() = Ift(x? <: y?) ≫ x := x? + 1
def f 2() = y := y? + 1

Run the program by:

• choosing a function arbitrarily,

• choosing functions fairly.

118

Scheduling the UNITY Program

def unity(fs) =
val arlen = length(fs)
val fnarray = Array(arlen)

{- populate() transfers from listfs to array fnarray -}
def populate(_, []) = signal
def populate(i, g : gs) = fnarray(i) := g ≫ populate(i + 1, gs)

{- Execute a random statement and loop.
Randomness guarantees fairness.-}
def exec() = random(arlen) >j> fnarray(j)?() ≫ exec()

{- Initiate the work-}
populate(0, fs) ≫ exec()

119

Running the example program

val (x, y) = (Ref(0), Ref(0))

def f 1() = Ift(x? <: y?) ≫ x := x? + 1
def f 2() = y := y? + 1

unity([f 1, f 2])

120

Fold on a non-empty list

fold with binary f : fold(+, [x0, x1, · · ·]) = x0 + x1 · · ·

def fold(
,
[x]) = x

def fold(f , x : xs) = f (x, fold(xs))

121

Associative fold on a non-empty list

def afold(f , [x]) = x
def afold(f , xs) =

def pairfold([]) = []
def pairfold([x]) = [x]
def pairfold(x : y : xs) = f (x, y) : pairfold(xs)

afold(f , pairfold(xs))

map and associative fold:map_afold

122

Associative commutative fold over a channel

A channel has two methods:put and get.

chFold(c, n), n > 0, folds the first n items of channelc and publishes.

def chFold(c, 1) = c.get()

def chFold(c, n) = f (chFold(c, n/2), chFold(c, n − n/2))

Does not combine values computed in different halves, even when they are
available quickly.

123

Associative commutative fold over a channel; contd.

def comb(0) = stop

def comb(1) = f (c.get(), c.get()) >x> c.put(x) ≫ stop

def comb(k) = comb(1) | comb(k − 1)

comb(n− 1)

• comb(k) combinesk + 1 values from the channel and puts the result
back in the channel. Does not publish.

• If number of items,n, in the channel is strictly more thank, comb(k)
terminates.

• So, comb(n− 1) combinesn values from the channel and puts the result
back in the channel, and halts.

124

map-reduce

• Given is a list of tasks.

• A processor from a processor pool is assigned to process a task.
Each task may be processed independently, yielding a result.

• If a processor does not respond within timeT, a new processor is
assigned to the task.

• After all the results have been computed, the results are reduced by
calling reduce.

125

Implementation

• processlistprocesses a list of tasks concurrently.
process(t) processes a single taskt.
process(t) publishes a result;processlista list of results.

• Site processfirst acquires a processor.
It assigns the task to the processor.
If the processor responds within timeT, it publishes the result.
Else, it repeats these steps.

• process(t) may never complete if the processors keep failing.

• The list of published results are reduced by sitereduce.

126

map-reduce

def processlist([]) = []
def processlist(t : ts) = process(t) : processlist(ts)

def process(t) =
val processor= Processorpool()
val (result, b) = (processor(t), true) | (Rwait(T), false)
if b then resultelse process(t)

processlist(tasks) >x> reduce(x)

127

Parsing using Recursive Descent

Consider the grammar:

expr ::= term | term+ expr

term ::= factor | factor∗ term

factor ::= literal | (expr)

literal ::= 3 | 5

128

Parsing strategy
For each non-terminal, sayexpr, define expr(xs):
publish all suffixes ofxssuch that the prefix is aexpr.

def isexpr(xs) = expr(xs) >[]> true ; false

To avoid multiple publications (in ambiguous grammars),

def isexpr(xs) =
val res= expr(xs) >[]> true ; false
res

------------ Test

isexpr
([”(”, ”(”, ”3”, ” ∗ ”, ”3”, ”)”, ”)”, ” + ”, ”(”, ”3”, ” + ”, ”3”, ”)”])

— ((3*3))+(3+3)

:: true

129

Site for each non-terminal

Given: expr ::= term| term+ expr
Rewrite: expr ::= term(ǫ | + expr)

def expr(xs) = term(xs) >ys> (ys| ys > ”+” : zs> expr(zs))

def term(xs) = factor(xs) >ys> (ys| ys > ”*” : zs> term(zs))

def factor(xs) = literal(xs)
| xs > ”(” : ys> expr(ys) > ”)” : zs> zs

def literal(n : xs) = n > ”3” > xs| n > ”5” > xs
def literal([]) = stop

130

Quicksort

• In situ permutation of an array.

• Array segments are simultaneously sorted.

• Partition of an array segment proceed from left and right simultaneously.

• Combine Concurrency, Recursion, and Mutable Data Structures.

Traditional approaches

• Pure functional programs do not admit in-situ permutation.

• Imperative programs do not highlight concurrency.

• Typical concurrency constructs do not combine well with recursion.

131

Program Structure

• array a to be sorted.

• A segment is given by a pair of indices(u, v). Elements in the segment
are: a(u)..a(v − 1). Segment length isv− u if v ≥ u.

• segmentsort(u, v) sorts a segment in place and publishes a signal.

• To sort the whole array:segmentsort(0, a.length?)

132

Program Structure; Contd.
• part(p, s, t) partitions segment(s, t) with elementp. Publishesm

where:

left subsegment: a(i) ≤ p for all i, s≤ i ≤ m, and
right subsegment: a(i) > p, for all i, m < i < t.

• Assumea(s)? ≤ p, so the left subsegment is non-empty.

def swap(i, j) = (i?, j?) >(x, y)> (i := y, j := x) ≫ signal

def quicksort(a) =
def segmentsort(u, v) =

if v− u > 1 then
part(a(u)?, u, v) >m>
swap(a(u), a(m)) ≫

(segmentsort(u, m), segmentsort(m + 1, v)) ≫ signal
else signal

segmentsort(0, a.length?)

133

Partition segment(s, t) with elementp, given a(s) ≤ p

• lr (i) publishes the index of the leftmost item in the segment that exceeds
p; publishes t if no such item.

• rl(i) publishes the index of the rightmost item that is less than orequal
to p. Since a(s) ≤ p, item exists.

def lr (i) = Ift(i <: t) ≫ Ift(a(i)? ≤ p) ≫ lr (i + 1) ; i

def rl(i) = Ift(a(i)? :> p) ≫ rl(i − 1) ; i

Goal Expression ofpart(p, s, t):

(lr (s+ 1), rl(t − 1)) >(s′, t′)>
(if (s′ < t′) then swap(a(s′), a(t′)) ≫ part(p, s′, t′)
else t′)

134

Putting the Pieces together: Quicksort

def swap(i, j) = (i?, j?) >(x, y)> (i := y, j := x) ≫ signal

def quicksort(a) =
def segmentsort(u, v) =

def part(p, s, t) =
def lr (i) = Ift(i < t) ≫ Ift(a(i)? ≤ p) ≫ lr (i + 1) ; i
def rl(i) = Ift(a(i)? :> p) ≫ rl(i − 1) ; i #

(lr (s+ 1), rl(t − 1)) >(s′, t′)>
(if (s′ < t′) then swap(a(s′), a(t′)) ≫ part(p, s′, t′)
else t′) #

if v− u > 1 then
part(a(u)?, u, v) >m>
swap(a(u), a(m)) ≫

(segmentsort(u, m), segmentsort(m + 1, v)) ≫ signal
else signal

segmentsort(0, a.length?)
135

Remarks and Proof outline

• Concurrency without locks

• sort(m, n) sorts the segment; does not touch items outside the segment.

• Then, sort(s, m− 1) and sort(m+ 1, t) are non-interfering.

• part(p, s, t) does not modify any value outside this segment. May read
values.

136

Depth-first search of undirected graph
Recursion over Mutable Structure

N: Number of nodes in the graph.

conn: conn(i) the list of neighbors ofi

parent: Mutable array of lengthN
parent(i) = v, v ≥ 0, meansv is the parent node ofi
parent(i) < 0 means parent ofi is yet to be determined

Once i has a parent, it continues to have that parent.

dfs(i, xs): starts a depth-first search from all nodes inxs in order,
i has a parent (ori = N),
xs⊆ conn(i),
All nodes in conn(i) − xshave parents already.

137

Depth-first search

val N = 6 -- N is the number of nodes in the graph
val parent= Table(N, lambda(_) = Ref(−1))

def dfs(_, []) = signal

def dfs(i, x : xs) =
if (parent(x)? ≥ 0) then dfs(i, xs)
else parent(x) := i ≫ dfs(x, conn(x)) ≫ dfs(i, xs)

dfs(N, [0]) -- depth-first search from node 0

138

Sequential Breadth-First Traversal of a Graph

N nodes in a graph,

root a specified node,

succ(x) is the list of successors ofx,

Publish theparentof each node in Breadth-First Traversal.

def bfs(N, root, succ) =
val parent= Table(N, lambda(_) = Cell())

– bfs′ is bfson a list of nodes
def bfs′([]) = signal
def bfs′(x : xs) = bfs′(append(xs, expand(x)))

parent(root) := N ≫ bfs′([root]) ≫ parent

139

Site expand

def expand(x) =

– expand′(x, ys), yssuccessors ofx yet to be scanned

def expand′(_, []) = []
def expand′(x, z : zs) =

(parent(z) := x ≫ z : expand′(x, zs)) ; expand′(x, zs)

expand′(x, succ(x))

140

Sequential Breadth-First Traversal: Complete Program

def bfs(N, root, succ) =
val parent= Table(N, lambda(_) = Cell())

def expand(x) =

def expand′(_, []) = []
def expand′(x, z : zs) =

(parent(z) := x ≫ z : expand′(x, zs)) ; expand′(x, zs)

expand′(x, succ(x)) – Goal of expand

def bfs′([]) = signal
def bfs′(x : xs) = bfs′(append(xs, expand(x)))

parent(root) := N ≫ bfs′([root]) ≫ parent

141

Concurrent Breadth-First Traversal

def bfs(N, root, succ) =
val parent= Table(N, lambda(_) = Cell())

def expand(x) =
if succ(x) = [] then[]
else map_afold

(
lambda(y) = parent(y) := x ≫ [y] ; [],
append,
succ(x)

)

def bfs′([]) = signal
def bfs′(xs) = bfs′(map_afold(expand, append, xs))

parent(root) := N ≫ bfs′([root]) ≫ parent

142

Memoization

Memoize calls tof ().

val done= Cell()
val res= Cell()

def memof() =
res? ≪ (done:= signal ≫ res := f ())

143

Memoization of Fibonacci

val N = 100
val done= Table(N + 1, lambda(_) = Cell())
val res= Table(N + 1, lambda(_) = Cell())

def mfib(0) = 0
def mfib(1) = 1
def mfib(i) =

res(i)? ≪

(done(i) := signal ≫ res(i) := mfib(i − 1) + mfib(i − 2))

Note: Concurrent calls tomfib(i), for each i.

144

Exception Handling

Client calls siteserver to request service.
The server “may” request authentication information.

def request(x) =
val exc= Channel() -- returns a channel site

server(x, exc)
| exc.get() >r> exc.put(auth(r)) ≫ stop

145

Synchronization, Communication

Semaphore(n) Semaphore with initial valuen
BoundedChannel(n) bounded (asynchronous) channel of sizen
Counter() Methodsinc() , dec() andonZero()

Semaphore(1) >s> s.acquire() ≫ r := 5 ≫ s.release()

BoundedChannel(1) >ch> (ch.put(5) | ch.put(3))

Counter() >ctr> (ctr.inc() ≫ ctr.onZero() | Rwait(10) ≫ ctr.dec())

146

Rendezvous

def class zeroChannel() =
val s= Semaphore(0)
val w = BoundedChannel(1)

def put(x) = s.acquire() ≫ w.put(x)
def get() = s.release() ≫ w.get()

stop

147

Pure Rendezvous

def class pairSync() =
val s= Semaphore(0)
val t = Semaphore(0)

def put() = s.acquire() ≫ t.release()
def get() = s.release() ≫ t.acquire()

stop

148

n-party Rendezvous

• n parties participate in a rendezvous.

• Each party (optionally) contributes some data.

• After all parties have contributed:
a given function is applied to transform input list to outputlist,
then i receives theith item of output list, and proceeds.

• Access Protocol:
i calls go(i, x) with i and datax.
Receives its result as the response of the call.

149

Examples of Data Transformations

• n = 2: first input data item becomes the second output item.
The classical sender-receiver paradigm.

• n = 2: input data items are swapped.
Data exchange;
can simulate the classical sender-receiver.

• Arbitrary n: every output item is the first input data item.
Broadcast paradigm.

• Arbitrary n: secret sharing.

• Arbitrary n: ith output is the rank of theith input.

150

Implementation Strategy

• Tables in and out hold the inputs and outputs. Each table entry is
BoundedChannel(1).

• go(i, x) storesx in in(i) if it is empty.
Then waits to receive result fromout(i).

• managerreceives alln inputs, applies the given function and stores the
results in out.

151

n-party Rendezvous Program

def class Rendezvous(n, f) =
val in = Table(n, lambda(_) = BoundedChannel(1))
val out = Table(n, lambda(_) = BoundedChannel(1))

def go(i, x) = in(i).put(x) ≫ out(i).get()

def collect(0) = []
def collect(i) = in(n− i).get() : collect(i − 1)

def distribute(_, 0) = signal
def distribute(v : vl, i) = out(n− i).put(v) ≫ distribute(vl, i − 1)

def manager() =
collect([], n) >vl> distribute(f (vl), n) ≫ manager()

manager()

152

Test

def rotate([a, b, c]) = [b, c, a]

val rg3 = Rendezvous(3, rotate).go

rg3(0, 0) >x> ("0 gets " + x)
| rg3(1, 1) >x> ("1 gets " + x)
| rg3(2, 4) >x> ("2 gets " + x)
| rg3(2, 2) >x> ("2 gets " + x)

---------- Output
"0 gets 1"
"1 gets 4"
"2 gets 0"

153

Phase Synchronization

• A set of threads execute a sequence ofphases.

• Required: a thread may start a phase only if all threads have finished the
previous phase.

• A thread callsnextphase() after each phase, and waits to receive a
signal to execute its next phase.

Typical Usage:

def class phaseSync(n) = · · ·
val barrier = phaseSync(3).nextphase

---------- Test
Println(0.1) ≫ barrier() ≫ Println(0.2) ≫ barrier() ≫ Println(0.3)

| Println(1.1) ≫ barrier() ≫ Println(1.2) ≫ barrier() ≫ stop
| Println(2.1) ≫ barrier() ≫ stop

154

Implementation Strategy

• Employ two semaphores:insem, outsem, initial values 0.

• Each call tonextphase() incrementsinsemand attempts to acquire
outsem.

• A manager attempts to acquireinsem ntimes, then releasesoutsem n
times, then repeats these steps.

155

Program: Phase Synchronization

def class phaseSync(n) =
val (insem, outsem) = (Semaphore(0), Semaphore(0))

def nextphase() = insem.release() ≫ outsem.acquire()

def repeat(_, 0) = signal
def repeat(f , i) = f () ≫ repeat(i − 1, f)

def manager() =
repeat(insem.acquire, n) ≫

repeat(outsem.release, n) ≫

manager()

manager()

156

Readers-Writers

• Readers and Writers need access to a shared file.

• Any number of readers may read the file simultaneously.

• A writer needs exclusive access, from readers and writers.

157

Readers-Writers API

• Readers callstart(true), Writers start(false) to gain access.

• The system (class) returns a signal to grant access.

• Both readers and writers callend() on completion of access.

• start(· · ·) is blocking, end() non-blocking.

158

Implementation Strategy

• Each call tostart is queued with the id of the caller.

• A managerloops forever, maintaining the invariant:
There is no active writer (no writer has been granted access).
Number of active readers =ctr.value, where ctr is a counter.

• On each iteration,managerpicks the next queue entry.
If a reader: grant access and incrementctr.
If a writer:
wait until all readers complete (ctr’s value = 0),
grant access to writer,
wait until the writer completes.

159

Implementation Strategy; Callback

• The id assigned to a caller is a new semaphore.

• A request is(b, s): b boolean,ssemaphore.
b = true for reader,b = falsefor writer,
each caller waits ons.acquire()

• The manager grants a request by executings.release()

160

Reader-Writer; Call API

val req= Channel()
val na= Counter()

def startread() =
val s= Semaphore(0)
req.put((true, s)) ≫ s.acquire()

def startwrite() =
val s= Semaphore(0)
req.put((false, s)) ≫ s.acquire()

def endread() = na.dec()

def endwrite() = na.dec()

161

Reader-Writer; Main Loop

def manager() = grant(req.get()) ≫ manager()

def grant((true, s)) = na.inc() ≫ s.release() – Reader

def grant((false, s)) = – Writer
na.onZero() ≫ na.inc() ≫ s.release() ≫ na.onZero()

162

Note on Callback

• Let request queue entry be(b, f), where f is a site.

• Manager executesf () for callback.

• For Readers-Writers,f is s.release()

163

Callback using one semaphore each for Readers and Writers

def class readerWriter2() =
val req= Channel()
val na= Counter()
val (r, w) = (Semaphore(0), Semaphore(0))

def startread() = req.put(true) ≫ r.acquire()
def startwrite() = req.put(false) ≫ w.acquire()

def endread() = na.dec()
def endwrite() = na.dec()

def grant(true) = na.inc() ≫ r.release() – Reader

def grant(false) = – Writer
na.onZero() ≫ na.inc() ≫ w.release() ≫ na.onZero()

def manager() = grant(req.get()) ≫ manager()

manager()

164

Reader-Writer; dispense with the queue

• The queue now holds a sequence of booleans,
true for each reader, false for each writer.

• Dispense with the queue.

• Introduce a class that hasput, getmethods.
It internally maintains Ref variables,nr and nw.
nr is the number of readers,nw writers.

• Simulate fairness, as in removing from the channel.
If nr? > 0, nr? is eventually decremented.
If nw? > 0, nw? is eventually decremented.

Use coin toss to simulate fairness.

165

Process Networks

• A process network consists of: processes and channels.

• The processes run autonomously, and
communicate via the channels.

• A network is a process; thus hierarchical structure.
A network may be defined recursively.

• A channel may have intricate communication protocol.

• Network structure may be dynamic, by adding/deleting
processes/channels during its execution.

166

Channels

• For channelc, treat c.put and c.getas site calls.

• In our examples,c.get is blocking andc.put is non-blocking.

• We consider only FIFO channels.
Other kinds of channels can be programmed as sites.
We show rendezvous-based communication later.

167

Typical Iterative Process

Forever: Read x from channelc, compute withx, output result one:

def p(c, e) = c.get() >x> Compute(x) >y> e.put(y) ≫ p(c, e)

c e

p(c,e)

Compute

Figure:Iterative Process

168

Composing Processes into a Network

Process (network) to read from bothc and d and write one:

def net(c, d, e) = p(c, e) | p(d, e)

c

d

e

p(c,e)

p(d,e)

net(c,d,e)

Figure:Network of Iterative Processes

169

Workload Balancing
Read fromc, assign work randomly to one of the processes.

def bal(c, c′, d′) = c.get() >x> random(2) >t>
(if t = 0 then c′.put(x) else d′.put(x)) ≫

bal(c, c′, d′)

def workbal(c, e) = val c′ = Channel()
val d′ = Channel()
bal(c, c′, d′) | net(c′, d′, e)

c’

d’

e

p(c’,e)

c

p(d’,e)

 bal

workBal(c,e)

170

Deterministic Load Balancing

• Retain input order in the output.

• distr alternatively copies input toc’ andc” .
coll alternatively copies fromd’ andd” to output.

c’

c’’

p(c’,d’)

p(c’’,d’’)

d coll

d’

d’’

 distrc

171

Deterministic Load Balancing

def detbal(in, out) =
def distributor(c, c′ , c′′) =

c.get() >x> c′.put(x) ≫

c.get() >y> c′′.put(y) ≫

distributor(c, c′ , c′′)

def collector(d′ , d′′, d) =
d′.get() >x> d.put(x) ≫

d′′.get() >y> d.put(y) ≫

collector(d′ , d′′, d)

val (in′, in′′) = (Channel(), Channel())
val (out′, out′′) = (Channel(), Channel())

distributor(in, in′ , in′′) | collector(out′ , out′′, out)
| p(in′, out′) | p(in′′, out′′)

172

Deterministic Load Balancing with2n servers
Construct the network recursively.

c’

c’’

d coll

d’

d’’

 distrc

recBal(n−1,c’’,d’’)

c d

recBal(0,c,d)

p(c,d)

recBal(n−1,c’,d’)

recBal(n,c,d)

173

Recursive Load Balancing Network

def recbal(0, in, out) = P(in, out)

def recbal(n, in, out) =
def distributor(c, c′ , c′′) = · · ·

def collector(d′ , d′′, d) = · · ·

val (in′, in′′) = (Channel(), Channel())
val (out′, out′′) = (Channel(), Channel())

distributor(in, in′ , in′′) | collector(out′ , out′′, out)
| recbal(n− 1, in′, out′) | recbal(n− 1, in′′, out′′)

174

An Iterative Process: Transducer

Compute f (x) for each x in channel in and output toout, in order.

def transducer(in, out, fn) =
in.get() >x> out.put(fn(x)) ≫ transducer(in, out, fn)

175

Pipeline network

Apply function f to each input:f (x) = h(g(x)), for someg and h.

def pipe(in, out, g, h) =
val c = Channel()
transducer(in, c, g) | transducer(c, out, h)

g hin c out

176

Recursive Pipeline network
Consider computing factorial of each input.

fac(x) =

{
1 if x = 0
x× fac(x− 1) if x > 0

Supposex ≤ N, for some givenN.

Fac_(N−1)

in out

in’ out’

front

Fac_(N)
177

Outline of a program

def fac(N, in, out) =
val (in′, out′) = (Channel(), Channel())
front(in, out, in′ , out′) | fac(N − 1, in′, out′)

Fac_(N−1)

in out

in’ out’

front

Fac_(N)
178

Implementation ofFac0

• receive inputx, x = 0

• output 1

• loop.

def fac(0, in, out) =
in.get() ≫ out.put(1) ≫ fac(0, in, out)

179

Implementation offront
front has two subprocesses,readandwrite, doing forever:

• readreceives inputx from in.
• If x = 0, output x on b.
• If x > 0, output x on b, sendx− 1 on in′.

• write receives inputx from b:
• If x = 0, output 1.
• If x > 0, receivey from out′, sendx× y on out

in outb
in’ out’

read write

Fac_(N−1)

180

Code of front

in outb
in’ out’

read write

Fac_(N−1)

def front() =
val b = Channel()
def read() = in.get() >x> b.put(x) ≫

if x :> 0 then in′.put(x− 1) else signal ≫ read()

def write() = b.get() >x>
if x = 0 then out.put(1)
else (out′.get() >y> out.put(x ∗ y)) ≫ write()

read() | write()
181

Program for fac

def fac(0, in, out) =
in.get() ≫ out.put(1) ≫ fac(0, in, out)

def fac(N, in, out) =
val (in′, out′) = (Channel(), Channel())

def front() = · · ·

front() | fac(N − 1, in′, out′)

182

Combining Server Farm and Pipeline

Fac_(N−1)

in’ out’

front

Fac_(N)

Fac_(N−1)

in’ out’

front

Fac_(N)

distr coll

183

Exercise: Combining Server Farm and Pipeline

• A dataset is a list of positive numbers.
The datasets are available on input channelin.
Each list length is no more thanN, for some givenN.

• Required: compute mean and variance of each dataset.
Output the results (as pairs) in order on channelout.

• First, divide the processing among about
√

N servers.

• Next, structure each server as a recursive pipeline.

184

Recursive Equations for Mean and Variance

• Use the equations:

sum([]) = 0,
sum(x : xs) = x + sum(xs)

length([]) = 0,
length(x : xs) = 1 + length(xs)

mean(xs) = sum(xs)/length(xs)

var([]) = 0,
var(xs) = mean(map(square, xs)) − mean(xs) ∗∗2

• Hint: For each list, compute the sum, sum of squares, and length by a
recursive pipeline.
Apply a function to compute mean and variance from these data.

185

Packet Reassembly Using Sequence Numbers

Figure:Packet Reassembler

• Packet with sequence numberi is at position pi in the input channel.

• Given: |i − pi | ≤ k, for some positive integerk.

• Then pi ≤ i + k ≤ pi+2×k. Let d = 2× k.

186

Packet Reassembly Program

def reassembly(read, write, d) = – d must be positive
val ch= Table(d, lambda(_) = Channel())

def input() = read() >(n, v)> ch(n%d).put(v) ≫ input()

def output(i) = ch(i).get() >v> write(v) ≫ output((i + 1)%d)

input() | output(0) – Goal expression

187

An Example Program: Broadcast

• Digital radio station has a list of subscribed listeners

• Broadcasts a message on dedicated channels to each one

• New listeners can be added

def class Broadcast(source) =
val listeners= Ref([])

def addListener(ch) =
listeners? >fs> listeners:= ch : fs

{- The ongoing computation of a broadcast -}
rep(source) >item> each(listeners?) >sink> sink.put(item)

188

A time-based class; Stopwatch

• A stopwatch allows the following operations:
start(): (re)starts and publishes a signal
halt(): stops and publishes current value

• Other operations:reset() and isrunning().

189

Implementation Strategy

• Each instance of the stopwatch creates a new clock, startingat time 0.

• Maintains two Ref variables:
laststart: clock value when the last start() was executed,
timeshown: stopwatch value when the last halt() was executed.

• Initially, both variable values are 0.

190

Stopwatch Program

def class Stopwatch() =
val clk = Rclock()
val (timeshown, laststart) = (Ref(0), Ref(0))

def start() = laststart := clk.time()

def halt() =
timeshown:= timeshown? + (clk.time() − laststart?) ≫

timeshown?

{- The ongoing computation of stopwatch -}stop

191

Stopwatch: Illegal starts and halts

• start() on a running watch has no effect. Publishes signal.

• halt() on a stopped watch has no effect. Publishes last value.

• isrunning() publishes true if and only if the stopwatch is running.

• Use a Ref variable to record if the stopwatch is running.

192

Stopwatch: Illegal starts and halts

def class Stopwatch() =
val clk = Clock()
val (timeshown, laststart) = (Ref(0), Ref(0))
val running= Ref(false)

def start() = if running? thensignal
else(running := true ≫ laststart := clk())

def halt() =
if running? then

(timeshown? + (clk() − laststart?) >v>
timeshown:= v ≫ running := false ≫ v)

elsetimeshown?

def isrunning() = running?
stop

193

Application: Measure running time of a site

def class profile(f) =
val sw= Stopwatch()

def runningtime() = sw.start() ≫ f () ≫ sw.halt()

stop

-- Usage
def burntime() = Rwait(100)

profile(burntime).runningtime()

194

Response Time Game

• Show a random digit,v, for 3 secs.

• Then print an unending sequence of random digits.

• The user presses a key when he thinks he seesv.

• Output (true, response time), or (false, _) if v has not appeared.
Then end the game.

195

Response Game: Program

val sw= Stopwatch()
val (id, dd) = (3000, 100) – initial delay, digit delay
def rand_seq() = – Publish a random sequence of digits

Random(10) | Rwait(dd) ≫ rand_seq()
def game() =

val v = Random(10) – v is the seed for one game
val (b, w) =

Rwait(id) ≫ sw.reset() ≫ rand_seq() >x> Println(x) ≫

Ift(x = v) ≫ sw.start() ≫ stop

| Prompt("Press ENTER for SEED "+v) ≫

sw.isrunning() >b> sw.pause() >w> (b, w)

if b then– Goal expression ofgame()
("Your response time = " +w + " milliseconds.")

else ("You jumped the gun.")
game()

196

Single alarm clock

Let salarmbe a single alarm clock.

• At any time at most one alarm can be set.
A new alarm may be set after a previous alarm expires or is cancelled.

• salarm.set(t) returns a signal after timet unless cancelled.
The call blocks if alarm is already set or subsequently cancelled.

• salarm.cancel() cancels the alarm and returns signal.
Just returns a signal if no alarm has been set.
This call is non-blocking.

197

Implementation Strategy for single alarm clock

• Ref variableasetshows if the alarm has been set.

• Semaphorecancelledis used to signal cancellation.

• Consider a scenario:
An alarm is set for 100ms and cancelled at 50ms.
Later, another alarm is set at 80ms to go off 40 ms later.
The first alarm should not ring at 100ms
(the thread must be pruned).

198

Implementation of Single alarm clock

def class Alarm() =
val aset= Ref(false)
val cancelled= Semaphore(0)

def cancel() = if (aset?) thencancelled.release() elsesignal

def set(t) =
Iff (aset?) ≫ aset:= true ≫

(val b = Rwait(t) ≫ true | cancelled.acquire() ≫ false
b ≫ aset:= false ≫ Ift(b)

)

stop

199

Clock with Multiple Alarm Setting

• Set an alarm with an id for a given time.

• Cancel an alarm (by its id) that has been set.

• A set alarm returns a signal unless it gets cancelled.

• An id can be reused.

200

Multiple Alarm Setting API

• Let malarmbe a multi-alarm clock in whichn alarms may be
simultaneously set.

• malarm.set(i, t) returns a signal after timet unless cancelled.
The call blocks if alarm is already set or later cancelled.

• malarm.cancel(i) cancels the alarm with idi and returns signal.
Just return a signal if no such id has been set.
This call is non-blocking.

• A new alarm with some id can be set after the previous alarm with the
same id expires.

201

Implementation of Multi-alarm clock

def class Multialarm(n) =
val alarmlist = Table(n, lambda(_) = Alarm())

def set(i, t) = alarmlist(i).set(t)

def cancel(i) = alarmlist(i).cancel()

stop

202

Testing Multialarm

val m= Multialarm(5)

m.set(1, 500) ≫ "first alarm"
| m.set(2, 100) ≫ "second alarm"
| Rwait(400) ≫ m.cancel(1) ≫ "first cancelled"
| m.cancel(3) ≫ "No third alarm has been set"

---------- Output
"No third alarm has been set"
"second alarm"
"first cancelled"

203

Using Web services: Spellcheck a list of words

include”net.inc”

def spellCheck([]) = stop

def spellCheck(word : words) =
GoogleSpellUnofficial(word) >sugg> (word, sugg)

| spellCheck(words)

spellCheck([”plese”, ”thereee”, ”Antiqu”])

204

Simulation as Concurrent Programming

• A simulation description is a real-time concurrent program.

• The concurrent program includes physical entities and their interactions.

• The concurrent program specifies time intervals for the activities.

205

Shortest Path Algorithm with Lights and Mirrors

• Source node sends rays of light to each neighbor.

• Edge weight is the time for the ray to traverse the edge.

• When a node receives its first ray, sends rays to all neighbors.
Ignores subsequent rays.

• Shortest path length= time for sink to receive its first ray.
Shortest path length to nodei = time for i to receive its first ray.

206

Graph structure inSucc()

u

x y z

2 1 5

Figure:Graph Structure

Succ(u) publishes(x, 2), (y, 1), (z, 5).

207

Algorithm

def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

Record path lengths for nodeu in FIFO channelu.

208

Algorithm(contd.)
def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

———————————-
A cell for each node where the shortest path length is stored.

def eval(u, t) = u := t ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | sink?

209

Algorithm(contd.)

def eval(u, t) = u := t ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | sink?

• Any call to eval(u, t): Length of a path from source tou is t.

• First call to eval(u, t): Length of the shortest path from source tou is t.

• evaldoes not publish.

210

Drawbacks of this algorithm

• Running time proportional to shortest path length.

• Executions ofSucc, put and getshould take no time.

211

Virtual Timer

Methods:

Vwait(t) Returns a signal aftert virtual time units.
Vtime() Returns the current value of the virtual timer.

212

Virtual timer Properties

• Virtual timer value is monotonic.

• Vwait(t) consumes exactlyt units of virtual time.

• A step is started as soon as possible in virtual time.

• Virtual timer is advanced only if there can be no other activity.

213

Implementing virtual timer

Data structures:

• n: current value ofVtime(), initially n = 0.

• q: queue of calls toVwait() whose responses are pending.

At run time:

• A call to Vtime() immediately responds withn.

• A call to Vwait(t) is assigned rankn + t and queued.

• Progress: If the program is stuck, then:

remove the item with the lowest rankr from q,
set n := r,
respond with a signal to the corresponding call toVwait().

214

Examples

• Rwait(10) | Ltimer(2)
Should logical timer be advanced with passage of real time?

• Rwait(10) ≫ c.put(5) | Ltimer(2)
Does Rwait(10) ≫ c.put(5) consume logical time?

• c.get() | Ltimer(2) ≫ c.put(5)
What are the values ofLtimer.time() before and afterc.get()?

• stop| Ltimer(2)
Can the logical timer be advanced?

• Google() | Ltimer(2)
Advance logical timer while waiting forGoogle() to respond?
What if Google() never responds?

215

Simulation: Bank

• Bank with two tellers and one queue for customers.

• Customers generated by asourceprocess.

• When free, a teller serves the first customer in the queue.

• Service times vary for customers.

• Determine

• Average wait time for a customer.
• Queue length distribution.
• Average idle time for a teller.

216

Structure of bounded simulation

Run the simulation forsimtime.
Below, Bank() never publishes .

val z= Bank() | Vwait(simtime)

z ≫ Stats()

217

Description of Bank

def Bank() = (Customers() | Teller() | Teller()) ≫ stop

def Customers() = Source() >c> enter(c)

def Teller() = next() >c>
Vwait(c.ServTime) ≫

Teller()

def enter(c) = q.put(c)
def next() = q.get()

218

Fast Food Restaurant

• Restaurant with one cashier, two cooking stations and one queue for
customers.

• Customers generated by asourceprocess.

• When free, cashier serves the first customer in the queue.

• Cashier service times vary for customers.

• Cashier places the order in another queue for the cooking stations.

• Each order has 3 parts: main entree, side dish, drink

• A cooking station processes parts of an order in parallel.

219

Goal Expression for Restaurant Simulation

val z= Restaurant() | Vwait(simtime)

z ≫ Stats()

220

Description of Restaurant
def Restaurant() = (Customers() | Cashier() | Cook() | Cook()) ≫ stop

def Customers() = Source() >c> enter(c)

def Cashier() = next() >c>
Vwait(c.ringupTime) ≫

orders.put(c.order) ≫

Cashier()

def Cook() = orders.get() >order>
(

prepTime(order.entree) >t> Vwait(t),
prepTime(order.side) >t> Vwait(t),
prepTime(order.drink) >t> Vwait(t)

) ≫ Cook()

def enter(c) = q.put(c)
def next() = q.get()

221

Collecting Statistics: waiting time

Change

def enter(c) = q.put(c)
def next() = q.get()

to

def enter(c) = Vtime() >s> q.put(c, s)

def next() = q.get() >(c, t)>
Vtime() >s>
reportWait(s− t) ≫

c

222

Histogram: Queue length

• CreateN + 1 stopwatches,sw[0..N], at the beginning of simulation.

• Final value of sw[i], 0 ≤ i < N, is the duration for which the queue
length has beeni.

• sw[N] is the duration for which the queue length is at leastN.

• On adding an item to queue of lengthi, 0 ≤ i < N, do

sw[i].stop| sw[i + 1].start

• After removing an item if the queue length isi, 0 ≤ i < N, do

sw[i].start | sw[i + 1].stop

223

Simulation Layering

• A simulation is written a set of layers.

• Lowest layer represents the abstraction of the physical system.

• Next layer may collect statistics, by monitoring the layer below it.

• Further layers may produce reports and animations from the statistics.

224

