
CS 337 Solution to Makeup Quiz 3 12/15/03
Open book and notes.
Max points = 50 Time = 50 min

1. (String Matching)

(a) (Rabin-Karp algorithm) For n = 26, val(n) = 4. From the following
table, there are 3 possible matches out of which one is successful; so
there are 2 failed matches.

text 3 1 4 1 5 8 2 6 5 3 5 9 9 7 9 3
val(n) 9 3 8 4 3 5 4 10 9 2 4 0 9 2 5

(b) (KMP algorithm) Suppose p occurs somewhere in t; consider the first
occurrence. Then t is of the form xpy, and pt is of the form pxpy.
The core of the prefix pxp is p. That is, if p is in t, there is a prefix
of pt, of length at least 2 × p, whose core is exactly p. Conversely,
suppose pt has a prefix z whose core is p. If z is at least 2 × p in
length, its suffix which matches p is entirely past p, i.e., within t.
The additional condition on length is needed because if p = aa and
t = ab, then pt = aaab, the core of aaa is aa, which is p, though p is
not in t.

(c) Yes. Suppose v = “ab′′ and v′ = “aba′′. Then c(v) = ε, and u has
been set to c(v), i.e., ε, before this portion of the code is executed.
Because p[u] and p[v] are both “a′′, c(v′) will be set “a′′.

(d) (KMP Algorithm) This table shows various values of l. It is possible
to terminate the algorithm when l = 6, because the text cannot
possibly match the pattern at l = 8, from length considerations.

l index 0 1 2 3 4 5 6 7 8 9 10 11 12
text b a c b a b a b a a b c b

0 pattern a b a b a c a
1 pattern a b - - - - -
2 pattern a - - - - - -
3 pattern a - - - - - -
4 pattern a b a b a c -
6 pattern a b a b - - -
8 pattern a b - - - - -

1



2. (Data Parallel Programming)

(a) (Batcher Merge) First, we show that for any powerlist v, v l v =
v ./ v.

v l v
= {definition of l}

(v min v) ./ (v max v)
= {(v min v) = v and (v max v) = v}

v ./ v

From this result, it is sufficient to prove that u bm u = u l u. The
proof is by induction on the structure of u.

• 〈x〉 bm 〈x〉 = 〈x〉 l 〈x〉:
〈x〉 bm 〈x〉

= {definition of bm}
〈x〉 l 〈x〉

• Given that p ./ q is sorted, show that (p ./ q) bm (p ./ q) =
(p ./ q) l (p ./ q):

(p ./ q) bm (p ./ q)
= {definition of bm}

(p bm q) l (q bm p)
= {since p and q are parts of p ./ q and p ./ q is sorted}

(p ./ q) l (p ./ q)

(b) Suppose p = 〈p0 · · · pn〉 and q = 〈q0 · · · qn〉. Then the ith elements
of ps p, ps q and ps(p + q) are, respectively,

(ps p)i = (⊕i : 0 ≤ j ≤ i : pj)
(ps q)i = (⊕i : 0 ≤ j ≤ i : qj)
(ps(p⊕ q))i = (⊕i : 0 ≤ j ≤ i : pj ⊕ qj)

Since ⊕ is commutative and associative, (⊕i : 0 ≤ j ≤ i : pj ⊕ qj) =
(⊕i : 0 ≤ j ≤ i : pj) ⊕ (⊕i : 0 ≤ j ≤ i : qj), which is (ps p)i ⊕ (ps q)i.
For the counterexample: let ⊕ be string concatenation, p = 〈0 1〉,
q = 〈a b〉. Then

ps p = 〈0 01〉
ps q = 〈a ab〉
(ps p)⊕ (ps q) = 〈0a 01ab〉
ps(p⊕ q) = ps〈0a 1b〉 = 〈0a 0a1b〉

2


