Open book and notes. Max points = 50

 $\mathrm{Time} = 50~\mathrm{min}$

Do all questions.

- 1. (Finite State Machine)
 - (a) (Verification) The annotated machine is shown below. The predicates to be proven are, one corresponding to each transition:

$$p(\epsilon)$$

$$p(x) \Rightarrow q(x0)$$

$$p(x) \Rightarrow p(x1)$$

$$q(x) \Rightarrow \neg p(x0)$$

$$q(x) \Rightarrow p(x1)$$

$$\neg p(x) \Rightarrow \neg p(x0)$$

$$\neg p(x) \Rightarrow \neg p(x1)$$

(b) (Finite State Transducer)

(c) (Regular Expression)

$$\epsilon$$
, 0, 1, 00, 10, 11.

- 2. (Recursion and Induction)
 - (a) between $x y z = ((\min y z) < x) && (x < (\max y z))$
 - $\begin{array}{lll} \text{(b)} & & \text{unequal [x] = False} \\ & & \text{unequal (x: (y: xs)) = (x /= y) || (unequal (y: xs))} \end{array}$
 - (c) zip([], []) = []zip((x:xs), (y: ys)) = (x,y): zip(xs,ys)
 - (d) unzip [] = ([], [])
 unzip ((x,y): xyss) = ((x:xs), (y: ys))
 where (xs, ys) = unzip xyss