1. (String Matching; 32 points)

(a) (Rabin-Karp algorithm; 8 points) Suppose you are looking for the pattern 26 in the text 3141582653599793, where \(\text{val}(n) = n \mod 11 \). How many string matches do you have to attempt which ultimately fail?

(b) (KMP algorithm; 10 points) Show that you can determine if pattern \(p \) is in text \(t \) simply from the cores of the prefixes of \(pt \).

(c) (4 points) The algorithm for core computation includes the following code fragment; see notes on “String Matching”, Page 10.

\[
\text{if } p[u] = p[v] \\
\text{then } c(v') := u' \\
\text{else } c(v') := \epsilon \\
\text{endif ;}
\]

Is it possible that \(u = \epsilon \) and \(c(v') \neq \epsilon \) after execution of this portion of the program? Show a small example to support your claim.

(d) (KMP Algorithm; 10 points) Apply the KMP algorithm on the following pattern and text. Show only the different values of \(l \) (see page 6 of the notes on “String Matching”).

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>pattern</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. (Data Parallel Programming; 18 points)

(a) (Batcher Merge; 8 points) Suppose \(u \) is a sorted list. Show that

\[u \text{ bm } u = u \uplus u \]

where \(\text{bm} \) is the Batcher Merge function (see Page 13 of your notes on Powerlist).

Hint: Use the following fact: if \(p \) and \(q \) partition a sorted list \(L \), then \(p \text{ bm } q = L \).

(b) (Prefix sum; 10 points) Let \(ps \) \(L \) be the prefix sum of \(L \). Suppose the corresponding operator \(\uplus \) is commutative as well as associative. Argue that \(ps(p \uplus q) = (ps p) \uplus (ps q) \). If \(\uplus \) is not commutative, show that \(ps(p \uplus q) = (ps p) \uplus (ps q) \) may not hold.

Hint: I don’t need a formal proof for the commutative result; let \(p = (p_0 \cdots p_n) \) and \(q = (q_0 \cdots q_n) \).